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Abstract.

A majority of snow radiative transfer models (RTMs) treat snow as a collection of idealized grains rather than an organized

ice-air matrix. Here we present a generalized multi-layer photon tracking RTM that simulates light reflectance and transmit-

tance of snow based on X-ray microtomography images, treating snow as a coherent 3D structure rather than a collection of

grains. The model uses a blended approach to expand ray tracing techniques applied to sub-1 cm3 snow samples to snowpacks5

of arbitrary depths. While this framework has many potential applications, this study’s effort is focused on simulating re-

flectance and transmittance in the visible and near-infrared (NIR) through thin snowpacks as this is relevant for surface energy

balance and remote sensing applications. We demonstrate that this framework fits well within the context of previous work

and capably reproduces many known optical properties of a snow surface, including the dependence of spectral reflectance

on snow specific surface area and incident zenith angle as well as the surface Bidirectional Reflectance Distribution Function10

(BRDF). To evaluate the model, we compare it against reflectance data collected with a spectroradiometer at a field site in

east-central Vermont. In this experiment, painted panels were inserted at various depths beneath the snow to emulate thin snow.

The model compares remarkably well against the reflectance measured with a spectroradiometer, with an average RMSE of

0.03 in the 400 - 1600 nm range. Sensitivity simulations using this model indicate that snow transmittance is greatest in the

visible wavelengths, limiting light penetration to the top 6 cm of the snowpack for fine grain snow but increasing to 12 cm for15

coarse grain snow. These results suggest that the 5% transmission depth in snow can vary by over 6 cm according to the snow

type.
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1 Introduction

Due to the highly reflective nature of snow, seasonal snowpacks make the surface significantly more reflective when present,20

impacting regional weather and climate. Correspondingly, the snow albedo feedback, caused by changes in seasonal snow

cover extent and properties, represents one of the more dramatic markers of regional and global climate change (e.g., Hall,
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2004; Déry and Brown, 2007; Flanner et al., 2011; Letcher and Minder, 2015; Thackeray and Fletcher, 2016). While snow is

highly reflective, snow albedo is not equal for all snowpacks. For instance, snow albedo typically decreases with snow age due

to metamorphic processes resulting in larger snow grains (e.g., Wiscombe and Warren, 1980; Aoki et al., 2000; Flanner and25

Zender, 2006; Adolph et al., 2017). Snow albedo is also diminished by light absorbing impurities such as dust or black carbon

that contaminate the snow (Doherty et al., 2010; Painter et al., 2012; Skiles et al., 2012; Dumont et al., 2014; Skiles et al.,

2015; Skiles and Painter, 2019; Shi et al., 2021). Importantly, these two effects impact different parts of the electromagnetic

spectrum, with grain size having a greater influence in the near-infrared (NIR), and the particle contamination influencing

the visible region. Finally, even though thin snow covers are highly reflective, the surface albedo for a thin snow cover can be30

influenced by the underlying ground surface depending on the snow microstructure (Perovich, 2007; Warren, 2013; Libois et al.,

2013). Consequently, the detection of subnivean hazards is highly dependent on the microscopic properties of the overlaying

snowpack. Understanding these small-scale drivers of snow albedo is important for large-scale remote sensing applications and

regional weather and climate modeling.

There are several documented approaches to model snow broadband and spectral albedo using radiative transfer models35

(RTMs) in efforts to better understand and predict the effects of snow aging and impurities on snow optical properties. While

a full review of snow radiative transfer is well beyond the scope of this paper, we refer the reader to He and Flanner (2020)

for a rigorous overview of the different approaches. There are also numerous simplified parameterizations for snow albedo

of varying complexity designed for implementation in weather and climate models (e.g., Verseghy, 1991; Dickinson, 1993;

Gardner and Sharp, 2010; Vionnet et al., 2012; Saito et al., 2019; Bair et al., 2019).40

At a fundamental level, the scattering of electromagnetic energy incident upon the boundary separating a snow grain and

the surrounding air is determined by the different refractive indices for ice and air and the geometry of the interfaces. The

absorption of light as it passes through solid ice is well understood and has a strong wavelength dependence (Grenfell and

Perovich, 1981; Perovich and Govoni, 1991; Warren and Brandt, 2008). The scattering of visible and NIR light at an air/ice

boundary is well described by the geometric optics approximation, where the wavelengths of visible and NIR light are small45

relative to the size of the typical snow particle (e.g., Kokhanovsky and Zege, 2004). While the physics behind scattering and

absorption are well understood within the geometric optics limit, the actual path of a light ray through a snowpack can be

extraordinarily convoluted as the ray is constantly intersecting air/ice interfaces with very little absorption.

Seminal studies describing snow albedo modeling (e.g., Warren and Wiscombe, 1980; Wiscombe and Warren, 1980) and

most subsequent approaches treat snow grains as independent scatterers, where the scattering properties of an individual grain50

are not affected by adjacent grains and are independent of the spacing between grains and, thus, snow density. For simplification

and computational efficiency, Mie theory is often used to determine the albedo of snow represented as a collection of spherical

particles (e.g., Bohren and Beschta, 1979; Wiscombe, 1980). Yet although snow grain size is often most cited as the key driver

of snow albedo, grain shape also has an impact, leading to inaccuracies with the spherical assumption (Aoki et al., 2000;

Neshyba et al., 2003; Picard et al., 2009; Libois et al., 2013; Dang et al., 2016). Efforts to understand and simulate the impacts55

of snow particle shape on snow spectral albedo have largely focused on leveraging the geometric optics approximation in

various ways. For instance, Yang and Liou (1996) used ray tracing to compute the single scattering properties of idealized
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hexagonal columns, plates, and rosettes. Grundy et al. (2000) presented a Monte Carlo approach to estimate optical properties

of computer-rendered 3D spheres that compared well with Mie theory. Their work was extended to estimate the scattering

properties of irregularly shaped crystals.60

Recently, there have been several efforts to characterize snow as a coherent medium rather than a collection of particles

within the context of radiative transfer. For instance, Malinka (2014) combined stereological techniques and geometric optics

to obtain the inherent optical properties of a snowpack. An additional study by Xiong et al. (2015) focused on determining the

optical properties of an idealized mixed snow/air medium generated from a randomized bicontinuous 2D representation of the

snow. X-ray microtomography (hereby: µCT) is a powerful tool that has been used in many of these medium-based efforts. µCT65

has been used to support numerous snow radiative transfer methods including individual particle scattering, ray tracing, and

analytical approaches (Haussener et al., 2012; Kaempfer et al., 2007; Malinka, 2014; Ishimoto et al., 2018; Xiong et al., 2015;

Dumont et al., 2021). Collectively, RTM-focused studies of snow have greatly expanded the knowledge surrounding the optical

properties of irregular snow grains and informed the role of snow microstructure on spectral reflectance and transmittance.

In this study, we build upon the approaches of Grundy et al. (2000), Kaempfer et al. (2007), Jacques (2010), and Randrianal-70

isoa and Baillis (2010) to develop a Monte Carlo photon tracking snow RTM that focuses on representing snow as coherent

3D structure rather than a collection of particles. This framework employs ray tracing to simulate photon tracks through 3D

renderings of snow samples measured using µCT and is designed for broad applications, including studying the effects of

snow type and snow depth on snow spectral albedo and transmittance in the visible and NIR. In section 2, we describe the

model framework and µCT data processing. In section 3, we demonstrate the model’s capability to reproduce known optical75

properties of snow, compare model output to spectral albedo measurements of objects buried beneath snow at various depths,

and use the RTM to investigate snow transmittance. In sections 4 and 5, we present a broad discussion and conclusions.

2 Data and Methods

The RTM framework used here is divided into two distinct components. The first determines key snow optical properties by

firing photons into 3D closed-surface renderings of snow samples derived from µCT scans. The second is a 1D plane-parallel80

photon tracking model that uses the optical properties derived from the first part. Both model components use the ice refractive

indices reported by Warren and Brandt (2008) to compute scattering and absorption. Additionally, both models are Monte

Carlo models that rely on a large number of sample rays to generate robust results.

While computationally expensive, there are several advantages to the Monte Carlo approach. In particular, Monte Carlo

models are useful for modeling single scattering properties of non-spherical particles and for 3D radiative transfer applications85

(e.g., Iwabuchi, 2006; Whitney, 2011). Additionally, this approach lends itself well to parallelization.

One critical simplification we make in determining the optical properties of a given snow sample is that we ignore the wave

properties of light, such as phase and diffraction, which limits its overall applicability and reduces accuracy. However, this

simplification has been used successfully in numerous previous studies (e.g., Kaempfer et al., 2007; Haussener et al., 2012;

Malinka, 2014; Xiong et al., 2015) and, because the diffraction pattern is strongly forward scattering (Xiong et al., 2015),90
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we anticipate that this simplification is appropriate here. Some work has been done incorporating diffraction into geometric

optics scattering for non-spherical particles (Yang and Liou, 1996; Liou et al., 2011), but because this framework treats snow

as a two-phase medium rather than a collection of particles, accounting for diffraction is less straightforward. Accordingly,

we acknowledge that diffraction may be more important for the longer NIR wavelengths, and should be a potential focus

of future work. We also assume independent scattering which is a common assumption made in the geometric optics limit95

(e.g., Randrianalisoa and Baillis, 2010; Haussener et al., 2012; Xiong et al., 2015). This simplification neglects the effect

of interference or multiple scattering within the two-phase medium and is a reasonably good assumption for visible light.

However, it likely reduces accuracy in the NIR, especially for densely packed particles.

2.1 Snow Optical Properties

The plane-parallel model requires four key optical properties: the extinction coefficient (γext [mm−1]), the ice path fraction100

(Fice), the absorption enhancement parameter (B), and the scattering phase function (p(cosΘ)). To obtain these parameters, we

apply the photon tracking methods described in Kaempfer et al. (2007). In this framework, photons are initialized at a random

position somewhere along the edge of a snow sample mesh and launched in a random direction into the sample. Photons then

travel through the snow medium and change direction according to Snell’s law of refraction and a probabilistic representation

of Fresnel’s law of reflectance. Each photon is tracked in this manner until it exits the medium. Note that each intersection105

is assumed to occur on a flat infinite plane with a normal vector oriented towards the air phase. We assume a constant (i.e.,

wavelength independent) real index of refraction of 1.30.

Photon tracks through the mesh are determined according to fundamental geometric optics for unpolarized (natural) light.

Fresnel’s law dictates that the fractional reflection and transmission of light at a boundary is related to the incident angle (θi)

and the refractive indices (n) of the two media separated by the boundary:110

Rh =

n1 cosθi−n2

√
1−

(
n1

n2
sinθi

)2

n1 cosθi +n2

√
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(
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)2
, (1)
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√
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n1

√
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sinθi
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where Rh and Rv are the horizontally and vertically polarized reflectances. Assuming that the radiation is unpolarized, the

reflectance (R) is:115
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1

2
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R2
h +R2

v

)
. (3)

Through energy conservation, the transmittance (T ) is:

T = 1−R. (4)

Then, if the vector normal to the boundary plane (v̂n) is oriented towards the medium with refractive index n1, the direction

unit vectors for reflected and transmitted radiation are computed as (v̂r) and (v̂t):120

v̂r = v̂i + 2cosθiv̂n (5)

and

v̂t =
n1

n2
v̂i +

(
n1

n2
cosθi− cosθt

)
v̂n. (6)

Once the photon has exited the mesh, characteristics of the photon track are used to extract the optical properties of the medium.

Since snow is weakly absorbing, here we assume that γext ≈ γsca where γsca is the scattering coefficient and is inversely125

proportional to the distance traveled between scattering events that occur at air/ice boundaries in the snowpack. Accordingly,

we calculate it by computing the mean distance traveled between scattering events along a given photon path averaged over all

photons (e.g., Randrianalisoa and Baillis, 2010):

γsca =
1

1
N

∑N
i=1 di

, (7)

where N is the total number of photons used in the model and d̄i is the average distance between scattering events along130

photon track (i). It is important to note that scattering events are defined at the outward facing side of the mesh surface such

that scattering events only occur when either a photon incident on a particle is reflected at the particle surface, or when a photon

traveling within the ice-phase is transmitted through the ice/air boundary into the air-phase. That is, internal reflections are not

considered discrete scattering events (Randrianalisoa and Baillis, 2010).

The mean ice path fraction (Fice) for a given photon track is the ratio of the distance traveled within ice and the total distance135

traveled throughout the medium. Here, Fice for a given snow sample is taken as the average Fice over all photon tracks.

The absorption enhancement parameter (B) quantifies the absorption path length extension due to internal reflections within

a snow particle and can be quantified by the ratio of the actual internal photon path-length through a sample medium and the

internal path-length following a straight line (Libois et al., 2019). In this framework, B is computed by taking the ratio of Fice

following photon tracks and Fice following a straight path through the sample:140

B =
Fice

Fice,straight
. (8)
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In essence, this ratio compares the internal path length of a photon track that allows for internal reflections to a path that does

not. B and Fice are used to compute absorption in the medium model.

The scattering phase function is obtained by aggregating scattering angles associated with all scattering events. Scattering

events are defined to be consistent with the computation of γsca in that internal reflections are not considered discrete scattering145

events.

To determine the phase function for the medium, scattering angles are first divided into a prescribed number of finite bins,

each with width dΘ. Then, for a given photon track, scattering angles are computed as follows:

1. When the photon track within the air phase of the medium is incident on the mesh surface, the incident angle (Ω̂′) is

saved and an initial energy value (W=1) is assigned to the ray entering the ice phase of the mesh.150

2. At the incident intersection (i0), the scattering angle of the incident ray and the reflected ray is computed as the dot

product of the incident angle and the angle of the reflected ray determined by eq. 5:

cosΘ = Ω̂′ · Ω̂. (9)

3. The ray then continues along its track through the medium, and at each boundary intersection, the reflection and trans-

mission are calculated following eqs. 1-4.155

4. At each subsequent intersection within the ice-phase (i1...ni ), the scattering angle between the incident ray and the

transmitted ray is computed from eq. 9.

5. Then the computed scattering angle is added to the appropriate bin (j) and is weighted by the total remaining energy

(W ) multiplied by either R at i0 or T otherwise.

6. The energy of the internal ray decreases at each intersection as it is scattered away from the particle such that the weight160

applied to the scattering angles (W ) is expressed as:

Wi =



R0 i= 0

T0Ti i= 1

T0

( i−1∏
n=1

Rn

)
Ti i > 1

. (10)

Note, that eq. 10 does not account for the absorption of energy within the particle.

Most rays exit the ice phase of the mesh after 1-to-3 internal reflections, however we continue to track the internal ray until

W is less than 0.01 to generate a more complete phase function. Once W has been depleted, the model continues tracking the165

original photon through the mesh. This process is illustrated schematically in Fig. 1.

At the end of the ray tracing model, the resulting distribution of energy, integrated over all photon tracks, is converted to a

phase function defined relative to the total energy initially incident on the air/ice boundaries. Grundy et al. (2000):
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Figure 1. Schematic illustrating the scattering phase function. The thick solid lines represent the actual photon track through the medium.

Dashed lines within the ice phase represent the extended internal rays that are followed until the 99% of the energy incident upon mesh

surface is scattered. Scattered rays following the extended ray path are indicated by the dotted lines within the air phase and are annotated

with their respective weights (W ).

p(cosΘj) =
4πNj

N sinΘjdΘ
, (11)

where N is the total photon energy and Nj is the total photon energy directed into bin j. In this study, the number of170

bins used to represent the phase function is 180. Accordingly, dΘ = 1◦. To illustrate this component of the model, the optical

properties for an example snow mesh are shown in Fig. 2.

2.2 1D plane-parallel photon tracking model

Once the optical properties of the snow sample are determined by launching photons through µCT sample volumes, the plane-

parallel model is used to simulate snow spectral albedo, transmittance, and Bidirectional Reflectance Distribution Function175

(BRDF). The plane-parallel model is used in place of a brute-force application of the explicit photon tracking model described

by Kaempfer et al. (2007) in order to allow for the computationally feasible simulation of spectral albedo and transmittance

for snow covers with depths exceeding 1 cm with sufficient grain resolution. Additionally, it is used to avoid complications

associated with lateral boundary treatment and stitching multiple µCT scans together into a single coherent snow lattice.
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Figure 2. (a) Probability of scattering as a function of distance (mm) and γsca. (b) 3D rendering of the snow sample used to generate

the optical properties. (c) Histogram of Fice. The red dashed line indicates the mean value. (d) Scattering phase function. 1200 individual

photon tracks were used to generate the optical properties shown in this figure. The asymmetry parameter (g) is the average of the geometric

asymmetry parameter computed from the phase function as gG = 1
2

∫
cos(Θ)∗ sin(Θ)dΘ and the diffraction asymmetry parameter gD ' 1

according to Kokhanovsky and Zege (2004) and Libois et al. (2013).

The model used here is largely based on the framework presented in Jacques (2010) and is similar to the model described180

in Picard et al. (2016), which track individual photon packets as they follow unique paths through the specified media. Here,

discrete snow layers with optical properties constant throughout each layer are first prescribed. Then initial photon vector

positions (X0) with cartesian components of (x0, y0, z0) are specified with random x and y coordinates, and z coordinates
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equal to the snow surface height. Each photon packet is given an initial energy of unity (E = 1) and an initial direction vector

(V0):185

V0 =
[
sinθ cosφ, sinθ sinφ, −cosθ

]
, (12)

where θ is the solar zenith angle, and φ is the azimuth angle clockwise from x. This initial direction can be prescribed randomly

(i.e., diffuse radiation), or at any specified zenith/azimuth angle (i.e., direct radiation), or as a mixture of both diffuse and direct

radiation.

For a given photon, once the position is set, the photon is launched into the medium, and travels a distance s before ex-190

periencing a scattering event. s is computed statistically using the Beer-Lambert law and the medium scattering coefficient

(Jacques, 2010):

s=− lnζ
γsca

, (13)

where ζ is a random uniform number between 0 and 1. The new position in the medium is:

X =X0 + sV0 (14)195

At the scattering event, the photon packet is given a new direction unit vector according to the scattering phase function.

Because this framework treats the scattering phase function as a probability distribution function (PDF), the scattering angle Θ

is determined by choosing a random sample from p(cosΘ) PDF:

P (cosΘ) =
p(cosΘ)dΩ

4π
, (15)

where P is the probability of light being scattered into a cone with solid angle dΩ in the direction Θ from the incident200

radiation given the phase function.

Then the new direction vector is determined from Θ (Jacques, 2010):

µx =
sinΘ

(
µx0µz0 cosφ−µy0 sinφ

)
√

1−µ2
z0

+µx0cosΘ

µy =
sinΘ

(
µy0µz0 cosφ−µx0 sinφ

)
√

1−µ2
z0

+µy0cosΘ

µz =−
√

1−µ2
z0 sinΘcosφ+µz0 cosΘ

, (16)

where φ is given as a uniform random number between 0 and 2π, the 0 subscript represents the incident direction, and µx, µy ,

and µz make up the components of the unit direction vector.205

Photon energy is depleted over distance s according to the ice absorption coefficient and Fice as determined from the µCT

data instead of using a medium absorption coefficient:

E = E0

(
e−κλsFiceη

)
, (17)
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where E is the new photon energy, and E0 is the incident photon energy. The parameter η is a non-dimensional scaling

parameter that relates Fice, B, and ρs to absorption following expressions given in Libois et al. (2013, 2019):210

η =

(
1−

(
B− 1

)
ρs

ρice

)
. (18)

η is typically within 10% of unity for a majority of snow samples, but can enhance absorption by as more than 25% in snow

ρs > 350 kg m−3 and B > 1.7.

To achieve statistical energy conservation, a "Russian Roulette" function is used to determine whether or not to fully absorb

(i.e., kill) the photon packet once its energy falls below a prescribed threshold (Iwabuchi, 2006; Jacques, 2010). This is given215

as:

E =

mE ζ ≤ 1/m

0 ζ > 1/m
, (19)

where ζ is a random number between 0 and 1, and m is a prescribed constant on the order of 1-10. In essence, the Russian

Roulette technique achieves energy conservation by proportionally compensating for the energy removed from the model when

photons are killed. By treating absorption continuously rather than probabilistically, the number of photons required to attain a220

robust solution is significantly reduced, and further ensures reliable model integration.

If the z position of a photon packet with an upward trajectory is above the top of the snow surface (i.e., it has exited the top

of the snowpack), the remaining energy within the packet is added to the total reflected energy and the photon is eliminated.

In an open lower-boundary configuration, if a photon packet z position is less than 0 (i.e., it has exited the bottom of the

snowpack) the remaining energy is added to the total transmitted energy, and the photon is eliminated. Alternatively, a lower225

boundary can be simulated with a specified spectral reflectance such that a portion of the photon energy will be absorbed at the

lower boundary, and the remaining energy will be reflected upward. Once all photons have been eliminated from the model,

the simulation is complete.

This model is extended to a multilayer configuration by simply defining unique optical properties corresponding to specified

depths throughout the snowpack. When a photon packet travels from one layer to another, its trajectory and energy depletion230

are determined by the optical properties of the new layer. To illustrate this, two photon tracks are plotted on a 2D plane as they

travel throughout an idealized two-layer 20 cm deep snowpack (Fig. 3).

2.3 Directional Conic Reflectance Function

The reflectance of a surface is often described using the concept of a BRDF (e.g., Stamnes and Stamnes, 2016). The BRDF

represents the directional PDF of reflectance for a ray of light impacting the surface from a specified incident direction. To235

estimate the BRDF from this model, we follow the methods described in Kaempfer et al. (2007), which approximates the

BRDF using the Directional Conic Reflectance Function. The DCRF is a discretized BRDF that computes the energy reflected

into a cone in the direction: θr,φr subtended by solid angle dΩ:
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Figure 3. x/z cross section of two photons within a multi-layered snowpack 20 cm deep. The color scale indicates the fractional energy of

the photon packet. The background shading indicates the layers of the snowpack.

DCRF (θi,φi,θr,φr) =
Ir(θr,φr)

Ii(θi,φi)cosθidΩ
, (20)

where I is the radiative flux, and the subscripts i, and r correspond to the incident and reflected radiation, respectively.240

2.4 Snow sampling and spectroradiometer measurements in the field

To evaluate the model, we collected snow samples and spectral reflectance measurements of the snow surface at Union Village

Dam (UVD) in Thetford, Vermont several times throughout the 2020-21 winter. The UVD site is a broad flat clearing sur-

rounded by deciduous forests spanning approximately 40000 m2, and bounded on the southern end by the Ompompanoosuc

River. During each data collection, a snow pit was excavated and standard snow characteristics, such as snow depth, density,245
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and grain size were measured manually. Several snow samples were carefully extracted at several depths spanning the height

of the snow cover in columns adjacent to the snow pit sidewalls in cylindrical containers 7 cm high x 1.9 cm in diameter, with a

1-2 cm overlap in the depth of each sample. Three replicate samples, spaced laterally < 10 cm from one another, at each depth

were collected. The specific samples used in this analysis were taken from the surface, 0-7 cm, in the case of the fine grain

sample, and from 14-19 cm depth in the case of the coarse grain sample. These samples were transported in a hard, plastic250

cooler for 10 miles from the UVD site to the Cold Regions Research and Engineering Laboratory (CRREL). The fine grain

sample was imaged 18 days after snow sampling, while the coarse grain sample was imaged 53 days after snow sampling. All

samples were stored at -30 ◦C to limit metamorphic change in the intervening timeframe. These samples were not casted (i.e.

not preserved using a pore-filler).

Spectral reflectance data were collected using a Malvern Panalytical ASD FieldSpec 4 Hi-Res: High Resolution Spectrora-255

diometer. The FieldSpec 4 has a spectral range of 350-2500 nm and a spectral resolution of 3 nm in the visible and 10 nm in

the SWIR. The data collection was performed within 1.5 hours of solar noon in order to limit high zenith angle impacts. The

FieldSpec 4 requires optimization, which adjusts and improves the detector sensitivities for the probe and light source currently

in use. An optimization was conducted prior to the start of data collection and any time lighting conditions changed in order

to ensure accurate reflectance readings. Data collections were taken 2.5 to 3 feet above the snow surface at nadir using a 5260

degree field of view optic lens, resulting in a measurement footprint diameter of approximately 6 cm. The collection strategy

employed included taking a white reference reading from a pure reflective panel and five readings at different locations on the

target surface; the mean of the five readings was used as the reflectance value for that specific location.

In this paper, we focus specifically on data collected on 12 February, 2021 as this day had the most stable ambient lighting

conditions and resulted in the majority of our snow and reflectance measurements. At the time of the measurements the sky265

was covered with a high optically thick overcast, and as a result the ambient lighting conditions were generally diffuse. The

snow was dry and approximately 34 cm deep, and was roughly characterized as a layer of relatively fresh snow approximately

10 cm deep overlying a layer comprised of larger mixed refrozen snow grain clusters and facets, separated by a 1 cm thick

ice crust. We performed an initial evaluation of the model against measurements to focus on the effect of shallow snow on the

spectral albedo.270

To measure the effects of a shallow snowpack, a 16"x16" aluminum panel painted black was inserted horizontally into the

snowpack through the snow pit sidewall at three depths (10 cm, 4.5 cm, and 2.5 cm) with care as not to damage the smooth

snow surface (e.g., Fig. 4). This panel was strongly absorptive in the visible and NIR spectrum with a constant reflectance of

approximately 4 % throughout the entire 350 - 2500 nm range. Since there was no appreciable difference between the measured

spectral albedo of the virgin snow (i.e., no inserted panel) and the panel inserted at 10 cm, we limit our analysis to the 4.5 and275

2.5 cm panel depths.

2.5 µCT sampling and Mesh Generation

The snow samples were characterized at the microscale with a cold-hardened Bruker Skyscan 1173 µCT scanner housed in a

-10 ◦C cold room equipped with a Hamamatsu 130/300 tungsten X-ray source, which produces a fixed conical, polychromatic
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Figure 4. Photograph of the black aluminum panel inserted into the snow pit sidewall approximately 2.5 cm from the surface.

beam with a spot size of <5 µm and a flat panel sensor camera detector. Each sample was scanned with 38 kV X-rays at 196 mA280

and a nominal resolution of approximately 20 µm as the sample was rotated 180◦ in 0.6◦ steps with an exposure time of 300-

350 ms. Based on estimates of the minimum grain size from manual field measurements, the resolution of the µCT, at 20 µm, is

roughly on the order of one tenth the linear size of the minimum grain size we were imaging. We used the commonly employed

Nyquist sampling criterion, which requires a minimum of 2.3 pixels per linear feature, to determine that the resolution was

sufficient for the grain sizes we sampled. X-rays were detected using a 5 Mp (2240 x 2240) flat panel sensor utilizing 2 x285

2 binning, and projection radiographs were averaged over four frames. The resulting 1120 x 1120 pixel radiographs were

then reconstructed into 2D gray-scale horizontal slices using NRecon software (Bruker), which utilizes a modified Feldkamp

cone-beam algorithm to produce a vertical stack of gray-scale cross-section images. Image reconstruction processing included

sample-specific post alignment, Gaussian smoothing using a kernel size of 2 to reduce noise, sample-specific ring artifact

correction of dead pixels, beam hardening correction, and X-ray source thermal drift correction. A cylindrical volume of290
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interest with a diameter of 1.6 cm was selected from the scanned samples in order to eliminate edge effects caused by the

sampling process.

Resulting grayscale images are segmented into two phases: air (lowest X-ray absorption), and snow (highest X-ray absorp-

tion). Segmenting thresholds for each phase are determined by finding the local minimum between peaks on the histogram

showing all grayscale values, and using that value as a global threshold for each scanned sample. The resulting binarized data295

are despeckled so that any objects less than 2 pixels in diameter were removed.

The final binarized images are then used to construct 3D representations of dry snow samples for input into the RTM. This

is accomplished through the use of open-source image processing and 3D visualization software packages accessed through

Python (Schroeder et al., 2004; Van der Walt et al., 2014; Sullivan and Kaszynski, 2019).

To build a full sample mesh, a contour-based surface reconstruction process was developed to generate snow surfaces from300

the voxels that make up the snow sample. This method uses a subset of the binary sample array, including both snow and

adjacent air voxels. The subset array is then refined to increase the resolution. A Gaussian filter is applied to smooth the refined

array, diminishing the pixelated appearance of the voxelized snow-air interface, producing a smooth level set from which to

extract the snow surface. The smoothed level set is then used to define an isosurface at the snow-air boundary, providing control

over where the boundary is drawn with respect to the voxels.305

Finally, to extract the isosurface from the 3D voxel array, we apply the Marching Cubes method. This algorithm iterates

through defined cubes (i.e. voxels) and determines, through knowledge of the pixel values at the cube vertices, if the isosurface

intersects that cube. If so, it creates triangular patches via a lookup table that are eventually connected to form the isosurface

boundary. The original algorithm presented by Lorensen and Cline (1987) can lead to cracks and over the years has been

improved by many (Nielson and Hamann, 1991; Scopigno, 1994; Natarajan, 1994; Chernyaev, 1995; Lewiner et al., 2003).310

For this work, we used the adaptation implemented by Lewiner et al. (2003), which improved the algorithm to resolve face

and internal ambiguities, extended the lookup table, and guaranteed correct topology. As a final step, each grain is “repaired”

to remove any defects and degenerate elements and ensure a manifold surface according to Attene (2010), and then decimated

to reduce the overall number of triangles that comprise the surface thereby lowering the computational requirements. Overall,

this method appears to accurately characterize the snow within the µCT sample with computed mesh snow sample densities315

within 1.5% of snow densities computed from the raw voxels. Figure 5 shows a 2D cross section comparing air/ice boundaries

to the raw pixels of the image and selected example 3D rendered µCT samples are shown in Figure 6.

3 Results

3.1 General Evaluation

An initial evaluation of the model is performed by simulating the spectral albedo for two idealized 60 cm deep snowpacks with320

uniform optical properties throughout. For these snowpacks, the optical properties are determined from 3D meshes generated

by two characteristically distinct µCT samples. One mesh is representative of fresh, fine-grained snow near the surface, and

the other of large facets near the bottom of the snowpack (Fig. 7). For each mesh, the total mesh volume is approximately

14



Figure 5. 2D Cross-sectional slice of a binarized µCT scan with corresponding mesh boundaries superimposed shown as the blue lines.

800 mm3. Additional physical and optical properties of each mesh are presented in Table 1. For each sample, the spectral

albedo is computed for wavelengths between 400-1600 nm at 20 nm intervals with diffuse incident radiation. This comparison325

demonstrates that the model capably reproduces a known behavior of spectral albedo, namely the strong sensitivity of NIR

albedo to snow microstructure (Fig. 8). The spectral albedo is relatively uniform between the two snowpacks for the spectral

range between 400 and 800 nm, and then the albedos diverge, with a more rapid decrease in albedo for the coarser-grained

snow.

We then assess the dependence of simulated spectral albedo on incident zenith angle for the fine grain snow sample at four330

different wavelengths to evaluate the model’s ability to simulate anisotropy in the surface reflectance (Fig. 9). This analysis

shows an increase in albedo at high zenith angles that is most pronounced in the NIR that represents the functional dependence

between albedo and cos(θ). This result is broadly consistent with results from previous studies that compare snow albedo

and zenith angle (e.g., Li and Zhou, 2003; Kokhanovsky and Zege, 2004; Xiong et al., 2015). As a related evaluation, the

model-simulated DCRF is computed as a function of zenith angle (Fig. 10). This analysis reveals that the reflectance is mostly335
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Figure 6. Example 3D renderings of selected µCT samples representing different types of snow grains.

isotropic for zenith angles less than approximately 55◦ at which point the surface becomes increasingly forward scattering,

consistent with previous observational and modeling studies (Aoki et al., 2000; Hudson et al., 2006; Kaempfer et al., 2007;

Dumont et al., 2010; Xiong et al., 2015; Jiao et al., 2019).

Finally, we use the model to provide an initial assessment of the impacts of snow microstructure on simulated spectral

transmittance at specified depths within a homogenous snowpack. To accomplish this, the optical properties of the µCT samples340

in Fig. 7 are used to simulate and compare the spectral transmittance at varying depths (Fig. 11). The transmittance is highest

at the short, non-absorptive, wavelengths and gradually decreases throughout the NIR, broadly matching quantitative snow

transmittance results reported in Perovich (2007) and Libois et al. (2013). The depth of the 5% transmittance contour for the
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Figure 7. 3D renderings of mesh samples used to generate the optical properties for the general evaluation and snow transmittance compar-

isons. a) Fine grain sample, and b) Coarse grain sample.

Table 1. Physical and optical properties of the fine grain and coarse grain mesh samples. Note that SSA and ρs are computed directly from

the µCT sample. The asymmetry parameter (g) is computed as described in Fig. 2.

Property Fine Grain Coarse Grain

SSA (m2 kg−1) 18.4 12.9

ρs (kg m−3) 287.0 232.4

γsca (mm−1) 1.10 0.65

Fice 0.48 0.44

B 1.52 1.60

g 0.82 0.84

fine grain snow sample is approximately 6 cm for the visible, and decreases to approximately 2 cm for the NIR (Fig. 11a),

indicating that the fine grain snow penetration length is on the order of only a few centimeters. In contrast, the transmittance345

for the coarse grain snow is greater near the surface, and the depth of the 5 % contour correspondingly increases to 12.5 cm for

the visible and 5 cm for the NIR (Fig. 9b).
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Figure 8. Simulated spectral albedo for fine grain and coarse grain snow samples for 100% diffuse radiation. Note these simulations were

run with 25000 photons for a snow depth of 60 cm.

3.2 Evaluation against UVD Data

To evaluate the model’s ability to simulate the effect of the underlying surface on snow spectral albedo for shallow snow,

optical properties used in the plane-parallel model were determined from four approximately 800 mm3 µCT samples, with350

each sample representing a 2 cm thick layer within the top 8 cm of the snowpack. The RTM is then configured with 4 layers

according to these optical properties (given in Table 2). The top three layers are each 2 cm thick, and the bottom layer is 28

cm thick, such that the entire snow depth amounted to 34 cm. We chose this configuration in accordance with the hypothesis

that the snow microstructure below 8 cm had little impact on the measured surface spectral albedo. To simulate the panels, the

snowpack depth is modified to be 4.5 and 2.5 cm deep with a lower boundary consistent with the spectral reflectively of the355

black panel (Table 2).

There is generally good agreement between the observations and the model (Fig. 12) and in particular, the model accurately

simulates the impact of the inserted panel on the surface albedo for wavelengths shorter than 1000 nm for both the 4.5 and

2.5 cm depths. The model spectral albedo decreases more rapidly than the observations with wavelength in the 800 - 1000

nm region, particularly for the virgin snow sample. This leads to a slight underestimate in albedo in the NIR range for wave-360
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Figure 9. Simulated spectral albedo as a function of incident zenith angle for selected wavelengths. Note these simulations were run with

25000 photons for a snow depth of 60 cm.

Table 2. Physical and simulated optical properties of the top 8 cm of snow measured at the UVD site on 12 February, 2021. SSA and ρs

are computed directly from the µCT sample. Note that the depths correspond to the RTM model depths for the virgin snow calculation. The

asymmetry parameter (g) is computed as described in Fig. 2

depth [cm] SSA (m2 kg−1) ρs (kg m−3) γsca (mm−1) Fice B g

1 (32-34) 26.1 147 0.90 0.32 1.89 0.82

2 (30-32) 27.2 178 1.07 0.34 1.69 0.84

3 (28-30) 21.1 250 1.13 0.44 1.57 0.81

4 (0-28) 18.4 287 1.08 0.49 1.59 0.82

lengths shorter than 1400 nm. We suspect that beyond 1400 nm, differences between the model and observations is due to the

limitations of the assumptions made as part of the geometric optics approximation as the approximate particle size parame-

ter is < 1000 for λ > 1400 nm. The simulated spectral albedos converge to the same value at approximately 950 nm, which

matches the observed behavior of measurements collected over 4.5 and 2.5 cm panel depths. This behavior does not match the

observed behavior of the virgin snow, which has an albedo higher than the panel observations until approximately 1400 nm.365

It is unknown if the cause of this difference is due to the model or is related to observational uncertainty caused by imperfect
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Figure 10. Polar plots of DCRF at 1000 nm for incident zenith angles ranging from 5 - 89◦. Reflected azimuthal direction is on the theta

axis, and reflected zenith angle is on the r axis. Color scale ranges from 0-1.5.

lighting conditions. Therefore, we are careful to note that this comparison is presented as an initial evaluation of our modeling

framework and not a robust evaluation of its accuracy.

3.3 Snow optical and physical properties

The first component of the model is used independently of the plane-parallel model to assess the relationship between common370

snow physical properties and the simulated optical properties from this framework. To demonstrate this, we compare snow

specific surface area (SSA) and snow sample density (ρs) to γsca and Fice. This analysis is performed by generating optical

properties from several µCT sample volumes collected on different dates and locations during the 2020-2021 winter season,

spanning a wide range of snow types. Note that each µCT sample is approximately 800 mm3 and the sample SSA and ρs are

determined from the µCT 3D rendering.375
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Figure 11. Simulated transmittance of a) the fine grain snow, and b) the coarse grain samples contoured as a function of depth and wavelength.

Solid black lines mark the depth of the 5 % transmittance contour.

This analysis reveals that Fice has a very robust relationship with snow density (Fig. 13a) described by the linear fit:

Fice = 0.0008ρs + 0.22, (21)

with r2 = 0.92. In Figure 13b, γsca is compared to the product of ρs and SSA, to match the analytical formula described in

Kokhanovsky and Zege (2004). The results show a clear linear relationship fit to:
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Figure 12. Simulated and observed spectral albedo for three different snow depths. The solid lines indicate observations and dotted lines

indicate simulations. The shading around the observations indicates the inter-quartile range of the measurements computed from the five

snow and two reference scans collected during each measurement, providing an assessment of measurement uncertainty. The mean RMSE

of the simulated albedo compared to measurement-derived albedo over 400-1600 nm is equal to 0.03.

γext = 0.21ρsSSA− 0.01, (22)380

with r2 = 0.78.

The estimated B parameter is distributed normally around a mean of 1.49, consistent with the results reported in Libois

et al. (2014). We note that there is no significant relationship between B and snow grain form or size, however there is a

general tendency for B to be highest for samples with higher SSA and smaller grains, which is qualitatively consistent with

Kokhanovsky and Zege (2004) and Libois et al. (2014).385

To further assess how these two specific snow optical properties, γsca and Fice, affect the greater simulated spectral trans-

mittance, we perform a sensitivity analysis by comparing the 5% transmittance contour depth for three fractional ice paths:

0.31, 0.47, 0.75 at two fixed γsca values: 1.29, 0.39 mm−1 (Fig. 14). The two γsca values correspond to the max and min
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Figure 13. Optical properties for λ=1000 nm computed from µCT photon tracking compared against sample physical properties. a) Fice vs.

ρs and b) γsca vs. SSA*ρs. Linear regression lines are shown in black dashed lines. Marker shapes and colors are indicative of the observed

grain forms determined through visual assessment during snow pit analysis. Note that in panel (b) a histogram of the estimated B parameters

for all of the µCT samples is shown, inset. Bmean = 1.53 is shown as the vertical red line.

values found in the previous analysis and presented in Fig. 13b. The three Fice values correspond to the max, min, and mean

values (Fig. 13a). We compare the influence of Fice at both the max and min γsca values, since we anticipate the strength of its390

influence will vary according to γsca. We note that high values of γsca are more likely to coincide with high values of Fice due

to the shared dependence of these variables on snow density in most snowpacks.
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Figure 14. Depth of simulated 5% transmittance contour as as a function of wavelength for varying Fice at two scattering coefficients:

γsca = 0.39 (solid lines) and γsca = 1.29 (dashed lines).

The results of this analysis indicate that both γsca and Fice impact snow transmittance in accordance with relationships

discussed in Libois et al. (2013). Specifically, the approximate factor of 3 decrease in the scattering coefficient corresponds to

an approximate factor of 3 increase in depth of the 5 % transmittance contour, consistent with a linear relationship between395

γsca and penetration depth (L). Additionally, the simulated factor-increase in penetration depth is approximately the square

root of the factor increase in Fice, for λ > 600 nm, consistent with the L≈
√
B ∗κabs presented in Libois et al. (2013).

4 Discussion

Overall, this framework shows promise as a research tool for better understanding visible and NIR snow radiative transfer

through snowpacks with irregularly shaped and arranged grains. However, there are numerous uncertainties in this framework400

that should be addressed in future work to better understand its capabilities and limitations.
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Figure 15. Snow pit stratigraphy (right) compared against γsca, Fice, ρs, and SSA. Each dot represents a µCT sample at a specified depth.

Violin plots show estimated probability distributions for each observer-identified snow layer according to the samples collected with the

layer.

For instance, there are broader questions surrounding the definition of the scattering coefficient (γsca) and the phase function

(p(cosΘj)) for weakly absorbing porous media in the geometric optics limit. While, fundamentally, γsca is the inverse of the

mean free path traveled by a photon between scattering events within the medium, there is some ambiguity as to how a scattering

event is defined. Traditionally, and in most applications, a scattering event is defined as occurring at a particle. That is, light405

intersects a particle, and is scattered away from the particle, and internal reflections within the particle are considered as part

of a single, larger, scattering event (e.g., Van De Hulst, 1957; Kokhanovsky and Zege, 2004; Randrianalisoa and Baillis, 2010;

Malinka, 2014). However, more recent studies have considered scattering along dielectric boundaries separating the air/ice

phase such that internal reflections within a given particle are counted as distinct scattering events (e.g., Xiong et al., 2015).
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While ray tracing techniques such as the one presented here are well-suited to the latter definition, this model conforms to410

the former, "particle", approach such that the optical properties generated are consistent with a majority of accepted methods.

However, we note that reconciling these definitions is a worthy topic of future research, and that the model framework presented

here is a potentially useful tool for these efforts.

An additional source of uncertainty in computing the optical properties is the method used to estimate the absorption en-

hancement parameter (B) directly from ray tracing. Formulas presented in Libois et al. (2019) show that B can be related to415

Fice and snow density following:

B =

(
Fice− ρice

ρsFice

)
(
Fice− 1

) . (23)

However, estimating B from the sample density and Fice generally leads to values much higher than those computed from

eq. 8. We speculate that this discrepancy is due to the fact that some photon tracks through the rendered mesh do not adequately

represent the snow sample. Specifically, some photons traveling through the mesh take short paths through a single particle420

before exiting the sample, resulting in an Fice close to 1. This is supported by the presence of a peak at 0.95 in the histogram

of Fice shown in Fig. 2b. Since eq. 23 indicates a non-linear increase in B with Fice, these non-representative paths have an

disproportionately large influence on B in eq. 23.

Another possible source of uncertainty in this framework is the assumption that the optical properties computed from volume

µCT samples on the order of 1 cm3 are homogeneous laterally, and can be extrapolated to characterize representative layer425

depths. To elucidate upon this uncertainty, we compare the optical and physical properties of the 20 rendered µCT samples

collected at UVD on 12 February 2021 to the observed snow pit stratigraphy (Fig. 15). Here we show that the top layer of

the snowpack has more homogeneous physical and optical properties than the buried layers. In particular there is substantial

variability in γsca and Fice within the rounded grains and the upper-most facet layers. Further investigation into this variability

in the facet layer spanning the 14-18 cm layer reveals that this variability is caused largely by the fact that some µCT samples430

within this layer contained unusually large pore spaces, which caused lower SSA and γsca values. We suspect that this variabil-

ity has limited impacts on the simulated spectral albedo for the shallow snow simulations, since the top snow layer is relatively

homogeneous. However, this variability is likely to have more significant impacts for simulations focused on older snowpacks

with larger and less uniformly distributed snow grains.

Finally, there are several assumptions we used to simplify our model that are worth additional discussion. First, we’ve taken435

the real part of ice refractive index to be constant at 1.30, which is the refractive index of ice at λ= 1000 nm. However,

while this is generally a good assumption, there is a minor wavelength dependence throughout the visible and NIR range that

could affect the optical properties of the medium and potentially influence the plane-parallel model. Further, it has been shown

that spectral albedo in the NIR (λ >1400 nm) is sensitive to which refractive index database is used to represent absorption

(Carmagnola et al., 2013; Dumont et al., 2021). While we do not explore this sensitivity here, we note it as a potential source440

of error. Finally, the derivation of optical properties is based on the underlying assumption that snow is weakly absorbing such

that γext can be approximated with γsca. While snow is weakly absorbing in the visible range, it is more absorptive in the NIR,
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and accordingly we expect that this assumption can lead to increased uncertainty beyond 1400 nm. Despite these sources of

potential uncertainty, as demonstrated in Fig. 12, simulated and observed albedos are in good agreement for λ < 1400 nm.

5 Conclusions445

In this work we have presented a blended photon tracking radiative transfer model in an effort to better understand the com-

plicated influence of snowpack microstructure on snow spectral transmittance in the geometric optics limit. A primary goal

of this modeling approach is to expand upon previous approaches aimed at incorporating 3D renderings of real snow mi-

crostructure into radiative transfer models for snowpacks of arbitrary depth, while maintaining the ray tracing methods utilized

in the original Kaempfer et al. (2007) model. To accomplish this, existing methods for simulated photon interactions with450

rendered elements are employed to determine key optical properties of the snow (Grundy et al., 2000; Kaempfer et al., 2007;

Randrianalisoa and Baillis, 2010).

An evaluation of this framework for consistency with known behavior of spectral snow albedo revealed that this framework

can successfully reproduce the dependency of spectral albedo and grain size, as well as the surface anisotropy at high incident

zenith angles, found in previous studies. Furthermore, an initial comparison of the simulated snow albedo against albedo455

measured in the field over snow with varying depths indicates that the model can simulate the effects of an underlying surface

on spectral albedo with sufficient accuracy.

In comparing two different snow samples, it was revealed that snow microstructure has a large impact on snow transmittance

in the visible spectrum and near the snow surface, increasing the 5 % transmittance depth at 400 - 650 nm from approximately

6 cm for a fine grain snow sample to 12.5 cm depth for a coarse grain sample. These values and the ability to further constrain460

the transmittance depths of shallow snowpacks will allow for improved capabilities for determining the optical properties

of shallow snowpacks. A brief sensitivity analysis of the optical properties revealed that lowering the medium scattering

coefficient acted to increase the transmittance depth in the visible bands, while the ice-path fraction (Fice) impacted the rate at

which albedo and transmittance decreased as a function of wavelength in the NIR.

Overall, while current efforts are focused on using this model to better understand snow transmittance, it shows promise as465

a broadly applicable snow RTM that has a strong direct connection to µCT snow samples. While currently it is limited to the

geometric optics approximation for clean snow and unpolarized radiation, ongoing and anticipated future efforts are aimed at

incorporating polarization, parameterizing diffraction, and including light absorbing particulates (LAPs). In particular, recent

multiphase image segmentation techniques (West et al., 2018; Hagenmuller et al., 2019) could be used to better separate snow,

air, and LAPs in a µCT sample allowing for the impact of LAPs to be determined through ray tracing. Furthermore, because470

the model operates entirely as a photon tracking model, it is a natural fit with macroscale ray tracing and therefore could be

used to investigate the reflectance of rough snow surfaces such as sun cups or sastrugi.
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