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Abstract. Kﬁewiedg&ef—ﬂ%fmaekanderstandm the transport of objects and material in the marginal ice zone (MIZ) is
human operations in

critical for epe AS-iA-the Ae-ass ed-emergeney-response-ap fs example;—the

olar regions. This can be the transport of pollutants, such as eil;-as-well-as-predieting-drift-asseeiated-with-spilled oil, or the
transport of objects, such as drifting ships and search and rescue operations. This-paperpropeses-a-general-transport-equation

model-and-observed drifter veloeity For emergency response, the use of environmental prediction systems are required, which
predict ice and ocean parameters and are run operationally by many centres in the world. As these prediction systems predict
both ice and ocean velocities, as well as ice concentration, it must be chosen how to combine this data to best predict the mean
transport velocities. In this paper we present a case study of four drifting buoys in the MIZ —Fheseleeway vatues-arefound-to

“rule-of-thumb"valuesforsurface-drifters-and-sea-icerespeetively—This-general-deployed at four distinct ice concentrations.
We compare short-term trajectories. i.¢. up to 48 hour lead times, with standard transport models using ice and ocean velocities
from two operational prediction systems. A new transport model for the MIZ is developed with two key features aimed to help
mitigate uncertainties in ice-ocean prediction systems: first, including both ice and ocean velocities and linearly weight them
J%memmpm
model is found to reduce the error, by a factor of 2 compared
WM%MWMMMM@&WMMMWH&%%
after 48 hou

MiZ-hours.
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1 Introduction

Estimating the drift-and-transpert-oftransport of objects and material in the marginal ice zone (MIZ) is a crucial aspect of polar

operations. This can be related to search and rescue operations (Rabatel et al., 2018) as well as the transport of oil and other
contaminants (French-McCay et al., 2017; Nordam et al., 2019). The requirement of accurate drift-and-transport estimates
for these processes is exacerbated by the remoteness of these regions. Thus, accurate predictions up to at least 48 hours, are
required to provide sufficient time to coordinate response efforts. Due to the numerous transient processes in the ocean, these
short-term predictions can be particularly difficult to predict accurately (Christensen et al., 2018).

The first step in predicting transport in the MIZ is-are accurate predictions of ice, water and wind velocities, and in the aretie
Arctic there are a few operational-products which provide fereeastsforecast data of at least 48 hours. A couple examples of
such Arctic systems being the Regional Ice-Ocen Prediction System (RIOPS) in Canada (Dupont et al., 2015) and the TOPAZ
system as part of the Copernicus Marine Environment Monitoring Service (CMEMS) (Sakov et al., 2012). These operational
prediction—systems—typieallty-will-prediction systems will predominantly have the ocean and ice components coupled, and
typieally-in general do not include forcing from surface waves. Rarely they are coupled with the atmosphere, but one example
of an ice-ocean-atmosphere coupled model is the Canadian Arctic Prediction System (CAPS) which is the RIOPS system
two-way coupled with the GEM (Global Environmental Multi-scale) atmospheric model (Coté et al., 1998b, a; Girard et al.,
2014). The ice models used in these prediction systems assume a continuous ice cover and a viscous-plastic rheology, which is
typically derived from principles introduced by Hibler III (1979). For ice concentrations of less than 80%, the ice is assumed
to be in “free drift” and-as the rheology is expected to have a minimal impact on the dynamics (Hibler III, 1979). While free
drift models exist, and they perform quite well when compared with observations, they do require data in order to tune the drag
coefficients (Schweiger and Zhang, 2015) which can be difficult to obtain in the areticArctic.

It is common for eperationat-the short-term prediction of drifting objects to include a leeway term, which is a fraction of
the wind that is added to the predicted water velocity. This has been common for a long time in search and rescue (Breivik
et al., 2011) and oil spill trajectory modelling (Spaulding, 2017). These leeway values can represent direct wind forcing on the
object (Kirwan Jr et al., 1975), and/or wind-dependent physics which are not included in the operational-ice-ocean prediction

ice-ocean prediction systems do not include surface waves it is
common to include the Stokes drift (Breivik and Christensen, 2020) which can be approximated by a leeway coefficient (Breivik

s

system. As most

et al., 2011; Sutherland et al., 2020). In addition, material at the surface, such as oil but also ice, will strongly attenuate surface
waves creating an additional force on the material (Weber, 2001). Oil and ice also impact the "roughness" of the surface;

slicks in the case of oil which reduce the roughness (Wu, 1983), and the presence of form drag in the MIZ which can increase
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roughness (Liipkes et al., 2012; Tsamados et al., 2014). For oil, it *s-has long been established that the competing wind and
wave effects combine for a net leeway of about 3% of the velocity (Wu, 1983). For sea ice it is not clear whether a leeway term
should be included in the drift, however, eperational-models-ice-ocean prediction systems such as CAPS and TOPAZ do not
explicitly include processes associated with surface waves or form drag due to the ice roughness. Therefore, a non-zero leeway
term in the MIZ may be necessary.

There are only a few examples of using a leeway coefficient with the drift of sea ice, but-and these are typically restricted to
cases where there are no ocean current measurements available and the ice speed is modelled as solely a function of the wind.
Wilkinson and Wadhams (2003) observed an ice leeway which was dependent on ice concentration. The leeway values ranged
from 3.9% for ice concentrations less than 25% to 2.2% for ice concentrations greater than 75%. More recently, Lund et al.
(2018) observed that the wind and sea ice motion is-are not always well correlated and that ice leeway coefficients can span
a large range of values, from 3.5 to 5%across-a—wide-, across a range of ice concentrations in the aretie-Arctic MIZ. In these
papers, it is possible that some of the ice motion was due to tidal and/or inertial motions, which will not directly scale with the
instantaneous wind and would lead to uncertainties in the above estimates.

While typically leeway coefficients are determined for particular objects using detailed field measurements (Breivik et al.,
2011), recently it was shown by Sutherland et al. (2020) that leeway coefficients can also be predicted using eperational
environmental prediction systems. The mean leeway coefficients using the eperational-predietion-data-model data input were
found to be consistent with detailed-observations and independent of the choice of eperational-environmental prediction system.
However, these principles have only been applied in open ocean conditions and have not been tested in the presence of sea ice.
It would seem that there are certain analogues with the open ocean that would warrant the use of a leeway coefficient in the
MIZ. First, most operational-ice-ocean medels-prediction systems don’t include surface waves, which are not uncommon to the
MIZ and will impact the drift (Weber, 1987; Squire, 2020). In addition, in the MIZ where ice concentrations are typically less
than 80%, the ice is said to be in free drift and the ice motion will depend strongly on a accurate parameterization of the drag
coefficient (Cole et al., 2017) and noton-an-aceurate theology-of-less sensitive to the internal ice stress (Hibler II1, 1979). Form
drag due to sea ice is also another physical process which will effect the ice motion and has a strong effect in the MIZ (Liipkes
et al., 2012).

In this paper ;-we-compare-the-observed-driftof-we use field observations from four ice driftersin-the MiZand-compare-these

are-obtained-from-, deployed at four distinct ice concentrations within the MIZ, to compare various transport models forced by
two operational ice-ocean prediction systems foeused-on-the-aretie-in the Arctic. The study focuses on the short-term prediction
of drift trajectories, on the order of 48 hours, that are the most relevant for emergency response. A new transport model, which
in the MIZ. The outline of the paper is as follows. Seetion-2-a-leeway-modelis-developed-Transport models used in the MIZ,
along with the introduction of a more general transport model for the MIZ, are described in Section 2. Section 3 describes the
data, the ice-ocean prediction systems and the methodology used in calculating and verifying the leeway coefficients. Results

and Discussion are presented in section 4 followed by the conclusions.
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2 Transport equations for the MIZ

Ice and ocean surface velocities in the MIZ are strongly coupled. In the dynamical models of eperational-ice-ocean prediction
systems, this is through the relative friction between the ocean and ice components. Most eperational-ice-ocean prediction
systems will have the ice and ocean components two-way coupled. Differences between ice and ocean surface velocities can
arise due to ice inertia, which is generally negligible in the MIZ, and internal stresses within the ice, which are also negligible
for ice concentrations less than 80% (Hibler III, 1979). So the ice and ocean surface velocities in the MIZ are predominantly in
a steady-state free drift mode, with the magnitude, as predicted by eperational-ice-ocean prediction systems, being dependent
on the drag coefficients and the ice concentration.

Given the uncertainties associated with modelling velocities in the MIZ, it makes-sense-could be beneficial to use both ice
and ocean velocities to derive a general transport velocity. This is precisely the approach used for oil spill modelling in ice-
covered waters (Nordam et al., 2019), where a mean transport velocity is calculated and the ice and surface ocean components
are weighted by a function of ice concentration. The model used by the oil spill community uses some empirical estimates for
the weighting function as well as for the leeway. We will use this idea of a mean transport model as a template, but will make
it more general for a wider use. First, we will go through the oil transport equations and then develop a more general model for

transport in the MIZ.

2.1 OQil transport equation in the MIZ

The basic equation for the advection velocity in ice-covered water used by the oil spill community (Nordam et al., 2019) is
u, = ki + (1 — ki) (uy + @ Uro), 1)

where u, is the oil velocity, u,, is the water velocity, u; is the ice velocity, U is the wind velocity at 10 m, o, is a leeway
coefficient for oil in water which is typically about 3% (Spaulding, 2017; Nordam et al., 2019) and k; is the ice transfer coeffi-
cient and a function of ice concentration A. Often k; is presented as a piece-wise linear function of ice concentration (Nordam

et al., 2019), commonly referred to as the “80/30” rule, and defined as

0 if A <0.3,
30130 _ AS03 i£(0.3<A<08, :
1 if 0.8 < A.

The arguments for the “80/30” rule originated from observations by Venkatesh et al. (1990) and are qualitative in nature.
Venkatesh et al. (1990) observed that for sea ice concentrations greater than 80% the oil appeared to drift with the surrounding
ice. For ice concentrations less than 30%, the oil drifted with the water. In between these two limits a linear weighting is
assumed. The functional form of (2) has not been investigated in detail (French-McCay et al., 2017; Nordam et al., 2019), but
any form for k; will inevitably be a monotonically increasing function of ice concentration with the limits k; =0 when A =0

(noice) and k; = 1 when A = 1 (all ice).
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2.2 General transport equation in the MIZ

For the transport of objects and material in the MIZ we propose a more general equation than (1) that allows for a non-zero

leeway coefficient in the ice,
u, =k; (u; + a;Uqo) + (1 — k;) (0 + 0y Uno) s 3)

where «; is the leeway coefficient in the ice. As mentioned previously, k; in (3) can be any monotonically increasing function
of ice concentration A that has the limits k; =0 at A = 0 and k; = 1 at A = 1. The simplest parameterization of k; that satisfies
these conditions is the linear relation k; = A and this will be used for this study.

The inclusion of a leeway coefficient in the sea ice has certain analogues with the open ocean. First, most eperational
ice-ocean modelsprediction systems don’t include surface waves, which are not uncommon to the MIZ and will impact the
drift (Weber, 1987; Squire, 2020). There are also advantages to using both the ice and ocean components for transport. One
potential advantage is that the wind stress in coupled ice-ocean prediction systems (Sakov et al., 2012; Dupont et al., 2015), as
well as for wave models (Rogers-et-al52616)(Masson and LeBlond, 1989; Rogers et al., 2016; Liu et al., 2020), is partitioned
as a linear function of ice concentration and, therefore, biases in the ice concentration could lead to biases in the ice and
ocean velocities. Using a weighted mean ice-ocean velocity ensures that all of the wind-generated currents will be present and
biases can be adjusted via the leeway coefficient. Essentially, the assumption is that we will formulate a transport model which
assumes that a weighted average of the ice and ocean velocities in the MIZ, along with a corresponding leeway coefficient to

be determined, will provide a more accurate estimate for transport velocities than using either the ocean or the ice velocities

separately. Tn-some-ways-this-is-similarto-hew-wave-moedels-caleunlate-theirselationsThis is analogous to how third generation
wave models solve the wave action equation in the MIZ, that is they take-a-weighted-mean-of-the fereing funetions,-weighted

weight the source terms by ice concentration s-and calculate one mean wave spectrum for both the ice and water components

combined

3 Data and Methodology
3.1 Ice Drifters

Four ice drifters, designed to measure wave-ice interactions (Rabault et al., 2020), were deployed on various ice floes in the
MIZ approximately 250 km north of Svalbard on 19 September 2018. The initial location for each drifter was chosen to sample
a broad range of ice conditions ranging from solitary floes (approximately 10% ice coverage) to more densely packed sea ice

(approximately 90% ice coverage) in a transect perpendicular to the ice edge (Figure 1). The ice floes were relatively flat with

no visible signs of ridging and an estimated thickness between 50 to 75 cm. The diameter for each was estimated to be 10-15
m for the lowest ice concentration and 20-25 m for the next two higher concentration floes. For the ice floe in the highest ice
concentration it was difficult to estimate the floe diameter due to the compactness.
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Figure 1. Drifter tracks (-) and locations (o) at three different times during their respective trajectories. Contours-Filled contours of ice
concentration are shown as calculated by CAPS (a, ¢, e), and TOPAZ (b, d, f). Drifter IDs, from furthest in the ice to nearest to ocean, are

14432 (blue), 14437 (orange), 14435 (green) and 14438 (red). Drifters exit the MIZ at approximately 2018-09-25 00:00 UTC.
6
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The drifters are equipped with an inertial motion unit to measure the directional wave spectra and a GPS sensor which
provides accurate measurements of the geographic location and time. The data are recorded on each drifter and sent via Iridium
approximately every 3 hours. The drifter velocities were calculated using the forward difference in geographic locations.

The drifters transmitted-data—from-began transmitting data on 19 September 2018. Two drifters survived until 1 October
2018 (14435 and 14437) while the other two (14432 and 14438) stopped reporting at-on approximately 26 September 2018.
From the available data it appears that each of the drifters stopped transmitting when they had left the MIZ (Figure 1).

3.2 Ice-ocean prediction systems

The Canadian Arctic Prediction System (CAPS) is a coupled atmosphere-ice-ocean prediction system, with separate analyses
for the atmosphere, ice and ocean components, which-is—run-operationally-and a 48 hour forecast is run four times a day at
Environment and Climate Change Canada (ECCC) as part of the Year of Polar Prediction. The ice-ocean component is a 1/12°
coupled NEMO-CICE configuration as in Dupont et al. (2015). The ice-ocean component is coupled with an atmospheric
model on a higher (3 km) grid. The dynamical core of the atmospheric component of CAPS is GEM (Global Environmental
Multiscale), a non-hydrostatic model which solves the fully compressible Euler equations (C6té et al., 1998b, a; Girard et al.,
2014).

TOPAZ is a coupled ice-ocean data assimilation system covering the North Atlantic and Arctic oceans (Sakov et al.,
2012). TOPAZ represents the Arctic component of the Copernicus Marine Environment Monitoring Service (CMEMS) sys-
tem (marine.copernicus.eu). Atmospheric forcing is provided by the European Centre for Medium-Range Weather Forecasting
(ECMWF). The ocean component of TOPAZ is the HYbrid COordinate Model (HY COM), which is a hybrid model consisting
of z-level vertical coordinates in the upper (mixed) layer and isopycnal coordinates below. The horizontal resolution is about
+2-km-in-the-Aretie12.5 km on a polar stereographic projection. The ocean model is coupled with a single thickness category
ice model with elastic-viscous-plastic (EVP) rheology. Details can be found in Sakov et al. (2012) and Xie et al. (2017).

For all simulations, the wind forcing from CAPS is used. The CAPS model has a grid resolution of roughly 3 km, includes
data assimilation, and is freely available. TOPAZ is forced by ECMWEF IFS forecast data which has a spatial resolution of
0.1° (~9 km) on a regular lat/lon grid (https://resources.marine.copernicus.eu/documents/PUM/CMEMS-ARC-PUM-002-
ALL.pdf). The choice of using only one of the wind forcing data sets is partially motivated by the ECMWF IFS forecast data
requiring a license, but also allows for a simpler analysis to focus on the ice-ocean systems.

Snapshots of the ice concentration field (Figure 1) as well as the along-track time series of ice concentration (Figure 2) are
calculated for both CAPS and TOPAZ. A consistent feature between the two ice concentrations is that after approximately 25
September 2018 both CAPS and TOPAZ predict that there is no ice at the drifter locations. This will allow us to test the model
of (3) for an object that travels between ice and open water. There are also clearly some differences between the predicted ice
concentrations, which are most likely due to the different assimilation cycles of each model. While the analysis of the ice field
in CAPS is updated for each forecast (every 12 hours) the TOPAZ fields have a weekly analysis cycle, which could lead to the

differences, especially for the two drifters which begin in lower ice concentrations (drifters 14435 and 14438).
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Figure 2. Ice concentration interpolated to drifter tracks as calculated by a) CAPS and b) TOPAZ. The vertical grey line shows the approxi-
mate time (2018-09-25 00:00 UTC) that the drifters leave the MIZ.

A comparison of the model and observed velocities for each drifter is shown in Figure 3. Time series for ice, water and wind
(2%) velocities, interpolated in time and space to available drifter observations, are shown. It is apparent from Figure 3 that
the observed drifter velocities are nearly always greater than either of the ice and water velocities from CAPS or TOPAZ. Ice
and ocean velocities in CAPS vary in magnitude and direction more than those from TOPAZ. This is most likely due to ocean
tides being included in CAPS, while these are not in TOPAZ, as this region is known to have large diurnal tidal currents due to

a near-resonant, forced topographic wave propagating around the Yermak Plateau (Hunkins, 1986; Padman et al., 1992).
3.3 Calculating leeway coefficients

As the drifters were deployed on ice floes, it is assumed that the drift of these ice floes in the MIZ can be given by (3). Ice
drifters have been previously used by French-McCay et al. (2017); Babaei and Watson (2020) in comparing transport equations
with the drift of ice floes. However, even for ice floes over a wide range of ice concentrations, the weighting of (3) states that
the ice floe will drift more like the water in low ice concentrations and more like the ice in high ice concentrations. The primary
assumption for using the ice floes as a proxy for general transport is that the ice floe is small enough that inertial forces are

negligible. Fo-investigate-this-assumption;-the-resultsfrom-Results using (3) will be compared with results using (1) as well as

an ocean-leeway model (k; = 0, a,,, = 0.03) and an ice-only model (k; = 1, o; = 0).
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Figure 3. Magnitude and direction of observed drifter velocities (u,, black) and predicted wind velocity (2% U 1o, orange) ice (u;) and water
velocities (u,,) from CAPS (blue) and TOPAZ (green) interpolated to the drifter locations. The strong diurnal tidal current is clearly observed
in CAPS, but is absent from TOPAZ as this model does not include tides. The vertical grey line shows the approximate time when the drifters

exit the MIZ.
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The optimal leeway coefficients to be used in (3) are determined by minimizing the mean absolute error (MAE) between
the observed and predicted velocities. The leeway coefficients are assumed to be constant in time, and are a vector with both
a downwind and crosswind component. It is also important to assess the sensitivity to these leeway coefficients, which is not
trivial as the calculated MAE is a function of four variables as each «; and «,, are vectors. To look at the sensitivity, 2-D slices
are made through the 4-D MAE field to show the relative sensitivity for «; for a fixed «,, and vice versa for oy, for a fixed «;.
The fixed points for these 2-D slices are selected from averaging the optimal leeway values for all the drifters and ice-ocean

prediction systems.

3.4 Comparison of transport models in the MIZ

To compare the various transport models we simulate a series of 48 hour trajectories for each drifter, transport model, and
choice of ice-ocean prediction system. Lagrangian trajectories are simulated with MLDPn (Modele Lagrangien de Dispersion

de Particules d’ordre n), a Lagrangian dispersion model developed at ECCC (D’Amours et al., 2015) adapted for aquatic

use (Paquin et al., 2020). Virtual trajectories are launched every 12 hours along the observed trajectory, between 20 September
to 25 September 2018. This provides 44 virtual trajectories for each choice of transport model and ice-ocean prediction system.
Four different transport models are compared. First, the classic drift equation given by (1) with £20/39 and leeway coefficients
o, = 0.03 and «; = 0. These leeway coefficients are chosen for the 80/30 method as they are typical values used in the
MIZ (Nordam et al., 2019). Second, the more general (3) with the linear transfer function k; = A along with estimates for o

and «; from available data. The last two transport models consist of an ice-only transport (k; = 1, a;; = 0) and an ocean-onl

transport model (k; = 0, o, = 0.03). The inclusion of a leeway term in the ocean-only model is to ensure consistency with 1

in the limiting case of no ice.

4 Results and diseussionDiscussion
4.1 Ice and water leeway coefficients

The MAE between the observed drifter velocity and the model velocity from (3) is minimized for each drifter and choice of
ice-ocean prediction system. The optimal leeway coefficients, as well as the MAE in km/day, are located in Table 1 for using the
CAPS forcing and Table 2 for the TOPAZ forcing. To demonstrate the relative sensitivity to the choice of leeway coefficients,
2-D slices of the MAE contours are made through a fixed leeway coefficient. That is, the downwind and crosswind contours
for the ice leeway are presented for a fixed water leeway and vice versa. Optimal leeway values are found to be approximately
v = 0.03 and a; = 0.02e~%"/% and these are used for the constant leeway coefficients used for the MAE slices. No leeway
angle is used for «,,, but for ; an angle of -30° is found where the negative implies clockwise rotation relative to the wind as
we are using complex notation for our vectors. The MAE for these fixed leeway coefficients are also shown in Tables 1 and 2,

denoted MAE* in each Table, and the difference is less than 1.5 km/day for each. Although not shown here, the MAE contours

10
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Table 1. Best fit for leeway coefficients using the CAPS forcing. MAE" is the mean absolute error using leeway values of a;—=2%

%, = 0.03. Negative angles imply clockwise direction relative to wind.

Drifter  |o;|  Ang(ey;) |aw| Ang(ow) MAE (km/day) MAE™ (km/day)

14432 1.7% -30° 2.3% -5° 94 10.0
14437  2.1% -25° 2.9% 5° 11.3 114
14435  2.4% -35° 2.5% 5° 11.9 12.3
14438  2.8% -45° 2.7% 5° 13.4 13.5

Table 2. Best fit for leeway coefficients using the TOPAZ forcingand-constant-- MAE™ is the mean absolute error using leeway values of e
%M and Ang(a;) =-36>and err=3%0,,0.03. Negative angles imply clockwise direction relative to wind.

Drifter ||  Ang(ai) |aw| Ang(aw) MAE (km/day) MAE® (km/day)

14432 2.9% -25° 3.3% -30° 9.8 12.3
14437  32% -25° 2.8% -5° 11.8 13.0
14435  3.4% -30° 2.7% -10° 10.6 12.1
14438  1.5% -5¢ 2.9% -15° 11.5 12.2

are qualitatively similar for different choices of fixed leeway coefficients with the primary difference being in the magnitude
of the MAE.

ContotrsTilled contours of MAE for «;, with oy, = 0.03, for the downwind and crosswind components at-a-fixed-value-of
ag-are shown in Figure 4. The MAE contours for each drifter are very similar when using the CAPS data or the TOPAZ data.
There is a clear sensitivity related to the ice concentration as the drifter furthest in the ice (14432) has the sharpest contour
gradients in MAE and the drifter at the ice edge (14438) shows very little change in MAE for different values of «;. Not
including drifter 14438, the optimal value for «; is approximately 0.02 and 30° to the right of the wind using the CAPS data
and 0.03 and 30° to the right of the wind using the TOPAZ data. The difference between 0.02 and 0.03 are within the 1 km/day
MAE contour, which is less than 10% of the total MAE.

Centours-Filled contours of MAE for «,,, with oy = 0.02¢~"7/6, for the downwind and crosswind components at-a-fixed
value-of-a;—are shown in Figure 5. Not surprisingly, the MAE contours in Figure 5 have the opposite sensitivity as those in
Figure 4, with sharper contour gradients in MAE for the lowest ice concentration and MAE showing minimal sensitivity to the
choice of ay, in high ice concentration. Also, similar to Figure 4, the MAE values in Figure 5 are similar in magnitude when

using either CAPS or TOPAZ data and range between 10 and 14 km/day.

4.2 Short-term trajectory predictions
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Figure 4. MAETilled contours of MAE (in km/day) between observed drift velocities with-and (3) for the along and cross-wind components
of «; through-the-constant-with o, = 0.03. The left column uses the CAPS forcing and the right column uses TOPAZ forcing. The black
dot shows the location of the MAE minimum and the black contour line shows the MAE value within 1 km/day of the minimum. Each row
is for an individual drifter in order from high ice concentration at the top to low ice concentration at the bottom. Sensitivity to to the choice

of a; is much greater in the high ice concentration than the low.
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black dot shows the location of the MAE minimum and the black contour line shows the MAE value within 1 km/day of the minimum. Each
row is for an individual drifter in order from high ice concentration at the top to low ice concentration at the bottom. Sensitivity to choice of

Q. 18 opposite to that of «; in Figure 4 with less sensitivity in high ice concentration relative to low.
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Figure 6. Examples of observed and modelled 48 hour trajectories. Each column corresponds to a combination of unique starting time and
choice of ice-ocean forcing. Each row corresponds to a unique drifter. The dots represent locations at 24 hour intervals. The x and y axis are

in km and the choice of origin is arbitrary. The different predicted tracks are linear using (3), 80/30 using (1), ice which uses only the ice

velocities, and ocean which uses the ocean velocities plus 3% leeway.

245

250 A few examples of the observed and modelled trajectories for each drifter can be found in Figure 6. A more detailed
presentation of the separation distance, d, after 48 hours between the observed and modelled trajectories as a function of
trajectory start time is located in Figure 7. A summary of the mean and standard deviation of the separation distance d can be

found in Table 3).
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separation distance between observed and predicted trajectories with the linear weighted model providing the best results.
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Table 3. Mean and standard deviation of separation distance, d, after 48 hours (in km) from Figure 7 for each drifter, forcing, and drift model.

drift 14432 14437 14435 14438
model CAPS TOPAZ CAPS TOPAZ CAPS TOPAZ CAPS TOPAZ

linear 9.4+£5.5 18.2+8.9 6.2+24 15.0+£7.0 9.5+2.5 14.44+6.9 8.9+6.6 10.1£7.0
80/30 27.7+£14.6 30.4£17.9 284+141 30.6+£11.7 186+80 254+£5.1 8.6+6.8 9.7+7.3
ice 31.8+135 326£189 371+98 39.0£159 35.0+£54 386+10.7 225+15.6 22.8+£17.2
ocean 15.0+£6.3 20.2£125 10.5+3.8 18.0£9.2 125£3.2 19.0%5.5 8.6+£6.8 10.1£7.

For the drifter furthest in the ice, 14432, and the drifter second furthest in the ice, 14437, the separation distance after 48
hours is the smallest for forecasts beginning before 21 September and this does not vary much with choice of transport model
or ice-ocean forcing (Figure 7a,b). This changes rapidly after 21 September where the predicted trajectories using the 80/30
and ice-only transport models perform poorly (large separation distance), while the linear model and ocean-leeway models do
not produce such a dramatic change (Figure 7a,b). The time when the transport models diverge corresponds with the increase
in wind speed (Figure 3a). As the ice-only and 80/30 transport models do not have a leeway term (these two transport models
are identical for A > 0.8), that the leeway term can improve 48 hour trajectories when using eperatienal-ice-ocean prediction
systems.

Drifter 14435, which is in an intermediate ice concentration, has a slightly different response than the previous two drifters
in higher ice concentration. Similar to the other drifters, the leeway models (ocean-leeway, linear) have smaller trajectory
errors than the non-leeway models (ice-only, 80/30 for A > 0.8). Where drifter 14435 is different is that the intermediate ice
concentrations associated with this drifter trajectory, approximately 60-80%, create two distributions where the separation
distances are sometimes similar to the ice-only model (Figure 7e, before 21 September) and where the distributions are more
similar to those of the ocean-leeway (Figure 7e, after 21 September).

For the drifter in the lowest ice concentration, 14438, the 80/30, linear, and ocean-leeway models all have essentially the
same trajectory error. As the ice concentration, as provided by the model, are less than 0.3 (with the exception of TOPAZ
before 21 September) it is expected that these three transport models should reproduce the same trajectory.

In general, the linear model using the best-fit leeway coefficients produces the smallest separation distance as well as the
least amount of variation as a function of simulation start time (Table 3). The ice-only transport model had the largest tra-
jectory errors even though we are using drifters on ice floes as our proxy for transport in the MIZ. The ocean-leeway had
errors comparable to the linear model and the 80/30 model did not perform well in high ice concentration but did perform

well in low ice concentration. These results were generally independent of the choice of CAPS or TOPAZ for the ice-

ocean forcing. It would be interesting to expand the analysis to other ice-ocean prediction systems, for example GOFS 3.1
https://www7320.nrlssc.navy.mil/GLBhycomcice1-12/), but this is beyond the scope of the current paper and is left to future

research.
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5 Conclusions

Presented here is a general teeway-medel-which-equation to improve the transport of objects and material in waters with a mix
of ice and ocean using ice-ocean prediction systems. The equation is a generalized leeway model and assumes a linear weight-
ing of the ice and ocean velocities based on ice concentration and allows for a non-zero leewayin-both-, which can vary in both
magnitude and direction, in both the ice and ocean componentsand-this-leeway-ecan-vary-in-magnitude-and-direetion. Optimal
leeway coefficients are calculated by minimizing the error between available observed drifter velocities in the MIZ and the
model velocities calculated using ice-ocean velocities provided by two different coupled ice-ocean prediction systems: CAPS
and TOPAZ. This general leeway model is inspired by the leeway model used for oil transport in ice-covered waters (Nordam
et al., 2019), but we allow for ar-a non-zero ice leeway to pessibly-notbezero-te-account for missing physics and uncertainties
in the ice modeland-assume-alinear-weighting for-all-iee-coneentrations-and-net-only-a-subse

By minimizing the error between the available observed and modelled trajectories, optimal values for the water and ice
leeway coefficients, o, and o; respectively, were determined. Optimal values for o, were found in the range 0.02 < «,, < 0.04
and for a; they were 0.01 < «; < 0.03 with a mean direction of 30° to the right of the wind. Slightly larger values for o; using
the TOPAZ data compared to the CAPS data. For «,,, this range of values is consistent with 3% required for the prediction of
surface drifters (Sutherland et al., 2020) and oil spill modelling (Nordam et al., 2019). The «; values are curiously consistent
with canonical values used for icebergs of about 2% of the wind and 30° to the right (Leppéranta, 2011).

To assess the quality of the general leeway model we compared the trajectory difference between several transport models
for a series of short-term (48 hour) forecasts using the two different ice-ocean prediction systems (CAPS and TOPAZ). The
general leeway model with the linear k; = A is used with the optimal leeway values of a,,, = 0.03 and «; = 0.02 and 30° to the
right of the wind direction. This is compared with the 80/30 transport equation used by the oil spill community, as well as an
ice-only transport (k; = 1, a; = 0) as well as an ocean-leeway model (k; = 0, o, = 0.03). Results were-generally-independent
of-the-chetee-of-did not vary greatly between the two ice-ocean foreingforcings. The linear general leeway model consistently
had the smallest trajectory error for all four of the drifters. Somewhat surprisingly the ocean-leeway model consistently had
the second smallest errors, even for the drifter in the highest ice concentration (14432). This is most likely due to the ice-ocean
prediction systems being coupled so that the respective velocities will be strongly correlated in the MIZ when the internal ice
stresses are small. The inclusion of the leeway is also key as it will compensate for missing physics, notably from surface
waves which are not included in the ice-ocean prediction systems, and can as well compensate for any biases in the respective
drag coefficients in the atmosphere-ice-ocean system. The 80/30 model had mixed results and generally had smaller prediction
errors for smaller ice concentrations than for large. This is most likely due to the lack of a leeway coefficient in the ice. The
ice-only prediction had the largest errors, further emphasizing the importance of a leeway coefficient for accurate short-term
prediction of drift in the MIZ.

It is not obvious why the errors associated with calculating the leeway coefficients are similar between the CAPS and TOPAZ
forcing (Figures 4 and 5, while the separation errors are much smaller for CAPS than TOPAZ (Figure 7). One likely explanation

is due to the drifter observations being available every 3 hours, hence velocities calculated using forward differences are also
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every 3 hours, while CAPS and TOPAZ provide currents every hour. While averaging the CAPS and TOPAZ forcing would
most likely reduce the magnitude of the MAE, it is not expected that this averaging would affect the relative sensitivity, i.e. the
optimal leeway coefficients should not change. As CAPS includes tides, and therefore has more variability at these frequencies
than TOPAZ (Figure 3), impacts on the magnitude of the MAE will probably be greater for CAPS than TOPAZ. However,
simulation of the trajectories don’t require the observed drifter velocities and should therefore be more accurate, i.e. the results

in Figure 7 and summarized in Table 3.

The inclusion
of a leeway coefficient in the ice reduces the prediction error for our drifter trajectories. However, there is not enough infor-
mation to ascertain whether this is due to missing physics in the prediction systems or correcting for biases that are corre-

lated with the wind.

More data would be welcome and dedicated experiments which provide high resolution observations, preferably hourly, are
excellent for investigating short-term dynamics in the MIZ. Data sources, such as the International Arctic Buoy Program
(IABP) (https://iabp.apl.uw.edu) could be another source of data for drift in the MIZ, but as these buoys are deployed in the
pack ice they are dependent on the sea ice dynamics to reach the MIZ, provided they survive the journey, as well as other data
data products to determine whether they are in the MIZ or not. Attempting to use IABP could prove useful for understanding
short-term dynamics, but given the unknowns mentioned above it is beyond the scope of this paper.

The likely physical explanation for including a leeway in the ice is due to surface waves, which are not uncommon in the
MIZ (Rabault et al., 2020);-which-willresult-in-the-Stokes-drift-. The waves effect the motion of sea ice in two ways: first, there

is an additional Lagrangian drift due to the presence of waves (the Stokes drift), as well as an additional force due to the wave

M(M(WWWWMWWMQ the ice edge and-impaet-the-thickness(Sutherland-and Dumont; 2048)-which

o compact (Sutherland and Dumont, 2018).

There are also large uncertainties associated with the drag coefficients (Heorton et al., 2019) that could also be part of the
leeway coefficient. It should also be emphasized that while the use of an ice leeway improved predictions in the MIZ, there is
little reason to expect that this would be the case in the pack ice where internal stresses significantly impact the drift. In such
a case, a more sophisticated expression for «;, which depends on ice concentration such that a; — 0 as A — 1 would most

likely be required that also preserves some of the improvements shown in the MIZ.

Data availability. The drifter data can be accessed at https://thredds.met.no/thredds/catalog/metusers/jeanr/data_papers/drift_barents_2018/
catalog.html?dataset=metusers/jeanr/data_papers/drift_barents_2018/drift_data.nc. TOPAZ forecasts are available on the Copernicus Marine

Enrivonment Monitoring Service FTP server (https://resources.marine.copernicus.eu) at nrt.cmems-du.eu/Core/ARCTIC_ANALYSIS_FORE
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345 CAST_PHYS_002_001_a/dataset-topaz4-arc-myoceanv2-be/. CAPS ice-ocean forecasts are available at http://dd.alpha.meteo.gc.ca/yopp/
model_riops/ and the atmospheric forecasts at http://dd.alpha.meteo.gc.ca/yopp/model_caps/.
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