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Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46
million square km of Earth's surface (31% of the land area) each year, and is thus an important expression of, and driver, of
the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ -
13%/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers
for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems,
in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of
water stored as snow stered-on the land surface, and is of fundamental importance to water, energy, and geochemical cycles.
Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow
distribution at regional and local scales, surface observations wwil-are not be-able to provide sufficient SWE information.

Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address
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science and high socio-economic value applications such as water resource management and streamflow forecasting. In this

paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of

SWE We-deseribe—rs rinteractior 1t} 1 o ered-landse: characterizatior fg ack—br erd
. We—aesertoefaaarteractons HA-—SHOW-coverearanaseapes;—cnaractertizatton—ot-Showpackproper

image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution

as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar
measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from
SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling,
electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled
significant advances in understanding snow microstructure such as grain size, densityies, and layering. We describe radar

interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval

algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms

via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research,
monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-

sensing from SAR measurements.

1 Introduction

Seasonal snow on land is responsible for a number of important processes and feedbacks that affect the global climate system,
freshwater availability to billions of people, biogeochemical activity including exchanges of carbon dioxide and trace gases,
and ecosystem services. Despite this importance, snow mass (commonly expressed as the ‘snow water equivalent’ or SWE) is
a poorly observed component of the global water cycle. Given the vast area of northern hemisphere snow extent (exceeding
45 x 10° km? each winter), surface observing networks are insufficient as a sole source of information for snow monitoring.
Satellite remote sensing is the only means to monitor SWE consistently and continuously at continental scales. Optical satellite
imagery acquired under cloud-free conditions can provide information on where and when snow is on the ground, but does
not support the retrieval of SWE. Long time series of snow mass information are available from satellite passive microwave
measurements (Luojus et al., 2021), but at coarse spatial resolution (gridded at 25 km spatial resolution), mountain areas across
which high values of SWE occur are excluded, and bias correction is required under deep snow conditions (>150 mm SWE;
Pulliainen et al., 2020). Land surface models driven by meteorology from atmospheric reanalysis can produce hemispheric-
scale SWE information at coarse spatial resolutions (e.g. Kim et al., 2021), but there is a large spread between products due to
differences in the meteorological forcing data (especially precipitation) and a pronounced negative bias in mountain areas
(Wrzesien et al., 2019a; Cao and Barros, 2020; Lundquist et al., 2019). Differential airborne and ground-based lidar altimetry
(Deems et al., 2013; Meyer et al., 2021) and spaceborne stereo photogrammetry (Deschamps-Berger et al., 2020) can provide

snow depth information at high resolution by differencing repeat digital elevation models but are limited to small spatial

( Commented [DM1]: this sentence was repeated later in abstract j
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domains and sparse temporal sampling. C-band radar has recently been applied to retrieve snow depth in mountainous regions
(Lievens et al., 2019) using empirical relationships derived from ground-based measurements; however, this approach is not
demonstrated for the comparatively shallow snowpack found across large regions of the northern hemisphere. Airborne and
tower-based measurements have also identified the possibility of retrieving snow parameters from L-band interferometric SAR
(Deeb et al., 2011), P-band signals of opportunity (Shah et al., 2017; Yueh et al., 2021), wideband auto-correlation radiometry
(Mousavi et al., 2019), and FM-CW radar (Yan et al., 2017).

Ku- and X-band radar measurements, in contrast, provide a viable pathway to produce SWE information at the temporal and
spatial scales necessary to advance operational environmental prediction, climate monitoring, and water resource management
across the northern hemisphere (see Section 2 for an overview of the scientific requirements for snow mass information).
Significant progress was made over the past decade in understanding the Ku-band and X-band radar response to variations in
SWE, snow microstructure, and snow wet/dry state. The ESA Cold Regions Hydrology High-Resolution Observatory
(CoReH20) mission (dual-frequency X- and Ku-band; completed Phase A at ESA in 2013; ESA, 2012; Rott et al., 2010) was
a major impetus.-Previoustyalthoush-tThe potential for Ku-band radar was alse-previously explored at NASA as part of the
Snow and Cold Land Processes Mission and supporting Cold Land Processes Experiment (Yueh et al., 2009). Experimental

tower and airborne measurements have been used to advance understanding of the physics of backscatter response to snow
microstructure and SWE (Lemmetyinen et al., 2018; King et al., 2018), including the complicating effects of forest cover
(Montmoli et al., 2016; Cohen et al., 2015). Innovative new field measurement of snow microstructure parameters (Lowe et
al., 2013; Kinar and Pomeroy 2015) now provide the quantitative observational basis for radar modelling of layered snowpacks
(Tsang et al., 2018) and radar retrieval algorithms (Zhu et al., 2018).; Radar forward models and potential algorithm approaches
have matured which-have-both-advanced-dramatieally-inover the past decade, which has allowed new retrieval pathways to

emerge which build on approaches first proposed for CoReH20.

The purpose of this review is to summarize the status of all the components necessary to fully develop the pathway-scientific
readiness fortewards a potential future radar mission focused on seasonal snow mass. This includes the theoretical sensitivity
to SWE via volume scattering processes_including;—the influence of surface and ground contributions_(Section 3), and
approaches to SWE retrieval as supported by physical snow and radiative transfer modelling (Section 4). Results from previous
ground, tower, and airborne measurement campaigns are also reviewed. The sensitivity of Ku-band SAR measurements -are

limited-to-snow-depth-ofto SWE are limited to a threshold of approximately 150 mm (-about 1 meter of snow depth depending

on density) because of saturation of radar volume scattering. Thus, synergyism with C-band Sentinel 1 data for snow depths
beyond 1 meter (Lievens et al., 2019) is also explored. Other synergies with interferometric SAR, radar tomography, passive
microwave, and L- and C- band SAR measurements are also described to provide ancillary information and to improve retrieval

performance_(Section 5).
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2 Scientific Objectives of Global Remote Sensing of SWE and Spatial and Temporal Requirements

High priority science objectives require snow mass information at moderate spatial resolution (250-500m) and frequent revisit

(~3-5 days; ESA, 2012; Derksen et al., 2021), a measurement paradigm that is currently not available. As outlined below, these

science requirements support applications related to climate services and operational environmental prediction including
quantifying snow mass contributions to water, energy, and geochemical cycles, better prediction of spring flooding, shalew
landshdeaetivity; and adaptation of cold-regions water resources to climate change.
1. Inventory how much water is stored as seasonal snow, and how it varies in space and time.

The amount, distribution, and variability of terrestrial SWE across the northern hemisphere is poorly quantified because surface
networks are inadequate, and existing gridded SWE datasets have divergent climatologies (Wrzesien et al., 2019a) and
anomalies (Mudryk et al., 2015). Alpine regions are particularly problematic because the course spatial resolution of existing
products (typically 25 km grid spacing or more, with some new analyses available at 9 km) is incompatible with the scale of

SWE variability (<100%s-ef metres, e.g. Grinewald et al., 2010). SWE estimates derived from models at continental scale are

subject to uncertainties in both meteorologic forcing data and model parameterizations (e.g. Kim et al., 2021). SWE is highly
sensitive to changing temperature and precipitation in a warming climate; confident projections of resultant changes are
uncertain because we lack baseline SWE estimates. SWE can change rapidly from day to day and across local areas due to the
influence of individual weather events, but we currently do not have any means to track these changes with sufficient spatial
or temporal resolution. The lack of a baseline snow inventory negatively impacts many aspects of hydrological resource
management. With projections of continued climate warming and shifts to snow cover resources (including precipitation phase
changes and timing of spring melt), addressing this capability is more pressing than ever.

2. Properly initialize snow in environmental prediction systems including numerical weather prediction (NWP) and

streamflow forecasting.

Land surface data assimilation is an important component of state-of-the-art environmental prediction systems.;-which-previde
The initialization of land surface conditions (such as snow-cenditions, soil moisture and temperature) is a requirement for
numerical weather prediction and other forecasting systems_such as streamflow prediction. Satellite data from the SMOS and
SMAP missions are presently assimilated to improve the-charaeterization-ofsoil moisture initial conditions (e.g. Carrera et al.,
2019). Parallel activities have not been sustained for seasonal snow because assimilation of existing satellite measurements
does not sufficiently improve land surface model performance (de Lannoy et al., 2010). Addressing this gap is important
because evidence shows that a more realistic initialization of SWE can improve streamflow forecasts, especially during
extreme events (Vionnet et al., 2020) and at lead times greater than 2 weeks (Abaza et al., 2020; Wood et al., 2016). The
current inability to plan and respond to snow-related runoff events is costly: if effectively managed, runoft from snow melt
has a global economic value in the trillions of dollars (Sturm et al., 2017), but also poses a risk through loss and damage
associated with flood events. For example, the devastating floods in the Canadian Rockies, foothills and downstream areas of

southern Alberta and south eastern British Columbia during June 2013 provides a compelling case for the-tmpaetefof the need
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for improved snow information esa-to support hydrological modelling efeestlyduring extreme events (Pomeroy et al, 2016).
Additionally, high-resolution satellite-derived snow—distributionsSWE can—eerld support development of improved

downscaling techniques for existing coarsely gridded products (Manickam and Barros, 2020).

3. Validate and support improvement of the representations of snow processes and feedbacks in regional and global
climate models.

Gridded SWE datasets are required for the verification of models used for seasonal prediction (e.g. Sospedra-Alfonso and

Merryfield, 2017), and the validation of historical climate model simulations which ferm—the-basis—efunderpin climate

projections (e.g. Mudryk et al., 2020). Earth observation-derived products make a small contribution to the current suite of

available gridded SWE products_for climate model analysis: reanalysis and snow models form the primary basis for the

evaluation of seasonal prediction and coupled climate model simulations. The first assessment of CMIP6 model simulations
by Mudryk et al. (2020) identified two key findings: (1) excessive snow mass at the hemispheric scale is a feature of CMIP6
models, and (2) nearly all models increase snow extent too slowly during the accumulation season and decrease snow extent
too slowly during the snowmelt period. These findings would be strengthened through the support of appropriate moderate
resolution satellite SWE datasets. Furthermore, more detailed analysis at the grid point scale is needed to effectively link the

model parameterizations of the (usually diagnosed) snow cover fraction to the prognostic snow mass.Prediction-between-the

4. Address the role of snow properties across high latitudes in influencing terrestrial carbon cycling, trace-gas exchanges,

and permafrost.
Snow is an important insulator of the underlying soil, influencing the thermal regime and corresponding carbon fluxes in winter
(Natali et al., 2019). Permafrost is warming across the northern hemisphere (Biskaborn et al., 2019) with implications on
vegetation, surface hydrology, landscapes, and the carbon cycle. Addressing the drivers of these changes requires a sound
understanding of the role of seasonal snow, but current snow mass datasets do not meet the requirements of state-of-the-art
permafrost models (Obu et al., 2019) which provide continental scale estimates of permafrost extent, thermal state, and active

layer thickness.

3 Radar interaction with snow covered landscapes
3.1 Theoretical descriptions of radar-landscape interactions

In this section, we describe volume scattering from a snowpack, rough surface scattering from the snow-soil interface, and the

attenuation of radar waves by forest canopies.
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3.1.1 Interaction of radar waves with snowpack by the Radiative Transfer Model (RTM)

Microwave signals emitted from a SAR system are scattered by the mm-scale ice grains that make up the snow and at
boundaries between snowpack layers with different dielectric properties. The SAR system measures the portion of the signal
returned to the sensor (i.e. the backscatter). Because volume scattering increases with snow mass, measurement of backscatter
allows estimation of snow mass. Structural changes in snow that impact snow backscatter are densification and metamorphism
that introduce vertical heterogeneity in snow grain sizes and snow density, and thus impact snow depth and SWE.

Historically, the first model developed for microwave scattering of snow was by Chang et al. (1976), which assumed Mie
scattering from a collection of ice spheres in a single layer to solve a radiative transfer equation for passive remote sensing
applications. The first active remote sensing model (Zuniga et al, 1979) used the Born approximation with snow represented
by a random medium characterized by a correlation function and associated correlation length. Since these early models, a
variety of radiative-transfer microwave scattering models have been developed with representations of (i) snow microstructure,
(ii) absorption coefficient, (iii) effective permittivity, (iv) scattering phase matrices, and (v) layering effects. Analytical and
numerical solution methods are used to solve these equations (Tsang et al. (1985), Ulaby et al. (1986), and Fung et al. (2010)).
A historical review of different models is given in Shi et al., (2016). Rapid progress has been made recently due to the
advancement of high-performance parallel computations and efficient computation methods for characterizing the complex
microstructure of snow and full wave solutions of Maxwell’s equations (Ding et al., 2010; Xu et al., 2012; Tan et al., 2017;

Tsang et al., 2018).

Alr Full wave
Snow layer simulation
for phase

matrix
Lis several

surface
Far field interaction of intensities with DMRT
Figure 1: Main contributions to radar scattering from snow covered ground. Scattering at air/snow interface is neglected, and the

snow layer is assumed homogeneous. The snow depth is d. & is the air permittivity and & is the soil permittivity. 6; is the incident
angle of radar. E(7) is the internal electrical field and I(7,3) is the specific intensity within the snowpack.
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Consider an incident wave from the radar—atradar at an incident angle 8; — . In the theoretical modelling of volume scattering

and surface scattering, the computed solutions of our work are based on all orders of multiple volume scattering, surface

scattering, and volume surface interaction. The volume-surface interactions are between the snow volume scattering and the
snow/ground interface and the air/snow interface (Chang etal 2014, Tan etal 2015, Tan etal 2017). The full DMRT with

enerate the Look-up tables (LUT) for physical based retrieval and for establishin

boundary conditions are solved to

regression formulas of backscattering versus important geophysical variables such as snow water equivalent and scattering

albedo. To simplify the explanation of scattering physics, we give aA simple physical formula medelbelow that expresses

the represents-total backscatter af,i from the snowpack over the ground arisingfremarising from two contributions as shown

in Figure 1. The two contributions are : i) the volume scattering component a']’;g, from the snowpack and ii) the rough surface

scattering o"l:g from the underlying soil. The expression is:

prq _ P4 rq rq
Otot = Opor T Opg €XP (—2tsect,) + Osurfair /snow M

where p and q refer to the polarization state e.g. ofi% represents backscatter emitted at vertical polarization and received at
horizontal polarization. Scattering from the underlying rough soil surface is attenuated by the snow layer, represented by the
two-way attenuation factor of exp(—2tsec6,). The quantity 7 is the optical thickness of the snowpack and 6, is the refraction

angle in snow which is related to 6; . the incident angle in air, by Snell’s law Because of the low permittivity contrast between

air and snow, the scattering (e%atfg /snow) from the air/snow interface (Rott et al., 2010) can be neglected except for wet

snow . Below we -consider the o/ Reugh-_volume scattering term. The rough surface scattering of snow/soil interface

af;i will be considered is-eensidered-in Section 3.1.2.

Multiple volume scattering effects within snow are ean-be-calculated by the dense medium radiative transfer equation (DMRT).

theories—The DMRT is a partially coherent model having coherent interactions and incoherent interactionsparts. The
incoherent interactions are based on the classical radiative transfer equation (RTE):

al(rs Foo 50 8 anT( &
% =~k I(7,3) + [, dO'P(F,3, $DI(F3) (2)

where I(7,38) is the specific intensity at the position 7 in direction §, P(7,3, §") is the phase matrix, and the extinction
coefficient Kk, is the sum of the scattering and absorption coefficients, k, = ks + k,. The distinctive difference of DMRT from
classical RTM is the coherent interaction part part in which the extinction coefficients k., and the phase matrix P (7,8, 8") are
obtained by solutions of Maxwell equations including coherent wave interactions among the ice grains that are in the near field
and intermediate fields distance ranges from each other (Liang et al., 2008; Ding et al., 2010). In solving Maxwell’s equations,
the dense medium effects and snow microstructure are accounted for. Beth-coherentand-incoherentwaveinteractions—are
ineluded:
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Figure 2: Microstructural descriptions of the snowpack: (a) sticky hard sphere theoretical model, (b) a bi-continuous medium with
ice crystals in dark and air in white based on parameters ({)= 1 mm, and b=1.0 and (c) 3-D image from x-ray microtomography
with ice crystals shown in white and air voids in black.

The volume scattering a4

w01 depends on snow microstructure; the response of microwave radiation to snow microstructure has

been studied extensively. We describe the represented-in-at-least-five different ways-in electromagnetic models. 1) In Chang

et al., (1976), collections of spheres are used for the microstructure. ;-and-the-seatteringThe scattering by individual spheres

are is added incoherently. However, it is not valid apprepsiate for snow as particles are densely packed, meaning
electromagnetic (EM) waves scattered from individual grains interact coherently within distance scales of several wavelengths.
2) DMRT has been applied to the cases of hard spheres (Tsang et al., 1985), sticky hard spheres (Tsang et al., 2007) and
distributions of sphere sizes (Tsang et al., 1992). The coherent interactions are described analytically by the quasi-crystalline
approximation (QCA) of Mie scattering for elesely—paekedclosely packed spheres. Figure 2 (a) gives a visual representation
of the sticky hard sphere microstructure. 3) The approach of Hallikainen et al. (1987) empirically relates grain size directly to
scattering coefficient. In this case, the model was derived from experimental observations of extinction behaviour and the
relations to traditional grain size measurements. The direct connection between scattering and grain size means the model is
simpler to apply, albeit with potentially large errors due to limited observations and variations es with snow types. 4) A
different representation of snow is a random medium of ice and air (Figure 2 (b)). Mitzler (1998) treats scattering by
characterizing the microstructure autocorrelation length, using the improved Born approximation (IBA) and the random
medium assumption. 5) The mere generalized bicontinuous medium approach uses two parameters to characterize snow

microstructure: a mean grain size ({) and an aggregation parameter b. There are two features: (1) the microstructures are

computer generated and (ii) the auto-correlation functions are derived analytically (Chang etal 2014) The aggregation

parameter b represents the adherence of ice grains together to form clusters. A sSmaller b parameter values produce greater
aggregation. The b parameters chosen for X- to Ku-bands fall in the range of 1.0 to 2.0 (Chang et al., 2014; Tan et al., 2015;
Xiong & Shi, 2019). With development of computational electromagnetics EM, numerical solutions of Maxwell’s Equations
in 3D are also used (Ding et al., 2010; Xu et al., 2012; Tan et al., 2017).
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Figure 3: (a) Frequency dependence of the extinction coefficient from X- to Ku-band and (b) phase matrices at 13.3 GHz for different
values of microstructure correlation length p,.,. Snow parameters are volume fraction f,, = 0.20, aggregation parameter b = 1.2,
and correlation length 0.15 mm. P11 and P22 are co-polarized phase matrix elements and P12 is a cross-polarized phase matrix
element.

EM models thus have evolved in part due to knowledge advances from our improved ability to measure snow microstructure.
Stereological approaches led to advances in treating snow as a random medium using correlation functions (Wiesmann et al.,
1998). X-ray micro-computed tomography (u-CT) has emerged to image the 3-dimensional structure of snow (Kerbrat et al.
2008), as illustrated in Figure 2 (c), which has fed advances such as the dual active/passive Snow Microwave Radiative
Transfer (SMRT) model (Picard et al., 2018). SMRT was developed to understand how to represent microstructure faithfully
at scales relevant for microwave scattering and has the potential to allow direct use of correlation functions from p-CT.
Application of u-CT-derived microstructure parameters in SMRT removes the need for empirical grain scale factors with
frequency-dependent model performance governed by the quality of microstructure model fit (Sandells et al, 2021). EM models
have been adapted to work with field-derived measurements as well. Field methods to measure microstructure are more fully

discussed in section 3.3.1._ It is to be noted that the random medium model and the bicontinuous model both use the

autocorrelation function. These advances reduce the uncertainties in interpreting remote sensing observations and support the
design of remote sensing missions to observe seasonal changes in snow storage.

Figure 3 illustrates the volume scattering of snow with bicontinuous DMRT. Figure 3 (a) shows the frequency dependence of
the extinction coefficients x, for different values of microstructure correlation length and with aggregation parameter b =
1.2. The results show the increase of extinction with increasing correlation length. The exponential of the frequency
dependence is 3.3 from X- to Ku-band, which is less than the fourth-power law of Rayleigh scattering. This difference is due
to the dense media effect, and the power law exponent is found to depend on the aggregation parameter b. The phase matrices
at 13.3 GHz for snow are shown in Figure 3 (b). The phase matrix gives bistatic scattering as a function of the angle 0 between
the incident direction § and scattered direction §'. In Figure 3 (b), P11 and P22 are co-polarization phase matrix elements and
P12 is the cross-pol phase matrix. The phase matrix exhibits a dipole scattering pattern. The cross-polarization P12 is much

larger than would be calculated by the sphere models because of the irregular shapes of the aggregates in the bicontinuous

9



medium. The computed phase matrix and the extinction coefficients are substituted into the RTE which is then solved to

calculate backscattering. The results in figure 4-6 are an illustration of the bicontinuous model ( Tan et al. 2015.) The results

as a function of SWE for a homogenous snow layer are shown shews-in Figure 4 for 6 channels with VV polarization at 10.2
270 GHz, 13.3 GHz, and 16.7 GHz in Figure 4 (a) and VH polarization for the same frequencies in Figure 4 (b). In Chang etal
2014), tFhe results were are compared with the Finnish NoSREx backscattering dataset within which tower measurements
were taken over snowpacks with SWE up to 120 mm. The bicontinuous-DMRT model results are in good agreement with
backscatter observations over the 6 channels of multiple frequencies and polarizations, albeit with a frequency-dependent bias
for the cross-pol results. Both the model predictions and measurements show high correlations with SWE with stronger

275 correlations at 13.3 and 16.7 GHz than at 10.2 GHz._Several years of NoSRex data were analysed and the results of retrieval

performance on the data were illustrated in the paper by Zhu et al. 2018
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Figure 4: Comparison of the DMRT/ bicontinuous media model using NoSREx 2010-2011 data backscatter against SWE for vertical
co-pol (left) and cross-pol (right) at 10.2GHz, 13.3GHz, and 16.7GHz. Figures are adapted from Tan et al., 2015.

280 1. Because of snow accumulation events and weather patterns, snow cover can have layering structures that 4*—*{ Formatted: Left, Line spacing: single

correspond to variations of snow densities and grain sizes. Extensive work hahass been done in studying multi-
layered models of snow using the PMRT-model(Lianget-al5-2008)-the HUT model (Lemmetyinen et al., 2010),
the DMRT-ML model (Picard et al., 2013), and the MEMLS model (Proksch et al., 2015). Recent experimental
work indicates that multi-layered radiative transfer modeling may shed light on snow radar interaction (Thompson

285 and Kelly 2021a; 2021b)._For the case of DMRT , a multi-layer DMRT model with different dense media phase
matrices and extinction coefficients for each layer are used (Liang etal 2008, Chang etal 2014 Tan etal 2015) . Both
the quasi-crystalline approximation (QCA) model and the bicontinuous model have been used for a multilayer

snow medium (Chang etal 2014), /{ Formatted: Font color: Accent 1
290 2. _Structural anisotropy is a characteristic feature of natural snow packs (e.g. Leinss et al., 2020). This causes changes +— Formatted: List Paragraph, Numbered + Level: 1 +
of the phase matrix with the incidence angles and scattered angles. There are two models in the bicontinuous model: Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left

isotropic correlation functions and anisotropic correlations functions (Tan etal 2016) . Both have been developed + Aligned at: 0.25" + Indent at: 0.5"

and simulations performed. In the retrieval, only the isotropic correlation functions versions have been used in the
DMRT LUT.
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3.1.2 Interaction of radar waves with the ground surface beneath snowpack

Because dielectric contrast , the contributions of
rough surface scattering snow-soil rough interface and not from the air/snow interface
he air/snow interface have a stronger scattering contribution
outside the domain of X Ku band volume scattering

. Rough surface scattering from the snow/soil interface contributes to radar observations as indicated by the

term gy exp(—2tsect,) quation (1). Thise term is affected by the rough soil surface scattering gy, — -and

attenuation through the snow exp(—2tsecH,) . The rough soil surface scattering contribution is not related to SWE
should be removed when retrievinsg SWE. subtraction” of surface scattering has been used to improve

P

the accuracy of SWE retrieval (Zhu et al., 2018). The approach removing o} exp(—2tsech,)

g
a combination of -data and electromagnetic models is a significant part of the retrieval

algorithm that will be discussed later in this section.

¢ discuss methods calculating scattering the snow/soil interface at L, C , X- and Ku-bands.

hysical models rough surface scattering the small
perturbation method (SPM) and the Kirchhoff approach (Ishimaru, 1978; Tsang and Kong 2001). Advanced analytical methods
include the advanced integral equation model (AIEM, Chen et al., 2003) and small slope approximation and its extensions

(Voronovich, 1994; Elfouhaily and Johnson 2007).
oughness

kh. which is the product of the EM wavenumber k of the medium above the

rough surface and the surface rms height h. analytical
models and numerical simulations have kh <
3 past focus on L--band sing a times series of

backscatter measurements , both soil moisture and surface rms height

retrieved at 3km resolution for the April 13- July 7, 2015 period of SMAP radar operations (Kim et al 2017)

product show: global median height 2cm rms heights
5 cm in the-mountain regions. rms height of 5 cm kh is
18 for air/soil interface and 21.6 for snow/soil interface he larger for snow/soil interface is
the wavenumber in snow
kh <3 limited applications to L C bands-. Recently, we have performed
simulations kh up to 15

widening the applicability of full wave simulations up to Ku band

11
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describe a stationary Gaussian random

process, so that knowledge of its covariance function is sufficient to describe its properties. The covariance function is further

parametrized in terms of its rms height and correlation length round measurements have been made of these properties
(Oh et al., 1992; Oh, and Kay, 1998; Ulaby and Long, 2015) easured correlation lengths

maximum of 10 cm. We label these roughness measurements as “limited correlation length up to 10 cm”.

However, in the global retrieval of soil moisture using six months of the NASA Soil Moisture Active Passive (SMAP) radar

data at L-band, the roughness was modelled as having a constant correlation length to rms height (Kim et al.,

2012; Kim et al., 2014, Kim et al 2017) ranged from 5 to 20. These two

for rms heights beyond 2cm

found that the constant ratio approach gives more

acceptable results. Surface scattering also depends on the soil permittivity which in turn depends on soil moisture (which

describes the volume of water present per unit volume of soil) and texture (which describes soil composition). Given these

parameters, empirical models (Mironov et al., 2004; Peplinski et al., 1995) are available to calculate the soil permittivity. In

addition to soil properties, land-cover including litter and vegetation, as well as rock outcrops. impact the spatial variability of

surface permittivity

0 Incident angle = 40° . Incident angle = 40°
B -12 . 3
2 S 8f
<14 1 5
2 2
K] T-10t
@18 7 &
3 3
g -18 1 8.2t
@ @
3 -20 ] A —e—C band
g Tolar Xband
> -22 —8—h=0.5 cm, frozen soil 1 >

: —&—Ku band

> ——h=2.0 cm, soil with 10% moisture > uoan

24 I I 16 ] ] ] ]

0 5 10 15 Q 2 4 6 8 10
Frequency, GHz rms height, cm

Figure 5: (a) Backscattering at VV-polarization as a function of frequency: red curve is results with frozen soil (permittivity 4+1i)
and rms height 0.5 cm and blue curve is results with soil of 10% moisture and rms height 2 cm. (b) Backscattering at VV-polarization
as a function of rms height with soil of 10% moisture at C-, X-, and Ku-band.

Full wave simulations based on numerical solutions of Maxwell’s equations (NMM3D) were applied to L-band radar

backscatter for the SMAP mission (Huang et al., 2010; Huang and Tsang, 2012). The full wave simulations
used to generate LUT. —(Liao et al., 2016).. The LUT w initially used for air/soil interfaces.
the LUT based on the incident angles of the upper medium and the relative dielectric constant between

the two media on the two sides of the rough surfaces. By adjusting the relative dielectric constants and the incidence angle

12
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using Snell’s law-, the NMM3D LUT can also beare-also applicable for all combinations of relative dielectric constants

includings “snow/soil , air/snow, or snow/permafrost interfaces, among others-ete,

were-made-with-kh-up-to15-(th=4-16-em-for 172-GHz) (Zhu 2021, Z ab-2 In Figure 5(a), we plotshow the- VV
backscattering as a function of frequency for h = 0.5¢# and and h= 2em. cm. In Figure 5(b), we further plotshow the VV
backscattering as a function of rms heights at C-, X-, and Ku-bands. Both figures show saturation effects. meaning that the
rough surface scattering saturates at large rms heights (~ 3-6 cm) and at higher frequencies. The new results of kh up to 15 are

useful for studying rough surface radar backscattering at X- and Ku- bands for snow/soil interfaces. -

To estimate rough surface scattering at X band and Ku band-, there are two approaches labeled (a) and (b) in what follows.
uses—tn-Approach{a) snow-free —radar observations at X- and Ku-bands at a
specific location beforethe snowtallare used—to estimate the surface backscattering (Rott et al., 2010). Such an approach

Approach (a) i

neglects any changes in soil properties and background land-cover during the snow-on season. In approach (b), surface

e,
by

backscattering is estimated ~using a

combination of measurement -data and electromagnetic models. The measurement data includes backscattering data at L

band, C-band, X, -band and /or Ku band under snow free or snow-on conditionsbefore-and-aftersnow, and- the NMM3D LUT
is used to model surface backscatteringThe-electromagnetie chofrough surface scattering results s base Sing
We-use—a-two-step-proecedure. As a first step,

time series observations at L- and C-band, which have greatly reduced sensitivity to snowhas h-larg

than-volume scattering, arc used to estimate the soil permittivity and surface roughness. The use of a C--band measured time

series together with the past L--band time series data imeserieswill-enhances the existing L band algorithm in retrieving rms

height and soil moisture, and- Using d-and-C a-befor : S 2 SHRE

tThe retrieval is carried-out

forperformed either in the presence or absence of snow. When snow is presentAfter

snow-fall, Snell’s law is used to adjust the incident angle at the snow-soil interface to account for the snow refraction effects.

~Tthe surface rms heights and soil permittivities retrieved
in-step(Hobtained -are then used in the NMM3D LUT to predict the surface backscattering contribution ebtain-the-medel
“(a)y) at X and Ku bands for

's; note this captures
any dynamically varying roughness or permittivity conditions in performing the surface scattering correction.—Fhe-approach
- WeTheapproach(by

assumes the availability of matchup L- and/or C-band SAR observations with revisit periodss of approximately 10 dayss., as
arc or will be available from theThe revisits provided-by-the Sentinel-1 and NISAR systems, as well as future proposed

1)
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continuation missions, suggest-so that such datasets are likely to be available during the time frame of a future snow observing

mission.

Consider for example

5 L-band UAVSAR radar full polarization observations under snow-on conditions
wsine-the NMMID-LUT(Liao et al., 2016). The UAVSAR dataset cxamined was collected from February 26+7-to March:
2017; in the SnowEx 2017 campaign using 5 flights over the Grand Mesa region in Colorado, United States. In-situ soil
moisture measurements were also collected throughout 2017 from an installed meteorological observation station. We apply
the time series retrieval algorithm developed for the SMAP mission (Kim et al., 2012, Kim et al 2017) based on the NMM3D
LUT at the station location: (i.c.thatis at athe point location-seale). From the retrieved soil permittivity, the soil moisture is
derived using Mironov’s empirical model (Mironov et al., 2004). The comparison of retrieved and measured soil moistures is

shown in Figure 6 (a). The retrieval soil moisture is in good agreement-as-shown-inFigure-6a— with the measured in-situ soil

moisture for a period of 8 weeks from —from-February 6 2017 -to March 31, 2017. The agreement achieved showsare -a root

mean square error (RMSE) of 0.047m3/m3, a correlation of 0.95 and a bias of 0.039m3/m3, and that—Based-en-the

measurements; the soil moisture at this site remained relatively constant during the dry snow season (February 6 to March 8,
2017).
-In addition to retrieving the soil moisture time series, the rms height at this location was also retrieved and estimated is-also

assingle-value-of 1.9 cm. Note the Fhis-is-therationale-of the-Kim et al. 2017

algorithm retrieves a single rms height estimate for the time series because surface roughness is assumed to remain constant

over the time series duration so that —wWet and frozen soils are assumed to have

the same rms height.)
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Figure 6 (a) Retrieval of soil moisture compared with in situ-measurements. The retrieved rms height is 1.9 cm. The retrieval is
based on based on L-band UAVSAR data from SnowEx 2017 campaign. The measured soil moisture is from SnowEx 2017 campaign
meteorological observations with a measured soil temperature of 0.6° C. The location of the station is 39.03388° N, 108.21399° W
with an elevation of 3033m. (b) Simulated surface scattering with snow attenuation from X- to Ku-band at VV polarization. Snow

parameters are with depth of 54 cm, density of 183 kg m3, ({) = 1.2 mm, and b=1.2. Fersoil properties; blue-marks-are for-the
NoSREx2010-201-and-Blue red marks are based on the SnowEx 2017 campaign data shown in (a).

e apply the retrieved -rms height 1.9 cm)-; and the soil

properties from Figure 6 (a) to calculate the surface scattering contributions with snow attenuation, 05 gq exp(—2tsech,), at

9. 3 3.4 and 17.2 GHhz Figure 6(b)
. The results show that the rough soil surface scattering contribution ,
including snow attenuation , is around -12dB at X band and decreases to -14 dB at 17.2 GHbz igher

frequencies such as-t Ku band typically experience higher volume scattering and greater attenuation of the surface scattering

contributions. Continued studies are required to improve and validate thise- approach includ! extending
NMM3D surface modelling studies and LUT into cases with rms heights of 4 wavelengths or more so that the
LUTs can be applied 17.2 GHz 7 cm . nlike volume
scattering , rough surface scattering has a stronger dependence on incidence angle . Thus, the effects

of topographical slopes that cause changes in incidence angles-, particularlys in mountainous regions. should be included in

the retrieval. he sample size in Ffigures 6a and 6b small the
availability of L and C band and full wave simulations
from L band to Ku band up to kh = 20, retrievals of rms heights
at X Ku band

snow/permafrost interface
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Figure 7. (a) RTE assumption: uniformly randomly-positioned scatterers which are statistical homogeneous. (b) Illustration of trees
440  for a forest with snow cover beneath. The picture was taken on March 14th 2017 in a Jack Pine stand situated in the Boreal Ecosystem
Research and Monitoring Sites (BERMS), Saskatchewan, Canada.

3.1.3  33-Interaction of radar waves with forests_and vegetation above snowpack

—The interaction of radar waves with vegetation initially began with the water-cloud model (Attema and Ulaby, 1978) (Figure‘*-_—[ Formatted: Normal

7_(a)). It was then extended by using RTE to include scattering effects in addition to absorption. Computation codes of RTE

445  exists such as the MIMICS model (Ulaby et al., 1990) and in the Torgata model (Ferrazzoli and Guerriero, 1995 Ferrazzoli

etal 1999) ). In addition. the discrete scatterers model using distorted Born approximations (DBA) have been used (Lang and

Sighu 1983, Karam etal 1992). The RTE and DBA models use the same assumptions and give the same results aside from a

factor of 2 in the double bounce of volume surface interaction term. Bindlish and Barros (2001) applied the water cloud

model formulation to the parameterization of vegetation backscatter from C- and L-band radar measurements using three
450 vegetation parameters (a measure of vegetation density, a measure of vegetation architecture, and a dimensionless vegetation
correlation length) to characterize different types of vegetation in rangeland, winterwheatwinter wheat crops and pasture. They

found that the estimation of land-cover and land-use class specific parameters resulted in significant improvements in retrieval

16



455

460

465

470

475

480

485

of soil moisture, which suggests that a similar approach could be used for snow retrieval using multifrequency data along with
detailed ancillary vegetation data sets to estimate the place-based parameters for the water-cloud model. In-theease-efforests;

to identify the contributions from leaves, petioles, twigs, and branches of pine, oak, sycamore and sugar maple trees to

backscatter and attenuation. In addition to quantitative differences related to tree architecture and vegetation moisture content,
they reported that the backscatter is mainly produced by the top layers of the cano; etioles (tree microstructure) can

significantly affect backscatter depending on their size relative to wavelength, leaves play an equally important role in
attenuation and backscatter, whereas twigs and branches dominated in terms of backscatter with weak attenuation when leaves

were not present. They did not consider the effect of tree trunks.
In CoReH20 Phase A the impact of forests on radar signals of snow-covered ground was studied (ESA, 2012). Model and

data analyses were carried out by Kugler etal 2014 and Montomoli et al. (2016). The forest model selected in COREH20 are

based on the radiative transfer equations (RTE). It accounts for scattering of trunks, branches of different size and needles, as

well as for differences in the structure of vertical layers. Effects of differences in cover fraction, tree height and biomass were

analysed. The model gives a multifaceted description of forest properties and for estimating the impact of the forest parameters
on the backscatter of snow-covered forests. The COREH20 RTE based studies, In-CoReH20-(Rottet-al2010);studieson
the-effeetsof vegetationfor snew retrievals-indicate that, during the winter period, the presence of dormant herbaceous or

short vegetation have small contributions to backscattering and do not affect the sensitivity to SWE. For the effects of

coniferous forests (CF), simulations—were-shown-usingthe radiative-transferequations{(RTE)—tThe simulation results show

that in the case of low fractional cover of CF (<25%), contributions of snow volume scattering are the dominant contributions

to the radar signal, with the radar signals correlating with SWE. When the forest density or the fractional cover increases, the
sensitivity to SWE decreases. The sensitivities are much affected by CF larger than 75%. _. In addition to forest density and
structure, snow interception in the canopy can vary widely in time and depending on snow type and canopy architecture and
modify the transmissivity and scattering characteristics.

Recently, since 2017, instead of using the RTE/DBA models, we have used full wave simulations based on a hybrid method

of combining wave multiple scattering theory (W-MST) and commercial software in computational electromagnetics such as

HFSS and FEKO . The “waves” MST are based on Maxwell equations and different from that of multiple scattering in RTE

which only considers incoherent multiple scattering of leaves branches etc.. Full wave simulation results have been computed

for L, S, and C Bands. The results of full wave simulations show two distinct differences from that of the results of the

RTE/DBA model : (i) the full wave simulations show more penetration than predicted by the RTE model with differences

that can be several times and (ii) the full wave simulations show weaker frequency dependence than the RTE model. ~ We

cannot at this moment extrapolate the conclusions to X Band and Ku Band for trees. However, preliminary results running
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full wave simulations of needle leaves at X band and Ku band show significant differences from the RTE model. Thus, in the

near future , there will be extensive full wave simulations and new measurements to study the effects of trees and forests at X

band and Ku band.

—TsecH;

Beer-Lambert Law or the Foldy approximation states that the transmission through forest is given by the expression e

s-for-several-deeades—The reasons for the differences are that the basic DBA/ RTE have two basic assumptions

TFhere-are-two-assumptions-inRTE-medels—The first assumption is _that scatterers such as trunk, leaves, primary ., secondary
and tertiary branches etc are individual , isolated scatterers that are uniformly positioned in the layer, such as that shown in

figure 7a. . The reason for this assumption is that the RTE model was first used for microwave remote sensing of cloud and

rainfall . The assumption of uniform random positions is the same as homogenization, meaning that there is an effective
attenuation rate k,. For a forest height of d, the Beer-Lambert Law or the Foldy approximation states that the transmission

—15e

through forest/vegetation is given by the expression e i where the optical thickness 7 is equal to x.d

thatthe seatterers-are-uniformly randeminpesttions-which-are-validfor elouds-andraintall-(Fisure ap-—However, in forests,

such as coniferous forests (Figure 7 (b)), aspen forests and deciduous forests, the scatterers are aggregated in trees. Unlike

clouds, which do not have gaps, there are gaps between the trees. Thus, waves, such as those in the Ku-band at 17.2 GHz with

wavelengths of 1.74cm, can pass through gaps when gap sizes are larger than these wavelengths. The consequence of the

assumption is that RTE underestimates the transmission-due-to-negleeting these-gaps. The second assumption is that the leaves
and branches are assumed to be single scatterers, and they scatter independently. and-the-extinetionThe extinction coefficients

and phase matrices of equation (2) are calculated by adding the scattering cross section of the branches and leaves. This

assumption is valid for cloud and rainfall as the water droplets can be assumed to be single scatterers-
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(Figure 7(b)) is that the branches and leaves are attached to the tree. For a coniferous forest, there are primary branches and
secondary branches attached to a tree. The needle leaves are aggregated and are attached to branches. Thus, the entire tree
itself should be treated as a single scatterer rather than an individual branch or an individual leaf. Therefore, the phase matrix
of a tree should be used rather than incoherently adding the scattering cross sections of branches, leaves, and the trunk for a
tree. Using a tree as a single scatterer give results that will-have weaker frequency dependence than that predicted by
RTE/DBA.

Full wave simulations to solve Maxwell equations among trees or plants were deemed to be computationally formidable.
Recently, a computationally efficient hybrid method (HB) has been developed to perform full wave simulations (Huang et al.,
2017; Huang et al., 2019; Gu et al., 2021, 2022). The hybrid method is a combination_of commercial-off-the-shelf software

of computational electromagnetics , efthe Foldy-Lax wave multiple scattering equations , and iterations based on the averaged
. The hybrid method

multiple orders of scattering a
consists of three twe steps. In the first step, a plant or a tree is treated as a single scatterer. Commercial-off-the-shelf software

is used to calculate the scattering T matrix in vector cylindrical waves of a single plant or a single tree. _‘We have used the

commercial software of HFSS and FEKO (Altair FEKO: https://www.altair.com/feko/). In the second step, coherent wave

multiple scattering theory (W-MST) interaetions-among the plants and trees are formulated ealeulated-by using the Foldy-Lax

multiple scattering equations. The formulation uses T matrices and vector addition theorem of vector cylindrical waves (Tsang

etal and-Keong, 2001). In the third step, the Foldy Lax equations are iterated to obtain solutions in multiple orders of scattering

and averages are taken over realizations after several orders at a time to obtain the averaged solution. The third step makes use

of the property that the averaged solution of orders of multiple scattering have faster convergence than the obtaining exact

solution of a single realization through matrix iteration methods such as conjugate gradient or bi-conjugate gradient. NMM3D
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full wave methods and simulation results can be found in Huang et al., 2017; Huang et al., 2019; Gu et al., 2021, 2022) Below

we illustrate two examples.

the-trees—Simulations were performed for the transmission through a simulated forest (Huang et al., 2019) consisting of 196

cylinders_representing tree trunks. Each cylinder is of of 20 m height and 12 cm diameter ., and the cylinders area

arranged as shown in Figure 8. The results are tabulated in Table 1. The results show that the transmission is almost twice that

of RTE.

Figure 8: Tree trunks (left) are modelled as dielectric cylinders (right). The figure is adapted from Huang et al., 2019.

Table 1: transmission coefficient from RTE based on distorted Born approximation (RTE/DBA) and the hybrid method from Figure
8. The table is adapted from Huang et al., 2019.

RTE/DBA Hybrid method
Transmission 0.35 0.66

To consider frequency dependence, we next show an example of ealeulate the transmission through a field consisting of 196
wheat plants (Figure 9 (a)) at L-, S- and C-bands (Gu et al., 2021, 2022) as a function of VWC. Results of Figure 9 (b) are

compared with RTE. Firstly, the results show the transmission of full wave simulations are is much larger higher-than RTE.
Secondly, the transmission at C-band is only slightly less than that at S-band_showing the frequency dependence is weak
between S band and C band. . On the other hand, while-RTE shows big drop in transmission from S- to C-band indicating -

that RTE predicts a strong increase of attenuation with frequency from S band to C band. On the other hand, the full wave

simulation results have little difference between S band and C band, showing “saturation “ with frequency. Fheresultsshow
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Figure 9: (a) Scattering from wheat plants are the radius of the circumscribing cylinder 6.5 cm, distance between the eenterscentres
of 2 circumscribing cylinders is 74 =14 c¢m, the closest distance between 2 circumscribing cylinders is g4 = 1 cm. Figure is adapted
from Gu et al., 2021. (b) Transmission of microwave through wheat of different calculated using the hybrid method and the RTE
vary with volume water content (VWC).

At Ku-band (17.2 GHz), the wavelength is 1.74 cm, which is much smaller than the gaps in trees. The wave can travel in

straight lines as rays through the gaps. In such scenario, the Ku-band waves will travel like the case of lidar which has been
shown to be able to penetrate forest canopies. In wireless communication, ray tracing has been performed as a path-loss model
in forests (Ling et al., 1989; Kurt et al., 2017). Inter-comparisons-ameng resultsof fu ave-simulations; RTE and ray tracing
will-be-made-in-fature-work: However, ray tracing, in the opposite extreme of RTE, has no frequency dependence although
frequency dependence can be introduced in an ad hoc manner such as by only keeping the dominant scatterers at the operating

frequency. .

3.2 Experimental measurements of radar-landscape interactions

Collection of experimental data is a prerequisite for the development of Earth Observation satellites. Ground-based and
airborne sensors provide means to collect observations of the geophysical parameter of interest in a relatively controlled
environment. These measurements provide the basis for the validation of forward modelling approaches and development of
retrieval algorithms prior to launch of the space-borne mission. The measurements also help to understand the spatial resolution

and temporal requirements for a spaceborne mission.
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Ground-based sensors deployed on tower structures allow near-continuous observations over extended periods, which are
critical for understanding both slow and seasonal processes as well as rapid phenomena induced by diurnal changes at the
sensor foot-print. Such temporal features are of particular importance for seasonal snow cover. Airborne observations, or the
deployment of ground-based sensors on other mobile platforms, provide the ability to expand localized observations to a larger
scale, allowing to observe the effect of heterogeneous land cover and vegetation on Earth Observation signatures. Seasonal
snow presents a particularly challenging target for observations, due to the high variability of snow over both temporal and
spatial scales. Hence, several both localized, ground-based campaigns as well as airborne sensor deployments have been
conducted in recent years, in an attempt to understand radar signatures from seasonal snow cover. These campaigns have
covered diverse snow and climatological conditions.

Table 2: Summary of ground-based active microwave sensors for snow studies.

Ground-Based | Dates | Sensor Freq. Pol. Location/snow Data availability
Campaign regime
Can-CSI, 2009- | UW-Scat 9.6,17.2 GHz VV, VH, | Churchill, Manitoba, | Available from Dr
CASIX 2011 HV,HH Canada Richard Kelly
Tundra, Taiga, Lakes, | rejkelly@uwaterloo.ca
Sea Ice
NoSREx 2009 | ESA 10-17 GHz | VV, VH, | Sodankyld, Finland / [ ESA EO campaign
- SnowScat | (stepped HV, HH boreal forest portal
2013 frequency)
SnowEx ’17 2017 | UW-Scat 9.6,17.2 GHz VV, VH, | Grand Mesa, | NSIDC
HV, HH Colorado, USA
APRESS 2019 | ESA 1-40 GHz VV, VH, | Davos-Laret, Not yet available
- WBScat HV, HH Switzerland / Alpine
2021* Sodankyld, Finland /

boreal forest

3.2.1 In situ radar experiments and signatures

The ground-based campaigns are summarized in Table 2. Ground-based campaigns of Can-CSI and CASIX were conducted
between 2009 and 2010, and multiple field campaigns were completed near Churchill, Manitoba, Canada, as part of the Phase

A science activities of CoReH20. These campaigns aimed to evaluate the potential for dual-frequency X- and Ku-band snow
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properties retrievals in subarctic environments. Central to Churchill campaigns was deployment of the University of Waterloo
Scatterometer (UW-Scat), a novel ground-based radar system analogous to the proposed configuration of CoReH20 (King et
al., 2012). In Europe, ESA initiated the deployment of SnowScat (Werner et al., 2010), a stepped frequency, fully-polarimetric
ground-based radar in a series of campaigns in the boreal forest zone in Northern Finland (Lemmetyinen et al., 2016). The
campaign was called NoSREx and operated SnowScat over four winter seasons, complemented by passive microwave
radiometry and regular snow microstructural observations. These campaigns have been instrumental in enhancing our
understanding of snow-microwave interactions and providing data to develop and evaluate forward models simulating
backscattering from snow cover (King et al., 2015; Tan et al., 2015; Proksch et al., 2015a), as well as developing retrieval
approaches (Cui et al., 2016; Lemmetyinen et al., 2018).

Previously, in section 3.1.1, we have made use of the NoSREx campaign 6 channels of backscattering data of VV at 10.2 GHz,
13.3 GHz and 18.7 GHz, and HV at 10.2 GHz, 13.3 GHz and 18.7 GHz in comparisons with the simulation results of
bicontinuous-DMRT models. The comparisons have validated both the ground campaign measurements and the physical
models (Tan et al., 2015).

Recent ground campaigns include APRESS in which the ESA WBScat instrument, a full-polarization radar operating at 1-40
GHz, was deployed for a full winter season in 2019-2020 measuring an Alpine snowpack in Davos, Switzerland. For the winter
0f 2020-2021, the instrument was set up in Sodankyld, Finland, to collect data over a sparsely forested site. These sensors and
deployment have generated and will continue to generate critical datasets for characterizing the radar backscattering of snow,
the effects of rough surface scattering, and forests. They will help to advance retrieval development when coupled with

advancements in field methodology and forward modelling capabilities.

3.2.2 Airborne experiments and signatures

Airborne campaigns (listed in Table 3) provided the first experimental demonstration of the sensitivity of Ku-band polarimetry
scatterometer (POLSCAT) backscattering to SWE (Yueh et al.,, 2009). CoReH20 provided further impetus for the
development of new airborne sensors. The ESA SnowSAR (a dual-polarization, airborne, side-looking SAR operating at X-
and Ku-bands (Coccia et al., 2011; Meta et al., 2012) was deployed at several sites in Northern Finland, the Austrian Alps,
Northern Canada and Alaska between 2011 and 2013. The purpose of the flight campaigns was to collect data over a range of
climatological snow classes and land cover regimes. All flight campaigns were supported by extensive measurement of snow
properties, including vertical profiles of snow stratigraphy and microstructure. The campaigns have enabled the further
assessment of e.g., vegetation effects on backscatter (Cohen et al., 2015; Montomoli et al., 2016), the effect of spatially variable
microstructure (King et al., 2018) and further elaboration of modelling and retrieval capabilities (Zhu et al., 2018). Figure 10
demonstrates the effect of changing snow conditions on the observed Ku-band co-polarized backscatter during two of the

SnowSAR flights in Finland.
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Figure 10: Demonstration of observed Ku-band VV-pol backscattering from two consecutive SnowSAR flight campaigns in
Sodankyli, Finland. The difference in backscatter is depicted on the right, with red implying an increase. Increases of measured
backscattering are correlated with the increase of SWE. The measured SWE between the flights increased on average by 41 mm in
non-vegetated areas, which show the highest increase (Figure adapted from Lemmetyinen et al., 2014).

Recent airborne campaigns including SnowEx 2017, SnowEx 2020, and TVCExp 2019 have deployed a new generation of
airborne systems to address known uncertainties including penetration in dense vegetation, background interactions, and
InSAR applications (Table 3). As part of ongoing research at Trail Valley Creek, a new Ku-band InSAR (13.285 GHz)
developed by the University of Massachusetts was deployed during the winter of 2018-2019. This system was developed to
allow rapid deployment aboard common commercial platforms, leading to three successful acquisition periods throughout the
winter. Coupled with objective measurements of snow microstructure and a distributed network of soil permittivity sensors,
these data are now being used to develop InSAR and backscatter retrieval methods for future missions. The Snow Water
Equivalent SAR and Radiometer (SWESARR) is a tri-band synthetic aperture radar (SAR) and a tri-band radiometer. Both the
active and passive bands utilize a highly novel current sheet array (CSA) antenna feed. SWESARR has three active (9.65,
13.6, 17.25 GHz) and three passive (10.65, 18.7, 36.5 GHz) bands. Radar data are collected in dual polarization (VV, VH)
while the radiometer makes single polarization (H) observations. During SnowEx 2020, NASA Goddard’s SWESARR
demonstrated for the first time that X-band, low Ku-band and high Ku-band SAR acquisition can be made through a single
antenna feed. Data collected during this campaign coincided with detailed measurements of vegetation structural properties
and under canopy snow properties that will be critical to address the effects of vegetation and forests in SWE retrieval.

Airborne campaigns are planned for 2022-2023 for both Canada and US SnowEx. These future campaigns will address the
following questions: (a)What is the maximum forest density for retrievable SWE at Ku-band? Recent full wave simulations
using Maxwell equations suggest that penetration through forests is higher than predicted by past models of radiative transfer.
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(b) What is the saturation maximum depth retrievable SWE at X and Ku-bands? Using cross polarizations, can we have higher
depth of penetration such as 1 meter to 3 meters? (¢) What is the impact of stratigraphy and how snow physics models can
help to retrieve SWE in the presence of stratigraphy? (d) How permafrost and the changing freeze depth in some areas would
affect the surface scattering contributions and the ability to subtract surface scattering estimated under snow-free conditions.
With 6 measurements in SWESARR which are co-polarization, and cross polarization at three frequencies, what are the
optimum combinations of polarization and frequencies for SWE retrieval?

Table 3: summary of airborne deployments of active microwave sensors for snow studies.

Airborne Data
Dates Sensor Freq. Pol. Location/snow regime
Campaign availability
2002, JPL VV, VH, Colorado, USA / Alpine &
CLPX-I, -1 13.95 GHz NSIDC
2003 POLSCAT HV, HH prairie
Sodankyld and Saariselkd, ESA EO
2010 ESA 9.6,17.2 ) ) )
SnowSAR VV, VH Finland / Taiga & tundra campaign
-2011 SnowSAR GHz
portal
ESA EO
2011 ESA 9.6,17.2 Leutasch, Mittelbergferner,
AlpSAR VV, VH campaign
2012 SnowSAR GHz Rotmoos, Austria / Alpine
portal
2012 ESA 9.6,17.2 Trail Valley Creek, NWT, Not yet
TVCExp VV, VH
-2013 SnowSAR GHz Canada / Tundra available
SnowEx ESA 9.6,17.2 Grand Mesa, Colorado, USA /
2017 VV, VH NSIDC
‘17 SnowSAR GHz Alpine
2018- UMass Ku- 13.285 Trail Valley Creek, NWT, Not yet
TVCExp \A%
19 InSAR GHz Canada / Tundra available
9.65, 13.6,
SnowEx NASA Grand Mesa, Colorado, USA /
2020 17.25 VV, VH NSIDC
20 SWESARR Alpine
GHz

*ongoing
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3.3 Linking field measurements of snow with theoretical models of snow-radar interactions

Quantification of physical snow processes through objective measurements has revolutionized our understanding of
675 microwave interactions with complex snowpacks at multiple scales (millimetre to kilometre). Objective methods of
determining snow grain size in the field have only been available over the last decade. Prior to this, grain size was typically
quantified visually with a hand lens or microscope (Fierz et al., 2009) and could be subject to errors of up to 1 mm in grain
size estimation (Leppénen et al., 2015). Laboratory processing methods include gas absorption (Legagneaux et al., 2002) and
thin section imaging techniques (H. Bader et al., 1939). As described in section 3.1.1, u-CT measurements of snow samples
680 obtained in the field have revolutionized our ability to model EM interaction from snow. Today, field-based instruments can
quantify the snow specific surface area (SSA) rapidly in the field either through near-infrared reflectance (e.g. Gallet et al.,
2009) or penetrometry (Proksch et al., 2015b). SSA is often related to an effective sphere diameter, that is the diameter of a
sphere taken-with the measured SSA (Mitzler, 2002). In practice, these metrics must often be scaled to match output from

radiative transfer models (Montpetit et al., 2012). In addition to advances in sensors, experiement design has advanced

685 significantly in support of radar remote sensing measurements: Appendix A provides an example experiment design that has

been used in recent field campaigns. In practice, the time requirements of faster traditional measurements with longer history

must be weighed against the newer measurements which are sometimes more time consuming with fewer trained operators.

Here, we describe how this new knowledge of microscale variability over seasonal timescales can be leveraged to inform

algorithms applied at landscape-scales.

690 3.3.1 Spatial variability of field measurements

Geol tad +. tol ¢ £16 bilitu of 1 et 1 faot o (airh + 3}
T P PP P 7
La) " " 1 £ 4 £ danth 49 N Danat tar (QNADY to ¢ +
L L
todizza dicteilo £ 1 o itlaia oinls the Tl FPNIEe 1o Lo WWUNDS t of danth ond QAMD
P P PHop g i
flac 1 tad ol N 1 N i N (10-+_100_and 10+m\ N daof tenl nif ¢
P g S > P B T P
695 4 1: €6, Lo 4ol ] 41 1 £ sobilitn A clhostar 29 1 14 st 10+ and 100 oo bicaat
P Js P
th 4 VEPVRPIN frnl i d 1 of dantls toande £ N frol it onnt t 11 d Lo
PIS i P P 7
M to addis 1 4o ¢ 4 + all d 4 1 1 £ danth 1ilit d i d 4 1
7 i
1 £ toaodiaeo] pt bath of whiol 1 £ d b d + 1 4.d 4
7 PP g 24 7 P
1 £o0l fot Tdaall danth d 4 d 1 tio danth L N
P ¥ P P S P
700 i 4.GPS 1di 7 to 10 M. bac (St EREIN| 2019\ Wh £ + :
P P 7 g > o 5r T < 5 A P
1 GDS cotallis " 1 d thon 190 ‘ Lol 4 Lo 1
P P T T 7> P
d d d d walot 4 ] boolut 141 A £ danth £ 1 ()
5 5 P 7 P 7
Lased din 5 £ ool Wl 4 1 4+ + dot d d donth
P P i

26



a)
Coincident along-track
airborne or sled-based radar
100m
®  Snowpit
e SMP
® Magnaprobe
o o SSA SSA 1 Legand:
P P @ SSA SSA B ®  Temperature
[ p SSA SSA Layern
L & T o H o === AHA = e =l = = = Stratigraphy
ssA | [ ssa
IS § A =1 =1 I Snow Casting
[ e 1l e 1]s HEN
° o > |3 ssA | [ ssa Density
= e o ssA | [ ssA 1
g L f el
2] e P ® [ssa][ssa ! Layer2 IceCube/IRIS
° o o ssA | [ssA
o o ssA | [ ssA | SMP Profile
o o ssA | [ ssa I
@ o o ssA | [ ssa
o " ssA | [ ssa
o o ® [ssa][5sA i Layer 1
* o o ssA | [ ssA |
o o N2 ssA || ssa
Es Ontimal . £ s £ Lorads ’ s . .
=) P i) P i 1
fat d 1 £ e 1) 4+ f 1 gt £ SAR 4 1 4 1, £
)4 Pror s
4. 4 QAP o1l id L 1 M +a) £ £31 dat. 4 4 MM £ Taats (D 1 ot ol 20150k Jaialy
- i AN 7 P A% i 7
1 dta d 1 A 14 lats 1 4l ERN 110 S A (SC AN T ds val 1ada 4] dh diats
7 1 0 T i ﬁg AN VERS | J J J
e £ dale (Ch t+ ol 2016 Py d at al 2012} Th "I £ dat. 11t 11 £ SN P to t |
AN S B 5 s i e d
= Aigteilaitadd 1 re 4. it SAD o1 s ] M = | s 1t ry M ds
D B Herent
tackh (B ol N 1+ £ 4 1 1t 1+ N, 1N lad 1 4 A + 4. 100
T A i r J
3 1 res 14l 2 ot 3 1 Jaats £ Jaoll 1 1000 e "I 14 4l 10 gty 1 Taats
em 5
715 £ d 1 (Peal oot ol 20160 d ot N gty 1 14 Eall M 3 1l tod 10 Collat ot
i P A &l 75 P - P i P
1 (2000} 2 gt 1 1 Lty A N lad SQ A 4, . M InfiraRaod Int v Qanl RIS
EAS Al i P AS 7

27



720

725

730

735

740

745

750

ya.vii fnatit at ol N1 AD Dhat (N leaCuha ( 2012\ N CT 1 £ to (Qaly hal d
s 5 7 T 7 7
Sal 1. 2004 1 d + ol NN 4 £ 4 £31 1 £ 4 11 d 1, 1y 1o £
¥ 5 ¥ SHAL 2 P SRPTeS Hear—ay are—hsea—as—& &
1 4 £aoll otl PO & § 4 e rs o "N 4 EEPYN LT
B F T

1 M M ol il 1 1 of ot 1 nd H 41 4]y SMNP IRIS TonCyuh, 4

7 T i P g
fiaold 1 4 £ LT £+ 1 +ad

7 14 P 5
1 ool thads ¢ 410, < > + binativa £ " fraral feio Lo Lol
S N 7S 4
dintiat £, dale Tha QQA 4. d L Lot £ diotivat £ dal
aeratve-tral > G5 teProver aeeuraey H aerativetra &
AL infrarad (NIR) nhat, by o1l + d 1 1 £1 1 d " (T $ ol 2010\ and |
T 7 Py 7 24 EAn S ANala 7 7
thial folbilite, (Dot t ol 2010\ 4 1 1 hilite: of 1 d 1
R HEE 5 5 W=t —GHaRtEHRESP e 5 stratgrapny—areune—a £
it fla Tt ol IN| to of lavuar |y d 1o rtioularlu of tha on ir and d
PP g 7 7 S 7
£ Oth thode to ol " £, 1o Lot 1o + 1 £ dasl haard
- F F 5 T
locad balind (L Lt atal 9000 Anttila at ol 014N and cul 1. £ 1 dof
F 5 g 5 7 S 15
£1 LiDAR (Chahat at ol 201Q.- D tal 2019\ fraot £ " Lot fou (Malacha at gl
F AN 5 > 5 T F o J T 5
2000\ Th 1 1 hat d 1o fiagnt treilaaas £ 1 £ 1 £
i HORIVea S 30 SRE-SOH-EIve5tE it < T et =
th 4 £ dialaat fonte hat deail

At the landscape scale, understanding snow spatial variability is of critical importance with respect to the development of
methodologies that can observe and model discrete and bulk properties of snowpack with low uncertainty. Mountains, hills,
and valleys exert aerodynamic roughness controls on snowfall trajectory, enhancing snow accumulation and redistribution
processes often dominated by blowing snow and sublimation. Exposed topography (e.g. alpine areas or open upland plateaus)
are typically scoured of snow while enhanced accumulation is found in gullies or on the lee-side of plateaus (Pomeroy et al.,
1993; Liston and Sturm, 1998). Once accumulated, the persistence of snow on the landscape is influenced by terrain slope and
aspect which control a snowpack’s energy budget; the incoming heat energy to north-facing slopes is radically different to that
for south-facing slopes that can lead to pronounced variations of SWE at the landscape scale (Lopez-Moreno et al., 2014).
Local slope angles also cause changes in the incidence angle of radar backscattering, which may impact assumptions
underpinning microwave retrieval algorithms because rough surface scattering has a strong angular dependence.

The distribution of tree canopy, woody biomass, and the fragmentation characteristics of the vegetation stands play a significant
role in how snow accumulates in a forested landscape. Metrics describing plant functional types (e.g. deciduous/coniferous or
broadleat/needleleaf, canopy densities and heights, etc.), are used to quantify spatial difference in simulations of sub-canopy
snow and microwave radiative transfer. Correcting for forest microwave attenuation has shown that forest transmissivity plays

an important role in the observability of the sub-canopy snow. However, transmissivity changes through the season as the
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woody biomass undergoes progressive cooling at temperatures below 0° C (Li et al., 2020). Moreover, observed transmissivity
of a tree stand is also impacted by the forest gap fraction or forest fragmentation. Landscape metrics can be used to characterize
these ecological factors using high-spatial-resolution active and passive optical observations (Vander Jagt et al., 2013). The
impact of low stand shrub vegetation is also important for snow accumulation in subalpine, tundra and sub-tundra regions, and
in the understorey of forested environments. Shrub-dominated landscapes retain snow more effectively than graminoid plant
cover but less than forest-covered regions (Marsh et al., 2010).

The soil type and state affect microwave observations of snow at the landscape scale because, at microwave wavelengths, the
soil relative permittivity can play an important role in how reflected or backscattered energy is attenuated at the snow-ground
interface. Generally, relative permittivity of soil is controlled by the texture, moisture content, and thermal heat content of the
soil. Seasonal change in soil water state (liquid or frozen), is also important since relative permittivity changes significantly as
the surface soil moisture changes state. This is all complicated by the variability in soil type at the landscape scale, and
especially the mix of organic and inorganic content; peat soil landscapes are very complex in their microwave response whilst
inorganic soils are somewhat simpler to characterize. In agricultural landscapes, especially post-harvest, the surface soil layer
tends to be more spatially uniform and freeze earlier, making the variations in relative permittivity of the soil relatively
constant.

In SWE retrieval, the snow-soil rough surface scattering and the forest effects on transmission and backscattering give bias in
radar measurements. It is important to evaluate the magnitudes of these effects and how such bias in radar measurements vary

with time.

3.3.2 Seasonal variability

Temporal change in snowpack properties have important implications for radar backscatter, in particular: 1) snow mass change,
2) metamorphism of snow microstructure, and 3) liquid water content and refreeze (ice lenses). High temporal resolution
(hourly) measurement of snow mass accumulation and ablation using snow pillows, e.g. SNOTEL (Yan et al., 2018), or passive
gamma radiation SWE sensors (Smith et al., 2017) provide excellent evaluation data to test SWE retrieval algorithms.
However, such point measurements of SWE are spatially limited and seasonal variability in SWE is more commonly estimated
through depth measurements, at a point using an acoustic sounder or spatially distributed from lidar, and periodically measured
or modelled snow density. Uncertainties in modelled snow densities commonly dominate uncertainties in measured depth
(Raleigh and Small, 2017).

Seasonal change in snow microstructural properties can strongly influence scattering of radar backscatter, especially in
snowpacks of which depth hoar is a significant component. Constraining the proportions of snowpacks that have different
scattering properties (e.g. surface hoar, wind slab, consolidated layers, indurated hoar or depth hoar) is required to prevent the
retrieval of SWE from backscatter becoming an ill-posed problem. Frequent (weekly) objective profiles in snow pits (section
5.3) are optimal, however, in lieu of in-situ pit measurements, thermistors situated at different heights above the ground that

become sequentially buried in accumulating snow allow calculation of temperature gradients within the snowpack. Consistent
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temperature gradients can be used as a proxy for likely snow crystal type (Domine et al., 2008): rounded (<10° C m!), facets
(10-20° C m™"), depth hoar (>20° C m™'). Where internal snowpack temperatures are not available, 2 m air temperatures and
near surface soil temperatures can provide a bulk estimates of snow temperature gradients.

Profiles of liquid water content (LWC) are measured in-situ through insertion of dialectic devices (Denoth, 1994; Sihvola and
Tiuri, 1986) into a snowpit wall. LWC can also be retrieved through non-invasive techniques using only GPS signal attenuation
(Koch et al., 2019) or electrical self-potential (Thompson et al., 2016). Where mid-winter melt events are observed, either
directly from LWC measurements or via inference from meteorological inputs, the chances increase of ice lens formation
within the snowpack, which an important consideration for SAR backscatter retrievals. Snow wetness affects the radar
backscattering (Stiles and Ulaby, 1980). The dielectric constants of wet snow have been modelled as a function of snow

wetness (Ulaby and Long, 2015).

4 Characterization of snowpack properties using radar measurements
4.1 Describing the retrieval problem

In early studies, empirical models were proposed for SWE retrieval (Ulaby and Stiles, 1980; Drinkwater et al., 2001). These
are unsuited for all snow types—e.g., ephemeral, prairie, maritime, and mountain snow, etc. (Sturm et al., 1995). Later
investigators applied multiple channel measurements to determine snow parameters (Shi and Dozier, 2000; Rott et al., 2010).
Recent algorithms (Cui et al., 2016; Xiong and Shi, 2017; Lemmetyinen et al., 2018; Zhu et al., 2018; King et al., 2019) are
based on physical models in which RTM are used. Physical model-based retrieval algorithms consist of three parts: 1) a
physical model of snow volume scattering, 2) estimation of a priori parameters, and 3) a cost-function inversion of the physical

model to obtain SWE. An important limitation historically has been that there are fairly few in situ and airborne datasets on

which to evaluate retrieval algorithms. This limitation is rapidly being overcome by recent observations, as described in section

3.2. In this section, we will describe the estimation of a priori parameters and SWE retrieval procedures.

Volume scattering of snowpack is a function of parameters including SWE, density, snow microstructure, and stratigraphy.
Paramount for the success of the retrieval is the ability to predefine or constrain some of these unknown parameters, in
particular the parameters that are used to characterize the snow microstructure. Based on the RTM, volume scattering is a
function of snow depth, density, snow microstructure and layering structure (Rott et al., 2010; Zhu et al., 2018; King et al.,
2018). A challenge is the non-uniqueness in inversion as different combinations of SWE and parameters of snow
microstructure can give similar backscattering (Tsang et al., 2004; King et al., 2018). 4 priori estimates of parameters of snow
microstructure can be used to improve the accuracy of retrieval by constraining the cost function with estimated statistical
uncertainties.

Assuming normal distributions for the errors in forward simulations and observations of backscatter, the cost function of a

maximum likelihood estimate for SWE and snow microstructure can be formulated as follows:
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where U{"’S are radar observations from the ith channel, and N is the total number of channels for measurements. In CoReH20,
N=4 for VV and VH polarizations of X- and Ku-band. The backscattering predictions of snowpack are given by a;"°%!. In
the above, siz are the error standard deviations of the radar measurements. The parameter x is related to snow microstructure,
such as single scattering albedo, correlation length, and grain size. s2 is the variance of a priori constraint. In Cui et al. (2016)
and Zhu et al. (2018), s; are assumed to be 0.5, which are based on the error standard deviations of radar measurements. w;
and w, are the weighting factors in the retrieval. Dual frequency retrievals are using either X- (9.6GHz) and Ku-band of 17.2
GHz as in CoReH20 or dual Ku-band of 13.6 GHz and 17.2 GHz as currently being proposed (see Section 6). However, cross
polarizations have not been fully utilized and algorithms have been using the two co-polarizations of the dual frequency
measurements. The two frequency measurements exploit the frequency dependence of volume scattering in snow. The two
parameters that strongly influence the backscattering measurements are SWE and snow grain size. Then the problem becomes

retrieval of two parameters from two measurements.

The proposed algorithm in equation (3) has built off the CoReH20 (Rott etal 2010,approach. Such physical based retrieval

approaches are quite general with (i) matching the data to the physical models , and (ii) a priori constraints on parameters.

The actual implementation can have wide varieties of options and the importance is the validation against datasets of tower

and airborne measurements. Since the 2012 CoREH20 ESA report, there have been significant airborne and ground
campaigns, as shown in Tables 2 and 3 providing much more data than were available prior to CoReH20. In Section 4.3 , we

will describe three algorithms that have been used successfully (Lemmetyinen et al., 2018; King et al., 2019, Zhu et al., 2018

Zhu etal 2021) . In particular , we will describe in more details the algorithm in Zhu etal 2018, Zhu etal 2021, and describe the

validations with a series of tower and airborne measurements. In the COREH20 cost function, there are several parameters

that require a priori estimates. The algorithm in Zhu etal 2018 , 2021 is more closely related to the NASA SMAP radar

algorithm, by using regression to electromagnetic model simulations over a wide range of parameters, the number of

parameters is significantly reduced. The strategy of this approach is to reduce the burden of a priori estimates of parameters

for every scene. Nevertheless, it is important to stress that algorithms are still maturing.

4.2 Constraining the retrieval problem with prior information

Some of the challenges in retrieving snow properties from radar measurements can be addressed by using so-called “prior

information”. Prior information introduced in a retrieval problem or can be thought of in a Bayesian sense as discussed by

Pulliainen (2006);-, or as “regularization”. The cost function (equation 3) applies prior information Aas described in the

retrieval algorithmsection 4.1;, - HEOFE where x_represented a snow microstructure related metric for which

prior information is applied based on the final term on the right of equation 3. More generally, priors could be applied to
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multiple terms in the retrieval problem including SWE, as done in the proposed CoReH20 algorithm (ESA et al., 2012), or in
a multi-layer sense, as illustrated for passive microwave remote sensing by Pan et al. (2017). associated-with-the 2™ term-in

The degree to which prior information is applied to a problem can be thought of as a spectrum: the most minimal use of prior

information is to remove the prior from the objective function but to specify a range of possible values for each prior, such as

done by Thompson and Kelly (2021a). Specification of a prior on either grain size or single-scattering albedo can be considered

moderate use of a priori information. The CoReH20 mission proposal specified an algorithm with prior on effective grain
radius and SWE (ESA et al., 2012). building from the approach of the GlobSnow data product (Luojus et al., 2021). Cui et al.
(2016) similarly specified priors for both optical thickness (an analog for SWE) and single-scattering albedo (an analog for

microstructure). Zhu et al. (2018) built from the approach of Cui et al. by requiring only a single prior on single-scattering

albedo. The algorithm of Zhu et al. requires only a “classification” of high or low single-scattering albedo. Maximal use of a

priori information would be to use a dynamic simulation of snow microstructure processes to inform the retrieval. The model

could be run “offline” and provide information on microstructure, or radar observations could be assimilated directly as done

by Bateni et al. (2013, 2015).

Several studies have attempted to characterize the required precision of the priors on microstructure. ESA et al. (2012) found

that an effective grain radius would need to be known with 15% of the true value. Rutter et al. (2019) similarly showed that

microstructure would need to be known to within 10-15% in order to accurately retrieve SWE for field data in a tundra snow

environment. These requirements are daunting. However, other approaches have indicated that microstructure information

may not be required to be so precise. Thompson and Kelly (2021a) showed a successful inversion of SWE from in situ radar

measurements in a prairie snow environment using a cost function specified with only minimal prior information (as defined

the previous paragraph). The algorithm of Zhu et al. (2018) requires only the specification of whether the single scattering

albedo is high or low: i.e. because the specification of a priori information is changed from a continuous to a categorical

problem, the burden of a high precision prior is much alleviated. Bateni et al. (2013, 2015) demonstrated that maximal use of

prior information in the context of an assimilations scheme could provide prior information from weather data and snow

physics to successfully estimate SWE. Thus, even though the radiative transfer equations are highly sensitive to microstructure

and sensitivity analysis would indicate that priors must be specified to high precision, successful SWE inversions have been

demonstrated without high precision priors. In the following subsections we review two ways of specifying prior

information.
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4.2.1 Leveraging snowpack information and snow classes

The simplest approach to specifying microstructure prior information for global SWE retrievals is to recognize the differences

in snow types globally. The classification of Sturm et al. (1995) and Sturm and Liston (2021) specify differences in snow

texture based upon temperature, precipitation and wind speed. Wind speed is mediated in many environments primarily by

forest canopy height, and thus these three indicators can be specified by available land cover and meteorological information

globally. Clearly defined physical processes such as vapor flux driven by temperature gradient link these three meteorological

quantities to observable snow properties, such as the number of layers, vapor transport through the snowpack, and

microstructure properties such as grain size. Sturm and Liston (2021) specify seven snow classes: tundra, boreal forest, prairie

montane forest, maritime and ephemeral globally at approximately 300 m spatial resolution. The relevance to microstructure

properties is clear: tundra snow (e.g.) has far larger snow crystal size in its depth hoar layers than do taiga snow. In order for

radar backseattering-and retrievalRretrieval algorithms - ~to leverage the pre

priori estimates to guide SWE retrievals, objective microstructure information would need to be specified for each snow class.

dicted snow class to define a

The updated snow class of Sturm and Liston (2021) and the maturity of the methods to objectively measure microstructure
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described in section 3.3 have now made this a possibility that will guide SWE retrieval efforts from radar measurements in the

future.-

4.2.2 Snow microstructural models

4.2.2.1 Background

Across the electromagnetic spectrum, the interaction of radiation with snow cover is mediated by snow microstructure (West
et al., 1993; Wiscombe and Warren, 1980; Nolin and Dozier, 2000). However, due to differing penetration depths, visible and
near-infrared measurements are sensitive to grain size at the surface, whereas microwave measurements are sensitive to grain
size at depth (Hall et al., 1986). The sensitivity of radar measurements to microstructure properties has been demonstrated by
both models (Xu et al., 2012; Proksch et al., 2015a) and experiments (King et al., 2015; Rutter et al., 2019). Algorithms to
retrieve SWE from radar backscatter typically solve for both SWE and some measure of snow microstructure (e.g. single-
scattering albedo, correlation length) and regularization terms or prior information on microstructure is often included in the
retrieval cost function (as described in the previous section; see Rott et al., 2010). In addition to important advances in
measuring snow microstructure in the field, as described in previous sections, new work to simulate the evolution of snow
grain size has indicated great potential for improving radar retrieval algorithms of SWE. In the cost function of retrieval

algorithm, the a priori estimate term is :VT’; (x — x)? with grain size being the most important a priori parameter.
X

To prevent confusion, it is important to begin with clear definitions for snow microstructure. Snow is a continuous, granular,
bonded medium, composed of irregularly-shaped ice crystals, water vapor, liquid water, and void areas. The term
“microstructure” commonly refers to snow grain size, shape, bonding, and distribution. Snow microstructure evolves both
vertically within a snowpack and temporally throughout the snow season (as well as exhibiting significant horizontal spatial
variability). The dendritic forms of new snowflakes sublimate, leading to a wide range of rounded or faceted shapes, depending
on snowpack conditions. For many years, snow microstructure was referenced by the term “grain size”. However, because
“grain size” is an imprecise term, and because several metrics of snow microstructure play a role in radar backscatter, we will
here simply refer to “snow microstructure” to encompass all measures of the snow medium; see Métzler (2002) for a formal
description of the various microstructural quantities. The most important and objective measure of snow microstructure is the
snow specific surface area (SSA), which is often defined as the surface area of the ice-air interface to the mass of a control
volume of snow. SSA provides an objective measure that explains much of the microwave scattering processes. However,
microwave interaction with microstructure cannot be entirely summarized by SSA; instead, radiative transfer is controlled by
the spatial autocorrelation function (SAF) of the ice-air interface (Lowe and Picard, 2015). In the random medium model, the
microstructure is described by a correlation function (Métzler, 2002). In the bicontinuous medium model and the spherical
scatterers models with stickiness, spatial correlation functions (SAF) have also been derived and have been related to the grain
size and the aggregation parameter or the stickiness parameter (Chang et al., 2016). Thus, all microstructure characterizations

in electromagnetic models can be related through the SAF. The SSA is a measure of the SAF at only the shortest spatial lags
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(e.g. ~10 pm); radar waves also respond to SAF at longer lags, (~100s pm). The SAF can be estimated using laboratory
methods, such as micro-CT. Grain shape can play an important role in scattering, especially for the cross-polarization radar
terms (Yueh et al., 2009). In summary, SSA has emerged as a practical and important microstructural property that both
explains much variability in microwave scattering and can be measured in the field.

4.2.2.2 Microstructure evolution schemes: how they work

SSA evolves based on well-understood physical properties, providing a source of information to better inform SWE retrieval
from Ku-band radar. Accurately modelling snow microstructure is not trivial, but decades of pioneering work by Colbeck
(1982), Sturm (1989), Brun (1989), Brun et al. (1992), and Jordan (1991), among others, led to the development of snow
metamorphism laws rooted in mass and energy conservation. The gravitational settling and metamorphism laws govern the
temporal evolution of snow microstructure and its mechanical (e.g., snow stratification and shear stresses) and thermal (e.g.,
albedo and emissivity) properties. The metamorphism laws describe three types of grain growth mechanisms including: kinetic
growth, equilibrium growth, and melt metamorphism (Lehning et al., 2002; Huang et al., 2012); kinetic and equilibrium growth
are sometimes called constructive and destructive metamorphism, respectively.

Destructive metamorphism describes movement of water vapor from small grains with high curvature to larger grains with
lower curvature. As a result, small grains and dendritic branches of large snow crystals evaporate and form larger and more
spherical crystals. Constructive metamorphism is primarily driven by temperature gradients within the snowpack, resulting in
direct vapor transport from warmer to colder surfaces. Sturm and Benson (1997) documented these processes in the Arctic.
The snowpack temperature gradient, in turn, is simply the difference in temperature between the ground and the air, divided
by the snowpack depth; typically snow covers insulate the ground, leading to soil being warmer than the ground. When snow
is wet, the growth rate accelerates, compared with dry snow conditions. These fundamental physical processes have been
explored for decades and solutions to the governing equations exist in a range of physical models.

4.2.2.3 Microstructure simulation accuracy

Snow microstructure model accuracy has improved significantly in recent decades, driven by improvements of field
measurements and model techniques. Morin et al. (2013) used objective field-based measurements of snow specific surface
area using the DUFISS instrument to evaluate the many-layer CROCUS snow model. Figure 11Figure12 clearly shows that
the model captured the seasonal evolution of SSA. The r? fit values between observations and simulations ranged from 0.6 to

0.74.
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Figure 11: Observed and interpolated SSA observations (a) and SSA simulations (b). From Morin et al. (2013). The small white
marks are the observations.

Use of microstructure simulations to constrain SWE retrievals require the additional step of coupling the microstructure
simulation scheme and the RTM. Such studies have been explored more extensively in the context of passive microwave
remote sensing (Kontu et al., 2017; Langlois et al., 2012; Larue et al., 2018). Exploring the accuracy of a coupled radar
backscatter and snow physics model is an area for future work.

4.2.2.4 Implications for microwave remote sensing retrieval

Given the advances in microstructure modelling skill, retrieval of SWE from radar backscatter stands to benefit from
incorporation of prior information on snow microstructure provided by snow physics models. Prior information could be
provided in at least two ways. First, the radar backscatter could be assimilated directly into a coupled snow physics and RTM.
This approach has been shown to be effective in assimilating passive microwave radiance. Assimilating backscatter has been
demonstrated by Bateni et al. (2013, 2015) in the context of assimilating in situ backscatter observations. The second way that
models could provide information to constrain SWE retrievals would be simply as a regularization term. In other words, the
simulation model can produce a single estimate of a microstructure parameter such as SSA and the cost function could
incorporate this as a priori information in Bayesian retrieval (as shown in equation 3 above).

4.2.2.5 Challenges and Future Work

In actual implementation of retrieval algorithms for global monitoring, there are needs of auxiliary information and a priori

parameters. There are also needs on how to combine all these a priori information effectively in a retrieval algorithm.

Computational efficiency needs to be achieved so that the retrieval algorithm can be operated in real time. Nonetheless with

advances in computational resources, and examples of complex ground-processing segments from recent satellite missions, it

can be envisioned that the latest advances in snow physics modeling and knowledge of microstructure can be applied to a

future global satellite mission.
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There are challenges associated with coupling snow physical models and RTMs. First, SWE simulations from snow physical
models are often inaccurate, due to biases in the precipitation forcing. This happens mostly when information from weather
stations is not available, and snow models must rely on atmospheric reanalysis data that are subject to biases, especially in the
precipitation amounts (Lindsay et al., 2014; Wrzesien et al, 2019b). Recent modelling work in Grand Mesa, CO shows however
that biases in the simulations and analysis of higher resolution (~ 1km) numerical weather prediction models are significantly
reduce leading to modelled SWE within +10% of the observations (Cao and Barros, 2020). Changes in SWE have an immediate
effect on several other snow properties, particularly snow microstructure, a critical parameter in radiative transfer models.
Second, in snow physical models, SWE is inversely related to the grain size. When SWE decreases, temperature gradients
increase and grain growth is accelerated. In radiative transfer models, radar backscattering increase with SWE and with grain
size. Backscattering is directly proportional to SWE and grain size. In SWE retrieval, SWE and grain size are independent
parameters. When SWE increases and if the grain size stays constant, radar backscattering increases. However, in snow
physical models, when SWE decreases, grain size increases and radar backscattering can increase or decrease due to the
combined effects of SWE and grain size. This ambiguity emerges due to the nature of SWE, microstructure and backscatter
relations. An ongoing study has found that even for small changes in simulated SWE (+/- 10%), snow microstructure is affected
enough to mislead the retrieval algorithm and deteriorate the SWE retrievals even further (Merkouriadi et al., accepted). These
challenges can be addressed by introducing appropriate physical constraints to the retrieval algorithms.

There are multiple areas where simulations must continue to improve, including demonstrating skill in the context of varying
degrees of forest cover. Additionally, most simulations focus on estimation of SSA. While SSA has been shown to be an
adequate summary of radiative transfer properties most of the time for visible and near-infrared remote sensing of clean snow,
this is not the case in the microwave spectrum. To couple SSA to input to the RTMs, SSA must be related to SAF correlation
length. Another subject of study is to use micro-CT to extract more information such as to relate to SAF. There are potentially
useful synergies to be explored with retrieval of surface microstructure from visible and near-infrared measurements, in the
context of radar retrievals of SWE. The retrieval algorithm shown earlier requires a classification rather than a precise value
of grain size. Thus, the study of the error tolerance for estimations of SSA should also be pursued. Retrievals using a two-layer
physics model are the next step (King et al., 2018). Significant effort will be needed to address the question of how many
layers are necessary to capture small changes in snowpack backscatter behavior and SWE, and how to solve the inverse

problem in multi-layered snowpacks the number of and vertical structure of which changes in time.

4.3 Solving the retrieval problem: three-example algorithms

Since the 2012 CoREH20 ESA report, there have been significant airborne and ground campaigns as shown in Tables 2 and

3 providing much more data than were available prior to CoReH20. There presently three-four physical physical model-

based retrieval algorithms that have been applied successfully (Lemmetyinen et al., 2018; Zhu et al., 2018, King et al., 2019).

All three four algorithms_utilize the frequency dependence of snow volume scattering for X-band and the two Ku-bands. The
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importance is the validation of the algorithms against the tower measurements listed in table 2 and the airborne measurements

listed in Table 3.

Lemmetyinen et al. (2018) used first-propesed-a SWE retrieval scheme using both radar and radiometry measurements. The
retrieval is based on the model of the expanded Microwave Emission Model for Layered Snowpack (MEMLS3&a) for
simulation of both radar and radiometry observations (Proksch et al., 2015a). In the algorithm, the snow microstructure is
represented by the effective correlation length, which is first retrieved with radiometry and in situ snow depth measurements.
Then, retrieved correlation lengths are applied to constrain the SWE retrieval with radar observations. The algorithm has been

validated with the Finnish NoSREx tower dataset listed in Table 2.

King et al. (2019) propesed used a SWE retrieval algorithm which is a coupling of snow physics model, snow hydrology model

and the physical model of predictions by SMRT (Picard etal 2018) based on two-layer snow modelling for dual Ku-band radar

observations. The two-layer model accounts for the small grain size of new fallen snow versus the larger grain size beneath

the new fallen snow. :-the

of radar measurements._The correlation length is based on a priori information from the snow physics model. The ancillary
configuration parameters and a priori parameters of snowpack for the retrieval are provided by the snow hydrology model and

the snow physics model. Ensembles are created and the minimization of the cost function is exercised using equation (3) with

the uncertainties defined for the a priori parameters. Fh latientenath-is-based priorind Hentrom+th

-The algorithm was applied to
sueeessfullyto SWE retrieval from data taken in the tundra environment from 2012-2013 of SnowSAR over TVC listed in
Table 3. It is presently being applied to the UMass Ku-InSAR data taken over TVC in 2018-2019 as listed in Table 3+

Recently, Thompson and Kelly (2021a) applied a new algorithm using no prior information in the cost function, in which an

iterative search algorithm was run using the MEMLS 3&a model (Proksch et al., 2015a). They applied the algorithm in both

one- and two- layer model on Canadian prairie snowpacks near agricultural fields. They were successfully able to retrieve

SWE from in situ radar measurements.

4.4 Steps of Retrieval Algorithm and results

We next describe the third algorithm in Zhu etal 2018 and Zhu etal 2021 in more details. The algorithm has been applied and
validated with 78 data sets in Tables 2 and 3. The results will be summarized at the end of this section. three sets-of airborne

1o AR d o-d o o om-the 20 nd 0 MHIIER n Hinland (NMao o 0 . hano o 014
SHOWD < o o aRpae a a o, 4 =2

the-third dataset-isfromthe 2013 campaign-in-Canada-(cinget-al- 2018}t is presently being applied to two more airborne
datasets (Table 3) : SnowSAR 2017 over GrandMesa and UMass Ku-INSAR of TVCEXp in 2018-2019. The algorithm has

similarities to the SMAP radar retrieval algorithm which has been applied to 6 months of SMAP radar globally from Jan 2015

38



050

055

060

065

to July 2015. An essence of the SMAP radar algorithm (Kim etal 2017) is to use regressions and classifications to reduce the

backscattering sigma0 to be dependent on only three parameters: soil moisture, rms height of roughness and volumetric water
content (VWC)

n—The SWE retrieval algorithm

has three distinct features: 1) surface scattering are subtracted from radar observations; 2) the a-parameterized bicontinuous-
DMRT model is used to derivedfrem regressions is-developed-to simplify the dependence on parameters the-retrieval- with
the result that the copolarizations at X band and Ku band depend on only two parameters: SWE and scattering albedo. with

and 3) classification of snowpack into two classes (low albedo and high albedo) to mitigate the non-unique inversion problem.

Tha ol 141 hocl Liad dolidatad il ¢l to of oidly Q CAR doto T datacat. £ 4had011 4

2012 3 13- il P2 WAV, P + ol 2019 (1 + ol N1 4N ditha thie-d dot $ 1o £ tha2012 H Al d
T - 5 = 7

=)

2018. In Figure 123, we give a simplified flow diagram

Volume scattering gy and Regression
Oy in terms of only wy between outputs Generate LUT
Rada:));taand A\ and Ty fromLUTto  «<—— based on DMRT
(parameterized bi- reduce number simulations
continuous -DMRT model) of unk
Classify the data into ‘ s
Subtract rough two groups: Tw? ditiion
S —— prior albedo —
surface scattering Snowpack with high
0.65 or 0.35
or low albedo

Minimize cost function

Retrieve SWE
and wy

Figure 12: Simplified flow diagram of the algorithm; two measurements to retrieve two parameters with a prior binary choice of
albedo. No prior estimate of SWE.
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4.4.1 Steps of Retrieval algorithms
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Figure 13: Canadian SnowSAR measurements compared with the Bic-DMRT LUT. Figure from Zhu et al. (2018).

In step 1,. Subtraction of rough surface scattering : —Tthe rough surface contributions are subtracted from the radar

measurements. The subtraction procedure is as described in 3.1.2 with several options. acth 2
of the snow/soilinterface improves thes nve o f SUE . . 2016: Xiong and Shi.

B -

We show the case An-example-is-given—-with-the SnowSAR data collected from the 2013 Canadian TVC campaign (King et
al., 2018; Zhu et al., 2018) in Figure 13443. SnowSAR flights were performed on April 8 and 9, 2013 crossing each of the
TVC sites. The SnowSAR collected data are shown in purple dots. The bicontinuous-DMRT simulations LUT are shown in

blue dots. The SAR data show a bias when compared with X- and Ku-band DMRT simulations. The bias is attributed to the

contributions from surface scattering . Since there are no measurements on the underlying soil in the 2013 Canadian TVC

campaign, rough surface scattering are determined by differences between radar observations and snow volume scattering

calculated based on snowpit measurements.—Fre-SAR—data—sk bi h pared—with X—andIu-band DMRT
lati The-bias-is-attributed-to-th tributi £ sy tterine. The rough surface bias in the Ku-band data are

1 to 2 dB while, in the X-band data, the bias is about 4 to 6 dB, which indicates that the surface scattering has more influence

at X-band. After subtraction of surface scattering from the SnowSAR data, the result SnowSAR data, shown in red dots, are

assumed to contain only the volume scattering component. The red dots volume scattering components of the SnowSAR data

fall into the range covered by the bicontinuous DMRT simulations. The dynamic range of SAR data is also larger with this

subtraction. , meaning that the obtained volume scattering components have better correlations with the SWE.

In Sstep 2, Rregression training_to reduce number of parameters: Regression trainings are applied to is used te-reduce the
number of unknowns (Cui et al., 2016; Zhu et al., 2018; Zhu et al.,-202 1 aceepted). The-Llook-up table (LUT) are generated

based on bicontinuous DMRT simulations_of multiple scattering of fer snow volume scattering is-generated-for various snow

properties of snow depth, density, and snow microstructure_as represented by the kc and b parameters in the bicontinuous

model . The output-dependent variables for the LUT are backscatter at X and Ku (oy and oyy), the effective single scattering
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albedo at X and Ku (wy and wgy ), and optical thickness at X and Ku (tyx and Ty, ) for X- and Ku-bands. Regression trainings
are performed for (i) wx versus wg, and_(ii) Tx versus Tk, to utilize the frequency dependence of scattering between the X-
and Ku-bands.

In Zhu et al. (2018), there are two trained relations that are derived from regressions. . The first regression trained relation fer

volume seattering is_to train the multiple scattering solutions into effective first order solutions , 6 = A + B log(c*st), where

o is multiple tetal-volume scattering of snow and ¢St

is the first-order scattering. The coefficients A and B are given in Zhu
et al. (2018) for X- and Ku-bands. In the second regression trained relations, the relations between albedo at X- and Ku-band
and between optical thickness at X- and Ku-band are trained to give wyg, (wx) and Ty, (tx). After these two sets of training,
we then have 0t = 0.75c0s0,w(1 — exp(—21/cos6,)) (Cui et al., 2016; Zhu et al., 2018) and the regression relations,
ox = Ax + By log( 0.75c0s8,0x (1 — exp(—21x/c0s6,))) and Oy = Agy + By, 10g( 0.75c058, wy, (wx)(1 —

exp(—2tgy(tx) /coth))).— The results and advantages of these regression trainings are that the multiple Fhus-the-volume

scattering at X and Ku bands, gy and oy,_. now depends only depend on two parameters, wy and tx. The approach is labelled
a “parameterized bicontinuous-DMRT model”_(Cui etal 2016, Zhu etal 2018, Zhu etal 2021) . - ¥

1 41 4. gy tha t e d £ hioh tho SV o il A th Loty
- - F 5 £ = -
N = Q74C £ S\WE fae1 1 (71 t ol IN1QY
AN > T
Sta-step 3: Classification of data: ; eprioriestimatesofs ¢ d-elassifieati pplied-to-determine-th —th
ialas 4l ptpiat, PP S \2 0 L Loyl q 1 taode 1o I, Liod to d
weight—and-theu terire— ey e) + ‘ —Severa ds—ha apphedto-—d apriori
'S £ 4 4 4 £ s It d £ 1 taod £.1d ot it 1 d
F F
t doto (Dot ot o1 IN1AN. + ol IN1E. 1. t ol IN1QN T ¢l 13 £ W L Qe (IN17) N 1
AS > > 3 ) T J i) AS 7 e
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Following the strategy of SMAP radar retrieval, Fo-mitigate-the non-uniqueness—problem-inretrieval—classification is alse

performed. We use the dataset from the Canadian SnowSAR 2013 campaign as an example. The a priori information are

obtained from co-located ground measurements. The backscattering o are classified into two groups: snowpack with high
albedo and snowpack with low albedo. The threshold wy = 0.49 is the average of all a priori albedos. Figare43Figure 14
shows that the sensitivities of backscatter to SWE are enhanced by classification of snowpack based on a priori scattering

albedo. The classification scheme accounts for the heterogeneity of snow cover of varying grain sizes and SSAs from location

to location.
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Figure 14: volume scattering of the Canada SnowSAR data as a function of SWE based on the retrieved scattering albedo wy at (a,
left) X-band and (b, right) Ku-band. Radar observations are from a single flight. 4 priori estimates are used to classify wy into two
classes. They are plotted by different coloured markers. The black dashed curve is the regression line of all Canada SnowSAR data.
The blue and red solid curves are the regression lines for backscatter with wy larger and smaller than 0.49, respectively. Figure
from Zhu et al. (2018).
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Figure 15: (a, left) SWE retrieval performance and (b, right) Scattering albedo retrieval using Canadian SnowSAR 2013 X- and
Ku-band radar data. The figures are from Zhu et al. (2018) and Zhu, 2021.

In-Sstep 4, _a priori estimates , binary choices and cost function minimization

Aea priori estimates of parameters and-elassifieation—are applied to determine the mean, the weight, and the uncertainty

;% (wy — @x)? of the cost function. Several methods—have been—appliedto—determine« prioriparameters—of snow
b
mierostrueture—A priori information can be are obtained from co-located field stations or historical ground measurement data

(Rott et al., 2010; Cui et al., 2016; Zhu et al., 2018} In-the study-of Xiong & Shi- (2017}, snow physical models-are-applied-te
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—In parametrizing microstructure, the snow grain size, correlation length (Proksch et al., 2015a) or

scattering albedo (Cui et al., 2016; Zhu et al., 2018) are used.

In the implementation of Zhu et al. 2018 and Zhu etal 2021 algorithm, the co-polarization of X-band (9.6 GHz) and Ku-band

(17.2 GHz) are utilized in the cost function below.

2 2

_ wx ( __obs obs,bg model Wku (__obs obs,bg model Wp = 32

F = MIN {_25)2( (‘Tx,vv —oxpy . —oxp Ty, wyx) ) + 252 Tty = Oxuyy — Tk (Tx, wx) ) + 23 (wy — @x)*5_(4)
u

where the two unknown parameters to be retrieved are the scattering albedo at X-band (wy) and the optical thickness at X-

H . +0bs obs : obs,bg obs,bg
band (7x). The input parameters are: oy yy_and ogyyy are radar observations at X and Ku band. oy v and oy, _are

background scattering, and @y _is a priori scattering albedo and in the Zhu etal 2018 and Zhu etal 2021 algorithm, @y _is based

on a binary choice. In this minimization problem of the current implementation, there is no a priori estimate on SWE. The only

apriori estimate is on the @, _and the choice is binary, either 0.65 or 0.35.

If better estimation of @y can be obtained by ground measurements, snow physical model (Xiong and Shi, 2017), or passive

observations (Zhu et al.. 2021). the retrieval performance can be improved. In equation (4) wy. Wiy, Wy, and s, _are user

defined parameters. While sy, sx,, = 0.5 dB_are instrument parameters. ,

Tthe cost function of equation (4) with least squares is applied to the SAR data at X- and Ku-bands in Figare156. In this
example, s, is set to 0.1, and the weight factors are set to be unity- We apply the two channel observations to retrieve the two

parameters, wy_and tyx. Then 5 using retrieved wy_and tx—frem—whieh—the SWE is obtained by the relation SWE =
a(1l — wy)tx, where a = 9745 for SWE retrievat (Cui etal 2016, Zhu et al., 2018, Zhu etal 2021).

Results of Retrieval

Figure+5Figure 15 (a) shows the performance of the retrieval algorithm. The retrieval results have RMSE of ~27 mm of
SWE, a correlation of 0.7, and a bias of 6.3 mm. The results show that the retrieval algorithm is particularly successful for
SWE values below 150 mm. The performance ft-alse-satisfies requirements from the COREH20 are the RMSE is less than 30
mm for SWE below 300mm and the RMSE is less than 10% of SWE for SWE above 300 mm. In Figure 15(b), the retrieved

scattering albedo wy are also shown are-in-geod-asreemen with-albedo-derivedfrom-ground-measurements{grain-sizeo

,,,,//[ Formatted: English (United Kingdom)




In the equation of cost function, the weight w, is the measure attached to the a priori parameter. In the example of Figure 15,

w, is set to be 1. In Zhu et al. (2018), we have studied the retrieval performance variation by reducing w,,. The performance is

still acceptable down to w,, = 0.14 with RMSE equal to 40 mm. Next, we study the performance with variations in surface

scattering subtractions was also studied by adding noise to the best guess of surface scattering in Zhu et al. (2018). At the best
1200  guess with 0% noise, the RMSE of SWE is 27 mm. The RMSE of SWE retrieval increases with noise increase. However, even
with 50% additional noise (absolute error of 3 dB in surface scattering), the performance has is-with RMSE of 45 mm.

In Ffigure 167, we show 3 dimensional plots of the sigma0 at X band and Ku Band against the two variables of retrieved

scattering albedo and retrieved SWE. The results show the strong correlation of sigma0 when plotted against two variables.

1205 On the other hand, Ffigure 178 shows the 2D plot of sigma0 against the single variable of retrieved swe. The correlation of

sigma0 is much weaker when plotted against one variable. The results show the importance of plotting sigma0 versus two

independent variables of swe and scattering albedo.
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Figure 16: (a, left) 3-dimensional3-dimensional plot of the sigma0 when plotted against two variables at X band (b, right) 3
1210 dimensional3-dimensional plot of the sigma0 when plotted against two variables at Ku band.
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Figure 17:_(a, left) 2D plot of sigma0 against the single variable of retrieved SWE at X band (b, right) 2D plot of sigma0 against the
single variable of retrieved SWE at Ku band.

The Zhu etal 2018 and Zhu etal 2021 have been applied to a total of 78 data sets of airborne and tower measurements as listed

in Table 2 and Table 3. The performance of the retrieval algorithms for the 78 datasets and summarized in Table 45. The

RMSE are generally good.

Dataset Data Type RMSE Bias SWE Range Location Data Points '—‘—[ Formatted Table
(mm) (mm) (mm)
Canada Trail Valley Creek
26.98 -6.28 50~250 103
SnowSAR 2013 Canada
Finland . 90~150 Sodankylé, Finland
E— Airborne 17.47 -6.12 5
SnowSAR 2011 a
Finland 50~160 Sodankylé, Finland
24.23 -7.09 28
SnowSAR 2012
NoSREx 2009- 60~200 Sodankyl4, Finland -
26.30 14.50 666
2010
Tower
NoSREx 2010- 40~140 Sodankylé, Finland
01 17.05 =0.70 721
011

46



1225

1230

1235

1240

1245

NoSREx 2012- 50~200 Sodankyld, Finland

3171 1.54 686
2013
SnowEX UWScat 440~600 Grand Mesa, USA

52.30 -38.01 4
2017

Table 45: summary of validations of the Zhu etal 2018 and Zhu etal 2021 algorithm against 8 datasets of airborne and

tower measurements. Details of the 78 datasets are listed in Table 2 and 3.

4.4.4 Future work

In the Zhu et al. (2018) algorithm illustrated above, a single layer is used. A multilayer snow model should also be considered.
Studies have already been conducted using a two-layer model (King et al., 2018; King et al., 2019; Rutter et al., 2019) to
account for small grain size in the upper layer and a larger grain size for the bottom layer (depth hoar). Accuracy requirements
of a priori estimates to achieve desired retrieval skill have not yet been quantified. Future work should include systematic
usage of cross polarizations in the retrieval algorithms. The inclusion of cross polarizations is important for deep snow layers

as the co-polarization K-band backscatter saturate for SWE larger than 300 mm.

5 Improving SWE retrieval estimations via synergy with other datasets

In satellite remote sensing, with the vast amount of satellite data, there can be data fusion of synergistic use of other data sets
to refine the retrieval algorithms and improve the SWE estimations. The combined active and passive microwave remote
sensing using data of the same frequencies has been an active area of research. Recent work shows the use of C-band Sentinel-
1 data to retrieve SWE for deep snow layers. Interferometry and tomography are also studied for future launches of

complementary missions. P-band GNSS-R has also been proposed for satellite retrieval of SWE.

5.1 Passive microwave

GCOM (Global Change Observation Mission) was launched in 2012 and carries the AMSR2 (Advanced Microwave Scanning
Radiometer 2) instrument, measuring microwave brightness temperatures at 6 frequencies. The channels at 18.7 GHz and 36.5
GHz with both V and H polarizations have been used to retrieve global SWE. The spatial resolutions are coarse and are
respectively at 22 km by 14 km for 18.7 GHz and 12 km by 7 km for 36.5 GHz. With overlapping footprints, interpolations
algorithms have been applied (Long and Brodzik, 2016) to downscale resolution to 3 km. Uncertainty increases when
downscaling resolution increases. Because the passive emissivity is related to the radar bistatic scattering (Tsang et al., 1982),

the brightness temperatures are related to the radar backscattering cross sections. Since SAR observations (< 500 m) have
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much finer spatial resolutions than passive radiometry, a synergy is to use SAR at the X- and Ku-bands to downscale coarse
resolution passive data or SWE products (Takala et al., 2011) to finer spatial resolutions using data assimilation or other
algorithms.

Several other methods have been explored to combine the active and passive microwave observations to retrieve SWE. In
Hallikainen et al. (2003), satellite microwave observations were used to demonstrate its feasibility to retrieve SWE by using
passive-only, active-passive, and active-only algorithms in sub-arctic snow in Finland. Tedesco and Miller (2007) evaluated
SWE retrieval performances by using active (Ku-band) and passive (X-band) microwave observations. Recently, Bateni et al.
(2015) conducted SWE retrieval studies using passive (Ku- and Ka-bands) and active (L- and Ku-bands) ground-based
microwave observations. The SWE retrieval was obtained within a data assimilation framework by comparing simulated
microwave observations against the corresponding observations at multiple frequencies.

In the study of Lemmetyinen et al. (2018), the correlation length of snowpack is derived by matching both active and passive
microwave observations against the simulations of the MEMLS3&a model (Proksch et al., 2015a) with ancillary data from
snowpit measurements and weather stations. Next, the correlation length is used for the active radar algorithm to retrieve SWE.
The derived correlation length from both active and passive data demonstrates an improvement of the SWE retrieval
performance over the SWE retrieval with the active-only algorithm. Cao and Barros (2020) used a multilayer snow hydrology
model coupled to MEMLS3&a to investigate the signature of the variability of snow physics on the microwave behavior at
seasonal scales. They ound that a combined approach using active microwave sensing in the accumulation season and passive
sensing in the melting season would yield in the best sensitivity to capture the temporal evolution of seasonal SWE by taking
optimal advantage of microwave hysteresis (Ulaby et al., 1981, Kelly and Chang, 2003). The generalization of this approach
to available active and passive microwave measurements with large resolution gap poses a significant challenge

Recently, passive observations have been used to enhance the performance of the active algorithm (Zhu et al., accepted). The
active-only algorithm was described earlier by using a cost function between simulated and observed radar observations as a
function of the two parameters of scattering albedo and optical thickness. In this enhancement, passive observations at Ku-
and Ka-bands at the collocated and coincident snow scene are used to determine the range of the scattering albedo. The
bicontinuous DMRT model is applied for both passive and active model simulations. X- and Ku-band radar data are then used
with the determined scattering albedo to obtain SWE. This active and passive combined method is applied to the NoSREx
dataset. Comparison statistics show that the combined active-passive method has improved performance over the active-only

method. The retrieval does not require a prior information and ancillary data from ground measurements.

5.2 C-band SAR

C-band radar can be used to detect wet snow by the strong decrease in backscatter (Stiles and Ulaby, 1980). Studies have

shown contrasting results regarding the potential for SWE and snow depth retrieval but reviewing the literature on this topic

is outside the scope of this manuscript. We here highlight that some recent studies have demonstrated the possibility of snow
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depth estimation for deep snow using C-band radar, thus making C-band possibly synergistic with the higher frequency

approaches most applicable to shallower snow depths that are the focus of this manuscript.

Lievens et al. (2019, 2021) developed an empirical change detection algorithm that was used to estimate snow depth at 1-km

spatial resolution from S1 observations over all northern hemisphere mountain ranges (Lievens et al., 2019) and, with algorithm

improvements, at sub-kilometer resolution over the European Alps (Lievens et al., 2021). The algorithm relies on the ratio of

cross- to co-pol backscatter. Here, 300-m retrievals based on the S1 change detection approach are shown for Idaho, Montana

and Wyoming, US. Figure 18Eigure16 (a) shows a density plot, comparing weekly S1 retrievals for the periods between
August and March from 2017 to 2020 with in situ measurements from 203 available SNOTEL sites. Figure 18 (b) shows the

MAE relative to the snow depth (in %). illustrating that for shallow snowpacks (< 1 m) the MAE is on average ~50% with

large variance. From a 1-m depth onwards, the relative average MAE remains constant at ~30%. Figure 18Eigure16 (c)

compares time series of snow depth retrievals and measurements for six selected SNOTEL sites. The ESA Sentinel-1 mission

is the first C-band radar constellation that measures consistently (not regularly tasked) with the exact same orbit revisited every

6 days. Such consistent observation scenario benefits the change detection approach and could explain why limited success

has been found with other C-band systems that must be tasked. The recent snow depth retrieval results from C-band SAR over

mountainous regions with deep snow indicate a strong complementarity with applications at higher frequencies — for example.
Ku-band is much more sensitive to shallow snow, while C-band performs better in relative terms for deep snow.|
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Figure 18: Snow depth retrieval from Sentinel-1, 2017-2020 in Idaho, Montana, and Wyoming. (a) Density plot of weekly 300-m
resolution S1 snow depth retrievals, and coincident SNOTEL observations from 203 sites. (b) The corresponding mean and standard
deviation of the absolute error between S1 retrievals and in situ measurements, stratified by the measured snow depth. (c) Time
series comparison between snow depth from S1 and SNOTEL in situ measurements at six locations for three winter seasons. Note
that the analysis includes snow-free conditions but excludes wet snow conditions as detected with the S1 algorithm (Lievens et al.,

submitted).
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Despite the observational evidence of C-band sensitivity to deep snow, the underlying physical scattering mechanisms, and

the associated impacts of snow properties. are still not fully understood. Snow crystals can form larger-scale clusters that are

more similar in size compared to the C-band wavelength. Snow crystals are highly anisotropic (irregular in shape), that, in

principle, results in a stronger scattering in cross-polarization. Other contributions to snow scattering at C-band that can be

investigated are larger-scale contrasts in snow density (incl. between snow layers) and the formation of ice layers with rough

boundaries in deep snowpack. Recent progress in snow radiative transfer modelling is addressing the anisotropic shape of

snow crystals and the clustering of crystals (Zhu et al.. accepted) using a bicontinuous model that introduces a two-parameter

/[ C ted [DM4]: Need this reference

correlation function (Ding et al., 2010) and show that large clustering of grains can cause cross-polarization signals from

volume scattering that are in the range observed by S1, and that the volume scattering signal at cross-polarization can dominate

over surface scattering for large snow depths. More work is needed to improve our understanding of the physical mechanisms

5.3 Phase-based approaches

Approaches to estimating snow characteristics using microwave remote sensing almost invariably make use of some

combination of the radar cross section ¢°, sensitivity to polarization, and frequency dependence; the techniques previously
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mentioned are all based on microwave scattering, which focus on the amplitude response. Approaches that use the signal phase,
related to the electrical path length and time-of-flight information, while more challenging, can provide additional information
about the snowpack, which is synergistic with the Ku-band backscatter approach that is the focus of this paper. These
approaches provide independent information about snow properties through travel-time through layers, and information about

where within the snowpack the major sources of amplitude (e.g. layer boundaries) are originating. The additional information

could be used to improve the accuracy of the backscattering retrievals. Three techniques are described: 1) ultra-wideband radar,

2) tomography, and 3) interferometry.

5.3.1 Ultra-wideband radar

The range resolution of a radar system is inversely proportional to the bandwidth. Ultra-wideband radar can be used to resolve
reflections from different depths within the snowpack. This not only provides insight into which locations within the snowpack
are contributing most to the backscatter but also estimates the depth-dependent refractive index of snow, which can be used to
independently estimate snow depth, SWE, and stratigraphy. However, the ultra-wideband radar technology does not have a
straightforward path to space, due to bandwidth and frequency allocation limitations. Ultra-wideband approaches have been
demonstrated for decades from the ground, using broadband radar at nadir incidence angles to estimate depth and SWE (for a
review, see Marshall and Koh, 2008), using L-band GPR systems (Lundberg et al., 2000; McGrath et al., 2019) and at higher
microwave frequencies (Gubler and Hiller, 1984); multi-channel L-band radar has recently been used to map density profiles
in polar firn (Meehan et al., 2021). Nadir ultra-wideband FM-CW radar (2-18 GHz) has been flown from an aircraft platform
with success in the polar regions as part of NASA Operation IceBridge, mapping snow depth on sea ice and stratigraphy in
firn on the ice sheets (Panzer et al., 2013; Arnold et al., 2019). More recently, airborne FM-CW experiments have been done
over seasonal snow in the mountains (Yan et al., 2017), with additional efforts being carried out at the University of Alabama

in developing airborne tomography mountain applications (Taylor et al., 2020).

5.3.2 Tomography

Recently, Synthetic Aperture Radar (SAR) Tomography (TomoSAR) has been used in monitoring the snowpack from X-band

to Ku-band (Laurent et al. 2015, Wiesmann et al. 2019, Rekioua et al. 2017, and Xu et al. 2018 & 2020).

This technique

provides unique access to the structure of the imaged scene, and in the case of snowpack, it enables the separation of multiple

snow layers as well as the detection of and compensation for soil and vegetation layers. Polarimetric capabilities can be used

to decompose the backscattered signal into volumetric and surface scattering components, and to distinguish between snow,

soil, and vegetation. Some ground-based field experiments have been carried out that demonstrate the focused image recovery

of the layering structure of the snowpack with different densities, for example in a recent experiment (Xu et al., 2018) at Fraser

Experimental Forest, Colorado, at X and Ku-bands (9.6, 13.5, 17.2 GHz). In Figure 19Eigure 17, we show the results of

tomography carried at three frequencies for hh polarization. The tomograms demonstrate the layer structure and frequency

dependence. The ability to identify snow layers and density changes are expected to significantly improve SWE retrieval.
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Figure 19:TomoSAR coherence images for hh polarization at 9.6 GHz , 13.5 GHz and 17.2 GHz at Fraser, Co sites.
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1425 5.3.3 Interferometry

Interferometry can be used to measure differential path length and changes in the electromagnetic path length in signals

interacting with the seasonal snowpack. This technique has been proposed in several studies, both at high frequency with

single-pass InSAR for mapping the snow surface, to measure snow depth (Moller et. al, 2017). and at low frequency with

repeat-pass InSAR to measure changes in snow depth or SWE (Guneriussen et al., 2001: Deeb et al., 2011 Lei et al., 2016).

1430 Interferometry can be performed either between two observations separated in space (Figure 20 (A)), or by repeat observations

after changes in snow occur (Figure 20 (B)). Although phase measurements are not absolute measurements (modulo 27m),

there are a number of methods, including phase unwrapping, the use of a surface DEM, and modelled and measured SWE

change, that can be used to resolve the ambiguity.

For the first approach (standard cross-track interferometry). using a high microwave frequency or in wet snow where theﬁ--[ Formatted: Indent: First line: 0"

1435 penetration depth would be limited, we can assume the majority of the signal comes from the snow surface, and the snow

surface topography can be mapped. When this is differenced from a snow surface at a different time, a snow depth change

can be estimated spatially. This implementation of interferometry is achieved through the introduction in the system of a

second antenna separated from the transmitting antenna by the baseline B. Such an antenna can be passive, receiving the

signal of a common transmitter antenna, and the phase difference between the two antennas is measured. The scattering phase

1440 center and the interferometric correlation magnitude can be measured, which are both sensitive to the frequency and

polarization combinations as well as the snowpack physical characteristics (e.g. Rott et al., 2021).

54



In the second approach, a low microwave frequency in dry snow can be used, where we can assume the majority of the signal

comes from the snow-ground interface (Figure 20 (B)). In this case. changes in the time of flight. or electromagnetic path

length, to the snow-ground interface are caused by changes in snow depth and SWE. A time series of InNSAR observations at

1445 L-band can thus potentially be used to estimate changes in snow depth and SWE. This technique was tested during the NASA

SnowEx 2020 and 2021 experiments (Marshall et al., 2021). In addition, a similar approach with P-band has been demonstrated

from tower-based platforms, using existing transmitted signals (Shah et al., 2017). This bistatic approach shows great promise

for a much lower cost satellite system, as only a receiver is required.

BI W _ A¢ — path length difference
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Figure 20: (A, left) Illustration of single-pass InSAR for mapping the snow surface. Using measured phase, A¢, simple trigonometric
calculations are used to estimate the relative height, h, of the scattering phase center compared to the reference height, H. (B, right
When the phase center is below the snow surface, refraction in snow must also be taken into account. At low microwave frequencies
e.g. L-band) in dry snow, the phase center is often the snow-ground interface, and due to the slower electromagnetic velocity in
1455 snow, phase changes are related to changes in snow depth and density.

InSAR has been used for characterizing the volume scattering components of forests (e.g. Kugler et al., 2015), where a vertical<——~{ Formatted: Indent: First line: 0"

profile of the volume density can be estimated (Reigber and Moreira, 2000; Tebaldini and Rocca, 2011). While most of this

development has been done at low-frequencies for vegetation, a scaling of the volume characteristics of snow with frequency

has been equally promising (Lei et al., 2016), especially at Ku- and Ka-band.

1460 In Section 6, the planned TSMM mission will be described. With the interferometry set up as described in Figure 18, we can

explore possible configurations, such as the baseline B, of launching a companion satellite with receive-only, receiving the

complex scattered electric field signal from the snow medium. Such a companion would be able to complement the planned

baseline TSMM observations with additional measures of reflectivity, interferometric phase, and correlation magnitude that

could all be used to better characterize the snow volume.
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6 Planning a Satellite Mission

The earliest synthetic aperture radar (SAR) satellite missions were focused on C-band (Envisat, Radarsat-1). Missions
1520  developed during recent decades extended the frequency range to L- (e.g. PALSAR) and X-band (e.g. TERRASAR-X), with
planned missions at the P- (ESA-Biomass), and L- and S-bands (NASA-ISRO SAR mission). Spaceborne scatterometer
missions such as QuikScat have illustrated the wide-ranging contributions of measurements at Ku-band to applications

spanning the cryosphere (Kwok, 2007; Swan and Long, 2012), biosphere (Frolking et al., 2006), and ocean (Bourassa et al.,

2010).; and Ku-band cloud radar measurements have made significant contributions to precipitation-related fields through
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missions like CloudSat (Stephens et al., 2002) and GPM (Skofronick-Jackson et al., 2017). To date, however, there have been
no SAR missions at Ku-band.

The potential for Ku-band radar to retrieve snow water equivalent (SWE) was explored as part of the NASA Snow and Cold
Land Processes Mission and supporting Cold Land Processes Experiment (Yueh et al., 2009; Cline et al., 2009). The ESA
COld REgions Hydrology High-resolution Observatory (CoReH20; X- and Ku-bands; Rott et al., 2010; ESA et al., 2012)
completed Phase A in 2013, but was not selected for implementation-(Rett-et-al-2040). CLPX and CoReH2O0 science and

mission development activities played a major role in motivating the significant progress achieved over the past decade in
measuring, understanding, and modelling the Ku-band radar response to SWE, snow microstructure, and snow wet/dry state
(as assessed in previous sections of this review). Given this collective progress, satellite mission concept reviews subseguent

g

followingte the completion of CoReH20 Phase A (e-g-

< ) :
anadian-Space-Acenev-completed—in

Analysis-and-Trad udyfor-snow-mass—funded further emphasized
the potential for Ku-band SAR measurements to address a broad set of user requirements related to seasonal snow mass.
Supported by these studies and continued analysis of experimental ground-based and airborne campaigns (See Section 4; King
et al., 2018; Lemmetyinen et al., 2018; Zhu et al., 2018), a Ku-band SAR mission was selected as the most feasible approach
to meet the operational requirements (wide swath/rapid revisit/short latency) of Environment and Climate Change Canada
(ECCC) for spaceborne measurements sensitive to SWE. Since 2018, ECCC and the Canadian Space Agency (CSA) have
partnered to advance the scientific and technical readiness of the “Terrestrial Snow Mass Mission” (TSMM), a Ku-band radar
satellite with the primary science objectives focused on the provision of climate services related to seasonal snow, and
improved operational environmental prediction including streamflow. The TSMM development effort is underpinned by
engagement with Canadian industry, academia, and international partners.

Table 4: Summary of CoReH20 and TSMM missions.

CoReH20 TSMM
Frequencies X band 9.6 GHz Ku band 13.5GHz
q Ku band 17.2GHz Ku band 17.25GHz
Polarizations VV, VH VV, VH
Level 1 SAR image som Low resolution: 250m
resolution High resolution: 50m
Spatial Resolution of 100m-500m 500m
product
Temporal 3 days repeat for Phase 1 5 days, Canada and other snow-covered area
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3 ¢cm RMSE, SWE <30 cm
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VV<-29dB & VH<-25dB

Accuracy 3 cm RMSE (non-alpine)
Requirements in SWE 10% for SWE > 30 cm 25% (alpine)
X band 13.5 GHz
NESO VV <-23dB & VH <-28dB VV&VH <-26 dB
Ku band 17.2 GHz

VV&VH <-25 dB

Stability <0.5 dB
Abs. accuracy <1 dB (13.5 GHz) and <0.5
dB (17.2GHz)

Stability <0.5 dB

Accuracy in g Abs. accuracy <1 dB

Incident angle 30 —45° 23 — 50°

Because TSMM is the first spaceborne Ku-band SAR mission of its type;-it-falls-into-the~Explorer—mission-category-at-the

CSA—Explorer seale-missions—must-meet-aspeetfie-eost-eap—Aan ‘Explorer’ mission concept was developed by industrial
partners in Canada during-to advance technological innovation and prove the scientific viability withredueed-overattriskusing

550 a ‘design-to-cost’ approach. The resultingis “TSMM-Explorer’ concept meets ECCC science requirements through dual
frequency (13.5 and 17.25 GHz) Ku-band radar measurements at 500-m spatial resolution, with a 50-m spatial resolution mode
across a 30 km swath available for specific regions (e.g. mountains areas) and targeted events (e.g. periods of high flood risk).
An imaging swath of 250 km combined with a duty cycle of approximately 25% meets the requirement to image all of Canada
and other global snow-covered areas every 7 days.

1555 f[n the CoReH20 proposal, the dual frequencies were in the X-band at 9.6 GHz and the Ku-band at 17.2 GHz. Based on the
ground-based measurements and the airborne measurements, the Ku-band at 17.2 GHz has a dynamic range from -16 dB to -
6 dB and shows good correlation with SWE. The X-band at 9.6 GHz has co-polarization dynamic range from -20 dB to -14

dB. The theoretical predictions of rough surface scattering at X-band, depending on penetration through the snow layer are

from -20 dB to -12 dB. In TSMM, the X-band (9.6 GHz) is not chosen and is replaced by a low Ku-band at 13.5 GHz,| ——1| Commented [D(7]: I suggest cutting this paragraph.

1560 Table 4 shows thea comparison between thepropesed-CoREH20 and the current TSMM eurrenthy—plannedconcept. The

at 13.5 and 17.25 GHz. This modification from CoRcH20 (9.6 GHz) to TSMM (13.5 GHz) is to have less sensitivity to the

underlying rough-surface seatteringeffeet—The TSMM dual-frequencies were are selected to fully exploit the frequency
dependence of snow volume scattering through the;-the-differential sensitivities at 13.5 and 17.25 GHz; to both SWE and snow

1565 microstructure. The dual frequencies will help address the ill-posed nature of retrieving SWE from a single Ku-band radar

measurement (see Section 4c). The change in the lower frequency of CoReH20 (9.6 GHz) to TSMM (13.5 GHz) will result
in less sensitivity to the underlying rough surface scattering effect, but A-petential-trade-offis-that-sensitivity to deep snow

may-will be reduced without the X-band measurement. Further study is needed in fine-grained mountain snowpacks to better

understand the limits of sensitivity to deep snow at Ku-band. It is also possible to explore the use of cross-polarization at Ku-
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measurements with state-of-the-art modelling systems is currently under development at ECCC. For applications which require

a SWE retrieval, the radar backscatter measurements will be combined with snow property initial conditions (including snow
microstructure; see Section 4) produced by an advanced version of the ECCC operational land surface model forced with short-
range meteorological forecasts and precipitation analyses. Importantly, in areas without radar coverage (e.g. due to swath gaps)
or where the radar-derived SWE retrieval is highly uncertain (e.g. due to wet snow or dense forest cover), the SWE analyses
will be determined by numerical outputs from the land surface model. In this way, the remote sensing information is combined
with modelling to create seamless coverage both in space and time, with minimized uncertainty. Fhe-Another goal is to
assimilate the Ku-band radar measurements will-alse-be-ineludeddirectly in ECCC prediction systems even-without the-use-of
a SWE retrieval-preduet. For land surface data assimilation needs, the Ku-band backscatter ean-will be directly assimilated,
again with the land surface model providing the required ancillary information. This approach is analogous to how L-band
radiometer measurements from the SMOS and SMAP missions have improved soil moisture analysis at ECCC through
radiance-based assimilation (Carrera et al., 2019). Work remains to fully implement a forward radar model coupled with the

physical snow model, building on recent developments in this field (Bateni et al., 2015; Merkouriadi et al., 2021). Fheresulting

ahane Sh anabvses—will-thep—be e o—initic e—en onmen H ~ sustemps—atE fe aeNWP-an

While the dual-frequency Ku-band TSMM-Explorer concept meets the requirements at ECCC for enhanced snow remote
sensing, this approach alone cannot solve all snow-related observational needs. For instance, volume scattering will be
negligible under wet snow conditions, hence the need to implement the approach outlined above to combine satellite and
model-derived information during snow melt. There are, however, opportunities to further exploit the baseline TSMM-
Explorer concept through the development of companion satellites. This could take the form of a similar mission concept to
improve coverage and revisit (e.g. a small SAR constellation). Development of a companion receive-only satellite is more
challenging but would deliver a greater reward through the potential for InNSAR-based snow depth retrievals under wet snow
conditions (as previously explored with airborne Ka-band measurements by Moller et al. (2017)). This InSAR approach, as
described in Section 5.3, necessitates pushing the performance envelope of the TSMM-Explorer SAR (bandwidth, increased
high resolution mode imaging) and spacecraft (maintenance of a very tight baseline, hence very precise orbit control) which
introduces cost and complexity to the current scope of the mission. Still, the potential benefits of an InSAR capability are
notable, so further study of these options is encouraged.

With the industrial Phase 0 now complete, the TSMM-Explorer mission has advanced into a mission pre-fermulatienplanning
phase at CSA. Technical readiness is being advanced through industrial investment focused on the radar antenna technologies.

Scientific readiness for the mission continues to be enhanced by community-wide progress in field techniques (e.g. quantitative
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snow microstructure measurements; Section 3.3)), physical snow modelling (Section 4.2), data assimilation, and multi-
frequency radar analysis (Section 4.4). The analysis of tower and airborne Ku-band radar datasets in collaboration with
international partners is ongoing. Future airborne data acquisition plans are under development, including through the NASA
SnowEx program. Collectively, these efforts serve to advance the TSMM-Explorer mission specifically, and snow-radar

science in general.

7 Summary and Perspectives

Freshwater delivered by seasonal snow melt is a commodity of the utmost importance for human health and well-being.

supports nearly all sectors of the economy, sustains ecosystems, and poses risks by contributing to floods and sustaining

drought events. At present, information on water stored as seasonal snow is highly uncertain. Because of surface monitoring

limitations, satellite measurements are critical, but current missions are inappropriate for determining snow mass with the

spatial, temporal, and accuracy characteristics required to deliver climate services, effective water resource management, and

skilful environmental predlctlon such as streamflow. Me&ma%mm&&eﬁmakgeephyﬁeahmﬂab}e—feﬁemwhydfe{egy

Over the last decade, X- and Ku-band radar remote sensing technologles have pfeveﬂ—te—beeﬁfeetwe—fer—meaa&mgshown clear
potential for monitoring SWE.
physieal-models have-providednow provide understanding of the contributions of volume and surface scattering, and the
complicating effects of forests. Vegetation-ground-measurements-and-sSnow physical models have significantly advanced. and
are capable of providing the required snow microstructure information required for forward and inverse modeling -to-be-used
to-couple-to-the RTM-and data-analysis. ThetTower measurements-and the-airborne eampaignsradar measurements, supported
by dramatic improvements in field-based quantitative characterization of snow microstructure haven preven-provided a small
but rapidly growing range of datasets to support modeling and retrieval studies. to-be-effective-inprovidingealibration-and

Scattering

—In the nextfewcoming years, there

afe—pl-aﬂs—feﬂs a clear need for more tewer-measurements-and-airberne-campaigns-teexperimental measurement campaigns to
fill information gaps sueh-as-effeets-of(such as the influence of vegetation, and -ferests-eovers;-deep-snow,various-substrates

beneath-the spow—etesensitivity to deep snow) and evaluate new SWE retrieval frameworks.. There will be more studies on

coupling snow physical models to RFM-radiative transfer models so that they can be more effectively combined in retrieval
algorithms for-the-seven-classes-of snow-and-with computational efficiency for real time retrievals.
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We anticipate fature-launehes-ofthe continued development of satellite missions with Ku-band radars, which could —Fhe Ku-
band-radar-satelites—will-be followed by mere-satelites-of synergistic instruments ef-supporting techniqus such as Ku-band

interferometry and tomography.

Table of Abbreviations
AIEM Advanced Integral Equation Model
Can-CSI Canadian CoReH20 Snow and Ice Experiment
CASIX Canadian Snow and Ice Experiment
CF Coniferous Forests
CMIP6 Coupled Model Intercomparison Project
CoReH20 Cold Regions Hydrology Observatory
DMRT Dense Medium Radiative Transfer
DMRT-ML Dense Medium Radiative Transfer — Multiple Layers
EM Electromagnetic
ESA European Space Agency
FMCW Frequency Modulated Continuous Wave
GNSS-R Global Navigation Satellite System Reflectometry
HUT Helsinki University of Technology
InSAR Interferometric SAR
Lidar Light detection and ranging
LUT Look-Up Table
LwC Liquid Water Content
MEMLS Microwave Emission Model of Layered Snowpacks
MIMICS Michigan Microwave Canopy Scattering
NMM3D Numerical solutions of Maxwell’s Equations in 3-D
NoSREx Nordic Snow Radar Experiment
NWP Numerical Weather Prediction
POLSCAT Polarimetric Scatterometer
QCA Quasi-Crystalline Approximation
SAR Synthetic Aperture Radar
SMAP Soil Moisture Active and Passive
SMOS Soil Moisture and Ocean Salinity
SMP Snow Micropenetrometer
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SMRT Snow Microwave Radiative Transfer

SSA Specific Surface Area
SWE Snow Water Equivalent
SWESARR Snow Water Equivalent SAR and Radiometer
RTE Radiative Transfer Equation
RTM Radiative Transfer Model
UAVSAR Unoccupied Aerial Vehicle Synthetic Aperture Radar
u-CT Micro computed tomography
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Appendix A: Example protocol for measuring spatial variability of snow properties to support radar remote sensing

Geolocated measurements are vital to quantify variability of snowpack properties within sensor footprints (airborne or tower).
Figure Al (a) suggests an optimal configuration of snow depth and Snow MicroPenetrometer (SMP) measurements to create
representative distributions of snowpack properties within airborne swaths. The main 222 m transect of snow depth and SMP
profiles, located along an airborne swath centreline, has variable spacing (10!, 10° and 10'm) on either side of a central pit to

capture different horizontal length scales of variability. A shorter 22 m orthogonal transect with 10! and 10° m spacing bisects

the main transect at the central pit, and a spiral of snow depths extends from the central pit out to an 11 m radius (Figure Al
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analysis of snow microstructural properties, both of which may be influenced by dominant prevailing wind direction or
irregular patterns of subnivean vegetation. Ideally, snow depths and positions are measured using automatic depth probes with
integrated GPS providing position accuracy to 2.5 m, e.g. Magnaprobes (Sturm and Holmgren, 2018). Where forest canopies
obscure GPS satellite connection or snowpacks are deeper than 180 cm (current maximum magaprobe length), hand probes
are used in measured grids arranged relative to a known absolute position. Accuracy of snow depths range from nearly 0 cm

on hard ground to ~5 cm in soft subnivean vegetation. Where snowpit locations are not predetermined, measured snow depth
distributions can be subsequently used to determine the location of snowpit(s) to match mean depth or multiple pits spanning

interquartile ranges.
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Figure Al: O

One-dimensional (vertical) measurement of snowpack properties for SAR retrievals require objective measurements of snow

microstructure. SMP allows rapid (< 1 minute) force profile detection at millimetre resolution (Proksch et al., 2015b), which
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transfer models (Chang et al., 2016; Picard et al., 2018). The speed of data acquisition allows for SMP measurements to be
used in a distributed manner along transects, but SMP also supports other coincident snowpit measurements using different

techniques. Figure Al (b) shows a schematic of optimal snowpit measurements. Double-sampled volumetric densit

measurements, 100 cm? box-cutter with 3 cm vertical resolution for shallow snowpacks or 1000 cm® wedge-cutter with 10 cm

vertical resolution for deep snowpacks (Proksch et al., 2016), are averaged at each vertical position. Following principles
resented in Gallet et al. (2009), 3 cm vertical resolution double-sampled SSA measurements are made using an InfraRed
Integrating Sphere (IRIS) (Montpetit et al., 2012) or an A2 Photonic Sensors IceCube (Zuanon, 2013). Micro-CT analysis of
snow casts (Schneebeli and Sokratov, 2004; Lundy et al., 2002), consisting of entire profiles or samples of critical layers, are
used as a benchmark for corroboration of all other measurements. However, in-practice, in-situ snow casting and subsequent
cold-laboratory micro-CT analysis requires a much higher level of expertise and processing time than SMP or IRIS/IceCube
measurements, meaning field application of micro-CT is often limited.
Profiles of snow temperature using well-calibrated stem thermometers at 10 cm vertical resolution are important parameters
for radiative transfer models, in conjunction with stratigraphic identification of snow layer boundaries and ice lenses using
hand hardness. Visual identification of grain type (Fierz et al., 2009) using a hand lens or macroscope is an important
complimentary measurement for layer classification and understanding the seasonal history of snowpack processes. However,
using similar visual methods to quantify snow ‘grain size’ are too subjective to create a microstructural metric for further use
in radiative transfer models. The SSA measurements provide much better accuracy for use in radiative transfer models.

Near-infrared (NIR) photography allows two-dimensional analysis of layer boundary position (Tape et al., 2010) and layer

snowpit profile. It also enables measurements of layer boundary roughness, particularly of the snow-air and snow-ground

interfaces. Other methods to characterise snow-air surface roughness use photographic image contrast analysis of dark boards
placed behind snow (Fassnacht et al., 2009; Anttila et al., 2014) and subnivean roughness of areas cleared of snow using pin
profilers, LIDAR scanning (Chabot et al., 2018; Roy et al., 2018) or structure from motion photogrammetry (Meloche et al.,
2020). The subnivean roughness between snow and soil give significant contributions of rough surface scattering because of

the contrast of dielectric constants between snow and soil.
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