Supplementary Material

Brief communication:

Do 1.0°C, 1.5°C or 2.0°C matter for the future evolution of Alpine glaciers?

Loris Compagno,^{1,2} Sarah Eggs,^{1,2} Matthias Huss,^{1,2,3} Harry Zekollari,^{5,4,1,2}, Daniel Farinotti^{1,2}

¹Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland ²Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland ³Department of Geosciences, University of Fribourg, Fribourg, Switzerland ⁴ Department of Geoscience and Remote Sensing, Delft University of Technology, Netherlands ⁵Laboratoire de Glaciologie, Université libre de Bruxelles, Belgium

Correspondence: Loris Compagno <compagno@vaw.baug.ethz.ch>

This Supplementary Material consist of three Figures and one Table.

¹ S1 Supplementary figures

2 S1.1 Model evaluation

Figure S1: Evaluation of modelled glacier-wide annual mass balance with observations of 72 glaciers provided by the World Glacier Monitoring Service (WGMS, 2020). Panels (\mathbf{a}) and (\mathbf{b}) show the validation of glacier-wide annual mass balance. Panels (\mathbf{c}) and (\mathbf{d}) refer to annual mass balances per elevation band.

Figure S2: Evaluation of modelled glacier-wide winter mass balance with observations of 72 glaciers provided by the World Glacier Monitoring Service (WGMS, 2020).

Figure S3: Modelled glacier evolution until 2300. Changes in global ("Glob", solid) and Alpine ("Alps", dotted) (a) average air temperatures and (b) precipitation totals, compared to the preindustrial (1851-1900) baseline. Series are smoothed with a 30-year running mean. Modelled evolution of total glacier (c) volume, and (d) area based on three individual GCM members.

4 S2 Supplementary Table

⁵ S2.1 Glacier specific volume evolution

Table S1: Overview of the glacier volume change between 2020 and 2100 for glaciers with and area $>10 \text{ km}^2$ at the RGI inventory year (given as "Area??). Volume changes are given w.r.t. the 2020 ice volume.

glacier name	country	Area (km^2)	$+1.0^{\circ}\mathrm{C}$	$+1.5^{\circ}\mathrm{C}$	$+2.0^{\circ}\mathrm{C}$
Grosser Aletschgletscher	СН	82.2	$-45\pm12\%$	$-64{\pm}11\%$	$-78 \pm 11 \%$
Gornergletscher	CH	56.4	-10±18 %	$\textbf{-}36{\pm}14\%$	$-57{\pm}15\%$
Fieschergletscher	CH	31.3	$-43\pm19\%$	$\textbf{-71}{\pm}14\%$	$-84\pm8\%$
Mer de Glace	\mathbf{FR}	24.2	$-13\pm17\%$	$\text{-}28{\pm}12\%$	$-48{\pm}16\%$
Unteraargletscher	CH	23.8	$-42\pm14\%$	$\textbf{-}60{\pm}10\%$	$-74\pm9\%$
Oberaletschgletscher	CH	19.3	$-41\pm14\%$	$\textbf{-}61{\pm}11\%$	$\textbf{-75}{\pm}10\%$
Unterer Grindelwaldgletscher	CH	18.8	$-43\pm17\%$	$\text{-}60{\pm}10\%$	$-74\pm9\%$
Pasterze	AT	17.7	$-22{\pm}16\%$	$-40{\pm}11\%$	$\textbf{-}63{\pm}18\%$
Glacier de Corbassière	CH	16.7	$-23\pm23\%$	$\text{-}55{\pm}19\%$	$\textbf{-75}{\pm}15\%$
Kaunertaler Gletscher	AT	16.6	$-93\pm8\%$	$\textbf{-99}{\pm}2\%$	$-100{\pm}0\%$
Rhonegletscher	CH	15.8	$-55\pm24\%$	$\textbf{-79}{\pm}11\%$	$\textbf{-91}{\pm}7\%$
Vadret da Morteratsch	CH	15.8	$-24\pm29\%$	$\text{-}51{\pm}13\%$	-69 $\pm13\%$
Zmuttgletscher	CH	15.4	$-22\pm17\%$	$-52{\pm}18\%$	$\text{-}75{\pm}13\%$
Triftgletscher	CH	14.8	$-51\pm26\%$	$-82{\pm}15\%$	-94 $\pm6\%$
Findelgletscher	CH	14.3	$-76\pm20\%$	$\textbf{-94}{\pm}6\%$	-99 $\pm 2\%$
Glacier de Zinal	CH	14.2	$-27\pm21\%$	$\text{-}57{\pm}19\%$	$-80{\pm}14\%$
Glacier d'Argentière	\mathbf{FR}	13.8	$-68 \pm 16 \%$	$-82{\pm}7\%$	$\textbf{-91}{\pm}5\%$
Kanderfirn	CH	13.2	$-54{\pm}19\%$	$\textbf{-79}{\pm}13\%$	$\textbf{-91}{\pm}7\%$
Gauligletscher	CH	12.7	$-56\pm17\%$	$\textbf{-78}{\pm9\%}$	$\textbf{-89}{\pm}6\%$
Hüfifirn	CH	12.2	$-88 \pm 14\%$	$\textbf{-99}{\pm}2\%$	$-100{\pm}0\%$
Glacier d'Otemma	CH	11.6	$-82\pm10\%$	$-93{\pm}5\%$	-97 $\pm 2\%$
Glacier des Bossons	\mathbf{FR}	11.4	$5\pm16\%$	$-6\pm9\%$	$\text{-}19{\pm}13\%$
Ghiacciaio dei Forni	IT	11.3	$-99 \pm 2\%$	$-100\pm0\%$	$-100\pm0\%$
Glacier du Miage	IT	11.0	$2\pm 21\%$	$\text{-}13{\pm}12\%$	$-28{\pm}14\%$
Glacier du Mont Miné	CH	10.5	$-57\pm23\%$	$\textbf{-87}{\pm}14\%$	$\textbf{-96}{\pm}5\%$
Ghiacciaio del Lys	IT	10.4	$21\pm38\%$	$\textbf{-9}{\pm}29\%$	$-51{\pm}30\%$
Vedretta del Mandrone	IT	10.1	$-100\pm0\%$	$-100{\pm}0\%$	$-100{\pm}0\%$

6 Supplementary References

7 WGMS: Fluctuations of glaciers database, https://doi.org/10.5904/wgms-fog-2020-08, 2020.