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Abstract. Understanding the transport of objects and material in the marginal ice zone (MIZ) is critical for human operations

in polar regions. This can be the transport of pollutants, such as spilled oil, or the transport of objects, such as drifting ships and

search and rescue operations. For emergency response, the use of environmental prediction systems are required, which predict

ice and ocean parameters and are run operationally by many centres in the world. As these prediction systems predict both ice

and ocean velocities, as well as ice concentration, it must be chosen how to combine this data to best predict the mean transport5

velocities. In this paper we present a case study of four drifting buoys in the MIZ deployed at four distinct ice concentrations.

We compare short-term trajectories, i.e. up to 48 hour lead times, with standard transport models using ice and ocean velocities

from two operational prediction systems. A new transport model for the MIZ is developed with two key features aimed to help

mitigate uncertainties in ice-ocean prediction systems: first, including both ice and ocean velocities and linearly weight them

by ice concentration, and second, allowing for a non-zero leeway to be added to the ice velocity component. This new transport10

model is found to reduce the error, by a factor of 2 to 3 for drifters furthest in the MIZ using ice-based transport models, in

trajectory location after 48 hours.
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1 Introduction

Estimating the transport of objects and material in the marginal ice zone (MIZ) is a crucial aspect of polar operations. This can

be related to search and rescue operations (Rabatel et al., 2018) as well as the transport of oil and other contaminants (French-
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McCay et al., 2017; Nordam et al., 2019). The requirement of accurate transport estimates for these processes is exacerbated20

by the remoteness of these regions. Thus, accurate predictions up to at least 48 hours, are required to provide sufficient time

to coordinate response efforts. Due to the numerous transient processes in the ocean, these short-term predictions can be

particularly difficult to predict accurately (Christensen et al., 2018).

The first step in predicting transport in the MIZ are accurate predictions of ice, water and wind velocities, and in the

Arctic there are a few products which provide forecast data of at least 48 hours. A couple examples of such Arctic systems25

being the Regional Ice-Ocen Prediction System (RIOPS) in Canada (Dupont et al., 2015) and the TOPAZ system as part

of the Copernicus Marine Environment Monitoring Service (CMEMS) (Sakov et al., 2012). These prediction systems will

predominantly have the ocean and ice components coupled, and in general do not include forcing from surface waves. Rarely

they are coupled with the atmosphere, but one example of an ice-ocean-atmosphere coupled model is the Canadian Arctic

Prediction System (CAPS) which is the RIOPS system two-way coupled with the GEM (Global Environmental Multi-scale)30

atmospheric model (Côté et al., 1998b, a; Girard et al., 2014). The ice models used in these prediction systems assume a

continuous ice cover and a viscous-plastic rheology, which is typically derived from principles introduced by Hibler III (1979).

For ice concentrations of less than 80%, the ice is assumed to be in “free drift” as the rheology is expected to have a minimal

impact on the dynamics (Hibler III, 1979). While free drift models exist, and they perform quite well when compared with

observations, they do require data in order to tune the drag coefficients (Schweiger and Zhang, 2015) which can be difficult to35

obtain in the Arctic.

It is common for the short-term prediction of drifting objects to include a leeway term, which is a fraction of the wind that is

added to the predicted water velocity. This has been common for a long time in search and rescue (Breivik et al., 2011) and oil

spill trajectory modelling (Spaulding, 2017). These leeway values can represent direct wind forcing on the object (Kirwan Jr

et al., 1975), and/or wind-dependent physics which are not included in the ice-ocean prediction system. As most ice-ocean40

prediction systems do not include surface waves it is common to include the Stokes drift (Breivik and Christensen, 2020)

which can be approximated by a leeway coefficient (Breivik et al., 2011; Sutherland et al., 2020). In addition, material at the

surface, such as oil but also ice, will strongly attenuate surface waves creating an additional force on the material (Weber,

2001). Oil and ice also impact the "roughness" of the surface; slicks in the case of oil which reduce the roughness (Wu, 1983),

and the presence of form drag in the MIZ which can increase roughness (Lüpkes et al., 2012; Tsamados et al., 2014). For oil, it45

has long been established that the competing wind and wave effects combine for a net leeway of about 3% of the velocity (Wu,

1983). For sea ice it is not clear whether a leeway term should be included in the drift, however, ice-ocean prediction systems

such as CAPS and TOPAZ do not explicitly include processes associated with surface waves or form drag due to the ice

roughness. Therefore, a non-zero leeway term in the MIZ may be necessary.

There are only a few examples of using a leeway coefficient with the drift of sea ice, and these are typically restricted to50

cases where there are no ocean current measurements available and the ice speed is modelled as solely a function of the wind.

Wilkinson and Wadhams (2003) observed an ice leeway which was dependent on ice concentration. The leeway values ranged

from 3.9% for ice concentrations less than 25% to 2.2% for ice concentrations greater than 75%. More recently, Lund et al.

(2018) observed that the wind and sea ice motion are not always well correlated and that ice leeway coefficients can span a
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large range of values, from 3.5 to 5%, across a range of ice concentrations in the Arctic MIZ. In these papers, it is possible that55

some of the ice motion was due to tidal and/or inertial motions, which will not directly scale with the instantaneous wind and

would lead to uncertainties in the above estimates.

While typically leeway coefficients are determined for particular objects using detailed field measurements (Breivik et al.,

2011), recently it was shown by Sutherland et al. (2020) that leeway coefficients can also be predicted using environmental

prediction systems. The mean leeway coefficients using the model data input were found to be consistent with observations60

and independent of the choice of environmental prediction system. However, these principles have only been applied in open

ocean conditions and have not been tested in the presence of sea ice. It would seem that there are certain analogues with

the open ocean that would warrant the use of a leeway coefficient in the MIZ. First, most ice-ocean prediction systems don’t

include surface waves, which are not uncommon to the MIZ and will impact the drift (Weber, 1987; Squire, 2020). In addition,

in the MIZ where ice concentrations are typically less than 80%, the ice is said to be in free drift and the ice motion will65

depend strongly on a accurate parameterization of the drag coefficient (Cole et al., 2017) and less sensitive to the internal ice

stress (Hibler III, 1979). Form drag due to sea ice is also another physical process which will effect the ice motion and has a

strong effect in the MIZ (Lüpkes et al., 2012).

In this paper we use field observations from four ice drifters, deployed at four distinct ice concentrations within the MIZ, to

compare various transport models forced by two operational ice-ocean prediction systems in the Arctic. The study focuses on70

the short-term prediction of drift trajectories, on the order of 48 hours, that are the most relevant for emergency response. A

new transport model, which allows for the inclusion of a distinct leeway coefficient within the ice, is compared with available

transport models that are used in the MIZ. The outline of the paper is as follows. Transport models used in the MIZ, along

with the introduction of a more general transport model for the MIZ, are described in Section 2. Section 3 describes the data,

the ice-ocean prediction systems and the methodology used in calculating and verifying the leeway coefficients. Results and75

Discussion are presented in section 4 followed by the conclusions.

2 Transport equations for the MIZ

Ice and ocean surface velocities in the MIZ are strongly coupled. In the dynamical models of ice-ocean prediction systems,

this is through the relative friction between the ocean and ice components. Most ice-ocean prediction systems will have the

ice and ocean components two-way coupled. Differences between ice and ocean surface velocities can arise due to ice inertia,80

which is generally negligible in the MIZ, and internal stresses within the ice, which are also negligible for ice concentrations

less than 80% (Hibler III, 1979). So the ice and ocean surface velocities in the MIZ are predominantly in a steady-state free

drift mode, with the magnitude, as predicted by ice-ocean prediction systems, being dependent on the drag coefficients and the

ice concentration.

Given the uncertainties associated with modelling velocities in the MIZ, it could be beneficial to use both ice and ocean85

velocities to derive a general transport velocity. This is precisely the approach used for oil spill modelling in ice-covered

waters (Nordam et al., 2019), where a mean transport velocity is calculated and the ice and surface ocean components are
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weighted by a function of ice concentration. The model used by the oil spill community uses some empirical estimates for the

weighting function as well as for the leeway. We will use this idea of a mean transport model as a template, but will make it

more general for a wider use. First, we will go through the oil transport equations and then develop a more general model for90

transport in the MIZ.

2.1 Oil transport equation in the MIZ

The basic equation for the advection velocity in ice-covered water used by the oil spill community (Nordam et al., 2019) is

uo = kiui +(1− ki)(uw +αwU10) , (1)

where uo is the oil velocity, uw is the water velocity, ui is the ice velocity, U10 is the wind velocity at 10 m, αw is a leeway95

coefficient for oil in water which is typically about 3% (Spaulding, 2017; Nordam et al., 2019) and ki is the ice transfer coeffi-

cient and a function of ice concentration A. Often ki is presented as a piece-wise linear function of ice concentration (Nordam

et al., 2019), commonly referred to as the “80/30” rule, and defined as

k
80/30
i =


0 if A< 0.3,

A−0.3
0.5 if 0.3≤A< 0.8,

1 if 0.8≤A.

(2)

The arguments for the “80/30” rule originated from observations by Venkatesh et al. (1990) and are qualitative in nature.100

Venkatesh et al. (1990) observed that for sea ice concentrations greater than 80% the oil appeared to drift with the surrounding

ice. For ice concentrations less than 30%, the oil drifted with the water. In between these two limits a linear weighting is

assumed. The functional form of (2) has not been investigated in detail (French-McCay et al., 2017; Nordam et al., 2019), but

any form for ki will inevitably be a monotonically increasing function of ice concentration with the limits ki = 0 when A= 0

(no ice) and ki = 1 when A= 1 (all ice).105

2.2 General transport equation in the MIZ

For the transport of objects and material in the MIZ we propose a more general equation than (1) that allows for a non-zero

leeway coefficient in the ice,

uo = ki (ui +αiU10)+ (1− ki)(uw +αwU10) , (3)

where αi is the leeway coefficient in the ice. As mentioned previously, ki in (3) can be any monotonically increasing function110

of ice concentration A that has the limits ki = 0 at A= 0 and ki = 1 at A= 1. The simplest parameterization of ki that satisfies

these conditions is the linear relation ki =A and this will be used for this study.

The inclusion of a leeway coefficient in the sea ice has certain analogues with the open ocean. First, most ice-ocean pre-

diction systems don’t include surface waves, which are not uncommon to the MIZ and will impact the drift (Weber, 1987;
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Squire, 2020). There are also advantages to using both the ice and ocean components for transport. One potential advantage115

is that the wind stress in coupled ice-ocean prediction systems (Sakov et al., 2012; Dupont et al., 2015), as well as for wave

models (Masson and LeBlond, 1989; Rogers et al., 2016; Liu et al., 2020), is partitioned as a linear function of ice concentra-

tion and, therefore, biases in the ice concentration could lead to biases in the ice and ocean velocities. Using a weighted mean

ice-ocean velocity ensures that all of the wind-generated currents will be present and biases can be adjusted via the leeway

coefficient. Essentially, the assumption is that we will formulate a transport model which assumes that a weighted average120

of the ice and ocean velocities in the MIZ, along with a corresponding leeway coefficient to be determined, will provide a

more accurate estimate for transport velocities than using either the ocean or the ice velocities separately. This is analogous

to how third generation wave models solve the wave action equation in the MIZ, that is they weight the source terms by ice

concentration and calculate one mean wave spectrum for both the ice and water components combined.

3 Data and Methodology125

3.1 Ice Drifters

Four ice drifters, designed to measure wave-ice interactions (Rabault et al., 2020), were deployed on various ice floes in the

MIZ approximately 250 km north of Svalbard on 19 September 2018. The initial location for each drifter was chosen to sample

a broad range of ice conditions ranging from solitary floes (approximately 10% ice coverage) to more densely packed sea ice

(approximately 90% ice coverage) in a transect perpendicular to the ice edge (Figure 1). The ice floes were relatively flat with130

no visible signs of ridging and an estimated thickness between 50 to 75 cm. The diameter for each was estimated to be 10-15

m for the lowest ice concentration and 20-25 m for the next two higher concentration floes. For the ice floe in the highest ice

concentration it was difficult to estimate the floe diameter due to the compactness.

The drifters are equipped with an inertial motion unit to measure the directional wave spectra and a GPS sensor which

provides accurate measurements of the geographic location and time. The data are recorded on each drifter and sent via Iridium135

approximately every 3 hours. The drifter velocities were calculated using the forward difference in geographic locations.

The drifters began transmitting data on 19 September 2018. Two drifters survived until 1 October 2018 (14435 and 14437)

while the other two (14432 and 14438) stopped reporting on approximately 26 September 2018. From the available data it

appears that each of the drifters stopped transmitting when they had left the MIZ (Figure 1).

3.2 Ice-ocean prediction systems140

The Canadian Arctic Prediction System (CAPS) is a coupled atmosphere-ice-ocean prediction system, with separate analyses

for the atmosphere, ice and ocean components, and a 48 hour forecast is run four times a day at Environment and Climate

Change Canada (ECCC) as part of the Year of Polar Prediction. The ice-ocean component is a 1/12◦ coupled NEMO-CICE

configuration as in Dupont et al. (2015). The ice-ocean component is coupled with an atmospheric model on a higher (3
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Figure 1. Drifter tracks (-) and locations (o) at three different times during their respective trajectories. Filled contours of ice concentration

are shown as calculated by CAPS (a, c, e), and TOPAZ (b, d, f). Drifter IDs, from furthest in the ice to nearest to ocean, are 14432 (blue),

14437 (orange), 14435 (green) and 14438 (red). Drifters exit the MIZ at approximately 2018-09-25 00:00 UTC.
6



km) grid. The dynamical core of the atmospheric component of CAPS is GEM (Global Environmental Multiscale), a non-145

hydrostatic model which solves the fully compressible Euler equations (Côté et al., 1998b, a; Girard et al., 2014).

TOPAZ is a coupled ice-ocean data assimilation system covering the North Atlantic and Arctic oceans (Sakov et al.,

2012). TOPAZ represents the Arctic component of the Copernicus Marine Environment Monitoring Service (CMEMS) sys-

tem (marine.copernicus.eu). Atmospheric forcing is provided by the European Centre for Medium-Range Weather Forecasting

(ECMWF). The ocean component of TOPAZ is the HYbrid COordinate Model (HYCOM), which is a hybrid model consist-150

ing of z-level vertical coordinates in the upper (mixed) layer and isopycnal coordinates below. The horizontal resolution is

12.5 km on a polar stereographic projection. The ocean model is coupled with a single thickness category ice model with

elastic-viscous-plastic (EVP) rheology. Details can be found in Sakov et al. (2012) and Xie et al. (2017).

For all simulations, the wind forcing from CAPS is used. The CAPS model has a grid resolution of roughly 3 km, includes

data assimilation, and is freely available. TOPAZ is forced by ECMWF IFS forecast data which has a spatial resolution of155

0.1◦ (≃ 9 km) on a regular lat/lon grid (https://resources.marine.copernicus.eu/documents/PUM/CMEMS-ARC-PUM-002-

ALL.pdf). The choice of using only one of the wind forcing data sets is partially motivated by the ECMWF IFS forecast data

requiring a license, but also allows for a simpler analysis to focus on the ice-ocean systems.

Snapshots of the ice concentration field (Figure 1) as well as the along-track time series of ice concentration (Figure 2) are

calculated for both CAPS and TOPAZ. A consistent feature between the two ice concentrations is that after approximately 25160

September 2018 both CAPS and TOPAZ predict that there is no ice at the drifter locations. This will allow us to test the model

of (3) for an object that travels between ice and open water. There are also clearly some differences between the predicted ice

concentrations, which are most likely due to the different assimilation cycles of each model. While the analysis of the ice field

in CAPS is updated for each forecast (every 12 hours) the TOPAZ fields have a weekly analysis cycle, which could lead to the

differences, especially for the two drifters which begin in lower ice concentrations (drifters 14435 and 14438).165

A comparison of the model and observed velocities for each drifter is shown in Figure 3. Time series for ice, water and wind

(2%) velocities, interpolated in time and space to available drifter observations, are shown. It is apparent from Figure 3 that

the observed drifter velocities are nearly always greater than either of the ice and water velocities from CAPS or TOPAZ. Ice

and ocean velocities in CAPS vary in magnitude and direction more than those from TOPAZ. This is most likely due to ocean

tides being included in CAPS, while these are not in TOPAZ, as this region is known to have large diurnal tidal currents due to170

a near-resonant, forced topographic wave propagating around the Yermak Plateau (Hunkins, 1986; Padman et al., 1992).

3.3 Calculating leeway coefficients

As the drifters were deployed on ice floes, it is assumed that the drift of these ice floes in the MIZ can be given by (3). Ice

drifters have been previously used by French-McCay et al. (2017); Babaei and Watson (2020) in comparing transport equations

with the drift of ice floes. However, even for ice floes over a wide range of ice concentrations, the weighting of (3) states that175

the ice floe will drift more like the water in low ice concentrations and more like the ice in high ice concentrations. The primary

assumption for using the ice floes as a proxy for general transport is that the ice floe is small enough that inertial forces are
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Figure 2. Ice concentration interpolated to drifter tracks as calculated by a) CAPS and b) TOPAZ. The vertical grey line shows the approxi-

mate time (2018-09-25 00:00 UTC) that the drifters leave the MIZ.

negligible. Results using (3) will be compared with results using (1) as well as an ocean-leeway model (ki = 0, αw = 0.03)

and an ice-only model (ki = 1, αi = 0).

The optimal leeway coefficients to be used in (3) are determined by minimizing the mean absolute error (MAE) between180

the observed and predicted velocities. The leeway coefficients are assumed to be constant in time, and are a vector with both

a downwind and crosswind component. It is also important to assess the sensitivity to these leeway coefficients, which is not

trivial as the calculated MAE is a function of four variables as each αi and αw are vectors. To look at the sensitivity, 2-D slices

are made through the 4-D MAE field to show the relative sensitivity for αi for a fixed αw and vice versa for αw for a fixed αi.

The fixed points for these 2-D slices are selected from averaging the optimal leeway values for all the drifters and ice-ocean185

prediction systems.

3.4 Comparison of transport models in the MIZ

To compare the various transport models we simulate a series of 48 hour trajectories for each drifter, transport model, and

choice of ice-ocean prediction system. Lagrangian trajectories are simulated with MLDPn (Modèle Lagrangien de Dispersion

de Particules d’ordre n), a Lagrangian dispersion model developed at ECCC (D’Amours et al., 2015) adapted for aquatic190

use (Paquin et al., 2020). Virtual trajectories are launched every 12 hours along the observed trajectory, between 20 September

to 25 September 2018. This provides 44 virtual trajectories for each choice of transport model and ice-ocean prediction system.
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Figure 3. Magnitude and direction of observed drifter velocities (uo, black) and predicted wind velocity (2%U10, orange) ice (ui) and water

velocities (uw) from CAPS (blue) and TOPAZ (green) interpolated to the drifter locations. The strong diurnal tidal current is clearly observed

in CAPS, but is absent from TOPAZ as this model does not include tides. The vertical grey line shows the approximate time when the drifters

exit the MIZ.
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Table 1. Best fit for leeway coefficients using the CAPS forcing. MAE∗ is the mean absolute error using leeway values of αi = 0.02e−iπ/6

and αw = 0.03. Negative angles imply clockwise direction relative to wind.

Drifter |αi| Ang(αi) |αw| Ang(αw) MAE (km/day) MAE∗ (km/day)

14432 1.7% -30◦ 2.3% -5◦ 9.4 10.0

14437 2.1% -25◦ 2.9% 5◦ 11.3 11.4

14435 2.4% -35◦ 2.5% 5◦ 11.9 12.3

14438 2.8% -45◦ 2.7% 5◦ 13.4 13.5

Four different transport models are compared. First, the classic drift equation given by (1) with k
80/30
i and leeway coefficients

αw = 0.03 and αi = 0. These leeway coefficients are chosen for the 80/30 method as they are typical values used in the

MIZ (Nordam et al., 2019). Second, the more general (3) with the linear transfer function ki =A along with estimates for αw195

and αi from available data. The last two transport models consist of an ice-only transport (ki = 1, αi = 0) and an ocean-only

transport model (ki = 0, αw = 0.03). The inclusion of a leeway term in the ocean-only model is to ensure consistency with 1)

in the limiting case of no ice.

4 Results and Discussion

4.1 Ice and water leeway coefficients200

The MAE between the observed drifter velocity and the model velocity from (3) is minimized for each drifter and choice of

ice-ocean prediction system. The optimal leeway coefficients, as well as the MAE in km/day, are located in Table 1 for using the

CAPS forcing and Table 2 for the TOPAZ forcing. To demonstrate the relative sensitivity to the choice of leeway coefficients,

2-D slices of the MAE contours are made through a fixed leeway coefficient. That is, the downwind and crosswind contours

for the ice leeway are presented for a fixed water leeway and vice versa. Optimal leeway values are found to be approximately205

αw = 0.03 and αi = 0.02e−iπ/6 and these are used for the constant leeway coefficients used for the MAE slices. No leeway

angle is used for αw, but for αi an angle of -30◦ is found where the negative implies clockwise rotation relative to the wind as

we are using complex notation for our vectors. The MAE for these fixed leeway coefficients are also shown in Tables 1 and 2,

denoted MAE∗ in each Table, and the difference is less than 1.5 km/day for each. Although not shown here, the MAE contours

are qualitatively similar for different choices of fixed leeway coefficients with the primary difference being in the magnitude210

of the MAE.

Filled contours of MAE for αi, with αw = 0.03, for the downwind and crosswind components are shown in Figure 4. The

MAE contours for each drifter are very similar when using the CAPS data or the TOPAZ data. There is a clear sensitivity

related to the ice concentration as the drifter furthest in the ice (14432) has the sharpest contour gradients in MAE and the

drifter at the ice edge (14438) shows very little change in MAE for different values of αi. Not including drifter 14438, the215
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Figure 4. Filled contours of MAE (in km/day) between observed drift velocities and (3) for the along and cross-wind components of αi with

αw = 0.03. The left column uses the CAPS forcing and the right column uses TOPAZ forcing. The black dot shows the location of the MAE

minimum and the black contour line shows the MAE value within 1 km/day of the minimum. Each row is for an individual drifter in order

from high ice concentration at the top to low ice concentration at the bottom. Sensitivity to to the choice of αi is much greater in the high ice

concentration than the low.
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Table 2. Best fit for leeway coefficients using the TOPAZ forcing. MAE∗ is the mean absolute error using leeway values of αi = 0.02e−iπ/6

and Ang(αi) and αw0.03. Negative angles imply clockwise direction relative to wind.

Drifter |αi| Ang(αi) |αw| Ang(αw) MAE (km/day) MAE∗ (km/day)

14432 2.9% -25◦ 3.3% -30◦ 9.8 12.3

14437 3.2% -25◦ 2.8% -5◦ 11.8 13.0

14435 3.4% -30◦ 2.7% -10◦ 10.6 12.1

14438 1.5% -5◦ 2.9% -15◦ 11.5 12.2

Table 3. Mean and standard deviation of separation distance, d, after 48 hours (in km) from Figure 7 for each drifter, forcing, and drift model.

drift 14432 14437 14435 14438

model CAPS TOPAZ CAPS TOPAZ CAPS TOPAZ CAPS TOPAZ

linear 9.4± 5.5 18.2± 8.9 6.2± 2.4 15.0± 7.0 9.5± 2.5 14.4± 6.9 8.9± 6.6 10.1± 7.0

80/30 27.7± 14.6 30.4± 17.9 28.4± 14.1 30.6± 11.7 18.6± 8.0 25.4± 5.1 8.6± 6.8 9.7± 7.3

ice 31.8± 13.5 32.6± 18.9 37.1± 9.8 39.0± 15.9 35.0± 5.4 38.6± 10.7 22.5± 15.6 22.8± 17.2

ocean 15.0± 6.3 20.2± 12.5 10.5± 3.8 18.0± 9.2 12.5± 3.2 19.0± 5.5 8.6± 6.8 10.1± 7.

optimal value for αi is approximately 0.02 and 30◦ to the right of the wind using the CAPS data and 0.03 and 30◦ to the right

of the wind using the TOPAZ data. The difference between 0.02 and 0.03 are within the 1 km/day MAE contour, which is less

than 10% of the total MAE.

Filled contours of MAE for αw, with αi = 0.02e−iπ/6, for the downwind and crosswind components are shown in Figure 5.

Not surprisingly, the MAE contours in Figure 5 have the opposite sensitivity as those in Figure 4, with sharper contour gradients220

in MAE for the lowest ice concentration and MAE showing minimal sensitivity to the choice of αw in high ice concentration.

Also, similar to Figure 4, the MAE values in Figure 5 are similar in magnitude when using either CAPS or TOPAZ data and

range between 10 and 14 km/day.

4.2 Short-term trajectory predictions

A few examples of the observed and modelled trajectories for each drifter can be found in Figure 6. A more detailed presentation225

of the separation distance, d, after 48 hours between the observed and modelled trajectories as a function of trajectory start time

is located in Figure 7. A summary of the mean and standard deviation of the separation distance d can be found in Table 3).

For the drifter furthest in the ice, 14432, and the drifter second furthest in the ice, 14437, the separation distance after 48

hours is the smallest for forecasts beginning before 21 September and this does not vary much with choice of transport model

or ice-ocean forcing (Figure 7a,b). This changes rapidly after 21 September where the predicted trajectories using the 80/30230

and ice-only transport models perform poorly (large separation distance), while the linear model and ocean-leeway models do
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Figure 5. Filled contours of MAE (in km/day) between observed drift velocities and (3) for the along and cross-wind components of αw

with αi = 0.02e−iπ/6. The left column uses CAPS forcing and the right column uses TOPAZ forcing. The black dot shows the location of

the MAE minimum and the black contour line shows the MAE value within 1 km/day of the minimum. Each row is for an individual drifter

in order from high ice concentration at the top to low ice concentration at the bottom. Sensitivity to choice of αw is opposite to that of αi in

Figure 4 with less sensitivity in high ice concentration relative to low.
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Figure 6. Examples of observed and modelled 48 hour trajectories. Each column corresponds to a combination of unique starting time and

choice of ice-ocean forcing. Each row corresponds to a unique drifter. The dots represent locations at 24 hour intervals. The x and y axis are

in km and the choice of origin is arbitrary. The different predicted tracks are linear using (3), 80/30 using (1), ice which uses only the ice

velocities, and ocean which uses the ocean velocities plus 3% leeway.

not produce such a dramatic change (Figure 7a,b). The time when the transport models diverge corresponds with the increase

in wind speed (Figure 3a). As the ice-only and 80/30 transport models do not have a leeway term (these two transport models

are identical for A> 0.8), that the leeway term can improve 48 hour trajectories when using ice-ocean prediction systems.

Drifter 14435, which is in an intermediate ice concentration, has a slightly different response than the previous two drifters235

in higher ice concentration. Similar to the other drifters, the leeway models (ocean-leeway, linear) have smaller trajectory

errors than the non-leeway models (ice-only, 80/30 for A> 0.8). Where drifter 14435 is different is that the intermediate ice

concentrations associated with this drifter trajectory, approximately 60-80%, create two distributions where the separation

distances are sometimes similar to the ice-only model (Figure 7e, before 21 September) and where the distributions are more

similar to those of the ocean-leeway (Figure 7e, after 21 September).240

For the drifter in the lowest ice concentration, 14438, the 80/30, linear, and ocean-leeway models all have essentially the

same trajectory error. As the ice concentration, as provided by the model, are less than 0.3 (with the exception of TOPAZ

before 21 September) it is expected that these three transport models should reproduce the same trajectory.
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Figure 7. Drifter separation, d in km, after 48 hours. The horizontal axis denotes the start times for each simulation simulation so that d is

measured at 48 hours after the time shown on the axis. The linear model corresponds to (3), the 80/30 model to (1), ice corresponds to the

prediction with just ice velocities with no leeway and ocean corresponds to the prediction with just ocean velocities plus 3% leeway. The

solid horizontal lines show the mean separation distance for each respective drift model. The inclusion of a leeway coefficient does reduce

separation distance between observed and predicted trajectories with the linear weighted model providing the best results.
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In general, the linear model using the best-fit leeway coefficients produces the smallest separation distance as well as the

least amount of variation as a function of simulation start time (Table 3). The ice-only transport model had the largest tra-245

jectory errors even though we are using drifters on ice floes as our proxy for transport in the MIZ. The ocean-leeway had

errors comparable to the linear model and the 80/30 model did not perform well in high ice concentration but did perform

well in low ice concentration. These results were generally independent of the choice of CAPS or TOPAZ for the ice-

ocean forcing. It would be interesting to expand the analysis to other ice-ocean prediction systems, for example GOFS 3.1

(https://www7320.nrlssc.navy.mil/GLBhycomcice1-12/), but this is beyond the scope of the current paper and is left to future250

research.

5 Conclusions

Presented here is a general equation to improve the transport of objects and material in waters with a mix of ice and ocean

using ice-ocean prediction systems. The equation is a generalized leeway model and assumes a linear weighting of the ice and

ocean velocities based on ice concentration and allows for a non-zero leeway, which can vary in both magnitude and direction,255

in both the ice and ocean components. Optimal leeway coefficients are calculated by minimizing the error between available

observed drifter velocities in the MIZ and the model velocities calculated using ice-ocean velocities provided by two different

coupled ice-ocean prediction systems: CAPS and TOPAZ. This general leeway model is inspired by the leeway model used

for oil transport in ice-covered waters (Nordam et al., 2019), but we allow for a non-zero ice leeway to account for missing

physics and uncertainties in the ice model.260

By minimizing the error between the available observed and modelled trajectories, optimal values for the water and ice

leeway coefficients, αw and αi respectively, were determined. Optimal values for αw were found in the range 0.02< αw < 0.04

and for αi they were 0.01< αi < 0.03 with a mean direction of 30◦ to the right of the wind. Slightly larger values for αi using

the TOPAZ data compared to the CAPS data. For αw, this range of values is consistent with 3% required for the prediction of

surface drifters (Sutherland et al., 2020) and oil spill modelling (Nordam et al., 2019). The αi values are curiously consistent265

with canonical values used for icebergs of about 2% of the wind and 30◦ to the right (Leppäranta, 2011).

To assess the quality of the general leeway model we compared the trajectory difference between several transport models

for a series of short-term (48 hour) forecasts using the two different ice-ocean prediction systems (CAPS and TOPAZ). The

general leeway model with the linear ki =A is used with the optimal leeway values of αw = 0.03 and αi = 0.02 and 30◦ to

the right of the wind direction. This is compared with the 80/30 transport equation used by the oil spill community, as well270

as an ice-only transport (ki = 1, αi = 0) as well as an ocean-leeway model (ki = 0, αw = 0.03). Results did not vary greatly

between the two ice-ocean forcings. The linear general leeway model consistently had the smallest trajectory error for all four

of the drifters. Somewhat surprisingly the ocean-leeway model consistently had the second smallest errors, even for the drifter

in the highest ice concentration (14432). This is most likely due to the ice-ocean prediction systems being coupled so that the

respective velocities will be strongly correlated in the MIZ when the internal ice stresses are small. The inclusion of the leeway275

is also key as it will compensate for missing physics, notably from surface waves which are not included in the ice-ocean
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prediction systems, and can as well compensate for any biases in the respective drag coefficients in the atmosphere-ice-ocean

system. The 80/30 model had mixed results and generally had smaller prediction errors for smaller ice concentrations than for

large. This is most likely due to the lack of a leeway coefficient in the ice. The ice-only prediction had the largest errors, further

emphasizing the importance of a leeway coefficient for accurate short-term prediction of drift in the MIZ.280

It is not obvious why the errors associated with calculating the leeway coefficients are similar between the CAPS and TOPAZ

forcing (Figures 4 and 5, while the separation errors are much smaller for CAPS than TOPAZ (Figure 7). One likely explanation

is due to the drifter observations being available every 3 hours, hence velocities calculated using forward differences are also

every 3 hours, while CAPS and TOPAZ provide currents every hour. While averaging the CAPS and TOPAZ forcing would

most likely reduce the magnitude of the MAE, it is not expected that this averaging would affect the relative sensitivity, i.e. the285

optimal leeway coefficients should not change. As CAPS includes tides, and therefore has more variability at these frequencies

than TOPAZ (Figure 3), impacts on the magnitude of the MAE will probably be greater for CAPS than TOPAZ. However,

simulation of the trajectories don’t require the observed drifter velocities and should therefore be more accurate, i.e. the results

in Figure 7 and summarized in Table 3.

The inclusion of a leeway coefficient in the ice reduces the prediction error for our drifter trajectories. However, there is not290

enough information to ascertain whether this is due to missing physics in the prediction systems or correcting for biases that are

correlated with the wind. More data would be welcome and dedicated experiments which provide high resolution observations,

preferably hourly, are excellent for investigating short-term dynamics in the MIZ. Data sources, such as the International Arctic

Buoy Program (IABP) (https://iabp.apl.uw.edu) could be another source of data for drift in the MIZ, but as these buoys are

deployed in the pack ice they are dependent on the sea ice dynamics to reach the MIZ, provided they survive the journey, as295

well as other data data products to determine whether they are in the MIZ or not. Attempting to use IABP could prove useful

for understanding short-term dynamics, but given the unknowns mentioned above it is beyond the scope of this paper.

The likely physical explanation for including a leeway in the ice is due to surface waves, which are not uncommon in the

MIZ (Rabault et al., 2020). The waves effect the motion of sea ice in two ways: first, there is an additional Lagrangian drift

due to the presence of waves (the Stokes drift), as well as an additional force due to the attenuation of the surface waves,300

often called the radiation stress (Weber, 1987). This force will be in the direction of wave propagation, so since the waves are

generally entering the ice from the ocean ocean that this can cause the ice edge to compact (Sutherland and Dumont, 2018).

There are also large uncertainties associated with the drag coefficients (Heorton et al., 2019) that could also be part of the

leeway coefficient. It should also be emphasized that while the use of an ice leeway improved predictions in the MIZ, there is

little reason to expect that this would be the case in the pack ice where internal stresses significantly impact the drift. In such305

a case, a more sophisticated expression for αi, which depends on ice concentration such that αi → 0 as A→ 1 would most

likely be required that also preserves some of the improvements shown in the MIZ.

Data availability. The drifter data can be accessed at https://thredds.met.no/thredds/catalog/metusers/jeanr/data_papers/drift_barents_2018/

catalog.html?dataset=metusers/jeanr/data_papers/drift_barents_2018/drift_data.nc. TOPAZ forecasts are available on the Copernicus Marine
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Enrivonment Monitoring Service FTP server (https://resources.marine.copernicus.eu) at nrt.cmems-du.eu/Core/ARCTIC_ANALYSIS_FORE310

CAST_PHYS_002_001_a/dataset-topaz4-arc-myoceanv2-be/. CAPS ice-ocean forecasts are available at http://dd.alpha.meteo.gc.ca/yopp/

model_riops/ and the atmospheric forecasts at http://dd.alpha.meteo.gc.ca/yopp/model_caps/.
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