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Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 

million square km of Earth's surface (31% of the land area) each year, and is thus an important expression of, and driver, of 

the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ -30 

13%/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers 

for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, 

in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of 

water stored as snow stored on the land surface, and is of fundamental importance to water, energy, and geochemical cycles. 

Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow 35 

distribution at regional and local scales, surface observations will are not be able to provide sufficient SWE information. 

Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address 
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science and high socio-economic value applications such as water resource management and streamflow forecasting. In this 

paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of 

SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar 40 

measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can 

image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution 

as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar 

measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from 

SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, 45 

electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled 

significant advances in understanding snow microstructure such as grain size, densityies, and layering. We describe radar 

interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval 

algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms 

via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, 50 

monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-

sensing from SAR measurements. 

1 Introduction 

Seasonal snow on land is responsible for a number of important processes and feedbacks that affect the global climate system, 

freshwater availability to billions of people, biogeochemical activity including exchanges of carbon dioxide and trace gases, 55 

and ecosystem services. Despite this importance, snow mass (commonly expressed as the ‘snow water equivalent’ or SWE) is 

a poorly observed component of the global water cycle. Given the vast area of northern hemisphere snow extent (exceeding 

45 x 106 km2 each winter), surface observing networks are insufficient as a sole source of information for snow monitoring. 

Satellite remote sensing is the only means to monitor SWE consistently and continuously at continental scales. Optical satellite 

imagery acquired under cloud-free conditions can provide information on where and when snow is on the ground, but does 60 

not support the retrieval of SWE. Long time series of snow mass information are available from satellite passive microwave 

measurements (Luojus et al., 2021), but at coarse spatial resolution (gridded at 25 km spatial resolution), mountain areas across 

which high values of SWE occur are excluded, and bias correction is required under deep snow conditions (>150 mm SWE; 

Pulliainen et al., 2020). Land surface models driven by meteorology from atmospheric reanalysis can produce hemispheric-

scale SWE information at coarse spatial resolutions (e.g. Kim et al., 2021), but there is a large spread between products due to 65 

differences in the meteorological forcing data (especially precipitation) and a pronounced negative bias in mountain areas 

(Wrzesien et al., 2019a; Cao and Barros, 2020; Lundquist et al., 2019). Differential airborne and ground-based lidar altimetry 

(Deems et al., 2013; Meyer et al., 2021) and spaceborne stereo photogrammetry (Deschamps-Berger et al., 2020) can provide 

snow depth information at high resolution by differencing repeat digital elevation models but are limited to small spatial 
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domains and sparse temporal sampling. C-band radar has recently been applied to retrieve snow depth in mountainous regions 70 

(Lievens et al., 2019) using empirical relationships derived from ground-based measurements; however, this approach is not 

demonstrated for the comparatively shallow snowpack found across large regions of the northern hemisphere. Airborne and 

tower-based measurements have also identified the possibility of retrieving snow parameters from L-band interferometric SAR 

(Deeb et al., 2011), P-band signals of opportunity (Shah et al., 2017; Yueh et al., 2021), wideband auto-correlation radiometry 

(Mousavi et al., 2019), and FM-CW radar (Yan et al., 2017). 75 

Ku- and X-band radar measurements, in contrast, provide a viable pathway to produce SWE information at the temporal and 

spatial scales necessary to advance operational environmental prediction, climate monitoring, and water resource management 

across the northern hemisphere (see Section 2 for an overview of the scientific requirements for snow mass information). 

Significant progress was made over the past decade in understanding the Ku-band and X-band radar response to variations in 

SWE, snow microstructure, and snow wet/dry state. The ESA Cold Regions Hydrology High-Resolution Observatory 80 

(CoReH2O) mission (dual-frequency X- and Ku-band; completed Phase A at ESA in 2013; ESA, 2012; Rott et al., 2010) was 

a major impetus. Previously, although tThe potential for Ku-band radar was also previously explored at NASA as part of the 

Snow and Cold Land Processes Mission and supporting Cold Land Processes Experiment (Yueh et al., 2009). Experimental 

tower and airborne measurements have been used to advance understanding of the physics of backscatter response to snow 

microstructure and SWE (Lemmetyinen et al., 2018; King et al., 2018), including the complicating effects of forest cover 85 

(Montmoli et al., 2016; Cohen et al., 2015). Innovative new field measurement of snow microstructure parameters (Lӧwe et 

al., 2013; Kinar and Pomeroy 2015) now provide the quantitative observational basis for radar modelling of layered snowpacks 

(Tsang et al., 2018) and radar retrieval algorithms (Zhu et al., 2018)., Radar forward models and potential algorithm approaches 

have matured  which have both advanced dramatically inover the past decade, which has allowed new retrieval pathways to 

emerge which build on approaches first proposed for CoReH2O. 90 

The purpose of this review is to summarize the status of all the components necessary to fully develop the pathway scientific 

readiness fortowards a potential future radar mission focused on seasonal snow mass. This includes the theoretical sensitivity 

to SWE via volume scattering processes including, the influence of surface and ground contributions (Section 3), and 

approaches to SWE retrieval as supported by physical snow and radiative transfer modelling (Section 4). Results from previous 

ground, tower, and airborne measurement campaigns are also reviewed. The sensitivity of Ku-band SAR measurements  are 95 

limited to snow depth ofto SWE are limited to a threshold of approximately 150 mm ( about 1 meter of snow depth depending 

on density) because of saturation of radar volume scattering. Thus, synergyism with C-band Sentinel 1 data for snow depths 

beyond 1 meter (Lievens et al., 2019) is also explored. Other synergies with interferometric SAR, radar tomography, passive 

microwave, and L- and C- band SAR measurements are also described to provide ancillary information and to improve retrieval 

performance (Section 5). 100 
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2 Scientific Objectives of Global Remote Sensing of SWE and Spatial and Temporal Requirements 

High priority science objectives require snow mass information at moderate spatial resolution (250-500m) and frequent revisit 

(~3-5 days; ESA, 2012; Derksen et al., 2021), a measurement paradigm that is currently not available. As outlined below, these 

science requirements support applications related to climate services and operational environmental prediction including 

quantifying snow mass contributions to water, energy, and geochemical cycles, better prediction of spring flooding, shallow 105 

landslide activity, and adaptation of cold-regions water resources to climate change. 

1. Inventory how much water is stored as seasonal snow, and how it varies in space and time. 

The amount, distribution, and variability of terrestrial SWE across the northern hemisphere is poorly quantified because surface 

networks are inadequate, and existing gridded SWE datasets have divergent climatologies (Wrzesien et al., 2019a) and 

anomalies (Mudryk et al., 2015). Alpine regions are particularly problematic because the course spatial resolution of existing 110 

products (typically 25 km grid spacing or more, with some new analyses available at 9 km) is incompatible with the scale of 

SWE variability (<100’s of metres, e.g. Grünewald et al., 2010). SWE estimates derived from models at continental scale are 

subject to uncertainties in both meteorologic forcing data and model parameterizations (e.g. Kim et al., 2021). SWE is highly 

sensitive to changing temperature and precipitation in a warming climate; confident projections of resultant changes are 

uncertain because we lack baseline SWE estimates. SWE can change rapidly from day to day and across local areas due to the 115 

influence of individual weather events, but we currently do not have any means to track these changes with sufficient spatial 

or temporal resolution. The lack of a baseline snow inventory negatively impacts many aspects of hydrological resource 

management. With projections of continued climate warming and shifts to snow cover resources (including precipitation phase 

changes and timing of spring melt), addressing this capability is more pressing than ever. 

2. Properly initialize snow in environmental prediction systems including numerical weather prediction (NWP) and 120 

streamflow forecasting. 

Land surface data assimilation is an important component of state-of-the-art environmental prediction systems., which provide 

The initialization of land surface conditions (such as snow conditions, soil moisture and temperature) is a requirement for 

numerical weather prediction and other forecasting systems such as streamflow prediction. Satellite data from the SMOS and 

SMAP missions are presently assimilated to improve the characterization of soil moisture initial conditions (e.g. Carrera et al., 125 

2019). Parallel activities have not been sustained for seasonal snow because assimilation of existing satellite measurements 

does not sufficiently improve land surface model performance (de Lannoy et al., 2010). Addressing this gap is important 

because evidence shows that a more realistic initialization of SWE can improve streamflow forecasts, especially during 

extreme events (Vionnet et al., 2020) and at lead times greater than 2 weeks (Abaza et al., 2020; Wood et al., 2016). The 

current inability to plan and respond to snow-related runoff events is costly: if effectively managed, runoff from snow melt 130 

has a global economic value in the trillions of dollars (Sturm et al., 2017), but also poses a risk through loss and damage 

associated with flood events. For example, the devastating floods in the Canadian Rockies, foothills and downstream areas of 

southern Alberta and south eastern British Columbia during June 2013 provides a compelling case for the impact ofof the need 
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for improved snow information on to support hydrological modelling of costlyduring extreme events (Pomeroy et al, 2016). 

Additionally, high-resolution satellite-derived snow distributionsSWE can could support development of improved 135 

downscaling techniques for existing coarsely gridded products (Manickam and Barros, 2020). 

 

3. Validate and support improvement of the representations of snow processes and feedbacks in regional and global 

climate models. 

Gridded SWE datasets are required for the verification of models used for seasonal prediction (e.g. Sospedra-Alfonso and 140 

Merryfield, 2017), and the validation of historical climate model simulations which form the basis ofunderpin climate 

projections (e.g. Mudryk et al., 2020). Earth observation-derived products make a small contribution to the current suite of 

available gridded SWE products for climate model analysis: reanalysis and snow models form the primary basis for the 

evaluation of seasonal prediction and coupled climate model simulations. The first assessment of CMIP6 model simulations 

by Mudryk et al. (2020) identified two key findings: (1) excessive snow mass at the hemispheric scale is a feature of CMIP6 145 

models, and (2) nearly all models increase snow extent too slowly during the accumulation season and decrease snow extent 

too slowly during the snowmelt period. These findings would be strengthened through the support of appropriate moderate 

resolution satellite SWE datasets. Furthermore, more detailed analysis at the grid point scale is needed to effectively link the 

model parameterizations of the (usually diagnosed) snow cover fraction to the prognostic snow mass. Prediction between the 

snow-on and snow-free conditions is especially challenging due to repeat cycles of melting and refreezing that alter the vertical 150 

microstructure of the snowpack and lateral SWE redistribution.    

 

4. Address the role of snow properties across high latitudes in influencing terrestrial carbon cycling, trace-gas exchanges, 

and permafrost. 

Snow is an important insulator of the underlying soil, influencing the thermal regime and corresponding carbon fluxes in winter 155 

(Natali et al., 2019). Permafrost is warming across the northern hemisphere (Biskaborn et al., 2019) with implications on 

vegetation, surface hydrology, landscapes, and the carbon cycle. Addressing the drivers of these changes requires a sound 

understanding of the role of seasonal snow, but current snow mass datasets do not meet the requirements of state-of-the-art 

permafrost models (Obu et al., 2019) which provide continental scale estimates of permafrost extent, thermal state, and active 

layer thickness. 160 

3 Radar interaction with snow covered landscapes 

3.1 Theoretical descriptions of radar-landscape interactions  

In this section, we describe volume scattering from a snowpack, rough surface scattering from the snow-soil interface, and the 

attenuation of radar waves by forest canopies. 
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3.1.1 Interaction of radar waves with snowpack by the Radiative Transfer Model (RTM) 165 

Microwave signals emitted from a SAR system are scattered by the mm-scale ice grains that make up the snow and at 

boundaries between snowpack layers with different dielectric properties. The SAR system measures the portion of the signal 

returned to the sensor (i.e. the backscatter). Because volume scattering increases with snow mass, measurement of backscatter 

allows estimation of snow mass. Structural changes in snow that impact snow backscatter are densification and metamorphism 

that introduce vertical heterogeneity in snow grain sizes and snow density, and thus impact snow depth and SWE. 170 

Historically, the first model developed for microwave scattering of snow was by Chang et al. (1976), which assumed Mie 

scattering from a collection of ice spheres in a single layer to solve a radiative transfer equation for passive remote sensing 

applications. The first active remote sensing model (Zuniga et al, 1979) used the Born approximation with snow represented 

by a random medium characterized by a correlation function and associated correlation length. Since these early models, a 

variety of radiative-transfer microwave scattering models have been developed with representations of (i) snow microstructure, 175 

(ii) absorption coefficient, (iii) effective permittivity, (iv) scattering phase matrices, and (v) layering effects. Analytical and 

numerical solution methods are used to solve these equations (Tsang et al. (1985), Ulaby et al. (1986), and Fung et al. (2010)). 

A historical review of different models is given in Shi et al., (2016). Rapid progress has been made recently due to the 

advancement of high-performance parallel computations and efficient computation methods for characterizing the complex 

microstructure of snow and full wave solutions of Maxwell’s equations (Ding et al., 2010; Xu et al., 2012; Tan et al., 2017; 180 

Tsang et al., 2018). 

  
Figure 1: Main contributions to radar scattering from snow covered ground.  Scattering at air/snow interface is neglected, and the 
snow layer is assumed homogeneous. The snow depth is 𝒅. 𝜺𝟎 is the air permittivity and 𝜺𝒈 is the soil permittivity. 𝜽𝒊 is the incident 
angle of radar. 𝑬ഥ(𝒓ത) is the internal electrical field and  𝑰ത(𝒓ത, 𝒔ො) is the specific intensity within the snowpack. 185 
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  Consider an incident wave from the radar  atradar at an incident angle 𝜽𝒊   . .  In the theoretical modelling of volume scattering 

and surface scattering, the computed solutions of our work are based on all orders of multiple volume scattering, surface 

scattering, and volume surface interaction. The volume-surface interactions are between the snow volume scattering and the 

snow/ground interface and the air/snow interface (Chang etal 2014, Tan etal 2015, Tan etal 2017).  The full DMRT with 

boundary conditions are solved to generate the Look-up tables (LUT) for physical based retrieval and for establishing 190 

regression formulas of backscattering versus important geophysical variables such as snow water equivalent and scattering 

albedo.   To simplify the explanation of  scattering physics,  we give aA simple physical formula model below that expresses 

the represents total backscatter 𝝈𝒕𝒐𝒕
𝒑𝒒  from the snowpack over the ground arising fromarising from two contributions as shown 

in Figure 1. The two contributions are : i) the volume scattering component 𝝈𝒗𝒐𝒍
𝒑𝒒  from the snowpack and ii) the rough surface 

scattering 𝝈𝒃𝒈
𝒑𝒒  from the underlying soil. The expression is:  195 

𝜎௧௢௧
௣௤

= 𝜎௩௢௟
௣௤

+ 𝜎௕௚
௣௤

𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧) + 𝜎௦௨௥௙௔௜௥/௦௡௢௪
௣௤     (1) 

where p and q refer to the polarization state e.g. 𝜎௧௢௧
ு௏ represents backscatter emitted at vertical polarization and received at 

horizontal polarization. Scattering from the underlying rough soil surface is attenuated by the snow layer, represented by the 

two-way attenuation factor of 𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧). The quantity 𝜏 is the optical thickness of the snowpack and 𝜃௧ is the refraction 

angle in snow which is related to 𝜽𝒊  ,  the incident angle in air, by Snell’s law  Because of the low permittivity contrast between 200 

air and snow, the scattering (𝜎௦௨௥௙
௣௤

𝜎௔௜௥/௦௡௢௪
௣௤ ) from the air/snow interface (Rott et al., 2010)  can be neglected except for wet 

snow . Below we  consider the 𝜎௩௢௟
௣௤

      Rough   volume scattering term. The rough surface scattering of snow/soil interface, 

𝜎௕௚
௣௤  , will be considered is considered in Section 3.1.2. 

Multiple volume scattering effects within snow are can be calculated by the dense medium radiative transfer equation (DMRT). 

Here we describe DMRT for illustration of the retrieval technique, but this could equally be applied to other electromagnetic 205 

theories. The DMRT is a partially coherent model having coherent interactions and incoherent interactionsparts. The 

incoherent interactions are based on the classical radiative transfer equation (RTE):  

ௗூ̅(௥̅,௦̂)

ௗ௦
= −𝜅௘𝐼(̅𝑟̅, 𝑠̂) + ∫ 𝑑𝛺ᇱ𝑃തത(𝑟̅, 𝑠̂,  𝑠̂′)𝐼(̅𝑟̅, 𝑠̂′)

ସగ
   (2) 

where 𝐼(̅𝑟̅, 𝑠̂)  is the specific intensity at the position 𝑟̅  in direction 𝑠̂ , 𝑃തത(𝑟̅, 𝑠̂,  𝑠̂′)  is the phase matrix, and the extinction 

coefficient 𝜅௘ is the sum of the scattering and absorption coefficients, 𝜅௘ = 𝜅௦ + 𝜅௔. The distinctive difference of DMRT from 210 

classical RTM is the coherent interaction part part in which the extinction coefficients 𝜅௘  and the phase matrix 𝑃തത(𝑟̅, 𝑠̂,  𝑠̂′) are 

obtained by solutions of Maxwell equations including coherent wave interactions among the ice grains that are in the near field 

and intermediate fields distance ranges from each other (Liang et al., 2008; Ding et al., 2010). In solving Maxwell’s equations, 

the dense medium effects and snow microstructure are accounted for. Both coherent and incoherent wave interactions are 

included. 215 
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Figure 2: Microstructural descriptions of the snowpack: (a) sticky hard sphere theoretical model, (b) a bi-continuous medium with 
ice crystals in dark and air in white based on parameters 〈𝜻〉= 1 mm, and 𝒃=1.0 and (c) 3-D image from x-ray microtomography 
with ice crystals shown in white and air voids in black. 

The volume scattering 𝜎௩௢௟
௣௤  depends on snow microstructure; the response of microwave radiation to snow microstructure has 220 

been studied extensively.  We describe the represented in at least five different ways in electromagnetic models. 1) In Chang 

et al., (1976), collections of spheres are used for the microstructure. , and the scatteringThe scattering by individual spheres 

are is added incoherently. However, it is not valid appropriate for snow as particles are densely packed, meaning 

electromagnetic (EM) waves scattered from individual grains interact coherently within distance scales of several wavelengths. 

2) DMRT has been applied to the cases of hard spheres (Tsang et al., 1985), sticky hard spheres (Tsang et al., 2007) and 225 

distributions of sphere sizes (Tsang et al., 1992). The coherent interactions are described analytically by the quasi-crystalline 

approximation (QCA) of Mie scattering for closely  packedclosely packed spheres. Figure 2 (a) gives a visual representation 

of the sticky hard sphere microstructure. 3) The approach of Hallikainen et al. (1987) empirically relates grain size directly to 

scattering coefficient. In this case, the model was derived from experimental observations of extinction behaviour and the 

relations to traditional grain size measurements. The direct connection between scattering and grain size means the model is 230 

simpler to apply, albeit with potentially large errors due to limited observations and variations es with snow types. 4) A 

different representation of snow is a random medium of ice and air (Figure 2 (b)). Mätzler (1998) treats scattering by 

characterizing the microstructure autocorrelation length, using the improved Born approximation (IBA) and the random 

medium assumption. 5) The more generalized bicontinuous medium approach uses two parameters to characterize snow 

microstructure: a mean grain size 〈𝜁〉 and an aggregation parameter 𝑏. There are two features: (1) the microstructures are 235 

computer generated and (ii) the auto-correlation functions are derived analytically (Chang etal 2014) The aggregation 

parameter 𝑏 represents the adherence of ice grains together to form clusters. A sSmaller 𝑏 parameter values produce greater 

aggregation. The 𝑏 parameters chosen for X- to Ku-bands fall in the range of 1.0 to 2.0 (Chang et al., 2014; Tan et al., 2015; 

Xiong & Shi, 2019). With development of computational electromagnetics EM, numerical solutions of Maxwell’s Equations 

in 3D are also used (Ding et al., 2010; Xu et al., 2012; Tan et al., 2017). 240 
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Figure 3: (a) Frequency dependence of the extinction coefficient from X- to Ku-band and (b) phase matrices at 13.3 GHz for different 
values of microstructure correlation length 𝝆𝒍𝒆𝒙. Snow parameters are volume fraction 𝒇𝒗 = 𝟎. 𝟐𝟎, aggregation parameter 𝒃 = 𝟏. 𝟐, 
and correlation length 0.15 mm. P11 and P22 are co-polarized phase matrix elements and P12 is a cross-polarized phase matrix 
element. 245 

EM models thus have evolved in part due to knowledge advances from our improved ability to measure snow microstructure. 

Stereological approaches led to advances in treating snow as a random medium using correlation functions (Wiesmann et al., 

1998). X-ray micro-computed tomography (µ-CT) has emerged to image the 3-dimensional structure of snow (Kerbrat et al. 

2008), as illustrated in Figure 2 (c), which has fed advances such as the dual active/passive Snow Microwave Radiative 

Transfer (SMRT) model (Picard et al., 2018). SMRT was developed to understand how to represent microstructure faithfully 250 

at scales relevant for microwave scattering and has the potential to allow direct use of correlation functions from μ-CT. 

Application of μ-CT-derived microstructure parameters in SMRT removes the need for empirical grain scale factors with 

frequency-dependent model performance governed by the quality of microstructure model fit (Sandells et al, 2021). EM models 

have been adapted to work with field-derived measurements as well.  Field methods to measure microstructure are more fully 

discussed in section 3.3.1.  It is to be noted that the random medium model and the bicontinuous model both use the 255 

autocorrelation function.  These advances reduce the uncertainties in interpreting remote sensing observations and support the 

design of remote sensing missions to observe seasonal changes in snow storage. 

Figure 3 illustrates the volume scattering of snow with bicontinuous DMRT. Figure 3 (a) shows the frequency dependence of 

the extinction coefficients 𝜅௘ for different values of microstructure correlation length and with aggregation parameter  𝑏 =

1.2 . The results show the increase of extinction with increasing correlation length. The exponential of the frequency 260 

dependence is 3.3 from X- to Ku-band, which is less than the fourth-power law of Rayleigh scattering. This difference is due 

to the dense media effect, and the power law  exponent is found to depend on the aggregation parameter 𝑏. The phase matrices 

at 13.3 GHz for snow are shown in Figure 3 (b). The phase matrix gives bistatic scattering as a function of the angle 𝛩 between 

the incident direction 𝑠̂ and scattered direction 𝑠̂′. In Figure 3 (b), P11 and P22 are co-polarization phase matrix elements and 

P12 is the cross-pol phase matrix. The phase matrix exhibits a dipole scattering pattern. The cross-polarization P12 is much 265 

larger than would be calculated by the sphere models because of the irregular shapes of the aggregates in the bicontinuous 
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medium. The computed phase matrix and the extinction coefficients are substituted into the RTE which is then solved to 

calculate backscattering.  The results in  figure 4-6 are  an illustration of the bicontinuous model (  Tan et al. 2015.)  The results 

as a function of SWE for a homogenous snow layer are shown shown in Figure 4 for 6 channels with VV polarization at 10.2 

GHz, 13.3 GHz, and 16.7 GHz in Figure 4 (a) and VH polarization for the same frequencies in Figure 4 (b). In Chang etal 270 

2014),  tThe results were are compared with the Finnish NoSREx backscattering dataset within which tower measurements 

were taken over snowpacks with SWE up to 120 mm. The bicontinuous-DMRT model results are in good agreement with 

backscatter observations over the 6 channels of multiple frequencies and polarizations, albeit with a frequency-dependent bias 

for the cross-pol results. Both the model predictions and measurements show high correlations with SWE with stronger 

correlations at 13.3 and 16.7 GHz than at 10.2 GHz. Several years of NoSRex data were analysed and the results of retrieval 275 

performance on the data were illustrated in the paper by Zhu et al. 2018 

   
Figure 4: Comparison of the DMRT/ bicontinuous media model using NoSREx 2010-2011 data backscatter against SWE for vertical 
co-pol (left) and cross-pol (right) at 10.2GHz, 13.3GHz, and 16.7GHz. Figures are adapted from Tan et al., 2015. 

1. Because of snow accumulation events and weather patterns, snow cover can have layering structures that 280 
correspond to variations of snow densities and grain sizes.  Extensive work hahass been done in studying multi-
layered models of snow using the DMRT model (Liang et al., 2008), the HUT model (Lemmetyinen et al., 2010), 
the DMRT-ML model (Picard et al., 2013), and the MEMLS model (Proksch et al., 2015). Recent experimental 
work indicates that multi-layered radiative transfer modeling may shed light on snow radar interaction (Thompson 
and Kelly 2021a; 2021b).  For the case of DMRT , a multi-layer DMRT model with different dense media phase 285 
matrices and extinction coefficients for each layer are used (Liang etal 2008, Chang etal 2014 Tan etal 2015) . Both 
the quasi-crystalline approximation (QCA) model and the bicontinuous model have been  used for a multilayer 
snow medium (Chang etal 2014)  
 

2. Structural anisotropy is a characteristic feature of natural snow packs (e.g. Leinss et al., 2020). This causes changes 290 
of the phase matrix with the incidence angles and scattered angles. There are two models in the bicontinuous model: 
isotropic correlation functions and anisotropic correlations functions (Tan etal 2016) . Both have been developed 
and simulations performed. In the retrieval, only the isotropic correlation functions versions have been used in the 
DMRT LUT. 

 295 
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3.1.2 Interaction of radar waves with the ground surface beneath snowpack 

Because of the the dielectric contrast between dry snow and soil exceeds that between dry snow and airs, the contributions of 

rough surface scattering are from thearises primarily from the snow-soil rough interface and not from the air/snow interface 

(although it is noted that .    tThe air/snow interface may have a stronger scattering contribution for wet snow which iswhen 

the snow is wet, but this is outside the domain of SWE retrieval using X/ band and Ku band volume scattering )approach for 300 

SWE retrieval.  Rough surface scattering from the snow/soil interface contributes to radar observations as indicated by the 

term 𝜎௕௚
௣௤

𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧) in Eequation (1).  Thise term is affected by the rough soil surface scattering 𝜎௕௚
௣௤     and bythe 

attenuation through the snow factor of 𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧) .  The rough soil surface scattering contribution is not related to SWE 

and therefore should be removed when retrievinmg  SWE.  AThe  “subtraction” of surface scattering has been used to improve 

the accuracy of SWE retrieval (Zhu et al., 2018).  The approach forof removing 𝜎௕௚
௣௤

𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧) involvesconsists of using 305 

a combination of  data and electromagnetic models, and..   The removal of surface scattering is a significant part of the retrieval 

algorithm that will be discussed later in this section. Here   

 

 wWe discuss methods forof calculating  the scattering fromof the snow/soil interface at L, C , X- and Ku-bands. 

Classical  310 

pPhysical models forof rough surface scattering have been studiedinclude with the two classical methods of the small 

perturbation method (SPM) and the Kirchhoff approach (Ishimaru, 1978; Tsang and Kong 2001). Advanced analytical methods 

include the advanced integral equation model (AIEM, Chen et al., 2003) and small slope approximation and its extensions 

(Voronovich, 1994; Elfouhaily and Johnson 2007). Fully numerical solutions based on the use of Monte Carlo simulations are 

also available to avoid approximation in the electromagnetic physics.  In all these models, surface rA description of roughness 315 

can be described in part using the parameteris 𝑘ℎ, which is the product of the EM wavenumber 𝑘  of the medium above the 

rough surface and the surface rms height ℎ.   For soil surface scattering, the previousPrevious studies using  results of analytical 

models and numerical simulations for snow or land sensing applications have emphasized cases havingbeen  limited to 𝑘ℎ <

3 due to a because of the past focus on L- band sensors..  ]. For example, uUsing a times series of SMAP VV and HH polarized 

backscatter measurements  of SMAP from HH and VV polarizations, both the surface soil moisture and surface rms height 320 

werewere retrieved at 3km resolution for the April 13- July 7, 2015 period of SMAP  radar operations (Kim et al 2017).  The 

Results from this product shows athat the global median surface rmsrough surface heights ofare 2cm, with and rms heights up 

toare 5 cm in the mountain regions.  For A surface the  case of rms height of 5 cm at 17 GHz would represent a, kh value is 

18 for the air/soil interface and 21.6 for the snow/soil interface (. tThe larger value  kh for the snow/soil interface is 

due to because of the larger electromagneticlarger wavenumber in snow) than in air.  Past studies emphasizing    Thus, 325 

the past limit of   𝑘ℎ < 3  therefore    has limited applications to L bandor and C bands . Recently, we have performed 

numerical surface scatteringfull wave simulations havingwith  𝑘ℎ      up to 15 (ℎ = 4.16 𝑐𝑚  for 17.2 GHz) to, thus 

widening the applicability of full wave simulations up to Ku band  (Zhu 2021, Zhu et al 2021).  
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Surface scattering models typically The soil surface can be describe the soil surface asd by a stationary Gaussian random 

process, so that knowledge of its covariance function is sufficient to describe its properties. The covariance function is further 330 

parametrized in terms of its rms height and correlation length.. GGround measurements have been made of these properties 

(Oh et al., 1992; Oh, and Kay, 1998; Ulaby and Long, 2015), and. mThe measured correlation lengths are typically found to 

be limited to ahave a maximum of 10 cm. We label these roughness measurements as “limited correlation length up to 10 cm”. 

However, in the global retrieval of soil moisture using six months of the NASA Soil Moisture Active Passive (SMAP) radar 

data at L-band, the roughness was modelled as having a constant ratio of correlation length to rms height ratio (Kim et al., 335 

2012; Kim et al., 2014, Kim et al 2017) that. The ratios used ranged from 5 to 20. These two methods for describing the 

correlation lengthassumptions differ significantlyare widely different for rms heights beyond 2cm;. The rms heights in 

mountainous regions are large and can be up to 6cm.  our studies We have found that the constant ratio approach gives more 

acceptable results. Surface scattering also depends on the soil permittivity which in turn depends on soil moisture (which 

describes the volume of water present per unit volume of soil) and texture (which describes soil composition). Given these 340 

parameters, empirical models (Mironov et al., 2004; Peplinski et al., 1995) are available to calculate the soil permittivity.  In 

addition to soil properties, land-cover including litter and vegetation, as well as rock outcrops, impact the spatial variability of 

surface permittivity and backscattering. 

  
Figure 5: (a) Backscattering at VV-polarization as a function of frequency: red curve is results with frozen soil (permittivity 4+1i) 345 
and rms height 0.5 cm and blue curve is results with soil of 10% moisture and rms height 2 cm. (b) Backscattering at VV-polarization 
as a function of rms height with soil of 10% moisture at C-, X-, and Ku-band. 

Full wave simulations based on numerical solutions of Maxwell’s equations (NMM3D) were applied to L-band radar 

backscatter analysis for the SMAP mission (Huang et al., 2010; Huang and Tsang, 2012). The full wave simulations wereare 

used to generate a look up table (LUT,  (Liao et al., 2016)..  The LUT wasere initially used for the air/soil interfaces. 350 

Also,However, the LUT wasare based on the incident angles of the upper medium and the relative dielectric constant between 

the two media on the two sides of the rough surfaces.  By adjusting the relative dielectric constants and the incidence angle 
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using Snell’s law , the NMM3D  LUT can also beare also applicable for  all combinations of relative dielectric constants 

includingsuch as rough interfaces of snow/soil , air/snow, or snow/permafrost interfaces, among others etc.   

However, both the AIEM model and the NMM3D have been previously  limited to 𝑘ℎ < 3 . Recently NMM3D calculations 355 

were made with 𝑘ℎ up to 15 (ℎ = 4.16 𝑐𝑚 for 17.2 GHz) (Zhu 2021, Zhu etal 2021) In Figure 5(a), we plotshow the VV 

backscattering as a function of frequency for ℎ = 0.5𝑐𝑚 and  and ℎ = 2𝑐𝑚. cm. In Figure 5(b), we further plotshow the VV 

backscattering as a function of rms heights at C-, X-, and Ku-bands. Both figures show saturation effects, meaning that the 

rough surface scattering saturates at large rms heights (~ 3-6 cm) and at higher frequencies. The new results of 𝑘ℎ up to 15 are 

useful for studying rough surface radar backscattering at X- and Ku- bands for snow/soil interfaces. . 360 

To estimate rough surface scattering at X band and Ku band ,  there are two approaches labeled (a) and (b) in what follows. 

Approach (a) is as described in (Rott etal 2010) uses . In Approach (a) snow-free   radar observations at X- and Ku-bands at a 

specific location before the snowfall are used  to estimate the surface backscattering (Rott et al., 2010). Such an approach 

neglects any changes in soil properties and background land-cover during the snow-on season.  In approach (b), surface 

backscattering is estimated the estimation of rough surface scattering, 𝜎௕௚
௣௤

,  at X band and Ku band  consists of using a 365 

combination of measurement  data and electromagnetic models.   The measurement data includes backscattering data at L 

band, C band, X, band and /or Ku band under snow free or snow-on conditionsbefore and after snow, and. the NMM3D LUT 

is used to model surface backscatteringThe electromagnetic model of rough surface scattering results is based on  using look-

up table (LUT) results of Numerical Maxwell 3D model of full wave simulations of surface scattering from L band to Ku band. 

We use  a two-step procedure. As a first step, In the first step  (i)  of approach (b)   ,  we use co-polarized radar  370 

time series observations at L- and C-band, which have greatly reduced sensitivity to snowhave much larger surface scattering  

than volume scattering, are used to estimate the soil permittivity and surface roughness. The use of a C- band measured time 

series  together with the past L- band time series data time series will enhances the existing L band algorithm in retrieving rms 

height and soil moisture, and  Using L band and C band data before the snow fall and after snow fall and using LUT of Maxwell 

equations for L band and C band, we retrieve the rough surface rms heights and soil moistures.   tThe retrieval is carried out  375 

forperformed both before snow fall and after snow falleither in the presence or absence of snow.  When snow is presentAfter 

snow fall,  Snell’s law is used to adjust the incident angle at the snow-soil interface to account for the snow refraction effects. 

refraction angle at the air/snow interface. In step (ii) of approach (b) , Tthe surface rms heights and soil permittivities retrieved 

in step (i)obtained  are then used in the NMM3D LUT to predict the surface backscattering contribution obtain the model 

backscattering  results of (𝜎௕௚
௣௤

) at X and Ku bands for the same roughness and soil moisture parameters; note this captures 380 

any dynamically varying roughness or permittivity conditions in performing the surface scattering correction.. The approach 

(b) is applicable even when there are changes of rms heights and soil moistures during the snow season.  WeThe  approach (b) 

assumes the availability of matchup L- and/or C-band SAR observations with revisit periodss of approximately 10 dayss, as 

are or will be available from the. The revisits provided by the Sentinel-1 and NISAR systems, as well as future proposed 
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continuation missions, suggest so that such datasets are likely to be available during the time frame of a future snow observing 385 

mission. 

Consider for example We next give an example of approach (b) to demonstrates the retrieval of rms heights and soil 

permittivity We considers, as in step 1, using  L-band UAVSAR radar full polarization observations under snow-on conditions 

using the NMM3D LUT (Liao et al., 2016). The UAVSAR dataset examined was collected from February 2017  to March, 

2017, in the SnowEx 2017 campaign using 5 flights over the Grand Mesa region in Colorado, United States. In-situ soil 390 

moisture measurements were also collected throughout 2017 from an installed meteorological observation station. We apply 

the time series retrieval algorithm developed for the SMAP mission (Kim et al., 2012, Kim et al 2017) based on the NMM3D  

LUT at the station location, (i.e.that is at athe point location-scale). From the retrieved soil permittivity, the soil moisture is 

derived using Mironov’s empirical model (Mironov et al., 2004). The comparison of retrieved and measured soil moistures is 

shown in Figure 6 (a). The retrieval soil moisture is in good agreement, as shown in Figure 6a,  with the measured in-situ soil 395 

moisture for a period of 8 weeks from   from February 6 , 2017 to March 31, 2017.  The agreement achieved showsare  a root 

mean square error (RMSE) of 0.047𝑚ଷ/𝑚ଷ , a correlation of 0.95 and a bias of 0.039𝑚ଷ/𝑚ଷ , and that.  Based on the 

measurements, the soil moisture at this site remained relatively constant during the dry snow season (February 6 to March 8, 

2017).   

 In addition to retrieving the soil moisture time series,  the rms height at this location was also retrieved and estimated is also 400 

retrieved from the time series and is at  a assingle value of 1.9 cm.   Note the This is the rationale of the Kim et al. 2017  

algorithm  retrieves a single rms height estimate for the time series because surface roughness is assumed to remain constant 

over the time series durationthat soil moisture changes but not rms height (so that .  wWet and frozen soils are assumed to have 

the same rms height.)  The retrieval soil moisture is in good agreement, as shown in Figure 6a,  with the measured in-situ soil 

moisture for a period of 8 weeks from  from February 6, 2017 to March 31, 2017.  The agreement achieved are  a root mean 405 

square error (RMSE) of 0.047𝑚ଷ/𝑚ଷ, a correlation of 0.95 and a bias of 0.039𝑚ଷ/𝑚ଷ.  Based on the measurements, the soil 

moisture at this site remained relatively constant during the dry snow season (February 6 to March 8, 2017). 
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Figure 6 (a) Retrieval of soil moisture compared with in situ-measurements. The retrieved rms height is 1.9 cm. The retrieval is 
based on based on L-band UAVSAR data from SnowEx 2017 campaign. The measured soil moisture is from SnowEx 2017 campaign 410 
meteorological observations with a measured soil temperature of 0.6° C. The location of the station is 39.03388° N, 108.21399° W 
with an elevation of 3033m. (b) Simulated surface scattering with snow attenuation from X- to Ku-band at VV polarization. Snow 
parameters are with depth of 54 cm, density of 183 kg m-3, 〈𝜻〉 = 1.2 mm, and b=1.2. For soil properties, blue marks are for the 
NoSREx 2010-2011 and Blue red marks are based on the SnowEx 2017 campaign data shown in (a). 

To complete the approach (b), we carry out step (ii) and  Wwe next apply the retrieved  rms height (of 1.9 cm) , and the soil 415 

properties from Figure 6 (a) to calculate the surface scattering contributions with snow attenuation, 𝜎௕௚
௣௤

𝑒𝑥𝑝(−2𝜏𝑠𝑒𝑐𝜃௧), at  X 

band of 9.66GHz, 1low Ku band at 13.4,Ghz  and  high Ku-band of 17.2 GHhz as shown in . Figure 6(b) then shows surface 

scattering including snow attenuation. The results in figure 6b show that the rough soil surface scattering contribution , 

including snow attenuation , is around -12dB at X band and decreases to -14 dB at high Ku band of 17.2 GHhz;.  hHigher 

frequencies such as at Ku band  typically experience higher volume scattering and greater attenuation of the surface scattering  420 

contributions. Continued studies are required to improve  and validate thise  approach (b) ,. These studies includinge extending 

NMM3D surface modelling studies and the associated LUT into cases with rms heights of 4 wavelengths or more so that the 

LUTs can be applied at  to Ku-band of 17.2 GHz for rms heights up toup to 7 cm of rms heights. Also, uUnlike snow volume 

scattering of snow, rough surface scattering has a stronger dependence on incidence angle and polarization. Thus, the effects 

of topographical slopes that cause changes in incidence angles , particularlyy, in mountainous regions, should be included in 425 

the retrieval. Although it is noted that.   .  tThe sample size in Ffigures 6a and 6b isare   small, .  However, with the increasing 

availability of L band, and C band time series measurementsdata, and the extension of full wave simulations of rough soil 

surface scattering from L band to Ku band up to 𝑘ℎ = 20, is expected to make the the retrievals of surface rms heights and 

permittivities feasible so that robust surface scattering corrections can be achieved of the soil surfaces and the soil surface 

scattering at X and band and Ku bands can be determined. Further extensions to consider the We will extend approach (b) of 430 

a combination of data and NMM3D rough surface modelling to  the case of snow/permafrost interface are also under 

development..   
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 435 

 

 

Figure 7. (a) RTE assumption: uniformly randomly-positioned scatterers which are statistical homogeneous. (b) Illustration of trees 
for a forest with snow cover beneath. The picture was taken on March 14th 2017 in a Jack Pine stand situated in the Boreal Ecosystem 440 
Research and Monitoring Sites (BERMS), Saskatchewan, Canada. 

3.1.3 3.1.3 Interaction of radar waves with forests and vegetation above snowpack 

.  The interaction of radar waves with vegetation initially began with the water-cloud model (Attema and Ulaby, 1978) (Figure 

7 (a)). It was then extended by using RTE to include scattering effects in addition to absorption. Computation codes of RTE 

exists such as the MIMICS model (Ulaby et al., 1990) and in the Torgata model (Ferrazzoli and Guerriero, 1995 Ferrazzoli 445 

etal 1999) ). In addition, the discrete scatterers model using distorted Born approximations (DBA)  have been used (Lang and 

Sighu 1983, Karam etal 1992). The RTE and DBA models use the same assumptions and give the same results aside from a 

factor of 2 in the double bounce of volume surface interaction term.   Bindlish and Barros (2001) applied the water cloud 

model formulation to the parameterization of vegetation backscatter from C- and L-band radar measurements using three 

vegetation parameters (a measure of vegetation density, a measure of vegetation architecture, and a dimensionless vegetation 450 

correlation length) to characterize different types of vegetation in rangeland, winterwheatwinter wheat crops and pasture.  They 

found that the estimation of land-cover and land-use class specific parameters resulted in significant improvements in retrieval 
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of soil moisture, which suggests that a similar approach could be used for snow retrieval using multifrequency data along with 

detailed ancillary vegetation data sets to estimate the place-based parameters for the water-cloud model.  In the case of forests, 

the scattering cross sections of each branch and each leaf are strongly dependent upon frequency with the scattering increasing 455 

with frequency from the L- to Ku-bands. Such strong increase with frequency means the scattering at Ku-band is much larger 

than that at L-band, making the optical thickness at Ku-band large. Zoughi et al. (1986) conducted X-band radar measurements 

to identify the contributions from leaves, petioles, twigs, and branches of pine, oak, sycamore and sugar maple trees to 

backscatter and attenuation.  In addition to quantitative differences related to tree architecture and vegetation moisture content, 

they reported that the backscatter is mainly produced by the top layers of the canopy, petioles (tree microstructure) can 460 

significantly affect backscatter depending on their size relative to wavelength, leaves play an equally important role in 

attenuation and backscatter, whereas twigs and branches dominated in terms of backscatter with weak attenuation when leaves 

were not present.   They did not consider the effect of tree trunks. 

In CoReH2O Phase A the impact of forests on radar signals of snow-covered ground was studied (ESA, 2012). Model and 

data analyses were carried out by  Kugler etal 2014 and Montomoli et al. (2016). The forest model selected in CoREH2O are 465 

based on the radiative transfer equations (RTE). It accounts for scattering of trunks, branches of different size and needles, as 

well as for differences in the structure of vertical layers. Effects of differences in cover fraction, tree height and biomass were 

analysed. The model gives a multifaceted description of forest properties and for estimating the impact of the forest parameters 

on the backscatter of snow-covered forests. The CoREH2O RTE based studies,   In CoReH2O (Rott et al., 2010), studies on 

the effects of vegetation for snow retrievals indicate that, during the winter period, the presence of dormant herbaceous or 470 

short vegetation have small contributions to backscattering and do not affect the sensitivity to SWE. For the effects of 

coniferous forests (CF), simulations were shown using the radiative transfer equations (RTE). tThe simulation results show 

that in the case of low fractional cover of CF (<25%), contributions of snow volume scattering are the dominant contributions 

to the radar signal, with the radar signals correlating with SWE. When the forest density or the fractional cover increases, the 

sensitivity to SWE decreases. The sensitivities are much affected by CF larger than 75%.   . In addition to forest density and 475 

structure, snow interception in the canopy can vary widely in time and depending on snow type and canopy architecture and 

modify the transmissivity and scattering characteristics. 

 

Recently, since 2017, instead of using the RTE/DBA models, we have used full wave simulations based on a hybrid method 

of combining wave multiple scattering theory (W-MST) and commercial software in computational electromagnetics  such as 480 

HFSS and FEKO . The “waves” MST are based on Maxwell equations and different from that of multiple scattering in RTE 

which only considers incoherent multiple scattering of leaves branches etc. .   Full wave simulation  results have been computed 

for L, S, and C Bands.  The results of full wave simulations  show two  distinct differences from that of the results of the 

RTE/DBA  model : (i) the full wave simulations show more penetration than predicted by the RTE model with  differences 

that can be several times and (ii) the full wave simulations show weaker frequency dependence than the RTE model.     We 485 

cannot at this moment  extrapolate the conclusions to X Band and Ku Band for trees.  However, preliminary results running 
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full wave simulations of needle leaves at X band and Ku band  show significant differences from the RTE model. Thus, in the 

near future , there will be extensive full wave simulations and new measurements to study the effects of trees and forests at X 

band and Ku band. 

 490 

 

However, the studies in Rott et al. (2010), were based on simulations using the RTE equation (2). In the RTE model, the 

assumptions are independent scattering and uniform random positions of scatterers. The assumption of uniform random 

positions is the same as homogenization, meaning that there is an effective attenuation rate 𝜅௘ . For a forest height of 𝑑, the 

Beer-Lambert Law or the Foldy approximation states that the transmission through forest is given by the expression 𝑒ିఛ௦௘௖ఏ೔  495 

where the optical thickness 𝜏 is equal to 𝜅௘𝑑.  Recently, full wave simulation results (Huang et al., 2017; Huang et al., 2019; 

Gu et al., 2021) have shown that the RTE is not valid for modelling microwave propagation and scattering in forests. In addition 

to forest density and structure, snow interception in the canopy can vary widely in time and depending on snow type and 

canopy architecture and modify the transmissivity and scattering characteristics. 

Microwave modelling of vegetation and forests initially began with the water-cloud model (Attema and Ulaby, 1978) (Figure 500 

7 (a)). It was then extended by using RTE to include scattering effects in addition to absorption. RTE, like in the MIMICS 

model (Ulaby et al., 1990) and in the Torgata model (Ferrazzoli and Guerriero, 1995) have been used for modelling vegetation 

and forests for several decades. The reasons  for the differences are that the basic DBA/ RTE have two basic assumptions  

 

 505 

There are two assumptions in RTE models. The first assumption is  that scatterers such as trunk, leaves, primary , secondary 

and tertiary branches etc are individual , isolated scatterers  that are uniformly positioned in the layer, such as that shown in 

figure 7a.  . The reason for this assumption is that the RTE model was first used for microwave remote sensing of cloud and 

rainfall . The assumption of uniform random positions is the same as homogenization, meaning that there is an effective 

attenuation rate 𝜅௘. For a forest height of 𝑑, the Beer-Lambert Law or the Foldy approximation states that the transmission 510 

through forest/vegetation  is given by the expression 𝑒ିఛ௦௘ ೔  where the optical thickness 𝜏 is equal to 𝜅௘𝑑 

that the scatterers are uniformly random in positions which are valid for clouds and rainfall (Figure 7 (a)). However, in forests, 

such as coniferous forests (Figure 7 (b)), aspen forests and deciduous forests, the scatterers are aggregated in trees. Unlike 

clouds, which do not have gaps, there are gaps between the trees. Thus, waves, such as those in the Ku-band at 17.2 GHz with 

wavelengths of 1.74cm, can pass through gaps when gap sizes are larger than these wavelengths. The consequence of the 515 

assumption is that RTE underestimates the transmission due to neglecting these gaps. The second assumption is that the leaves 

and branches are assumed to be single scatterers, and they scatter independently.  and the extinctionThe extinction coefficients 

and phase matrices of equation (2) are calculated by adding the scattering cross section of the branches and leaves. This 

assumption is valid for cloud and rainfall as the water droplets can be assumed to be single scatterers.  Bindlish and Barros 

(2001) applied the water cloud model formulation to the parameterization of vegetation backscatter from C- and L-band radar 520 
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measurements using three vegetation parameters (a measure of vegetation density, a measure of vegetation architecture, and a 

dimensionless vegetation correlation length) to characterize different types of vegetation in rangeland, winterwheat crops and 

pasture.  They found that the estimation of land-cover and land-use class specific parameters resulted in significant 

improvements in retrieval of soil moisture, which suggests that a similar approach could be used for snow retrieval using 

multifrequency data along with detailed ancillary vegetation data sets to estimate the place-based parameters for the water-525 

cloud model. In the case of forests, the scattering cross sections of each branch and each leaf are strongly dependent upon 

frequency with the scattering increasing with frequency from the L- to Ku-bands. Such strong increase with frequency means 

the scattering at Ku-band is much larger than that at L-band, making the optical thickness at Ku-band large. Zoughi et al. 

(1986) conducted X-band radar measurements to identify the contributions from leaves, petioles, twigs, and branches of pine, 

oak, sycamore and sugar maple trees to backscatter and attenuation.  In addition to quantitative differences related to tree 530 

architecture and vegetation moisture content, they reported that the backscatter is mainly produced by the top layers of the 

canopy, petioles (tree microstructure) can significantly affect backscatter depending on their size relative to wavelength, leaves 

play an equally important role in attenuation and backscatter, whereas twigs and branches dominated in terms of backscatter 

with weak attenuation when leaves were not present.   They did not consider the effect of tree trunks. However, the geometry 

(Figure 7(b)) is that the branches and leaves are attached to the tree. For a coniferous forest, there are primary branches and 535 

secondary branches attached to a tree. The needle leaves are aggregated and are attached to branches. Thus, the entire tree 

itself should be treated as a single scatterer rather than an individual branch or an individual leaf. Therefore, the phase matrix 

of a tree should be used rather than incoherently adding the scattering cross sections of branches, leaves, and the trunk for a 

tree. Using a tree as a single scatterer give results that will have weaker frequency dependence than that predicted by 

RTE/DBA.  540 

Full wave simulations to solve Maxwell equations among trees or plants were deemed to be computationally formidable. 

Recently, a computationally efficient hybrid method  (HB) has been developed to perform full wave simulations (Huang et al., 

2017; Huang et al., 2019; Gu et al., 2021, 2022). The hybrid method is a combination  of commercial-off-the-shelf software 

of computational electromagnetics ,  of the Foldy-Lax wave multiple scattering equations , and iterations based on the averaged 

multiple orders of scattering and commercial-off-the-shelf software of computational electromagnetics. The hybrid method 545 

consists of three two steps. In the first step, a plant or a tree is treated as a single scatterer. Commercial-off-the-shelf software 

is used to calculate the scattering T  matrix in vector cylindrical waves of a single plant or a single tree.  We have used the 

commercial software of HFSS and FEKO  (Altair FEKO: https://www.altair.com/feko/).  In the second step, coherent wave 

multiple scattering theory (W-MST)  interactions among the plants and trees are formulated calculated by using the Foldy-Lax 

multiple scattering equations. The formulation  uses T matrices and vector addition theorem of vector cylindrical waves (Tsang 550 

etal and Kong, 2001). In the third step, the Foldy Lax equations are iterated to obtain solutions in multiple orders of scattering, 

and averages are taken over realizations after several orders at a time to obtain the averaged solution. The third step makes use 

of the property that the averaged solution of orders of multiple scattering  have faster convergence than the obtaining exact 

solution of a single realization through matrix iteration methods such as conjugate gradient or bi-conjugate gradient. NMM3D 
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full wave methods and simulation results can be found in Huang et al., 2017; Huang et al., 2019; Gu et al., 2021, 2022) Below 555 

we illustrate two examples.  

The coherent wave interactions among trees consider the aggregating properties of branches and leaves and the gaps among 

the trees. Simulations were performed for the transmission through a simulated forest (Huang et al., 2019) consisting of 196 

cylinders representing tree trunks. Each cylinder is of  of 20 m height and 12 cm diameter , and the cylinders arrangedarea 

arranged as shown in Figure 8. The results are tabulated in Table 1. The results show that the transmission is almost twice that 560 

of RTE. 

 

Figure 8: Tree trunks (left) are modelled as dielectric cylinders (right). The figure is adapted from Huang et al., 2019. 

Table 1: transmission coefficient from RTE based on distorted Born approximation (RTE/DBA) and the hybrid method from Figure 
8. The table is adapted from Huang et al., 2019. 565 

 RTE/DBA Hybrid method 

Transmission 0.35 0.66 

 

To consider frequency dependence, we next show an example of calculate the transmission through a field consisting of 196 

wheat plants (Figure 9 (a)) at L-, S- and C-bands (Gu et al., 2021, 2022) as a function of VWC. Results of Figure 9 (b) are 

compared with RTE. Firstly, the results show the transmission of full wave simulations are is much larger higher than RTE. 

Secondly, the transmission at C-band is only slightly less than that at S-band showing the frequency dependence is weak 570 

between S band and C band.   . On the other hand, while RTE shows big drop in transmission from S- to C-band indicating .  

that RTE predicts a strong increase of attenuation with frequency from S band to C band. On the other hand,  the full wave 

simulation results have little difference between S band and C band, showing  “saturation “ with frequency.    The results show 

that full wave simulation has weaker frequency dependence than RTE.  
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  575 

Figure 9: (a) Scattering from wheat plants are the radius of the circumscribing cylinder 6.5 cm, distance between the centerscentres 
of 2 circumscribing cylinders is 𝒓𝒅 =14 cm, the closest distance between 2 circumscribing cylinders is 𝒈𝒅 = 1 cm. Figure is adapted 
from Gu et al., 2021. (b) Transmission of microwave through wheat of different calculated using the hybrid method and the RTE 
vary with volume water content (VWC). 

Ray tracing can also be used for the high-frequency channels of Ku-band. At Ku-band, because the wavelengths are smaller 580 

than object size and object spacing of trees, results of ray tracing may be acceptable. However, ray tracing, in the opposite 

extreme of RTE, has no frequency dependence although frequency dependence can be introduced in an ad hoc manner such 

as by only keeping the dominant scatterers at the operating frequency. . 

At Ku-band (17.2 GHz), the wavelength is 1.74 cm, which is much smaller than the gaps in trees. The wave can travel in 

straight lines as rays through the gaps. In such scenario, the Ku-band waves will travel like the case of lidar which has been 585 

shown to be able to penetrate forest canopies. In wireless communication, ray tracing has been performed as a path-loss model 

in forests (Ling et al., 1989; Kurt et al., 2017). Inter-comparisons among results of full wave simulations, RTE and ray tracing 

will be made in future work. However, ray tracing, in the opposite extreme of RTE, has no frequency dependence although 

frequency dependence can be introduced in an ad hoc manner such as by only keeping the dominant scatterers at the operating 

frequency. . 590 

 

3.2 Experimental measurements of radar-landscape interactions 

Collection of experimental data is a prerequisite for the development of Earth Observation satellites. Ground-based and 

airborne sensors provide means to collect observations of the geophysical parameter of interest in a relatively controlled 

environment. These measurements provide the basis for the validation of forward modelling approaches and development of 595 

retrieval algorithms prior to launch of the space-borne mission. The measurements also help to understand the spatial resolution 

and temporal requirements for a spaceborne mission. 
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Ground-based sensors deployed on tower structures allow near-continuous observations over extended periods, which are 

critical for understanding both slow and seasonal processes as well as rapid phenomena induced by diurnal changes at the 

sensor foot-print. Such temporal features are of particular importance for seasonal snow cover. Airborne observations, or the 600 

deployment of ground-based sensors on other mobile platforms, provide the ability to expand localized observations to a larger 

scale, allowing to observe the effect of heterogeneous land cover and vegetation on Earth Observation signatures. Seasonal 

snow presents a particularly challenging target for observations, due to the high variability of snow over both temporal and 

spatial scales. Hence, several both localized, ground-based campaigns as well as airborne sensor deployments have been 

conducted in recent years, in an attempt to understand radar signatures from seasonal snow cover. These campaigns have 605 

covered diverse snow and climatological conditions. 

Table 2: Summary of ground-based active microwave sensors for snow studies. 

Ground-Based 

Campaign 

Dates Sensor Freq. Pol. Location/snow 

regime 

Data availability 

Can-CSI, 

CASIX 

2009-

2011 

UW-Scat 9.6, 17.2 GHz VV, VH, 

HV,HH 

Churchill, Manitoba, 

Canada 

Tundra, Taiga, Lakes, 

Sea Ice 

Available from Dr 

Richard Kelly 

rejkelly@uwaterloo.ca 

NoSREx 2009 

- 

2013 

ESA 

SnowScat 

10-17 GHz 

(stepped 

frequency) 

VV, VH, 

HV, HH 

Sodankylä, Finland / 

boreal forest 

ESA EO campaign 

portal 

SnowEx ’17 2017 UW-Scat 9.6, 17.2 GHz VV, VH, 

HV, HH 

Grand Mesa, 

Colorado, USA 

NSIDC 

APRESS 2019 

-

2021* 

ESA 

WBScat 

1-40 GHz VV, VH, 

HV, HH 

Davos-Laret, 

Switzerland / Alpine 

Sodankylä, Finland / 

boreal forest 

Not yet available 

3.2.1 In situ radar experiments and signatures 

The ground-based campaigns are summarized in Table 2. Ground-based campaigns of Can-CSI and CASIX were conducted 

between 2009 and 2010, and multiple field campaigns were completed near Churchill, Manitoba, Canada, as part of the Phase 610 

A science activities of CoReH2O. These campaigns aimed to evaluate the potential for dual-frequency X- and Ku-band snow 



23 
 

properties retrievals in subarctic environments. Central to Churchill campaigns was deployment of the University of Waterloo 

Scatterometer (UW-Scat), a novel ground-based radar system analogous to the proposed configuration of CoReH2O (King et 

al., 2012). In Europe, ESA initiated the deployment of SnowScat (Werner et al., 2010), a stepped frequency, fully-polarimetric 

ground-based radar in a series of campaigns in the boreal forest zone in Northern Finland (Lemmetyinen et al., 2016). The 615 

campaign was called NoSREx and operated SnowScat over four winter seasons, complemented by passive microwave 

radiometry and regular snow microstructural observations. These campaigns have been instrumental in enhancing our 

understanding of snow-microwave interactions and providing data to develop and evaluate forward models simulating 

backscattering from snow cover (King et al., 2015; Tan et al., 2015; Proksch et al., 2015a), as well as developing retrieval 

approaches (Cui et al., 2016; Lemmetyinen et al., 2018). 620 

Previously, in section 3.1.1, we have made use of the NoSREx campaign 6 channels of backscattering data of VV at 10.2 GHz, 

13.3 GHz and 18.7 GHz, and HV at 10.2 GHz, 13.3 GHz and 18.7 GHz in comparisons with the simulation results of 

bicontinuous-DMRT models. The comparisons have validated both the ground campaign measurements and the physical 

models (Tan et al., 2015). 

Recent ground campaigns include APRESS in which the ESA WBScat instrument, a full-polarization radar operating at 1-40 625 

GHz, was deployed for a full winter season in 2019-2020 measuring an Alpine snowpack in Davos, Switzerland. For the winter 

of 2020-2021, the instrument was set up in Sodankylä, Finland, to collect data over a sparsely forested site. These sensors and 

deployment have generated and will continue to generate critical datasets for characterizing the radar backscattering of snow, 

the effects of rough surface scattering, and forests. They will help to advance retrieval development when coupled with 

advancements in field methodology and forward modelling capabilities. 630 

3.2.2 Airborne experiments and signatures 

Airborne campaigns (listed in Table 3) provided the first experimental demonstration of the sensitivity of Ku-band polarimetry 

scatterometer (POLSCAT) backscattering to SWE (Yueh et al., 2009). CoReH2O provided further impetus for the 

development of new airborne sensors. The ESA SnowSAR (a dual-polarization, airborne, side-looking SAR operating at X- 

and Ku-bands (Coccia et al., 2011; Meta et al., 2012) was deployed at several sites in Northern Finland, the Austrian Alps, 635 

Northern Canada and Alaska between 2011 and 2013. The purpose of the flight campaigns was to collect data over a range of 

climatological snow classes and land cover regimes. All flight campaigns were supported by extensive measurement of snow 

properties, including vertical profiles of snow stratigraphy and microstructure. The campaigns have enabled the further 

assessment of e.g., vegetation effects on backscatter (Cohen et al., 2015; Montomoli et al., 2016), the effect of spatially variable 

microstructure (King et al., 2018) and further elaboration of modelling and retrieval capabilities (Zhu et al., 2018). Figure 10 640 

demonstrates the effect of changing snow conditions on the observed Ku-band co-polarized backscatter during two of the 

SnowSAR flights in Finland. 
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Figure 10: Demonstration of observed Ku-band VV-pol backscattering from two consecutive SnowSAR flight campaigns in 
Sodankylä, Finland. The difference in backscatter is depicted on the right, with red implying an increase. Increases of measured 645 
backscattering are correlated with the increase of SWE. The measured SWE between the flights increased on average by 41 mm in 
non-vegetated areas, which show the highest increase (Figure adapted from Lemmetyinen et al., 2014). 

Recent airborne campaigns including SnowEx 2017, SnowEx 2020, and TVCExp 2019 have deployed a new generation of 

airborne systems to address known uncertainties including penetration in dense vegetation, background interactions, and 

InSAR applications (Table 3). As part of ongoing research at Trail Valley Creek, a new Ku-band InSAR (13.285 GHz) 650 

developed by the University of Massachusetts was deployed during the winter of 2018-2019. This system was developed to 

allow rapid deployment aboard common commercial platforms, leading to three successful acquisition periods throughout the 

winter. Coupled with objective measurements of snow microstructure and a distributed network of soil permittivity sensors, 

these data are now being used to develop InSAR and backscatter retrieval methods for future missions. The Snow Water 

Equivalent SAR and Radiometer (SWESARR) is a tri-band synthetic aperture radar (SAR) and a tri-band radiometer. Both the 655 

active and passive bands utilize a highly novel current sheet array (CSA) antenna feed. SWESARR has three active (9.65, 

13.6, 17.25 GHz) and three passive (10.65, 18.7, 36.5 GHz) bands. Radar data are  collected in dual polarization (VV, VH) 

while the radiometer makes single polarization (H) observations. During SnowEx 2020, NASA Goddard’s SWESARR 

demonstrated for the first time that X-band, low Ku-band and high Ku-band SAR acquisition can be made through a single 

antenna feed. Data collected during this campaign coincided with detailed measurements of vegetation structural properties 660 

and under canopy snow properties that will be critical to address the effects of vegetation and forests in SWE retrieval. 

Airborne campaigns are planned for 2022-2023 for both Canada and US SnowEx. These future campaigns will address the 

following questions: (a)What is the maximum forest density for retrievable SWE at Ku-band? Recent full wave simulations 

using Maxwell equations suggest that penetration through forests is higher than predicted by past models of radiative transfer. 
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(b) What is the saturation maximum depth retrievable SWE at X and Ku-bands? Using cross polarizations, can we have higher 665 

depth of penetration such as 1 meter to 3 meters? (c) What is the impact of stratigraphy and how  snow physics models can 

help to retrieve SWE in the presence of stratigraphy? (d) How permafrost and the changing freeze depth in some areas would 

affect the surface scattering contributions and the ability to subtract surface scattering estimated under snow-free conditions. 

With 6 measurements in SWESARR which are co-polarization, and cross polarization at three frequencies, what are the 

optimum combinations of polarization and frequencies for SWE retrieval? 670 

Table 3: summary of airborne deployments of active microwave sensors for snow studies. 

Airborne 

Campaign 
Dates Sensor Freq. Pol. Location/snow regime 

Data 

availability 

CLPX-I, -II 
2002, 

2003 

JPL 

POLSCAT 
13.95 GHz 

VV, VH, 

HV, HH 

Colorado, USA / Alpine & 

prairie 
NSIDC 

SnowSAR 
2010 

-2011 

ESA 

SnowSAR 

9.6, 17.2 

GHz 
VV, VH 

Sodankylä and Saariselkä, 

Finland / Taiga & tundra 

 

ESA EO 

campaign 

portal 

AlpSAR 
2011 

-2012 

ESA 

SnowSAR 

9.6, 17.2 

GHz 
VV, VH 

Leutasch, Mittelbergferner, 

Rotmoos, Austria / Alpine  

ESA EO 

campaign 

portal 

TVCExp 
2012 

-2013 

ESA 

SnowSAR 

9.6, 17.2 

GHz 
VV, VH 

Trail Valley Creek, NWT, 

Canada / Tundra 

Not yet 

available 

SnowEx 

‘17 
2017 

ESA 

SnowSAR 

9.6, 17.2 

GHz 
VV, VH 

Grand Mesa, Colorado, USA / 

Alpine 
NSIDC 

TVCExp 
2018-

19 

UMass Ku-

InSAR 

13.285 

GHz 
VV 

Trail Valley Creek, NWT, 

Canada / Tundra 

Not yet 

available 

SnowEx 

‘20 
2020 

NASA 

SWESARR 

9.65, 13.6, 

17.25 

GHz 

VV, VH 
Grand Mesa, Colorado, USA / 

Alpine 
NSIDC 

*ongoing 
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3.3 Linking field measurements of snow with theoretical models of snow-radar interactions 

Quantification of physical snow processes through objective measurements has revolutionized our understanding of 

microwave interactions with complex snowpacks at multiple scales (millimetre to kilometre). Objective methods of 675 

determining snow grain size in the field have only been available over the last decade. Prior to this, grain size was typically 

quantified visually with a hand lens or microscope (Fierz et al., 2009) and could be subject to errors of up to 1 mm in grain 

size estimation (Leppänen et al., 2015). Laboratory processing methods include gas absorption (Legagneaux et al., 2002) and 

thin section imaging techniques (H. Bader et al., 1939). As described in section 3.1.1, µ-CT measurements of snow samples 

obtained in the field have revolutionized our ability to model EM interaction from snow. Today, field-based instruments can 680 

quantify the snow specific surface area (SSA) rapidly in the field either through near-infrared reflectance (e.g. Gallet et al., 

2009) or penetrometry (Proksch et al., 2015b). SSA is often related to an effective sphere diameter, that is the diameter of a 

sphere taken with the measured SSA (Mätzler, 2002). In practice, these metrics must often be scaled to match output from 

radiative transfer models (Montpetit et al., 2012). In addition to advances in sensors, experiement design has advanced 

significantly in support of radar remote sensing measurements: Appendix A provides an example experiment design that has 685 

been used in recent field campaigns. In practice, the time requirements of faster traditional measurements with longer history 

must be weighed against the newer measurements which are sometimes more time consuming with fewer trained operators. 

Here, we describe how this new knowledge of microscale variability over seasonal timescales can be leveraged to inform 

algorithms applied at landscape-scales. 

3.3.1 Spatial variability of field measurements  690 

Geolocated measurements are vital to quantify variability of snowpack properties within sensor footprints (airborne or tower). 

(a) suggests an optimal configuration of snow depth and Snow MicroPenetrometer (SMP) measurements to create 

representative distributions of snowpack properties within airborne swaths. The main 222 m transect of snow depth and SMP 

profiles, located along an airborne swath centreline, has variable spacing (10-1, 100, and 101m) on either side of a central pit to 

capture different horizontal length scales of variability. A shorter 22 m orthogonal transect with 10-1 and 100 m spacing bisects 695 

the main transect at the central pit, and a spiral of snow depths extends from the central pit out to an 11 m radius  (a)). 

Measurements additional to the main transect allow omnidirectional analysis of snow depth variability and bi-directional 

analysis of snow microstructural properties, both of which may be influenced by dominant prevailing wind direction or 

irregular patterns of subnivean vegetation. Ideally, snow depths and positions are measured using automatic depth probes with 

integrated GPS providing position accuracy to ±2.5 m, e.g. Magnaprobes (Sturm and Holmgren, 2018). Where forest canopies 700 

obscure GPS satellite connection or snowpacks are deeper than 180 cm (current maximum magaprobe length), hand probes 

are used in measured grids arranged relative to a known absolute position. Accuracy of snow depths range from nearly 0 cm 

on hard ground to ~5 cm in soft subnivean vegetation. Where snowpit locations are not predetermined, measured snow depth 
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distributions can be subsequently used to determine the location of snowpit(s) to match mean depth or multiple pits spanning 

interquartile ranges. 705 

 

Figure: Optimal measurement configurations for evaluation of snow properties in sensor footprints. 

One-dimensional (vertical) measurement of snowpack properties for SAR retrievals require objective measurements of snow 

microstructure. SMP allows rapid (< 1 minute) force profile detection at millimetre resolution (Proksch et al., 2015b), which 

is used to derive density, correlation length and Specific Surface Area (SSA); quantities directly or indirectly used by radiative 710 

transfer models (Chang et al., 2016; Picard et al., 2018). The speed of data acquisition allows for SMP measurements to be 

used in a distributed manner along transects, but SMP also supports other coincident snowpit measurements using different 

techniques. (b) shows a schematic of optimal snowpit measurements. Double-sampled volumetric density measurements, 100 

cm3 box-cutter with 3 cm vertical resolution for shallow snowpacks or 1000 cm3 wedge-cutter with 10 cm vertical resolution 

for deep snowpacks (Proksch et al., 2016), are averaged at each vertical position. Following principles presented in Gallet et 715 

al. (2009), 3 cm vertical resolution double-sampled SSA measurements are made using an InfraRed Integrating Sphere (IRIS) 
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(Montpetit et al., 2012) or an A2 Photonic Sensors IceCube (Zuanon, 2013). Micro-CT analysis of snow casts (Schneebeli and 

Sokratov, 2004; Lundy et al., 2002), consisting of entire profiles or samples of critical layers, are used as a benchmark for 

corroboration of all other measurements. However, in-practice, in-situ snow casting and subsequent cold-laboratory micro-CT 

analysis requires a much higher level of expertise and processing time than SMP or IRIS/IceCube measurements, meaning 720 

field application of micro-CT is often limited. 

Profiles of snow temperature using well-calibrated stem thermometers at 10 cm vertical resolution are important parameters 

for radiative transfer models, in conjunction with stratigraphic identification of snow layer boundaries and ice lenses using 

hand hardness. Visual identification of grain type (Fierz et al., 2009) using a hand lens or macroscope is an important 

complimentary measurement for layer classification and understanding the seasonal history of snowpack processes. However, 725 

using similar visual methods to quantify snow ‘grain size’ are too subjective to create a microstructural metric for further use 

in radiative transfer models. The SSA measurements provide much better accuracy for use in radiative transfer models. 

Near-infrared (NIR) photography allows two-dimensional analysis of layer boundary position (Tape et al., 2010) and layer 

thickness variability (Rutter et al., 2019) in snow trenches, quantifying spatial variability of stratigraphy around a single 

snowpit profile. It also enables measurements of layer boundary roughness, particularly of the snow-air and snow-ground 730 

interfaces. Other methods to characterise snow-air surface roughness use photographic image contrast analysis of dark boards 

placed behind snow (Fassnacht et al., 2009; Anttila et al., 2014) and subnivean roughness of areas cleared of snow using pin 

profilers, LiDAR scanning (Chabot et al., 2018; Roy et al., 2018) or structure from motion photogrammetry (Meloche et al., 

2020). The subnivean roughness between snow and soil give significant contributions of rough surface scattering because of 

the contrast of dielectric constants between snow and soil. 735 

At the landscape scale, understanding snow spatial variability is of critical importance with respect to the development of 

methodologies that can observe and model discrete and bulk properties of snowpack with low uncertainty. Mountains, hills, 

and valleys exert aerodynamic roughness controls on snowfall trajectory, enhancing snow accumulation and redistribution 

processes often dominated by blowing snow and sublimation. Exposed topography (e.g. alpine areas or open upland plateaus) 

are typically scoured of snow while enhanced accumulation is found in gullies or on the lee-side of plateaus (Pomeroy et al., 740 

1993; Liston and Sturm, 1998). Once accumulated, the persistence of snow on the landscape is influenced by terrain slope and 

aspect which control a snowpack’s energy budget; the incoming heat energy to north-facing slopes is radically different to that 

for south-facing slopes that can lead to pronounced variations of SWE at the landscape scale (Lopez-Moreno et al., 2014). 

Local slope angles also cause changes in the incidence angle of radar backscattering, which may impact assumptions 

underpinning microwave retrieval algorithms because rough surface scattering has a strong angular dependence. 745 

The distribution of tree canopy, woody biomass, and the fragmentation characteristics of the vegetation stands play a significant 

role in how snow accumulates in a forested landscape. Metrics describing plant functional types (e.g. deciduous/coniferous or 

broadleaf/needleleaf, canopy densities and heights, etc.), are used to quantify spatial difference in simulations of sub-canopy 

snow and microwave radiative transfer. Correcting for forest microwave attenuation has shown that forest transmissivity plays 

an important role in the observability of the sub-canopy snow. However, transmissivity changes through the season as the 750 
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woody biomass undergoes progressive cooling at temperatures below 0° C (Li et al., 2020). Moreover, observed transmissivity 

of a tree stand is also impacted by the forest gap fraction or forest fragmentation. Landscape metrics can be used to characterize 

these ecological factors using high-spatial-resolution active and passive optical observations (Vander Jagt et al., 2013). The 

impact of low stand shrub vegetation is also important for snow accumulation in subalpine, tundra and sub-tundra regions, and 

in the understorey of forested environments. Shrub-dominated landscapes retain snow more effectively than graminoid plant 755 

cover but less than forest-covered regions (Marsh et al., 2010). 

The soil type and state affect microwave observations of snow at the landscape scale because, at microwave wavelengths, the 

soil relative permittivity can play an important role in how reflected or backscattered energy is attenuated at the snow-ground 

interface. Generally, relative permittivity of soil is controlled by the texture, moisture content, and thermal heat content of the 

soil. Seasonal change in soil water state (liquid or frozen), is also important since relative permittivity changes significantly as 760 

the surface soil moisture changes state. This is all complicated by the variability in soil type at the landscape scale, and 

especially the mix of organic and inorganic content; peat soil landscapes are very complex in their microwave response whilst 

inorganic soils are somewhat simpler to characterize. In agricultural landscapes, especially post-harvest, the surface soil layer 

tends to be more spatially uniform and freeze earlier, making the variations in relative permittivity of the soil relatively 

constant. 765 

In SWE retrieval, the snow-soil rough surface scattering and the forest effects on transmission and backscattering give bias in 

radar measurements. It is important to evaluate the magnitudes of these effects and how such bias in radar measurements vary 

with time. 

3.3.2 Seasonal variability 

Temporal change in snowpack properties have important implications for radar backscatter, in particular: 1) snow mass change, 770 

2) metamorphism of snow microstructure, and 3) liquid water content and refreeze (ice lenses). High temporal resolution 

(hourly) measurement of snow mass accumulation and ablation using snow pillows, e.g. SNOTEL (Yan et al., 2018), or passive 

gamma radiation SWE sensors (Smith et al., 2017) provide excellent evaluation data to test SWE retrieval algorithms. 

However, such point measurements of SWE are spatially limited and seasonal variability in SWE is more commonly estimated 

through depth measurements, at a point using an acoustic sounder or spatially distributed from lidar, and periodically measured 775 

or modelled snow density. Uncertainties in modelled snow densities commonly dominate uncertainties in measured depth 

(Raleigh and Small, 2017). 

Seasonal change in snow microstructural properties can strongly influence scattering of radar backscatter, especially in 

snowpacks of which depth hoar is a significant component. Constraining the proportions of snowpacks that have different 

scattering properties (e.g. surface hoar, wind slab, consolidated layers, indurated hoar or depth hoar) is required to prevent the 780 

retrieval of SWE from backscatter becoming an ill-posed problem. Frequent (weekly) objective profiles in snow pits (section 

5.3) are optimal, however, in lieu of in-situ pit measurements, thermistors situated at different heights above the ground that 

become sequentially buried in accumulating snow allow calculation of temperature gradients within the snowpack. Consistent 
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temperature gradients can be used as a proxy for likely snow crystal type (Domine et al., 2008): rounded (<10° C m-1), facets 

(10-20° C m-1), depth hoar (>20° C m-1). Where internal snowpack temperatures are not available, 2 m air temperatures and 785 

near surface soil temperatures can provide a bulk estimates of snow temperature gradients. 

Profiles of liquid water content (LWC) are measured in-situ through insertion of dialectic devices (Denoth, 1994; Sihvola and 

Tiuri, 1986) into a snowpit wall. LWC can also be retrieved through non-invasive techniques using only GPS signal attenuation 

(Koch et al., 2019) or electrical self-potential (Thompson et al., 2016). Where mid-winter melt events are observed, either 

directly from LWC measurements or via inference from meteorological inputs, the chances increase of ice lens formation 790 

within the snowpack, which an important consideration for SAR backscatter retrievals. Snow wetness affects the radar 

backscattering (Stiles and Ulaby, 1980). The dielectric constants of wet snow have been modelled as a function of snow 

wetness (Ulaby and Long, 2015). 

4 Characterization of snowpack properties using radar measurements 

4.1 Describing the retrieval problem 795 

In early studies, empirical models were proposed for SWE retrieval (Ulaby and Stiles, 1980; Drinkwater et al., 2001). These 

are unsuited for all snow types—e.g., ephemeral, prairie, maritime, and mountain snow, etc. (Sturm et al., 1995). Later 

investigators applied multiple channel measurements to determine snow parameters (Shi and Dozier, 2000; Rott et al., 2010). 

Recent algorithms (Cui et al., 2016; Xiong and Shi, 2017; Lemmetyinen et al., 2018; Zhu et al., 2018; King et al., 2019) are 

based on physical models in which RTM are used. Physical model-based retrieval algorithms consist of three parts: 1) a 800 

physical model of snow volume scattering, 2) estimation of a priori parameters, and 3) a cost-function inversion of the physical 

model to obtain SWE. An important limitation historically has been that there are fairly few in situ and airborne datasets on 

which to evaluate retrieval algorithms. This limitation is rapidly being overcome by recent observations, as described in section 

3.2.  In this section, we will describe the estimation of a priori parameters and SWE retrieval procedures. 

Volume scattering of snowpack is a function of parameters including SWE, density, snow microstructure, and stratigraphy. 805 

Paramount for the success of the retrieval is the ability to predefine or constrain some of these unknown parameters, in 

particular the parameters that are used to characterize the snow microstructure. Based on the RTM, volume scattering is a 

function of snow depth, density, snow microstructure and layering structure (Rott et al., 2010; Zhu et al., 2018; King et al., 

2018). A challenge is the non-uniqueness in inversion as different combinations of SWE and parameters of snow 

microstructure can give similar backscattering (Tsang et al., 2004; King et al., 2018). A priori estimates of parameters of snow 810 

microstructure can be used to improve the accuracy of retrieval by constraining the cost function with estimated statistical 

uncertainties. 

Assuming normal distributions for the errors in forward simulations and observations of backscatter, the cost function of a 

maximum likelihood estimate for SWE and snow microstructure can be formulated as follows: 
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where 𝜎௜
௢௕௦ are radar observations from the ith channel, and 𝑁 is the total number of channels for measurements. In CoReH2O, 

𝑁=4 for VV and VH polarizations of X- and Ku-band. The backscattering predictions of snowpack are given by 𝜎௜
௠௢ௗ௘௟. In 

the above, 𝑠௜
ଶ are the error standard deviations of the radar measurements. The parameter 𝑥 is related to snow microstructure, 

such as single scattering albedo, correlation length, and grain size. 𝑠௫
ଶ is the variance of a priori constraint. In Cui et al. (2016) 

and Zhu et al. (2018), 𝑠௜  are assumed to be 0.5, which are based on the error standard deviations of radar measurements. 𝑤௜  820 

and 𝑤௫  are the weighting factors in the retrieval. Dual frequency retrievals are using either X- (9.6GHz) and Ku-band of 17.2 

GHz as in CoReH2O or dual Ku-band of 13.6 GHz and 17.2 GHz as currently being proposed (see Section 6). However, cross 

polarizations have not been fully utilized and algorithms have been using the two co-polarizations of the dual frequency 

measurements. The two frequency measurements exploit the frequency dependence of volume scattering in snow. The two 

parameters that strongly influence the backscattering measurements are SWE and snow grain size. Then the problem becomes 825 

retrieval of two parameters from two measurements. 

 

The proposed algorithm in equation (3)  has built off the CoReH2O ( Rott  etal 2010,approach.  Such physical based retrieval 

approaches are quite general with  (i) matching the data to the physical models , and (ii) a priori constraints on parameters.   

The actual implementation can have wide varieties of options and the importance  is the validation against datasets of tower 830 

and airborne measurements.  Since the 2012 CoREH2O ESA report, there have been significant airborne and ground 

campaigns, as shown in Tables 2 and 3  providing much more data than were available prior to CoReH2O.  In Section 4.3 , we 

will describe three algorithms that have been used  successfully (Lemmetyinen et al., 2018; King et al., 2019, Zhu et al., 2018, 

Zhu etal 2021) . In particular , we will describe in more details the algorithm in Zhu etal 2018, Zhu etal 2021, and describe the 

validations with a series of  tower and airborne measurements.   In the CoREH2O cost function, there are several  parameters 835 

that require a priori estimates.  The algorithm in Zhu etal 2018 , 2021 is more closely related to the NASA SMAP radar 

algorithm, by using regression to electromagnetic model simulations over a wide range of parameters, the number of 

parameters is significantly reduced.  The strategy of this approach is to reduce the burden of a priori estimates of parameters 

for every scene.  Nevertheless, it is important to stress that algorithms are still maturing.  

 840 

4.2 Constraining the retrieval problem with prior information 

Some of the challenges in retrieving snow properties from radar measurements can be addressed by using so-called “prior 

information”. Prior information introduced in a retrieval problem or can be thought of in a Bayesian sense as discussed by 

Pulliainen (2006), , or as “regularization”. The cost function (equation 3) applies prior information Aas described in the 

retrieval algorithmsection 4.1,,  each a priori parameter where 𝑥 represented a snow microstructure related metric for which 845 

prior information is applied based on the final term on the right of equation 3. More generally, priors could be applied to 
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multiple terms in the retrieval problem including SWE, as done in the proposed CoReH2O algorithm (ESA et al., 2012), or in 

a multi-layer sense, as illustrated for passive microwave remote sensing by Pan et al. (2017). associated with the 2nd term in 

the cost function (
௪ೣ

ଶ௦ೣ
మ (𝑥 − 𝑥̅)ଶ)  with mean 𝑥̅ , weight 𝑤௫, and uncertainty 𝑠௫. 

 850 

 

The degree to which prior information is applied to a problem can be thought of as a spectrum: the most minimal use of prior 

information is to remove the prior from the objective function but to specify a range of possible values for each prior, such as 

done by Thompson and Kelly (2021a). Specification of a prior on either grain size or single-scattering albedo can be considered 

moderate use of a priori information. The CoReH2O mission proposal specified an algorithm with prior on effective grain 855 

radius and SWE (ESA et al., 2012), building from the approach of the GlobSnow data product (Luojus et al., 2021).  Cui et al. 

(2016) similarly specified priors for both optical thickness (an analog for SWE) and single-scattering albedo (an analog for 

microstructure). Zhu et al. (2018) built from the approach of Cui et al. by requiring only a single prior on single-scattering 

albedo. The algorithm of Zhu et al. requires only a “classification” of high or low single-scattering albedo. Maximal use of a 

priori information would be to use a dynamic simulation of snow microstructure processes to inform the retrieval. The model 860 

could be run “offline” and provide information on microstructure, or radar observations could be assimilated directly as done 

by Bateni et al. (2013, 2015).  

 

Several studies have attempted to characterize the required precision of the priors on microstructure. ESA et al. (2012) found 

that an effective grain radius would need to be known with 15% of the true value. Rutter et al. (2019) similarly showed that 865 

microstructure would need to be known to within 10-15% in order to accurately retrieve SWE for field data in a tundra snow 

environment. These requirements are daunting. However, other approaches have indicated that microstructure information 

may not be required to be so precise. Thompson and Kelly (2021a) showed a successful inversion of SWE from in situ radar 

measurements in a prairie snow environment using a cost function specified with only minimal prior information (as defined 

the previous paragraph). The algorithm of Zhu et al. (2018) requires only the specification of whether the single scattering 870 

albedo is high or low: i.e. because the specification of a priori information is changed from a continuous to a categorical 

problem, the burden of a high precision prior is much alleviated. Bateni et al. (2013, 2015) demonstrated that maximal use of 

prior information in the context of an assimilations scheme could provide prior information from weather data and snow 

physics to successfully estimate SWE. Thus, even though the radiative transfer equations are highly sensitive to microstructure, 

and sensitivity analysis would indicate that priors must be specified to high precision, successful SWE inversions have been 875 

demonstrated without high precision priors. In the following subsections we review two ways of specifying prior 

information.such as is sometimes done for passive microwave retrievals (e.g. Pan et al., 2017). In actual implementation of the 

algorithm for global monitoring, there are needs of auxiliary information and a priori parameters. There are also needs on how 

to combine all these a priori information effectively in a retrieval algorithm. The amounts of satellite SAR data are massive, 
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and computational efficiency needs to be achieved so that the retrieval algorithm can be operated in real time. As described in 880 

the retrieval algorithm, each a priori parameter 𝑥 associated with the 2nd term in the cost function (
௪ೣ

ଶ௦ೣ
మ (𝑥 − 𝑥̅)ଶ)  with mean 𝑥̅ 

, weight 𝑤௫ , and uncertainty 𝑠௫ . 

Table 4: Classifications of snow type. From Sturm et al. (1995). Note that the “no data” label refers to data available in the study of 
Sturm et al., rather than availability in general. 

Snow 

Class 

Depth range 

(cm) 

Average bulk density 

(g/cm3) 

Number of 

layers 

Grain size: new snow, fine, medium, 

coarse grained, depth hear 

Tundra 10-75 0.38 0-6 Wind slab, depth hoar 

Taiga 30-120 0.26 >15 New snow, depth hoar 

Alpine 75-250 No data >15 New, fine, medium, coarse, depth hoar 

Maritime 75-500 0.35 >15 New, wet 

Ephemeral 0-50 No data 1-3 Recent snow 

Prairie 0-50 No data <5 Wind slab, recent, fine 

Mountain Deep snow up 

to 400 cm 

No data variable  

4.2.1 Leveraging snowpack information and snow classes 885 

The simplest approach to specifying microstructure prior information for global SWE retrievals is to recognize the differences 

in snow types globally. The classification of Sturm et al. (1995) and Sturm and Liston (2021) specify differences in snow 

texture based upon temperature, precipitation and wind speed. Wind speed is mediated in many environments primarily by 

forest canopy height, and thus these three indicators can be specified by available land cover and meteorological information, 

globally. Clearly defined physical processes such as vapor flux driven by temperature gradient link these three meteorological 890 

quantities to observable snow properties, such as the number of layers, vapor transport through the snowpack, and 

microstructure properties such as grain size. Sturm and Liston (2021) specify seven snow classes: tundra, boreal forest, prairie, 

montane forest, maritime and ephemeral globally at approximately 300 m spatial resolution. The relevance to microstructure 

properties is clear: tundra snow (e.g.) has far larger snow crystal size in its depth hoar layers than do taiga snow. In order for 

used snowpit measurements from Alaska to objectively define seven snow classes. These classes can be predicted based on 895 

available land cover and meteorological information, globally. Snowpack properties are listed in Table 4, above, with 

information compiled from Sturm et al. (1995), rearranged from the point of view of a priori information for X- and Ku-band 

radar backscattering and retrieval. Rretrieval algorithms could, for example, to leverage the predicted snow class to define a 

priori estimates to guide SWE retrievals, objective microstructure information would need to be specified for each snow class. 

The updated snow class of Sturm and Liston (2021) and the maturity of the methods to objectively measure microstructure 900 
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described in section 3.3 have now made this a possibility that will guide SWE retrieval efforts from radar measurements in the 

future.. 

4.2.2 Snow microstructural models 

4.2.2.1 Background 

Across the electromagnetic spectrum, the interaction of radiation with snow cover is mediated by snow microstructure (West 905 

et al., 1993; Wiscombe and Warren, 1980; Nolin and Dozier, 2000). However, due to differing penetration depths, visible and 

near-infrared measurements are sensitive to grain size at the surface, whereas microwave measurements are sensitive to grain 

size at depth (Hall et al., 1986). The sensitivity of radar measurements to microstructure properties has been demonstrated by 

both models (Xu et al., 2012; Proksch et al., 2015a) and experiments (King et al., 2015; Rutter et al., 2019). Algorithms to 

retrieve SWE from radar backscatter typically solve for both SWE and some measure of snow microstructure (e.g. single-910 

scattering albedo,  correlation length) and regularization terms or prior information on microstructure is often included in the 

retrieval cost function (as described in the previous section; see Rott et al., 2010). In addition to important advances in 

measuring snow microstructure in the field, as described in previous sections, new work to simulate the evolution of snow 

grain size has indicated great potential for improving radar retrieval algorithms of SWE. In the cost function of retrieval 

algorithm, the a priori estimate term is 
௪ೣ

ଶ௦ೣ
మ (𝑥 − 𝑥̅)ଶ  with grain size being the most important a priori parameter. 915 

To prevent confusion, it is important to begin with clear definitions for snow microstructure. Snow is a continuous, granular, 

bonded medium, composed of irregularly-shaped ice crystals, water vapor, liquid water, and void areas. The term 

“microstructure” commonly refers to snow grain size, shape, bonding, and distribution. Snow microstructure evolves both 

vertically within a snowpack and temporally throughout the snow season (as well as exhibiting significant horizontal spatial 

variability). The dendritic forms of new snowflakes sublimate, leading to a wide range of rounded or faceted shapes, depending 920 

on snowpack conditions. For many years, snow microstructure was referenced by the term “grain size”. However, because 

“grain size” is an imprecise term, and because several metrics of snow microstructure play a role in radar backscatter, we will 

here simply refer to “snow microstructure” to encompass all measures of the snow medium; see Mätzler (2002) for a formal 

description of the various microstructural quantities. The most important and objective measure of snow microstructure is the 

snow specific surface area (SSA), which is often defined as the surface area of the ice-air interface to the mass of a control 925 

volume of snow. SSA provides an objective measure that explains much of the microwave scattering processes. However, 

microwave interaction with microstructure cannot be entirely summarized by SSA; instead, radiative transfer is controlled by 

the spatial autocorrelation function (SAF) of the ice-air interface (Löwe and Picard, 2015). In the random medium model, the 

microstructure is described by a correlation function (Mätzler, 2002). In the bicontinuous medium model and the spherical 

scatterers models with stickiness, spatial correlation functions (SAF) have also been derived and have been related to the grain 930 

size and the aggregation parameter or the stickiness parameter (Chang et al., 2016). Thus, all microstructure characterizations 

in electromagnetic models can be related through the SAF. The SSA is a measure of the SAF at only the shortest spatial lags 
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(e.g. ~10 µm); radar waves also respond to SAF at longer lags, (~100s µm). The SAF can be estimated using laboratory 

methods, such as micro-CT. Grain shape can play an important role in scattering, especially for the cross-polarization radar 

terms (Yueh et al., 2009). In summary, SSA has emerged as a practical and important microstructural property that both 935 

explains much variability in microwave scattering and can be measured in the field. 

4.2.2.2 Microstructure evolution schemes: how they work 

SSA evolves based on well-understood physical properties, providing a source of information to better inform SWE retrieval 

from Ku-band radar. Accurately modelling snow microstructure is not trivial, but decades of pioneering work by Colbeck 

(1982), Sturm (1989), Brun (1989), Brun et al. (1992), and Jordan (1991), among others, led to the development of snow 940 

metamorphism laws rooted in mass and energy conservation. The gravitational settling and metamorphism laws govern the 

temporal evolution of snow microstructure and its mechanical (e.g., snow stratification and shear stresses) and thermal (e.g., 

albedo and emissivity) properties. The metamorphism laws describe three types of grain growth mechanisms including: kinetic 

growth, equilibrium growth, and melt metamorphism (Lehning et al., 2002; Huang et al., 2012); kinetic and equilibrium growth 

are sometimes called constructive and destructive metamorphism, respectively. 945 

Destructive metamorphism describes movement of water vapor from small grains with high curvature to larger grains with 

lower curvature. As a result, small grains and dendritic branches of large snow crystals evaporate and form larger and more 

spherical crystals. Constructive metamorphism is primarily driven by temperature gradients within the snowpack, resulting in 

direct vapor transport from warmer to colder surfaces. Sturm and Benson (1997) documented these processes in the Arctic. 

The snowpack temperature gradient, in turn, is simply the difference in temperature between the ground and the air, divided 950 

by the snowpack depth; typically snow covers insulate the ground, leading to soil being warmer than the ground. When snow 

is wet, the growth rate accelerates, compared with dry snow conditions. These fundamental physical processes have been 

explored for decades and solutions to the governing equations exist in a range of physical models. 

4.2.2.3 Microstructure simulation accuracy 

Snow microstructure model accuracy has improved significantly in recent decades, driven by improvements of field 955 

measurements and model techniques. Morin et al. (2013) used objective field-based measurements of snow specific surface 

area using the DUFISS instrument to evaluate the many-layer CROCUS snow model. Figure 11Figure 12 clearly shows that 

the model captured the seasonal evolution of SSA. The r2 fit values between observations and simulations ranged from 0.6 to 

0.74. 



36 
 

 960 

Figure 11: Observed and interpolated SSA observations (a) and SSA simulations (b). From Morin et al. (2013). The small white 
marks are the observations. 

Use of microstructure simulations to constrain SWE retrievals require the additional step of coupling the microstructure 

simulation scheme and the RTM. Such studies have been explored more extensively in the context of passive microwave 

remote sensing (Kontu et al., 2017; Langlois et al., 2012; Larue et al., 2018). Exploring the accuracy of a coupled radar 965 

backscatter and snow physics model is an area for future work. 

4.2.2.4 Implications for microwave remote sensing retrieval 

Given the advances in microstructure modelling skill, retrieval of SWE from radar backscatter stands to benefit from 

incorporation of prior information on snow microstructure provided by snow physics models. Prior information could be 

provided in at least two ways. First, the radar backscatter could be assimilated directly into a coupled snow physics and RTM. 970 

This approach has been shown to be effective in assimilating passive microwave radiance. Assimilating backscatter has been 

demonstrated by Bateni et al. (2013, 2015) in the context of assimilating in situ backscatter observations. The second way that 

models could provide information to constrain SWE retrievals would be simply as a regularization term. In other words, the 

simulation model can produce a single estimate of a microstructure parameter such as SSA and the cost function could 

incorporate this as a priori information in Bayesian retrieval (as shown in equation 3 above).  975 

4.2.2.5 Challenges and Future Work 

In actual implementation of retrieval algorithms for global monitoring, there are needs of auxiliary information and a priori 

parameters. There are also needs on how to combine all these a priori information effectively in a retrieval algorithm. 

Computational efficiency needs to be achieved so that the retrieval algorithm can be operated in real time. Nonetheless with 

advances in computational resources, and examples of complex ground-processing segments from recent satellite missions, it 980 

can be envisioned that the latest advances in snow physics modeling and knowledge of microstructure can be applied to a 

future global satellite mission. 
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There are challenges associated with coupling snow physical models and RTMs. First, SWE simulations from snow physical 

models are often inaccurate, due to biases in the precipitation forcing. This happens mostly when information from weather 

stations is not available, and snow models must rely on atmospheric reanalysis data that are subject to biases, especially in the 985 

precipitation amounts (Lindsay et al., 2014; Wrzesien et al, 2019b). Recent modelling work in Grand Mesa, CO shows however 

that biases in the simulations and analysis of higher resolution (~ 1km) numerical weather prediction models are significantly 

reduce leading to modelled SWE within ±10% of the observations (Cao and Barros, 2020). Changes in SWE have an immediate 

effect on several other snow properties, particularly snow microstructure, a critical parameter in radiative transfer models. 

Second, in snow physical models, SWE is inversely related to the grain size. When SWE decreases, temperature gradients 990 

increase and grain growth is accelerated. In radiative transfer models, radar backscattering increase with SWE and with grain 

size. Backscattering is directly proportional to SWE and grain size. In SWE retrieval, SWE and grain size are independent 

parameters. When SWE increases and if the grain size stays constant, radar backscattering increases. However, in snow 

physical models, when SWE decreases, grain size increases and radar backscattering can increase or decrease due to the 

combined effects of SWE and grain size.  This ambiguity emerges due to the nature of SWE, microstructure and backscatter 995 

relations. An ongoing study has found that even for small changes in simulated SWE (+/- 10%), snow microstructure is affected 

enough to mislead the retrieval algorithm and deteriorate the SWE retrievals even further (Merkouriadi et al., accepted). These 

challenges can be addressed by introducing appropriate physical constraints to the retrieval algorithms. 

There are multiple areas where simulations must continue to improve, including demonstrating skill in the context of varying 

degrees of forest cover. Additionally, most simulations focus on estimation of SSA. While SSA has been shown to be an 1000 

adequate summary of radiative transfer properties most of the time for visible and near-infrared remote sensing of clean snow, 

this is not the case in the microwave spectrum. To couple SSA to input to the RTMs, SSA must be related to SAF correlation 

length. Another subject of study is to use micro-CT to extract more information such as to relate to SAF. There are potentially 

useful synergies to be explored with retrieval of surface microstructure from visible and near-infrared measurements, in the 

context of radar retrievals of SWE. The retrieval algorithm shown earlier requires a classification rather than a precise value 1005 

of grain size. Thus, the study of the error tolerance for estimations of SSA should also be pursued. Retrievals using a two-layer 

physics model are the next step (King et al., 2018). Significant effort will be needed to address the question of how many 

layers are necessary to capture small changes in snowpack backscatter behavior and SWE, and how to solve the inverse 

problem in multi-layered snowpacks the number of  and vertical structure of which changes in time.  

4.3 Solving the retrieval problem: three example algorithms 1010 

Since the 2012 CoREH2O ESA report, there have been significant airborne and ground campaigns as shown in Tables 2 and 

3  providing much more data than were available prior to CoReH2O.  There presently three four physical physical model-

based retrieval algorithms that have been applied successfully (Lemmetyinen et al., 2018; Zhu et al., 2018, King et al., 2019). 

All three four algorithms  utilize the frequency dependence of snow volume scattering for X-band and the two Ku-bands. The 
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importance is the validation of the algorithms against the tower measurements listed in table 2 and the airborne measurements 1015 

listed in Table 3.  

Lemmetyinen et al. (2018) used first proposed a SWE retrieval scheme using both radar and radiometry measurements. The 

retrieval is based on the model of the expanded Microwave Emission Model for Layered Snowpack (MEMLS3&a) for 

simulation of both radar and radiometry observations (Proksch et al., 2015a). In the algorithm, the snow microstructure is 

represented by the effective correlation length, which is first retrieved with radiometry and in situ snow depth measurements. 1020 

Then, retrieved correlation lengths are applied to constrain the SWE retrieval with radar observations. The algorithm has been 

validated with the Finnish NoSREx tower dataset listed in Table 2. 

King et al. (2019) proposed used a SWE retrieval algorithm which is a coupling of snow physics model, snow hydrology model 

and the physical model of predictions by  SMRT (Picard etal 2018) based on two-layer snow modelling for dual Ku-band radar 

observations. The two-layer model accounts for the small grain size of new fallen snow versus the larger grain size beneath 1025 

the new fallen snow. ; the forward physical based model of the retrieval is the SMRT model (Picard et al., 2018) for predictions 

of radar measurements. The correlation length is based on a priori information from the snow physics model. The ancillary 

configuration parameters and a priori parameters of snowpack for the retrieval are provided by the snow hydrology model and 

the snow physics model. Ensembles are created and the minimization of the cost function is exercised using  equation (3) with 

the uncertainties defined for the a priori parameters.  The correlation length is based on a priori information from the snow 1030 

physics model. The algorithm relying on the coupled snow physical model and SMRT  The algorithm was applied to 

successfully to SWE retrieval from data taken in the tundra environment from 2012-2013 of SnowSAR over TVC listed in 

Table 3. It is presently being applied to the UMass Ku-InSAR data taken over TVC in 2018-2019 as listed in Table 3. 

 

Recently, Thompson and Kelly (2021a) applied a new algorithm using no prior information in the cost function, in which an 1035 

iterative search algorithm was run using the MEMLS 3&a model (Proksch et al., 2015a). They applied the algorithm in both 

one- and two- layer model on Canadian prairie snowpacks near agricultural fields. They were successfully able to retrieve 

SWE from in situ radar measurements.  

 

 1040 

4.4 Steps of Retrieval Algorithm and  results 

 

We next describe the third algorithm in Zhu etal 2018 and Zhu etal 2021 in more details.  The algorithm has been applied and 

validated with  78 data sets in Tables 2 and 3. The results will be summarized at the end of this section. three sets of airborne 

SnowSAR data. Two datasets are from the 2011 and 2012 campaigns in Finland (Meta et al., 2012; Chang et al., 2014) and 1045 

the third dataset is from the 2013 campaign in Canada (King et al., 2018). It is presently being applied to two more airborne 

datasets (Table 3) :  SnowSAR 2017 over GrandMesa and UMass Ku-INSAR of TVCEXp in 2018-2019.  The algorithm has 

similarities to the SMAP radar retrieval algorithm which has been applied to 6 months of SMAP radar globally from Jan 2015 
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to July 2015.  An essence of the SMAP radar algorithm (Kim etal 2017)  is to use regressions and classifications to reduce the 

backscattering sigma0 to be dependent on only three parameters: soil moisture, rms height of roughness and volumetric water 1050 

content (VWC)  

Zhu et al. (2018) developed the X- and Ku-band dual frequency radar SWE retrieval algorithm. The SWE retrieval algorithm 

has three distinct features: 1) surface scattering are subtracted from radar observations; 2) the a parameterized bicontinuous-

DMRT model is used to derived from regressions is developed to simplify the dependence on parameters the retrieval  with 

the result that the copolarizations at X band and Ku band depend on only two parameters: SWE and scattering albedo. with 1055 

only two unknown parameters: scattering albedo and optical thickness, which are related to the snow depth and the grain size; 

and 3) classification of snowpack into two classes (low albedo and high albedo) to mitigate the non-unique inversion problem. 

The algorithm has been applied and validated with three sets of airborne SnowSAR data. Two datasets are from the 2011 and 

2012 campaigns in Finland (Meta et al., 2012; Chang et al., 2014) and the third dataset is from the 2013 campaign in Canada 

(King et al., 2018). Recently, the a priori estimate of scattering albedo has also been based on passive radiometry measurements 1060 

(Zhu et al., accepted) following the earlier work of Lemmetyinen et al. (2018).  The detailed flow diagrams are in Zhu etal 

2018. In Figure 123, we give a simplified flow diagram    

 

 

Figure 12: Simplified flow diagram of the algorithm; two measurements to retrieve two parameters with a prior binary choice of 1065 
albedo. No prior estimate of SWE. 
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4.4 Retrieval results 1080 

In the Zhu et al. algorithm (2018), the co-polarization of X-band (9.6 GHz) and Ku-band (17.2 GHz) are utilized. Thus, the 

cost function is: 

F = MIN ൜
௪೉

ଶ௦೉
మ ቀ𝜎௑,௏௏

௢௕௦ − 𝜎௑,௏௏
௢௕௦,௕௚

− 𝜎௑,௏௏
௠௢ௗ௘௟(𝜏௑, 𝜔௑)ቁ

ଶ

+
௪಼ೠ

ଶ௦಼ೠ
మ ቀ𝜎௄௨, ௏௏

௢௕௦ − 𝜎௄௨,௏௏
௢௕௦,௕௚

− 𝜎௄௨,௏௏
௠௢ௗ௘௟(𝜏௑ , 𝜔௑)ቁ

ଶ

+
௪೛

ଶ௦೛
మ (𝜔௑ − 𝜔ഥ௑)ଶൠ    (4)  

where the two unknown parameters to be retrieved are the scattering albedo at X-band (𝜔௑) and the optical thickness at X-

band (𝜏௑ ). The input parameters are: 𝜎௑,௏௏
௢௕௦  and 𝜎௄௨,௏௏

௢௕௦  are radar observations at X and Ku band, 𝜎௑,௏௏
௢௕௦,௕௚  and 𝜎௄௨,௏௏

௢௕௦,௕௚  are 1085 

background scattering, and 𝜔ഥ௑ is a priori scattering albedo. Background scattering can be obtained by radar observations under 

snow free conditions or X band observations at small SWE. It is also possible to apply other observations at low frequencies 

such Sentinel 1 as mentioned in section 3.1.2 to refer background scattering at X and Ku bands. In the retrieval, 𝜔ഥ௑ is based 

on a binary choice. For snowpack with large SWE and small albedo, 𝜔ഥ௑ = 0.65. Otherwise, 𝜔ഥ௑ = 0.35. If better estimation 

of 𝜔ഥ௑ can be obtained by ground measurements, snow physical model (Xiong and Shi, 2017), or passive observations (Zhu et 1090 

al., 2021), the retrieval performance can be improved. 𝑤௑, 𝑤௄௨ , 𝑤௣, and 𝑠௣ are user defined parameters. 𝑠௑, 𝑠௄௨ = 0.5 𝑑𝐵 are 

instrument parameters. In this retrieval, both SWE (𝜏௑) and scattering albedo 𝜔௑ are retrieved. 
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4.4.1 Steps of Retrieval algorithms 1095 

 

Figure 13: Canadian SnowSAR measurements compared with the Bic-DMRT LUT. Figure from Zhu et al. (2018). 

In step 1,: Subtraction of rough surface scattering :  Tthe rough surface contributions are subtracted from the radar 

measurements. The subtraction procedure is as described in 3.1.2 with several options. Subtraction of rough surface scattering 

of the snow/soil interface improves the accuracy of SWE retrieval (Cui et al., 2016; Xiong and Shi, 2017; Zhu et al., 2018). 1100 

We show the case An example is given with the SnowSAR data collected from the 2013 Canadian TVC campaign (King et 

al., 2018; Zhu et al., 2018) in Figure 13443. SnowSAR flights were performed on April 8 and 9, 2013 crossing each of the 

TVC sites.  The SnowSAR collected data are shown in purple dots. The  bicontinuous-DMRT simulations LUT  are shown in 

blue dots.    The SAR data show a bias when compared with X- and Ku-band DMRT simulations. The bias is attributed to the 

contributions from surface scattering .  Since there are no measurements on the underlying soil in the 2013 Canadian TVC 1105 

campaign, rough surface scattering are determined by differences between radar observations and snow volume scattering 

calculated based on snowpit measurements. The SAR data show a bias when compared with X- and Ku-band DMRT 

simulations. The bias is attributed to the contributions from surface scattering. The rough surface bias in the Ku-band data are 

1 to 2 dB while, in the X-band data, the bias is about 4 to 6 dB, which indicates that the surface scattering has more influence 

at X-band. After subtraction of surface scattering from the SnowSAR data, the result SnowSAR data, shown in red dots,  are 1110 

assumed to contain only the volume scattering component. The red dots volume scattering components of the SnowSAR data   

fall into the range covered by the bicontinuous DMRT simulations. The dynamic range of SAR data is also larger with this 

subtraction.  , meaning that the obtained volume scattering components have better correlations with the SWE. 

In Sstep 2, Rregression training to reduce number of parameters:  Regression trainings are applied to is used to reduce the 

number of unknowns (Cui et al., 2016; Zhu et al., 2018; Zhu et al., 2021accepted). The Llook-up table (LUT) are generated 1115 

based on bicontinuous DMRT simulations of multiple scattering of  for snow volume scattering is generated for various snow 

properties of snow depth, density, and snow microstructure as represented by the kc and b parameters in the bicontinuous  

model . The output-dependent variables for the LUT are backscatter at X and Ku  (𝜎௑ and 𝜎୏୳), the effective single scattering 
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albedo at X and Ku  (ωଡ଼ and ω୏୳), and optical thickness at X and Ku (τଡ଼ and τ୏୳) for X- and Ku-bands. Regression trainings 

are performed for (𝑖)ωଡ଼ versus ω୏୳ and (ii)  τଡ଼ versus τ୏୳ to utilize the frequency dependence of scattering between the X- 1120 

and Ku-bands. 

In Zhu et al. (2018), there are two trained relations that are derived from regressions.  . The first regression trained relation for 

volume scattering is to train the multiple scattering solutions into effective first order solutions ,  σ = A + B log(σଵୱ୲), where 

𝜎 is multiple total volume scattering of snow and σଵୱ୲ is the first-order scattering. The coefficients A and B are given in Zhu 

et al. (2018) for X- and Ku-bands. In the second regression  trained relations, the relations between albedo at X- and Ku-band 1125 

and between optical thickness at X- and Ku-band are trained to give ω୏୳(ωଡ଼) and τ୏୳(τଡ଼). After these two sets of training, 

we then have 𝜎ଵ௦௧ = 0.75𝑐𝑜𝑠𝜃௧𝜔(1 − exp (−2𝜏/𝑐𝑜𝑠𝜃௧)) (Cui et al., 2016; Zhu et al., 2018) and the regression relations, 

𝜎௑ = 𝐴௑ + 𝐵௑ log൫ 0.75𝑐𝑜𝑠𝜃௧ωଡ଼(1 − 𝑒𝑥𝑝(−2τଡ଼/𝑐𝑜𝑠𝜃௧))൯  and 𝜎௄௨ = 𝐴௄௨ + 𝐵௄௨ log൫ 0.75𝑐𝑜𝑠𝜃௧ω୏୳(ωଡ଼)(1 −

𝑒𝑥𝑝(−2τ୏୳(τଡ଼)/𝑐𝑜𝑠𝜃௧))൯.  The results and  advantages of these regression trainings are that the multiple Thus, the volume 

scattering at X and Ku bands,  𝜎௑ and 𝜎௄௨  , now depends only depend  on two parameters, ωଡ଼ and τଡ଼. The approach is labelled 1130 

a “parameterized bicontinuous-DMRT model” (Cui etal 2016, Zhu etal 2018, Zhu etal 2021) .    We apply two channel 

observations to retrieve the two parameters, ωଡ଼ and τଡ଼, from which the SWE is obtained by the relation SWE = a(1 − ωଡ଼)τଡ଼, 

where a = 9745 for SWE retrieval (Zhu et al., 2018). 

SIn step 3: Classification of data: , a priori estimates of parameters and classification are applied to determine the mean, the 

weight, and the uncertainty 
௪೛

ଶ௦೛
మ (𝜔௑ − 𝜔ഥ௑)ଶ of the cost function. Several methods have been applied to determine a priori 1135 

parameters of snow microstructure. A priori information are obtained from co-located field stations or historical ground 

measurement data (Rott et al., 2010; Cui et al., 2016; Zhu et al., 2018). In the study of Xiong & Shi (2017), snow physical 

models are applied to derive a priori information. A priori information have also been derived from passive observations 

(Lemmetyinen et al., 2018; Zhu et al., accepted). In parametrizing microstructure, the snow grain size, correlation length 

(Proksch et al., 2015a) or scattering albedo (Cui et al., 2016; Zhu et al., 2018) are used. 1140 

Following the strategy of SMAP radar retrieval, To mitigate the non-uniqueness problem in retrieval, classification is also 

performed. We use the dataset from the Canadian SnowSAR 2013 campaign as an example. The a priori information are 

obtained from co-located ground measurements. The backscattering 𝜎 are classified into two groups: snowpack with high 

albedo and snowpack with low albedo. The threshold ωଡ଼ = 0.49 is the average of all a priori albedos. Figure 13Figure 14 

shows that the sensitivities of backscatter to SWE are enhanced by classification of snowpack based on a priori scattering 1145 

albedo. The classification scheme accounts for the heterogeneity of snow cover of varying grain sizes and SSAs from location 

to location. 
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Figure 14: volume scattering of the Canada SnowSAR data as a function of SWE based on the retrieved scattering albedo 𝛚𝐗 at (a, 
left) X-band and (b, right) Ku-band. Radar observations are from a single flight. A priori estimates are used to classify 𝛚𝐗 into two 1150 
classes. They are plotted by different coloured markers. The black dashed curve is the regression line of all Canada SnowSAR data. 
The blue and red solid curves are the regression lines for backscatter with 𝛚𝐗 larger and smaller than 0.49, respectively. Figure 
from Zhu et al. (2018). 

4.4.3 Retrieval results 

     1155 

Figure 15:  (a, left) SWE retrieval performance and (b, right) Scattering albedo retrieval using Canadian SnowSAR 2013 X- and 
Ku-band radar data. The figures are from Zhu et al. (2018) and Zhu, 2021. 

In Sstep 4,  a priori estimates , binary choices and cost function minimization  

Aa priori estimates of parameters and classification are applied to determine the mean, the weight, and the uncertainty 
௪೛

ଶ௦೛
మ (𝜔௑ − 𝜔ഥ௑)ଶ  of the cost function. Several methods have been applied to determine a priori parameters of snow 1160 

microstructure. A priori information can be are obtained from co-located field stations or historical ground measurement data 

(Rott et al., 2010; Cui et al., 2016; Zhu et al., 2018). In the study of Xiong & Shi (2017), snow physical models are applied to 
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derive a priori information. A priori information have also been derived from passive observations (Lemmetyinen et al., 2018; 

Zhu et al., accepted). In parametrizing microstructure, the snow grain size, correlation length (Proksch et al., 2015a) or 

scattering albedo (Cui et al., 2016; Zhu et al., 2018) are used. 1165 

 

In the implementation of Zhu et al. 2018 and Zhu etal 2021 algorithm,  the co-polarization of X-band (9.6 GHz) and Ku-band 

(17.2 GHz) are utilized in the cost function below.   

F = MIN ൜
௪೉

ଶ௦೉
మ ቀ𝜎௑,௏௏

௢௕௦ − 𝜎௑,௏௏
௢௕௦,௕௚

− 𝜎௑,௏௏
௠௢ௗ௘௟(𝜏௑, 𝜔௑)ቁ

ଶ

+
௪಼ೠ

ଶ௦಼ೠ
మ ቀ𝜎௄௨, ௏௏

௢௕௦ − 𝜎௄௨,௏௏
௢௕௦,௕௚

− 𝜎௄௨,௏௏
௠௢ௗ௘௟(𝜏௑ , 𝜔௑)ቁ

ଶ

+
௪೛

ଶ௦೛
మ (𝜔௑ − 𝜔ഥ௑)ଶൠ    (4)  

where the two unknown parameters to be retrieved are the scattering albedo at X-band (𝜔௑) and the optical thickness at X-1170 

band (𝜏௑ ). The input parameters are: 𝜎௑,௏௏
௢௕௦  and 𝜎௄௨,௏௏

௢௕௦  are radar observations at X and Ku band, 𝜎௑,௏௏
௢௕௦,௕௚  and 𝜎௄௨,௏௏

௢௕௦,௕௚  are 

background scattering, and 𝜔ഥ௑ is a priori scattering albedo and in the Zhu etal 2018 and Zhu etal 2021 algorithm,  𝜔ഥ௑ is based 

on a binary choice. In this minimization problem of the current implementation, there is no a priori estimate on SWE. The only 

a priori estimate is on the 𝜔ഥ௫ and the choice is binary, either 0.65 or 0.35.The binary choices are  𝜔ഥ௑ = 0.35. and , 𝜔ഥ௑ = 0.65. 

If better estimation of 𝜔ഥ௑ can be obtained by ground measurements, snow physical model (Xiong and Shi, 2017), or passive 1175 

observations (Zhu et al., 2021), the retrieval performance can be improved. In equation (4)  𝑤௑, 𝑤௄௨, 𝑤௣, and 𝑠௣ are user 

defined parameters. While  𝑠௑, 𝑠௄௨ = 0.5 𝑑𝐵 are instrument parameters.  

 

 

 1180 

 

 

Tthe cost function of equation (4) with least squares is applied to the SAR data at X- and Ku-bands in Figure 156. In this 

example, 𝑠௫ is set to 0.1, and the weight factors are set to be unity. We apply the  two channel observations to retrieve the two 

parameters, ωଡ଼  and τଡ଼ . Then , using retrieved ωଡ଼  and τଡ଼  from which the SWE is obtained by the relation SWE =1185 

a(1 − ωଡ଼)τଡ଼, where a = 9745 for SWE retrieval (Cui etal 2016, Zhu et al., 2018, Zhu etal 2021). 

 

 

Results of Retrieval  

 Figure 15Figure 15 (a) shows the performance of the retrieval algorithm. The retrieval results have RMSE of ~27 mm of 1190 

SWE, a correlation of 0.7, and a bias of 6.3 mm. The results show that the retrieval algorithm is particularly successful for 

SWE values below 150 mm. The performance It also satisfies requirements from the CoREH2O are the RMSE is less than 30 

mm for SWE below 300mm and the RMSE is less than 10% of SWE for SWE above 300 mm. In Figure 15(b), the retrieved 

scattering albedo 𝜔௑ are also shown are in good agreement with albedo derived from ground measurements (grain size or 

correlation length). It indicates the snowpack has two types: larger SWE and small albedo and small SWE and large albedo.  1195 
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In the equation of cost function, the weight 𝑤௫  is the measure attached to the a priori parameter. In the example of Figure 15, 

𝑤௫  is set to be 1. In Zhu et al. (2018), we have studied the retrieval performance variation by reducing 𝑤௫ . The performance is 

still acceptable down to 𝑤௫ = 0.14 with RMSE equal to 40 mm. Next, we study the performance with variations in surface 

scattering subtractions was also studied by adding noise to the best guess of surface scattering in Zhu et al. (2018). At the best 

guess with 0% noise, the RMSE of SWE is 27 mm. The RMSE of SWE retrieval increases with noise increase. However, even 1200 

with 50% additional noise (absolute error of 3 dB in surface scattering), the performance has is with RMSE of 45 mm.  

 

In Ffigure 167, we show 3 dimensional plots of   the sigma0 at X band and Ku Band against the two variables of retrieved 

scattering albedo and retrieved SWE.  The results show the strong correlation of sigma0  when plotted against two variables. 

On the other hand, Ffigure 178 shows the 2D plot of sigma0 against the single variable of retrieved swe. The correlation of 1205 

sigma0 is much weaker when plotted against one variable.  The results show the importance of plotting sigma0 versus two 

independent variables of swe and scattering albedo. 

 

Figure 16:  (a, left) 3 dimensional3-dimensional plot of the sigma0 when plotted against two variables at X band (b, right) 3 
dimensional3-dimensional plot of the sigma0 when plotted against two variables at Ku band. 1210 
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Figure 17:  (a, left) 2D plot of sigma0 against the single variable of retrieved SWE at X band (b, right) 2D plot of sigma0 against the 
single variable of retrieved SWE at Ku band. 

 1215 

 

The Zhu etal 2018 and Zhu etal 2021 have been applied to a total of 78 data sets of airborne and tower measurements as listed 

in Table 2 and Table 3.  The performance of the retrieval algorithms for the 78 datasets and summarized in  Table 45. The 

RMSE are generally good. 

 1220 

 

Dataset Data Type RMSE 

(mm) 

Bias 

(mm) 

SWE Range 

(mm) 

Location Data Points 

Canada 

SnowSAR 2013 

Airborne 

26.98 -6.28 50~250 
Trail Valley Creek, 

Canada 
103 

Finland 

SnowSAR 2011 
17.47 -6.12 

90~150 Sodankylä, Finland 
5 

Finland 

SnowSAR 2012 
24.23 -7.09 

50~160 Sodankylä, Finland 
28 

NoSREx 2009-

2010 
Tower 

26.30 14.50 
60~200 Sodankylä, Finland 

666 

NoSREx 2010-

2011 
17.05 −0.70 

40~140 Sodankylä, Finland 
721 

Formatted Table
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NoSREx 2012-

2013 
31.71 1.54 

50~200 Sodankylä, Finland 
686 

SnowEX UWScat 

2017 
52.30 -38.01 

440~600 Grand Mesa, USA 
4 

 

Table 45: summary of validations of the Zhu etal 2018 and Zhu etal 2021 algorithm against 8 datasets of airborne and 

tower measurements. Details of the 78 datasets are listed in Table 2 and 3.  

 1225 

 

4.4.4 Future work 

In the Zhu et al. (2018) algorithm illustrated above, a single layer is used. A multilayer snow model should also be considered. 

Studies have already been conducted using a two-layer model (King et al., 2018; King et al., 2019; Rutter et al., 2019) to 

account for small grain size in the upper layer and a larger grain size for the bottom layer (depth hoar).  Accuracy requirements 1230 

of a priori estimates to achieve desired retrieval skill have not yet been quantified.  Future work should include systematic 

usage of cross polarizations in the retrieval algorithms. The inclusion of cross polarizations is important for deep snow layers 

as the co-polarization K-band backscatter saturate for SWE larger than 300 mm. 

5 Improving SWE retrieval estimations via synergy with other datasets 

In satellite remote sensing, with the vast amount of satellite data, there can be data fusion of synergistic use of other data sets 1235 

to refine the retrieval algorithms and improve the SWE estimations. The combined active and passive microwave remote 

sensing using data of the same frequencies has been an active area of research. Recent work shows the use of C-band Sentinel-

1 data to retrieve SWE for deep snow layers. Interferometry and tomography are also studied for future launches of 

complementary missions. P-band GNSS-R has also been proposed for satellite retrieval of SWE. 

5.1 Passive microwave 1240 

GCOM (Global Change Observation Mission) was launched in 2012 and carries the AMSR2 (Advanced Microwave Scanning 

Radiometer 2) instrument, measuring microwave brightness temperatures at 6 frequencies. The channels at 18.7 GHz and 36.5 

GHz with both V and H polarizations have been used to retrieve global SWE. The spatial resolutions are coarse and are 

respectively at 22 km by 14 km for 18.7 GHz and 12 km by 7 km for 36.5 GHz. With overlapping footprints, interpolations 

algorithms have been applied (Long and Brodzik, 2016) to downscale resolution to 3 km. Uncertainty increases when 1245 

downscaling resolution increases. Because the passive emissivity is related to the radar bistatic scattering (Tsang et al., 1982), 

the brightness temperatures are related to the radar backscattering cross sections. Since SAR observations (< 500 m) have 
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much finer spatial resolutions than passive radiometry, a synergy is to use SAR at the X- and Ku-bands to downscale coarse 

resolution passive data or SWE products (Takala et al., 2011) to finer spatial resolutions using data assimilation or other 

algorithms. 1250 

Several other methods have been explored to combine the active and passive microwave observations to retrieve SWE. In 

Hallikainen et al. (2003), satellite microwave observations were used to demonstrate its feasibility to retrieve SWE by using 

passive-only, active-passive, and active-only algorithms in sub-arctic snow in Finland. Tedesco and Miller (2007) evaluated 

SWE retrieval performances by using active (Ku-band) and passive (X-band) microwave observations. Recently, Bateni et al. 

(2015) conducted SWE retrieval studies using passive (Ku- and Ka-bands) and active (L- and Ku-bands) ground-based 1255 

microwave observations. The SWE retrieval was obtained within a data assimilation framework by comparing simulated 

microwave observations against the corresponding observations at multiple frequencies. 

In the study of Lemmetyinen et al. (2018), the correlation length of snowpack is derived by matching both active and passive 

microwave observations against the simulations of the MEMLS3&a model (Proksch et al., 2015a) with ancillary data from 

snowpit measurements and weather stations. Next, the correlation length is used for the active radar algorithm to retrieve SWE. 1260 

The derived correlation length from both active and passive data demonstrates an improvement of the SWE retrieval 

performance over the SWE retrieval with the active-only algorithm. Cao and Barros (2020) used a multilayer snow hydrology 

model coupled to MEMLS3&a to investigate the signature of the variability of snow physics on the microwave behavior at 

seasonal scales.  They  ound that a combined approach using active microwave sensing in the accumulation season and passive 

sensing in the melting season would yield in the best sensitivity to capture the temporal evolution of seasonal SWE by taking 1265 

optimal advantage of microwave hysteresis (Ulaby et al., 1981, Kelly and Chang, 2003). The generalization of this approach 

to available active and passive microwave measurements with large resolution gap poses a significant challenge 

Recently, passive observations have been used to enhance the performance of the active algorithm (Zhu et al., accepted). The 

active-only algorithm was described earlier by using a cost function between simulated and observed radar observations as a 

function of the two parameters of scattering albedo and optical thickness. In this enhancement, passive observations at Ku- 1270 

and Ka-bands at the collocated and coincident snow scene are used to determine the range of the scattering albedo. The 

bicontinuous DMRT model is applied for both passive and active model simulations. X- and Ku-band radar data are then used 

with the determined scattering albedo to obtain SWE. This active and passive combined method is applied to the NoSREx 

dataset. Comparison statistics show that the combined active-passive method has improved performance over the active-only 

method. The retrieval does not require a prior information and ancillary data from ground measurements. 1275 

5.2 C-band SAR 

C-band radar can be used to detect wet snow by the strong decrease in backscatter (Stiles and Ulaby, 1980). Studies have 

shown contrasting results regarding the potential for SWE and snow depth retrieval but reviewing the literature on this topic 

is outside the scope of this manuscript. We here highlight that some recent studies have demonstrated the possibility of snow 
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depth estimation for deep snow using C-band radar, thus making C-band possibly synergistic with the higher frequency 1280 

approaches most applicable to shallower snow depths that are the focus of this manuscript.  

C-band radar is typically used to detect wet snow by the strong decrease in backscatter (Shi et al., 1995; Baghdadi et al., 1997; 

Koskinen et al., 2009; Bateni et al., 2013; Nagler et al., 2016; Marin et al., 2020). However, the use of C-band for SWE retrieval 

has not been investigated systematically until recently. The snow grain sizes of 1 mm are more than 50 times smaller than the 

C-band wavelength of 5.5 cm, so the volume scattering by snow grains was believed to be small at C-band. Based on Radarsat 1285 

and ERS observations, Shi et al. (2000) and Pivot et al. (2012) showed a significant increase in co-polarized 𝜎଴ (several dB) 

in areas where snow volume scattering was dominating over ground surface scattering. Arslan et al. (2006) revealed a stronger 

increase in cross-polarized than in co-polarized 𝜎଴  from airborne data. Radiative transfer modelling at C-band remains 

relatively unexplored. Kendra et al. (1998) applied RTE to simulate the co- and cross-polarized 𝜎଴ response to artificial snow. 

Veyssière et al. (2019) applied the MEMLS3&a model to simulate Sentinel-1 (S1) observations, showing limited impact of 1290 

SWE on co-polarization, a result confirmed by Cao and Barros (2020). 

 

Lievens et al. (2019, 2021) developed an empirical change detection algorithm that was used to estimate snow depth at 1-km 

spatial resolution from S1 observations over all northern hemisphere mountain ranges (Lievens et al., 2019) and, with algorithm 

improvements, at sub-kilometer resolution over the European Alps (Lievens et al., 2021). The algorithm relies on the ratio of 1295 

cross- to co-pol backscatter. Here, 300-m retrievals based on the S1 change detection approach are shown for Idaho, Montana 

and Wyoming, US. Figure 18Figure 16 (a) shows a density plot, comparing weekly S1 retrievals for the periods between 

August and March from 2017 to 2020 with in situ measurements from 203 available SNOTEL sites. Figure 18 (b) shows the 

MAE relative to the snow depth (in %), illustrating that for shallow snowpacks (< 1 m) the MAE is on average ~50% with 

large variance. From a 1-m depth onwards, the relative average MAE remains constant at ~30%. Figure 18Figure 16 (c) 1300 

compares time series of snow depth retrievals and measurements for six selected SNOTEL sites. The ESA Sentinel-1 mission 

is the first C-band radar constellation that measures consistently (not regularly tasked) with the exact same orbit revisited every 

6 days. Such consistent observation scenario benefits the change detection approach and could explain why limited success 

has been found with other C-band systems that must be tasked. The recent snow depth retrieval results from C-band SAR over 

mountainous regions with deep snow indicate a strong complementarity with applications at higher frequencies – for example, 1305 

Ku-band is much more sensitive to shallow snow, while C-band performs better in relative terms for deep snow.   

 Lievens et al. (2019) developed an empirical change detection algorithm to retrieve snow depth at 1-km spatial 

resolution from C-band S1 observations over all northern hemisphere mountain ranges. The retrievals are based on the 

reasoning that 1) an increase in snow depth causes an increase in snow volume scattering in both co- and cross-polarized 𝜎଴, 

2) the snow volume scattering contribution in cross-polarization is comparable to or larger than the ground surface scattering 1310 

contribution, 3) the ground surface scattering contribution remains relatively constant due to the insulating properties of snow, 

and 4) the ground scattering will decrease with increase of snow depth due to snow attenuation. It is hypothesized that use of 

a ratio between cross- and co-polarization 𝜎଴ observations can reduce the impacts of ground, vegetation, and surface geometry 
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properties, and also enhance the sensitivity to snow depth (Bernier et al., 1999). With algorithm improvements, retrievals were 

performed at sub-kilometre (100 m, 300 m, and 1 km) resolutions over the European Alps in Lievens et al. (submitted), and 1315 

below, 300-m retrievals are shown for Idaho, Montana and Wyoming, US. Figure 16 (a) shows a density plot, comparing 

weekly S1 retrievals for the periods between August and March from 2017 to 2020 with in situ measurements from 203 

available SNOTEL sites within the study region. The spatio-temporal Pearson correlation between retrievals and measurements 

is 0.81 and the mean absolute error (MAE) is 0.27 m. Figure 16 (b) shows the MAE relative to the snow depth (in %), 

illustrating that for shallow snowpacks (< 1 m) The MAE is on average ~ 50% with large variance.  From a 1-m depth onwards, 1320 

the relative average MAE remains constant at ~30%. Figure 16 (c) compares time series of snow depth retrievals and 

measurements for six selected SNOTEL sites. The ESA Sentinel-1 mission is the first C-band radar constellation that measures 

consistently (not regularly tasked) with the exact same orbit revisited every 6 days at different times of day. Such consistent 

observation scenario benefits the change detection approach and could explain why limited success has been found with the 

CSA Radarsat C-band system, which must be tasked. 1325 

The recent snow depth retrieval results from C-band SAR over mountainous regions with deep snow indicate a strong 

complementarity with applications at higher frequencies – for example, Ku-band is much more sensitive to shallow snow, 

while C-band performs better in relative terms for deep snow. 

 

Figure 18: Snow depth retrieval from Sentinel-1, 2017-2020 in Idaho, Montana, and Wyoming. (a) Density plot of weekly 300-m 1330 
resolution S1 snow depth retrievals, and coincident SNOTEL observations from 203 sites. (b) The corresponding mean and standard 
deviation of the absolute error between S1 retrievals and in situ measurements, stratified by the measured snow depth. (c) Time 
series comparison between snow depth from S1 and SNOTEL in situ measurements at six locations for three winter seasons. Note 
that the analysis includes snow-free conditions but excludes wet snow conditions as detected with the S1 algorithm (Lievens et al., 
submitted). 1335 
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Despite the observational evidence of C-band sensitivity to deep snow, the underlying physical scattering mechanisms, and 

the associated impacts of snow properties, are still not fully understood. Snow crystals can form larger-scale clusters that are 

more similar in size compared to the C-band wavelength. Snow crystals are highly anisotropic (irregular in shape), that, in 

principle, results in a stronger scattering in cross-polarization. Other contributions to snow scattering at C-band that can be 

investigated are larger-scale contrasts in snow density (incl. between snow layers) and the formation of ice layers with rough 1340 

boundaries in deep snowpack. Recent progress in snow radiative transfer modelling is addressing the anisotropic shape of 

snow crystals and the clustering of crystals (Zhu et al., accepted) using a bicontinuous model that introduces a two-parameter 

correlation function (Ding et al., 2010) and show that large clustering of grains can cause cross-polarization signals from 

volume scattering that are in the range observed by S1, and that the volume scattering signal at cross-polarization can dominate 

over surface scattering for large snow depths. More work is needed to improve our understanding of the physical mechanisms 1345 

that cause C-band sensitivity to snow mass.Despite the observational evidence of C-band sensitivity to deep snow, the exact 

underlying physical mechanisms are still not fully understood. Snow crystals can form larger-scale clusters that are more 

similar in size compared to the C-band wavelength. Snow crystals are highly anisotropic (irregular in shape), that, in principle, 

results in a stronger scattering in cross-polarization. Other contributions to snow scattering at C-band that can be investigated 

are larger-scale contrasts in snow density (incl. between snow layers) and the formation of ice layers with rough boundaries in 1350 

deep snowpack. Recent progress in snow radiative transfer modelling is addressing the anisotropic shape of snow crystals and 

the clustering of crystals (Zhu et al., accepted) using a bicontinuous model that introduces a two-parameter correlation function 

(Ding et al., 2010). Initial results indicate that a situation with large clustering of grains can cause cross-polarization signals 

from volume scattering that are in the range observed by S1, and that the volume scattering signal at cross-polarization can 

dominate over surface scattering for large snow depths. This occurs for a clustering parameter 𝑏 = 0.4. However, previous 1355 

airborne (Yueh et al., 2009; Zhu et al., 2018) and tower-based measurements (TomoSAR, NoSREx) at the X- and Ku-bands 

are better explained by a clustering parameter of 𝑏 = 1.0 to 2.0 (Chang et al., 2014; Tan et al., 2015; Xiong and Shi, 2019). It 

is likely that the clustering parameter changes with snow conditions, and in particular compaction mechanisms. More work is 

needed to improve our understanding of the physical mechanisms that cause C-band sensitivity to snow mass. 

Manickam and Barros (2020) showed that Sentinel-1 backscatter exhibit different scaling behavior depending on land-cover 1360 

and landform and specifically topography that is dynamic at sub-seasonal scale reflecting changes in weather.  Specifically 

they identified an ubiquitous scaling break at scales of 180-360 m that separates the small-scale range with invariant single 

scaling from scaling highly sensitive to snow wetness at larger scales.    They found similar results for L-band UAVSAR data.   

This scaling behavior should be very useful to integrate multifrequency measurements at different resolutions both for 

upscaling and downscaling applications (e.g. Bindlsih and Barros, 2002; Kim  and Barros, 2002)  1365 

5.3 Phase-based approaches 

Approaches to estimating snow characteristics using microwave remote sensing almost invariably make use of some 

combination of the radar cross section 𝜎଴, sensitivity to polarization, and frequency dependence; the techniques previously 
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mentioned are all based on microwave scattering, which focus on the amplitude response. Approaches that use the signal phase, 

related to the electrical path length and time-of-flight information, while more challenging, can provide additional information 1370 

about the snowpack, which is synergistic with the Ku-band backscatter approach that is the focus of this paper. These 

approaches provide independent information about snow properties through travel-time through layers, and information about 

where within the snowpack the major sources of amplitude (e.g. layer boundaries) are originating. The additional information 

could be used to improve the accuracy of the backscattering retrievals. Three techniques are described: 1) ultra-wideband radar, 

2) tomography, and 3) interferometry. 1375 

5.3.1 Ultra-wideband radar 

The range resolution of a radar system is inversely proportional to the bandwidth. Ultra-wideband radar can be used to resolve 

reflections from different depths within the snowpack. This not only provides insight into which locations within the snowpack 

are contributing most to the backscatter but also estimates the depth-dependent refractive index of snow, which can be used to 

independently estimate snow depth, SWE, and stratigraphy. However, the ultra-wideband radar technology does not have a 1380 

straightforward path to space, due to bandwidth and frequency allocation limitations. Ultra-wideband approaches have been 

demonstrated for decades from the ground, using broadband radar at nadir incidence angles to estimate depth and SWE (for a 

review, see Marshall and Koh, 2008), using L-band GPR systems (Lundberg et al., 2000; McGrath et al., 2019) and at higher 

microwave frequencies (Gubler and Hiller, 1984); multi-channel L-band radar has recently been used to map density profiles 

in polar firn (Meehan et al., 2021). Nadir ultra-wideband FM-CW radar (2-18 GHz) has been flown from an aircraft platform 1385 

with success in the polar regions as part of NASA Operation IceBridge, mapping snow depth on sea ice and stratigraphy in 

firn on the ice sheets (Panzer et al., 2013; Arnold et al., 2019). More recently, airborne FM-CW experiments have been done 

over seasonal snow in the mountains (Yan et al., 2017), with additional efforts being carried out at the University of Alabama 

in developing airborne tomography mountain applications (Taylor et al., 2020). 

5.3.2 Tomography 1390 

Recently, Synthetic Aperture Radar (SAR) Tomography (TomoSAR) has been used in monitoring the snowpack from X-band 

to Ku-band (Laurent et al. 2015, Wiesmann et al. 2019, Rekioua et al. 2017, and Xu et al. 2018 & 2020). This technique 

provides unique access to the structure of the imaged scene, and in the case of snowpack, it enables the separation of multiple 

snow layers as well as the detection of and compensation for soil and vegetation layers. Polarimetric capabilities can be used 

to decompose the backscattered signal into volumetric and surface scattering components, and to distinguish between snow, 1395 

soil, and vegetation. Some ground-based field experiments have been carried out that demonstrate the focused image recovery 

of the layering structure of the snowpack with different densities, for example in a recent experiment (Xu et al., 2018) at Fraser 

Experimental Forest, Colorado, at X and Ku-bands (9.6, 13.5, 17.2 GHz).  In Figure 19Figure 17, we show the results of 

tomography carried at three frequencies for hh polarization. The tomograms demonstrate the layer structure and frequency 

dependence. The ability to identify snow layers and density changes are expected to significantly improve SWE retrieval.  1400 
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Figure 19:TomoSAR coherence images for hh polarization at 9.6 GHz , 13.5 GHz and 17.2 GHz at Fraser, Co sites. 

Recently, the Synthetic Aperture Radar (SAR) Tomography (TomoSAR) has been used in monitoring the snowpack at 1405 

frequencies from X- to Ku-band (Wiesmann et al., 2019; Rekioua et al., 2017; Xu et al., 2018). This technique provides unique 

access to the structure of the imaged scene, and in the case of the snowpack, enables the separation of multiple snow layers as 

well as the detection of and compensation for soil and vegetation layers. The addition of polarimetric capabilities brings in the 

ability to detect spatially varying shapes, sizes, and permittivities, to decompose the backscattered signal into volumetric and 

surface scattering components, and to distinguish between snow, soil, and vegetation. Some ground-based field experiments 1410 

have been carried out that demonstrate the focused image recovery of the layering structure of the snowpack with different 

densities. In Figure 17, the results of tomography carried out at three frequencies in the X- (9.6 GHz) and Ku-bands (13.5 GHz 

and 17.2 GHz) and for co- and cross-polarization are shown where a layered structure is detected. As the frequencies increase 

from the X- to Ku-bands, the volume scattering from the snow becomes more prominent. The coherency distribution also 

corresponds to the vertical profile of the snow density and snow grain size. The ability to identify snow layers and density 1415 

changes are expected to significantly improve SWE retrieval. 

The tomographic results shown in Figure 17 were achieved using an FM-CW radar measuring the complex scattering 

coefficient at multiple incidence angles, and frequencies. By using the frequency and angular-correlation functions (Zhang and 

Tsang 1998; Tsang and Kong, 2001) of the complex amplitudes, time domain back projection is used to obtain the tomograms. 

To gain insight of the scattering within a complex snowpack such as shown in Figure 17, 3D full waveform simulations are 1420 

necessary for analysis. Because of the complexity of such analyses and the need for additional data, the work in modelling and 

producing tomographic results is ongoing. 
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Figure 17: TomoSAR images with co- and cross-polarization for (a) 9.6 GHz, (b) 13.5 GHz, and (c) 17.2 GHz. 

5.3.3 Interferometry 1425 

Interferometry can be used to measure differential path length and changes in the electromagnetic path length in signals 

interacting with the seasonal snowpack.  This technique has been proposed in several studies, both at high frequency with 

single-pass InSAR for mapping the snow surface, to measure snow depth (Moller et. al, 2017), and at low frequency with 

repeat-pass InSAR to measure changes in snow depth or SWE (Guneriussen et al., 2001; Deeb et al., 2011; Lei et al., 2016).  

Interferometry can be performed either between two observations separated in space (Figure 20 (A)), or by repeat observations 1430 

after changes in snow occur (Figure 20 (B)).  Although phase measurements are not absolute measurements (modulo 2𝜋), 

there are a number of methods, including phase unwrapping, the use of a surface DEM, and modelled and measured SWE 

change, that can be used to resolve the ambiguity.   

For the first approach (standard cross-track interferometry), using a high microwave frequency or in wet snow where the 

penetration depth would be limited, we can assume the majority of the signal comes from the snow surface, and the snow 1435 

surface topography can be mapped.  When this is differenced from a snow surface at a different time, a snow depth change 

can be estimated spatially. This implementation of interferometry is achieved through the introduction in the system of a 

second antenna separated from the transmitting antenna by the baseline B.  Such an antenna can be passive, receiving the 

signal of a common transmitter antenna, and the phase difference between the two antennas is measured. The scattering phase 

center and the interferometric correlation magnitude can be measured, which are both sensitive to the frequency and 1440 

polarization combinations as well as the snowpack physical characteristics (e.g. Rott et al., 2021). 
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In the second approach, a low microwave frequency in dry snow can be used, where we can assume the majority of the signal 

comes from the snow-ground interface (Figure 20 (B)).  In this case, changes in the time of flight, or electromagnetic path 

length, to the snow-ground interface are caused by changes in snow depth and SWE.  A time series of InSAR observations at 

L-band can thus potentially be used to estimate changes in snow depth and SWE.  This technique was tested during the NASA 1445 

SnowEx 2020 and 2021 experiments (Marshall et al., 2021). In addition, a similar approach with P-band has been demonstrated 

from tower-based platforms, using existing transmitted signals (Shah et al., 2017).  This bistatic approach shows great promise 

for a much lower cost satellite system, as only a receiver is required. 

 

  1450 

Figure 20: (A, left) Illustration of single-pass InSAR for mapping the snow surface.  Using measured phase, 𝜟𝝓, simple trigonometric 
calculations are used to estimate the relative height, h, of the scattering phase center compared to the reference height, H.  (B, right) 
When the phase center is below the snow surface, refraction in snow must also be taken into account.  At low microwave frequencies 
(e.g. L-band) in dry snow, the phase center is often the snow-ground interface, and due to the slower electromagnetic velocity in 
snow, phase changes are related to changes in snow depth and density. 1455 

InSAR has been used for characterizing the volume scattering components of forests (e.g. Kugler et al., 2015), where a vertical 

profile of the volume density can be estimated (Reigber and Moreira, 2000; Tebaldini and Rocca, 2011). While most of this 

development has been done at low-frequencies for vegetation, a scaling of the volume characteristics of snow with frequency 

has been equally promising (Lei et al., 2016), especially at Ku- and Ka-band.  

In Section 6, the planned TSMM mission will be described. With the interferometry set up as described in Figure 18, we can 1460 

explore possible configurations, such as the baseline B, of launching a companion satellite with receive-only, receiving the 

complex scattered electric field signal from the snow medium.  Such a companion would be able to complement the planned 

baseline TSMM observations with additional measures of reflectivity, interferometric phase, and correlation magnitude that 

could all be used to better characterize the snow volume. 

Interferometry can be used to measure differential path length and changes in the electromagnetic path length in signals 1465 

interacting with a snow pack. Depending on the wavelength, polarization, and scattering characteristics of the air/snow, snow 

volume and snow/soil interfaces, the interferometric response will vary (Deeb et al., 2011; Lei et al., 2016). Hence, from a 
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remote sensing point of view, observations of these complementary microwave measures of the snowpack can be the source 

of new algorithms that make use of this enhanced data set. As a result, estimates of depth, density, and SWE are all being 

actively explored. Interferometry can be performed either between two observations separated in space (Figure 18 (a)), or by 1470 

repeat observations after changes in snow occur (Figure 18 (b)). Although phase measurements are always made modulo 2𝜋, 

there are a few methods, including phase unwrapping and the use of a surface DEM, that can be used to resolve the ambiguity. 

For standard cross-track interferometry, using a high microwave frequency or operating in wet snow where the penetration 

depth would be limited, we can assume that most of the signal comes from the snow surface, and the snow surface topography 

can be mapped. When this is differenced from a snow surface at a different time, a snow depth change can be estimated 1475 

spatially. If snow depth can be estimated using a different modality (e.g. with lidar), the penetration depth would yield 

additional information about the snow layer. 

The implementation of interferometry is achieved through the introduction in the system of a second antenna separated from 

the transmitting antenna by the baseline B. Such an antenna can be passive, receiving the signal of a common transmitter 

antenna, and the phase difference between the two antennas is measured. The advantage of such a system is that a suite of 1480 

additional measurements to the radar cross-section, polarization characteristics, and frequency dependence can be made that 

are relevant to the snowpack characteristics. These additional measures are the height of the scattering phase centre and the 

interferometric correlation magnitude, which are both sensitive to the frequency and polarization combinations as well as the 

snowpack physical characteristics. 

 1485 

Figure 18: (a) Illustration of an interferometric viewing geometry for a vertical baseline of length, B. Using a measured path length 
difference measured by the interferometric phase, 𝜟𝝓, simple trigonometric calculations are used to estimate a precise value of the 
look angle, 𝜽, and consequently the relative height, h, of the scattering phase center compared to the reference height, H. Calculations 
of differential phase such as those shown above are modulo 2𝜋, and hence some care should be taken to correctly estimate the 
absolute phase difference. (b) When the phase centre is below the snow surface, refraction in snow must also be considered. At low 1490 
microwave frequencies (e.g. L-band) in dry snow, the phase centre is often the snow-ground interface, and due to the slower 
electromagnetic velocity in snow, phase changes are related to changes in snow depth and density. 

To understand the source of the additional measures shown in  Figure 18 (a), the observed electric field by each of the antennas 

of the interferometric pair, written as E1 and E2, can be formed to estimate the complex interferometric correlation, 𝛾, as: 



57 
 

𝛾 = |𝛾|𝑒௝୼థ =
〈ாభாమ

∗〉

ඥ〈|ாభ|మ〉〈|ாమ|మ〉
  (5) 1495 

where the bracket symbols < >, indicate a spatial average and the superscript * indicates a complex conjugate. The phase 

indicated in the equation is related to the height of the scattering phase centres, averaged over looks, whereas the magnitude 

indicates the consistency of those phase centres. It can be shown that the relationship between the complex interferometric 

correlations shown above is related to the Fourier transform of the extinction weighted radar cross section of the surfaces and 

volume components of the snow layer (Treuhaft et al., 1996; Treuhaft and Siqueira, 2000). 1500 

In the second approach, a low microwave frequency in dry snow can be used, where we can assume most of the signal comes 

from the snow-ground interface (Figure 18 (b)). In this case, changes in the time of flight, or electromagnetic path length, to 

the snow-ground interface are caused by changes in snow depth and SWE. A time series of InSAR observations at L-band can 

thus potentially be used to estimate changes in snow depth and SWE. This technique was tested during the NASA SnowEx 

2020 and 2021 experiments (Marshall et al., 2021). In addition, a similar approach with P-band has been demonstrated from 1505 

tower-based platforms, using existing transmitted signals (Shah et al., 2017). This bistatic approach shows great promise for a 

much lower cost satellite system, as only a receiver is required. 

At the lower frequencies of P-, L-, and C-band, interferometric observations such as these have been used for characterizing 

the volume scattering components of forests (Kugler et al., 2015). Like the topography approach discussed above, when 

multiple baselines are used, a vertical profile of the volume density can be estimated (Reigber and Moreira, 2000; Tebaldini 1510 

and Rocca, 2011), thus providing an even fuller picture of volume stratigraphy. While most of this development has been done 

at low-frequencies for vegetation, a scaling of the volume characteristics of snow with frequency has been equally promising 

(Lei et al., 2016), especially at the Ku- and Ka-bands, where the wavelengths at these frequencies are on a similar order of 

magnitude as the snow volume scattering components. With the interferometry set up as described in Figure 18 (a), we can 

explore possible configurations, such as launching a companion satellite only to receive the complex scattered electric field 1515 

signal from the snow medium. Such a companion would be able to complement baseline observations with additional measures 

of reflectivity, interferometric phase, and correlation magnitude that could all be used to better characterize the snow volume. 

6 Planning a Satellite Mission 

The earliest synthetic aperture radar (SAR) satellite missions were focused on C-band (Envisat, Radarsat-1). Missions 

developed during recent decades extended the frequency range to L- (e.g. PALSAR) and X-band (e.g. TERRASAR-X), with 1520 

planned missions at the P- (ESA-Biomass), and L- and S-bands (NASA-ISRO SAR mission). Spaceborne scatterometer 

missions such as QuikScat have illustrated the wide-ranging contributions of measurements at Ku-band to applications 

spanning the cryosphere (Kwok, 2007; Swan and Long, 2012), biosphere (Frolking et al., 2006), and ocean (Bourassa et al., 

2010)., and Ku-band cloud radar measurements have made significant contributions to precipitation-related fields through 
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missions like CloudSat (Stephens et al., 2002) and GPM (Skofronick-Jackson et al., 2017). To date, however, there have been 1525 

no SAR missions at Ku-band. 

The potential for Ku-band radar to retrieve snow water equivalent (SWE) was explored as part of the NASA Snow and Cold 

Land Processes Mission and supporting Cold Land Processes Experiment (Yueh et al., 2009; Cline et al., 2009). The ESA 

COld REgions Hydrology High-resolution Observatory (CoReH2O; X- and Ku-bands; Rott et al., 2010; ESA et al., 2012) 

completed Phase A in 2013, but was not selected for implementation (Rott et al., 2010). CLPX and CoReH2O science and 1530 

mission development activities played a major role in motivating the significant progress achieved over the past decade in 

measuring, understanding, and modelling the Ku-band radar response to SWE, snow microstructure, and snow wet/dry state 

(as assessed in previous sections of this review). Given this collective progress, satellite mission concept reviews subsequent 

followingto the completion of CoReH2O Phase A (e.g. the ESA ‘SnowConcepts’ project completed in 2018; a Payload 

Analysis and Trade-off Study for snow mass funded by the Canadian Space Agency completed in 2017) further emphasized 1535 

the potential for Ku-band SAR measurements to address a broad set of user requirements related to seasonal snow mass. 

Supported by these studies and continued analysis of experimental ground-based and airborne campaigns (See Section 4; King 

et al., 2018; Lemmetyinen et al., 2018; Zhu et al., 2018), a Ku-band SAR mission was selected as the most feasible approach 

to meet the operational requirements (wide swath/rapid revisit/short latency) of Environment and Climate Change Canada 

(ECCC) for spaceborne measurements sensitive to SWE. Since 2018, ECCC and the Canadian Space Agency (CSA) have 1540 

partnered to advance the scientific and technical readiness of the “Terrestrial Snow Mass Mission” (TSMM), a Ku-band radar 

satellite with the primary science objectives focused on the provision of climate services related to seasonal snow, and 

improved operational environmental prediction including streamflow. The TSMM development effort is underpinned by 

engagement with Canadian industry, academia, and international partners. 

Table 4: Summary of CoReH2O and TSMM missions. 1545 

 CoReH2O TSMM 

Frequencies 
X band 9.6 GHz 

Ku band 17.2GHz 
Ku band 13.5GHz 

Ku band 17.25GHz 

Polarizations VV, VH VV, VH 

Level 1 SAR image 
resolution 

50m 
Low resolution: 250m 

High resolution: 50m 

Spatial Resolution of 
product 

100m-500m 500m 

Temporal 3 days repeat for Phase 1 5 days, Canada and other snow-covered area 
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Accuracy 
Requirements in SWE 

3 cm RMSE, SWE <30 cm 

10% for SWE > 30 cm 
3 cm RMSE (non-alpine) 

25% (alpine) 

NES0 

X band 
VV <-23dB & VH <-28dB 

Ku band 
VV<-29dB & VH<-25dB 

13.5 GHz 
VV&VH < -26 dB 

17.2 GHz 
VV&VH < -25 dB 

Accuracy in 𝝈𝟎 
Stability <0.5 dB 

Abs. accuracy <1 dB 

Stability <0.5 dB 

Abs. accuracy <1 dB (13.5 GHz) and <0.5 

dB (17.2GHz) 

Incident angle 30 − 45° 23 − 50° 

 

Because TSMM is the first spaceborne Ku-band SAR mission of its type, it falls into the ‘Explorer’ mission category at the 

CSA. Explorer scale missions must meet a specific cost cap. Aan ‘Explorer’ mission concept was developed by industrial 

partners in Canada during to advance technological innovation and prove the scientific viability with reduced overall riskusing 

a ‘design-to-cost’ approach. The resultingis ‘TSMM-Explorer’ concept meets ECCC science requirements through dual 1550 

frequency (13.5 and 17.25 GHz) Ku-band radar measurements at 500-m spatial resolution, with a 50-m spatial resolution mode 

across a 30 km swath available for specific regions (e.g. mountains areas) and targeted events (e.g. periods of high flood risk). 

An imaging swath of 250 km combined with a duty cycle of approximately 25% meets the requirement to image all of Canada 

and other global snow-covered areas every 7 days. 

In the CoReH2O proposal, the dual frequencies were in the X-band at 9.6 GHz and the Ku-band at 17.2 GHz. Based on the 1555 

ground-based measurements and the airborne measurements, the Ku-band at 17.2 GHz has a dynamic range from -16 dB to -

6 dB and shows good correlation with SWE. The X-band at 9.6 GHz has co-polarization dynamic range from -20 dB to -14 

dB. The theoretical predictions of rough surface scattering at X-band, depending on penetration through the snow layer are 

from -20 dB to -12 dB. In TSMM, the X-band (9.6 GHz) is not chosen and is replaced by a low Ku-band at 13.5 GHz. 

Table 4 shows thea comparison between the proposed CoREH2O and the current TSMM currently plannedconcept. The 1560 

TSMM is at a planning stage and the final specifications have not been completed.In TSMM, the dual-frequency Ku-band are 

at 13.5 and 17.25 GHz. This modification from CoReH2O (9.6 GHz) to TSMM (13.5 GHz) is to have less sensitivity to the 

underlying rough surface scattering effect. The TSMM dual frequencies were are selected to fully exploit the frequency 

dependence of snow volume scattering through the, the differential sensitivities at 13.5 and 17.25 GHz, to both SWE and snow 

microstructure. The dual frequencies will help address the ill-posed nature of retrieving SWE from a single Ku-band radar 1565 

measurement (see Section 4c). The change in the lower frequency of CoReH2O (9.6 GHz) to TSMM (13.5 GHz) will result 

in less sensitivity to the underlying rough surface scattering effect, but A potential trade-off is that sensitivity to deep snow 

may will be reduced without the X-band measurement. Further study is needed in fine-grained mountain snowpacks to better 

understand the limits of sensitivity to deep snow at Ku-band. It is also possible to explore the use of cross-polarization at Ku-
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band for larger snow depth beyond 1 meter. Table 5 shows the comparison between the proposed CoREH2O and the TSMM 1570 

currently planned. The TSMM is at a planning stage and the final specifications have not been completed. 

Alongside the improved understanding of the underlying physics of Ku-band’s sensitivity to snow mass, work flows for 

mission data have been designed for implementation at ECCC. The approach is to optimally integrate spaceborne radar 

measurements with state-of-the-art modelling systems is currently under development at ECCC. For applications which require 

a SWE retrieval, the radar backscatter measurements will be combined with snow property initial conditions (including snow 1575 

microstructure; see Section 4) produced by an advanced version of the ECCC operational land surface model forced with short-

range meteorological forecasts and precipitation analyses. Importantly, in areas without radar coverage (e.g. due to swath gaps) 

or where the radar-derived SWE retrieval is highly uncertain (e.g. due to wet snow or dense forest cover), the SWE analyses 

will be determined by numerical outputs from the land surface model. In this way, the remote sensing information is combined 

with modelling to create seamless coverage both in space and time, with minimized uncertainty. The Another goal is to 1580 

assimilate the Ku-band radar measurements will also be includeddirectly in ECCC prediction systems even without the use of 

a SWE retrieval product. For land surface data assimilation needs, the Ku-band backscatter can will be directly assimilated, 

again with the land surface model providing the required ancillary information. This approach is analogous to how L-band 

radiometer measurements from the SMOS and SMAP missions have improved soil moisture analysis at ECCC through 

radiance-based assimilation (Carrera et al., 2019). Work remains to fully implement a forward radar model coupled with the 1585 

physical snow model, building on recent developments in this field (Bateni et al., 2015; Merkouriadi et al., 2021). The resulting 

enhanced snow analyses will then be used to initialize environmental prediction systems at ECCC, including NWP and 

streamflow. 

While the dual-frequency Ku-band TSMM-Explorer concept meets the requirements at ECCC for enhanced snow remote 

sensing, this approach alone cannot solve all snow-related observational needs. For instance, volume scattering will be 1590 

negligible under wet snow conditions, hence the need to implement the approach outlined above to combine satellite and 

model-derived information during snow melt. There are, however, opportunities to further exploit the baseline TSMM-

Explorer concept through the development of companion satellites. This could take the form of a similar mission concept to 

improve coverage and revisit (e.g. a small SAR constellation). Development of a companion receive-only satellite is more 

challenging but would deliver a greater reward through the potential for InSAR-based snow depth retrievals under wet snow 1595 

conditions (as previously explored with airborne Ka-band measurements by Moller et al. (2017)). This InSAR approach, as 

described in Section 5.3, necessitates pushing the performance envelope of the TSMM-Explorer SAR (bandwidth, increased 

high resolution mode imaging) and spacecraft (maintenance of a very tight baseline, hence very precise orbit control) which 

introduces cost and complexity to the current scope of the mission. Still, the potential benefits of an InSAR capability are 

notable, so further study of these options is encouraged. 1600 

With the industrial Phase 0 now complete, the TSMM-Explorer mission has advanced into a mission pre-formulationplanning 

phase at CSA. Technical readiness is being advanced through industrial investment focused on the radar antenna technologies. 

Scientific readiness for the mission continues to be enhanced by community-wide progress in field techniques (e.g. quantitative 

Field Code Changed
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snow microstructure measurements; Section 3.3)), physical snow modelling (Section 4.2), data assimilation, and multi-

frequency radar analysis (Section 4.4). The analysis of tower and airborne Ku-band radar datasets in collaboration with 1605 

international partners is ongoing. Future airborne data acquisition plans are under development, including through the NASA 

SnowEx program. Collectively, these efforts serve to advance the TSMM-Explorer mission specifically, and snow-radar 

science in general. 

7 Summary and Perspectives 

Freshwater delivered by seasonal snow melt is a commodity of the utmost importance for human health and well-being, 1610 

supports nearly all sectors of the economy, sustains ecosystems, and poses risks by contributing to floods and sustaining 

drought events. At present, information on water stored as seasonal snow is highly uncertain. Because of surface monitoring 

limitations, satellite measurements are critical, but current missions are inappropriate for determining snow mass with the 

spatial, temporal, and accuracy characteristics required to deliver climate services, effective water resource management, and 

skilful environmental prediction such as streamflow. Terrestrial snow is a critical geophysical variable for climate, hydrology 1615 

and ecology science and applications. The reduction of snow in the Northern Hemisphere has been pronounced and is 

particularly evident in northern high latitudes. Passive microwave remote sensing has been used in global monitoring of SWE 

for decades, with spatial resolutions of 25 km. For applications in climate, hydrological, and ecological processes, there need 

to be finer resolutions of 500 m and temporal revisits of several days to monitor SWE. 

Over the last decade, X- and Ku-band radar remote sensing technologies have proven to be effective for measuringshown clear 1620 

potential for monitoring SWE. The technology readiness level has significantly advanced for satellite launch. The sScattering 

physical models have providednow provide understanding of the contributions of volume and surface scattering, and the 

complicating effects of forests. Vegetation ground measurements and sSnow physical models have significantly advanced, and 

are capable of providing the required snow microstructure information required for forward and inverse modeling  to be used 

to couple to the RTM and data analysis. The tTower measurements and the airborne campaigns radar measurements, supported 1625 

by dramatic improvements in field-based quantitative characterization of snow microstructure haven proven provided a small 

but rapidly growing range of datasets to support modeling and retrieval studies. to be effective in providing calibration and 

validations of RTM, snow physical models, and retrieval algorithms. 

Retrieval algorithms have been significantly improved, leading to much reduced RMSE. In the next fewcoming years, there 

are plans foris a clear need for more tower measurements and airborne campaigns toexperimental measurement campaigns to 1630 

fill information gaps such as effects of(such as the influence of vegetation, and  forests covers, deep snow, various substrates 

beneath the snow, etcsensitivity to deep snow) and evaluate new SWE retrieval frameworks.. There will be more studies on 

coupling snow physical models to RTM radiative transfer models so that they can be more effectively combined in retrieval 

algorithms for the seven classes of snow and with computational efficiency for real time retrievals. 
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We anticipate future launches ofthe continued development of satellite missions with Ku-band radars, which could . The Ku-1635 

band radar satellites will be followed by more satellites of synergistic instruments of supporting techniqus such as Ku-band 

interferometry and tomography. 

Table of Abbreviations 

 AIEM Advanced Integral Equation Model 

 Can-CSI Canadian CoReH2O Snow and Ice Experiment 1640 

 CASIX Canadian Snow and Ice Experiment 

 CF Coniferous Forests 

 CMIP6 Coupled Model Intercomparison Project 

 CoReH2O Cold Regions Hydrology Observatory 

 DMRT Dense Medium Radiative Transfer 1645 

 DMRT-ML Dense Medium Radiative Transfer – Multiple Layers 

 EM Electromagnetic  

 ESA European Space Agency 

 FMCW Frequency Modulated Continuous Wave 

 GNSS-R Global Navigation Satellite System Reflectometry 1650 

 HUT Helsinki University of Technology 

 InSAR Interferometric SAR 

 Lidar Light detection and ranging 

 LUT Look-Up Table 

 LWC Liquid Water Content 1655 

 MEMLS Microwave Emission Model of Layered Snowpacks 

 MIMICS Michigan Microwave Canopy Scattering 

 NMM3D Numerical solutions of Maxwell’s Equations in 3-D 

 NoSREx Nordic Snow Radar Experiment 

 NWP Numerical Weather Prediction 1660 

 POLSCAT Polarimetric Scatterometer 

 QCA Quasi-Crystalline Approximation 

 SAR Synthetic Aperture Radar 

 SMAP Soil Moisture Active and Passive 

 SMOS Soil Moisture and Ocean Salinity 1665 

 SMP Snow Micropenetrometer 
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 SMRT Snow Microwave Radiative Transfer  

 SSA Specific Surface Area 

 SWE Snow Water Equivalent 

 SWESARR Snow Water Equivalent SAR and Radiometer 1670 

 RTE Radiative Transfer Equation 

 RTM Radiative Transfer Model 

 UAVSAR Unoccupied Aerial Vehicle Synthetic Aperture Radar 

 µ-CT Micro computed tomography 
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Appendix A: Example protocol for measuring spatial variability of snow properties to support radar remote sensing 

Geolocated measurements are vital to quantify variability of snowpack properties within sensor footprints (airborne or tower). 2270 

Figure A1 (a) suggests an optimal configuration of snow depth and Snow MicroPenetrometer (SMP) measurements to create 

representative distributions of snowpack properties within airborne swaths. The main 222 m transect of snow depth and SMP 

profiles, located along an airborne swath centreline, has variable spacing (10-1, 100, and 101m) on either side of a central pit to 

capture different horizontal length scales of variability. A shorter 22 m orthogonal transect with 10-1 and 100 m spacing bisects 

the main transect at the central pit, and a spiral of snow depths extends from the central pit out to an 11 m radius (Figure A1 2275 
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(a)). Measurements additional to the main transect allow omnidirectional analysis of snow depth variability and bi-directional 

analysis of snow microstructural properties, both of which may be influenced by dominant prevailing wind direction or 

irregular patterns of subnivean vegetation. Ideally, snow depths and positions are measured using automatic depth probes with 

integrated GPS providing position accuracy to ±2.5 m, e.g. Magnaprobes (Sturm and Holmgren, 2018). Where forest canopies 

obscure GPS satellite connection or snowpacks are deeper than 180 cm (current maximum magaprobe length), hand probes 2280 

are used in measured grids arranged relative to a known absolute position. Accuracy of snow depths range from nearly 0 cm 

on hard ground to ~5 cm in soft subnivean vegetation. Where snowpit locations are not predetermined, measured snow depth 

distributions can be subsequently used to determine the location of snowpit(s) to match mean depth or multiple pits spanning 

interquartile ranges. 

 2285 

Figure A1: Optimal measurement configurations for evaluation of snow properties in sensor footprints. 

One-dimensional (vertical) measurement of snowpack properties for SAR retrievals require objective measurements of snow 

microstructure. SMP allows rapid (< 1 minute) force profile detection at millimetre resolution (Proksch et al., 2015b), which 
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is used to derive density, correlation length and Specific Surface Area (SSA); quantities directly or indirectly used by radiative 

transfer models (Chang et al., 2016; Picard et al., 2018). The speed of data acquisition allows for SMP measurements to be 2290 

used in a distributed manner along transects, but SMP also supports other coincident snowpit measurements using different 

techniques. Figure A1 (b) shows a schematic of optimal snowpit measurements. Double-sampled volumetric density 

measurements, 100 cm3 box-cutter with 3 cm vertical resolution for shallow snowpacks or 1000 cm3 wedge-cutter with 10 cm 

vertical resolution for deep snowpacks (Proksch et al., 2016), are averaged at each vertical position. Following principles 

presented in Gallet et al. (2009), 3 cm vertical resolution double-sampled SSA measurements are made using an InfraRed 2295 

Integrating Sphere (IRIS) (Montpetit et al., 2012) or an A2 Photonic Sensors IceCube (Zuanon, 2013). Micro-CT analysis of 

snow casts (Schneebeli and Sokratov, 2004; Lundy et al., 2002), consisting of entire profiles or samples of critical layers, are 

used as a benchmark for corroboration of all other measurements. However, in-practice, in-situ snow casting and subsequent 

cold-laboratory micro-CT analysis requires a much higher level of expertise and processing time than SMP or IRIS/IceCube 

measurements, meaning field application of micro-CT is often limited. 2300 

Profiles of snow temperature using well-calibrated stem thermometers at 10 cm vertical resolution are important parameters 

for radiative transfer models, in conjunction with stratigraphic identification of snow layer boundaries and ice lenses using 

hand hardness. Visual identification of grain type (Fierz et al., 2009) using a hand lens or macroscope is an important 

complimentary measurement for layer classification and understanding the seasonal history of snowpack processes. However, 

using similar visual methods to quantify snow ‘grain size’ are too subjective to create a microstructural metric for further use 2305 

in radiative transfer models. The SSA measurements provide much better accuracy for use in radiative transfer models. 

Near-infrared (NIR) photography allows two-dimensional analysis of layer boundary position (Tape et al., 2010) and layer 

thickness variability (Rutter et al., 2019) in snow trenches, quantifying spatial variability of stratigraphy around a single 

snowpit profile. It also enables measurements of layer boundary roughness, particularly of the snow-air and snow-ground 

interfaces. Other methods to characterise snow-air surface roughness use photographic image contrast analysis of dark boards 2310 

placed behind snow (Fassnacht et al., 2009; Anttila et al., 2014) and subnivean roughness of areas cleared of snow using pin 

profilers, LiDAR scanning (Chabot et al., 2018; Roy et al., 2018) or structure from motion photogrammetry (Meloche et al., 

2020). The subnivean roughness between snow and soil give significant contributions of rough surface scattering because of 

the contrast of dielectric constants between snow and soil. 
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