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Abstract 15 

In this study, a regional linear Markov model is developed to assess seasonal sea ice 16 

predictability in the Pacific-Arctic sector. Unlike an earlier pan-Arctic Markov model 17 

that was developed with one set of variables for all seasons, the regional model 18 

consists of four seasonal modules with different sets of predictor variables, 19 

accommodating seasonally-varying driving processes. A series of sensitivity tests are 20 

performed to evaluate the predictive skill in cross-validated experiments and to 21 

determine the best model configuration for each season. The prediction skill, as 22 

measured by the sea ice concentration (SIC) anomaly correlation coefficient (ACC) 23 

between predictions and observations, increased by 32% in the Bering Sea and 18% in 24 

the Sea of Okhotsk relative to the pan-Arctic model. The regional Markov model's 25 

skill is also superior to the skill of an anomaly persistence forecast. SIC trends 26 

significantly contribute to the model skill. However, the model retains skill for 27 

detrended sea ice extent predictions up to 7 month lead times in the Bering Sea and 28 

the Sea of Okhotsk. We find that subsurface ocean heat content (OHC) provides a 29 

crucial source of prediction skill in all seasons, especially in the cold season, and 30 

adding sea ice thickness (SIT) to the regional Markov model has a substantial 31 

contribution to the prediction skill in the warm season but a negative contribution in 32 

the cold season. The regional model can also capture the seasonal reemergence of 33 

predictability, which is missing in the pan-Arctic model.   34 
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1 Introduction 35 

Sea ice acts as a major component of the Arctic climate system through 36 

modulating the radiative flux, heat, and momentum exchanges between the ocean and 37 

the atmosphere (Peterson et al., 2017; Porter et al., 2011; Smith et al., 2017). Sea ice 38 

also modulates sea surface salinity, which is one of the key drivers for thermohaline 39 

circulations (Sévellec et al., 2017). The rapid retreat of Arctic sea-ice extent in the 40 

past few decades has been considered a key indicator of climate change (Koenigk et 41 

al., 2016; Swart, 2017). The decreasing Arctic sea ice extent contributes to polar 42 

temperature amplification (Kim et al., 2016; Screen and Francis, 2016), an increase in 43 

wintertime snowfall over Siberia, northern Canada, and Alaska (Deser et al., 2010), 44 

polar stratospheric cooling (Screen et al., 2013; Wu et al., 2016), and potentially 45 

contributes to a weakening of the mid-latitude jet (Francis and Vavrus, 2012) and 46 

increased frequency of cold Northern Hemisphere midlatitude winter events (Cohen et 47 

al., 2020; Meleshko et al., 2018).  48 

The rapid retreat of summer Arctic sea ice extent has also created more 49 

commercial opportunities in the newly opened Arctic waters. The Northwest Passage 50 

(through northern Canada) and the Northern Sea Route (north of Russia) could offer 51 

faster and less expensive shipping between the Pacific and Atlantic (Smith and 52 

Stephenson, 2013). Information on the Arctic marine accessibility and ice-free season 53 

duration in the marginal ice zone would enable planning of merchant shipping, 54 

conservation efforts, resource extraction, and fishing activities. The growing polar 55 

ecotourism industry could also benefit from shrinking sea-ice cover. Therefore, 56 

increased efforts have been devoted to developing Arctic sea-ice forecast systems in 57 

recent decades. 58 

Substantial efforts have gone toward developing both statistical and dynamical sea 59 

ice prediction models. Dynamic models numerically solve equations that govern the 60 

sea ice physics using sea-ice, ocean, and/or atmospheric conditions to initialize the 61 

models for each season (Bushuk et al., 2019; Bushuk et al., 2020; Bushuk et al., 2021; 62 

Dai et al., 2020; Msadek et al., 2014). Numerous studies using fully coupled general 63 



4 

 

circulation models (GCMs) have quantified the seasonal prediction skill of pan-Arctic 64 

sea ice extent (SIE) and have found forecast skill for detrended pan-Arctic SIE at lead 65 

times of 1 to 6 months (Blanchard-Wrigglesworth et al., 2015; Day et al., 2014b; 66 

Guemas et al., 2016a; Peterson et al., 2015; Sigmond et al., 2013). Bushuk et al. 67 

(2017a) evaluated regional Arctic sea ice prediction skill in a Geophysical Fluid 68 

Dynamics Laboratory (GFDL) seasonal prediction system. They found skillful 69 

detrended regional SIE predictions, and found that skill varied strongly with both 70 

region and season.  71 

On the other hand, statistical methods are also appealing for seasonal sea ice 72 

predictions (Petty et al., 2017). Statistical models capture relationships between sea 73 

ice and oceanic, atmospheric, or time-lagged sea ice predictor. Recently, statistical 74 

methods have been used to provide sea ice field predictions using numerous 75 

techniques such as linear Markov model (Chen and Yuan, 2004; Yuan et al., 2016), 76 

vector autoregressive model (Wang et al., 2019a; Wang et al., 2016), deep neural 77 

network (Andersson et al., 2021; Chi and Kim, 2017; Wang et al., 2017), Bayesian 78 

logistic regression (Horvath et al., 2020), and the combination of complex networks 79 

and Gaussian process regression model (Gregory et al., 2020). In some cases, 80 

statistical models provide better performance than dynamical models (Hamilton and 81 

Stroeve, 2016). For example, Yuan et al. (2016) showed that a linear Markov model 82 

has skillful sea ice concentration (SIC) predictions up to 9-month lead times in many 83 

regions of the Arctic and that this statistical model consistently captured more sea ice 84 

prediction skill than NOAA/NCEP Climate Forecast System (CFSv2) and the 85 

Canadian seasonal and interannual prediction system at the seasonal time scale. The 86 

Markov model prediction skill also exhibits strong regional and seasonal dependence.  87 

Two common characteristics of sea ice predictability emerged from both dynamic 88 

(e.g. CFSv2 and GFDL climate models) and statistical models (e.g. linear Markov 89 

models, and linear regression models). First, low prediction skill occurs in the Pacific 90 

sector of the Arctic, particularly in the Bering Sea and the Sea of Okhotsk, compared 91 

with other Arctic regions (Bushuk et al., 2017a; Yuan et al., 2016). Many factors may 92 
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lead to this low predictability. Bushuk et al. (2017a) suggest that less persistent sea ice 93 

anomalies in the North Pacific sector possibly lead to less predictability in the region 94 

by the GFDL dynamical model. The Markov model of Yuan et al. (2016) was built in 95 

multivariate empirical orthogonal functions (MEOF) space in the pan-Arctic and the 96 

leading modes are dominated by the large long-term trend and strong climate 97 

variability in the Atlantic sector (Figure 1). So the signal of sea ice variability in the 98 

Pacific sector could be under-represented in the model. Therefore, it is necessary to 99 

evaluate the sea ice predictability in the Pacific sector with a new regional model. 100 

Second, many studies have shown evidence for an Arctic sea ice spring 101 

predictability barrier that causes forecasts initialized prior to May to be less skillful 102 

and imposes a relatively sharp limit on regional summer sea ice prediction skill 103 

(Bushuk et al., 2017a; Day et al., 2014b; Yuan et al., 2016). Spring sea ice variability 104 

is complicated by surface melt ponds. The sea ice driven processes in spring could be 105 

different from those in other seasons. The spring barrier may result from a sharp 106 

increase in predictability at melt onset, when sea-ice‐albedo feedback acts to enhance 107 

and persist the preexisting export‐generated mass anomaly (Bushuk et al., 2020). In 108 

addition, summer initialization months have little sea ice coverage and have little 109 

intrinsic memory of sea ice and, therefore, require another source of memory to 110 

provide winter SIE prediction skill. 111 

Actually, re-emergence mechanisms can provide sources of sea ice predictability 112 

on time scales from a few months to 1 year (Blanchard-Wrigglesworth et al., 2011). 113 

The re-emergence mechanism mainly relies on the persistence of some sea-ice related 114 

variables such as sea ice thickness (SIT) and ocean temperature. Previous studies have 115 

shown that summer sea surface temperature (SST) anomalies can provide a significant 116 

source of SIE predictability in the ice growth season (Blanchard-Wrigglesworth et al., 117 

2011; Bushuk and Giannakis, 2017; Cheng et al., 2016; Dai et al., 2020). Initializing 118 

the upper ocean heat content (OHC) in a seasonal prediction system can also yield 119 

remarkable regional skill for winter sea ice (Bushuk et al., 2017a). Moreover, 120 

assimilating SIT data can slightly improve the SIC forecast and particularly benefit 121 

the sea ice prediction in summer, which is attributed to the long-lived SIT anomalies 122 

and their impact on summer sea ice (Blockley and Peterson, 2018; Bushuk et al., 123 
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2017b; Guemas et al., 2016b; Xie et al., 2016). Because sea ice is closely coupled 124 

with the atmosphere and the ocean, the sea ice predictability is provided by the 125 

intrinsic memory of sea ice and its related variables, and accurate initial conditions are 126 

of importance for sea ice predictions (Blanchard-Wrigglesworth et al., 2011; Guemas 127 

et al., 2016b). Current climate models used for sea ice predictions are usually 128 

initialized using various atmospheric and oceanic variables, such as SIC, SIT, OHC, 129 

SST, surface air temperature (SAT), or other data from existing reanalysis (Bushuk et 130 

al., 2017a; Dai et al., 2020; Kimmritz et al., 2019; Yuan et al., 2016). 131 

In this study, we develop a regional linear Markov model for the seasonal 132 

prediction of SIC in the Pacific sector with a focus on understanding unique sea ice 133 

driving processes in different seasons. We follow the framework of the pan-Arctic 134 

linear Markov model (Yuan et al., 2016). Unlike the pan-Arctic model that was 135 

developed with one set of variables (SIC, SAT, SST) for all seasons and the entire 136 

Arctic region, the regional model consists of four modules with seasonal dependent 137 

variables, which isolate the dominant processes for each targeted season. Regional 138 

relevant predictors are evaluated. New variables, including surface net radiative flux, 139 

turbulent heat flux, and pressure and wind fields, as well as SIT and OHC, are 140 

introduced to the model experiments. Sea ice predictability is assessed at grid points 141 

and over all seasons, and subsequently compared with the pan-Arctic model and other 142 

dynamic models.  143 

2 Data and methodology 144 

2.1 Data 145 

Building on the extensive literature studying the predictability and variability of 146 

sea ice (Bushuk and Giannakis, 2017; Bushuk et al., 2020; Guemas et al., 2016a; 147 

Horvath et al., 2021; Lenetsky et al., 2021; Yuan et al., 2016), we firstly chose many 148 

kinds of oceanic and atmospheric variables and examined their correlations with SIC. 149 

The results show that SIC is highly related to OHC in the upper 300 m, SIT, SST, 150 

SAT, surface net radiative flux, surface net turbulent heat flux, geopotential height 151 

and wind vector at different levels including 850 to 200 hPa. Due to the barotropic 152 
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nature of the polar troposphere (Chen, 2005; Ting, 1994) and the low correlation 153 

between sea level pressure and SIC, we chose geopotential height and wind vector at 154 

850 hPa to define the low-level atmospheric circulation, whose interaction with sea 155 

ice is stronger relative to that in higher levels. Therefore, we choose to define the 156 

atmosphere-ice-ocean coupled Arctic climate system with 9 variables: SIC, OHC in 157 

the upper 300 m, SIT, SST, SAT, surface net radiative flux, surface net turbulent heat 158 

flux, 850 hPa geopotential height, and 850 hPa wind vector.  159 

Monthly SICs in 25 km × 25 km grids are obtained from the National Snow and 160 

Ice Data Center (NSIDC) from 1979 to 2020 (Comiso, 2017). The dataset is generated 161 

from brightness temperatures derived from Nimbus-7 Scanning Multichannel 162 

Microwave Radiometer (SMMR), Defense Meteorological Satellite Program (DMSP) 163 

–F8, -F11, and -F13 Special Sensor Microwave/Imager (SSM/I), and DMSP-F17 164 

Special Sensor Microwave Imager/Sounder (SSMIS) using the bootstrap algorithm. 165 

Monthly SITs are from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) 166 

model data. PIOMAS is a sea ice-ocean reanalysis product that compares reasonably 167 

well to available satellite, aircraft, and in situ SIT measurements (Schweiger et al., 168 

2011). The system applies a 12-category SIT and enthalpy distribution (Zhang and 169 

Rothrock, 2003) and is driven by NCEP/NCAR reanalysis atmospheric forcing 170 

including 10-m surface winds and 2-m SAT.  171 

All atmospheric variables and SST with a spatial resolution of 1° × 1° are from the 172 

latest European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis 173 

product ERA5 (Hersbach et al., 2020) and are applied to represent the conditions of 174 

the atmosphere and ocean. ERA5 is produced using the version of ECMWF’s 175 

Integrated Forecast System (IFS), CY41R2, based on a hybrid incremental 4D-Var 176 

system, with 137 hybrid sigma/pressure (model) levels in the vertical direction, with 177 

the top-level at 0.01 hPa. The OHC used here is global ocean and sea-ice reanalysis 178 

(ORAS5: Ocean Reanalysis System 5) monthly mean data and is developed by the 179 

European Centre for Medium-Range Weather Forecasts (ECMWF) OCEAN5 ocean 180 

analysis-reanalysis system (Zuo et al., 2019). ORAS5 includes five ensemble 181 
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members and covers the period from 1979 onwards. It is regarded as a global eddy-182 

permitting ocean ensemble reanalysis product. Both the forcing fields and 183 

observational datasets are updated in ORAS5. 184 

2.2 The model 185 

The idea of using a Markov model for climate prediction is to build multivariate 186 

models, aiming to capture the co-variability in the atmosphere-ocean-sea ice coupled 187 

system instead of linearly regressing on individual predictors. Yuan et al. (2016) 188 

applied this statistical approach to predict SIC in the Arctic at a seasonal timescale 189 

and showed that the Lamont statistical model outperformed the NOAA CFSv2 190 

operational model and the Canadian Seasonal to Interannual Prediction System in sea 191 

ice prediction. They used MEOF as the building blocks of the model to filter out 192 

incoherent small-scale features that are basically unpredictable. Similar Markov 193 

models were also developed to study ENSO predictability (Cañizares et al., 2001; Xue 194 

et al., 2000) and for East Asian monsoon forecasts (Wu et al., 2013). The success of 195 

the Markov model is attributed to the dominance of several distinct modes in the 196 

coupled atmosphere-ocean-sea ice system and to the model’s ability to pick up these 197 

modes. 198 

Here we focus on the atmosphere-ocean-sea ice interactive processes that are 199 

unique to the Pacific sector and develop a regional linear Markov model for the 200 

seasonal prediction of SIC. The model consists of four modules with seasonally 201 

dependent variables. The model domain extends from 40°N to 84°N in latitude and 202 

from 120°E to 240°E in longitude (Figure 1). To reduce model dimensions, we 203 

remove land grid cells, mostly open water grid cells and mostly 100% ice cover grid 204 

cells from the sea ice field. The mostly open water cells are defined by the grids 205 

where SIC ≥ 15% only occurred less than 4% of the total all-season time series (492 206 

months), and mostly ice covered cells are defined by the grids where SIC ≥95% for 207 

more than 96% of total time series. SIC at the rest grid cells ranges from 0 to 100%. 208 
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 Our model is constructed in the MEOF space. The base functions of the model’s 209 

spatial dependence consist of the eigenvectors from the MEOF, while the temporal 210 

evolution of the model is a Markov process with its transition functions determined 211 

from the corresponding principal components (PCs). We use only several leading 212 

MEOF modes, which greatly reduce model space and filter out unpredictable small-213 

scale features. This method of reducing model dimension has been successfully used 214 

in earlier Antarctic and Arctic sea ice predictability studies (Chen and Yuan, 2004; 215 

Yuan et al., 2016). 216 

We preselect SIC, OHC, SIT, SST, SAT, surface net radiative flux, surface net 217 

turbulent heat flux, and geopotential height and winds at 850 hPa to represent 218 

different sea ice-driving processes in the Pacific sector. We create anomaly time 219 

series for all variables from 1979 to 2020 by subtracting climatologies of the same 220 

period from monthly mean data. A normalization is applied to the time series at each 221 

grid point for all variables. To emphasize sea ice variability in the model construction, 222 

we weight SIC by 2 and other variables by 1, although the final model skill is not very 223 

sensitive to this choice of weight. The weighted variables are stacked up into a single 224 

matrix V(n, m), where n is the number of grid points of all fields and m is the length 225 

of the time series. We then decompose V into eigenvectors (spatial patterns) E and 226 

their corresponding PCs (time series) P: 227 

                            V = EPT,                        (1) 228 

where the columns of E are orthogonal and the columns of P are orthonormal; the 229 

superscript T denotes matrix transpose. It greatly reduces the model space by 230 

truncating (1) to the several leading modes. The Markov model is computed using the 231 

single-step correlation matrix, that is, a transition matrix A that satisfies the following 232 

linear relation: 233 

𝑷𝑖+1 = 𝑨𝑷𝑖+𝑒𝑖,                   (2) 234 

where 𝑖 denotes the 𝑖th month and 𝑒𝑖 is the error in the model fit. Transition A is 235 

calculated by multiplying (2) with 𝑷𝑖
𝑇
 236 
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𝑷𝑖+1𝑷𝑖
𝑇 = 𝑨𝑷𝑖𝑷𝑖

𝑇+ 𝑒𝑖𝑷𝑖
𝑇
,              (3) 237 

For the best model fit, 𝑒𝑖 and 𝑷𝑖
𝑇
should have no correlation. Thus 238 

𝑨 = (𝑷𝑖+1𝑷𝑖
𝑇)(𝑷𝑖𝑷𝑖

𝑇)−1.              (4) 239 

A is constructed to be seasonally-dependent because of the strong seasonality of SIC 240 

and related variables. Thus (4) is applied to 12 subsets of PCs to obtain different 241 

transition matrices for each of the 12 calendar months.  242 

After the Markov model is formulated, the SIC prediction can be generated 243 

through the following eight steps: 1) to examine which variables have the highest 244 

prediction potential in the Pacific sector, we create 10 climate variable combinations 245 

representing different driving processes. 2) The PCs corresponding to each initial 246 

multivariate space are calculated by the MEOF equation (1). 3) Transition matrices, 247 

A, for each calendar month are calculated by equation (4). 4) The predictions of the 248 

PCs are made by truncating to the first several modes and applying the appropriate 249 

transition matrices at different lead times. “Lead time” refers to the number of months 250 

prior to the target month that the forecast was initialized. For example, lead-1 251 

prediction of January SIE is based on December data. 5) The predicted PCs are 252 

combined with the respective eigenvectors to produce a spatially-resolved SIC 253 

anomaly prediction for each variable combination. 6) We evaluate the prediction skill 254 

measured by the SIC anomaly correlation coefficient (ACC), percentage of grid points 255 

with significant ACC (PGS), and root mean square error (RMSE) using cross-256 

validated model experiments to identify the superior model for each season. 7) The 257 

complete SIC anomaly prediction can then be generated by combining predicted PCs 258 

by the corresponding optimal model in each season with eigenvectors. We 259 

differentiate the seasons as follows: winter (December through February), spring 260 

(March through May), summer (June through August), and autumn (September 261 

through November). 8) The predicted SIC anomalies are divided by weight value 2, 262 

multiplied by standard deviation, and added the climatology to generate the complete 263 

prediction field. 264 
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To determine model variables and the number of modes to be used in the model, 265 

we evaluate the prediction skill at all grid points and all seasons in a cross-validated 266 

fashion for the period 1980-2020, by calculating the ACC and RMSE between 267 

predictions and observations. Notably, the dramatic declining trend in SIC prohibits 268 

us to use the first half of the time series for training the model and the second half of 269 

the time series to validate the model since the climate system mean state has changed 270 

dramatically over the last four decades. Another cross-validation scheme (Barnston 271 

and Ropelewski, 1992) is jackknifing, where one case is withheld from the regression 272 

development in the Markov model as an independent sample for testing. Thus, we 273 

built a Markov model for each month with a 1-yr moving window of data removal, 274 

and then used this window of predictions to evaluate the model performance. Here, 275 

we subtract one-year data from PCs and recalculate the transition matrix in equation 276 

(4); then twelve-month predictions are generated for that year. This procedure is 277 

repeated for each year of the time series. Such a cross-validated experimental design 278 

reduces artificial skill without compromising the length of the time series.  279 

The long-term trend is an essential part of the Arctic sea ice variability. A 280 

substantial declining trend exists in Arctic SIC, particularly in the Barents Sea, the 281 

Kara Sea, the Beaufort Sea, and the Chukchi Sea (Figure 1). However, outside of the 282 

Arctic Basin, the long-term trends are relatively weak in the Pacific sector. As the 283 

trends are parts of the total variability, we retain the SIC trends in anomalies while 284 

building the model and then conduct a post prediction evaluation of the impact of 285 

trends on the model skill.  286 
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 287 

Figure 1. Arctic SIC trends (left) and standard deviation (right) computed using 288 

SIC anomalies over all 12 months of the period 1979-2020. The Pacific-Arctic model 289 

domain is enclosed by blue lines, which covers 40° - 84°N and 120° - 240°E. Two 290 

focused areas marked in black boxes in the Bering Sea (between 58°- 62°N and 182°-291 

192°E) and the Sea of Okhotsk (between 52°- 56°N and 144°-152°E) have large 292 

standard deviations and are selected to evaluate the ACC skill improvement in the 293 

regional model compared with the pan-Arctic Markov model developed by Yuan et 294 

al. (2016). 295 

3 Model construction and assessments 296 

3.1 EOF analysis of Pacific SIC 297 

Before constructing the model, we first examine whether the EOF analysis can 298 

isolate the regional and seasonal SIC variability in the Pacific-Arctic sector. Figure 2 299 

shows the eigenvectors of the three leading EOF modes of SIC. The first mode of SIC 300 

variability, accounting for 23% of the total variance, mainly shows a positive pattern 301 

within the Arctic Basin from 1979 to 2002 and a negative pattern after 2003 with a 302 

record low in 2007 and 2012, representing the decreasing trend in summer and early 303 

fall SIC. The declining trend is heavily loaded inside the Arctic Basin from the East 304 

Siberian Sea to the Beaufort Sea. The second SIC mode (9% of total variance) 305 

primarily captures out-of-phase SIC anomalies in the Bering Sea and the Sea of 306 
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Okhotsk and is associated with the Aleutian-Icelandic low seesaw, representing SIC 307 

variability in cold seasons (Frankignoul et al., 2014). This pattern suggests 308 

consistently positive SIC anomalies in the Bering Sea and negative anomalies in the 309 

Sea of Okhotsk after 2004. The SIC variability in the central sector (approximately 310 

60°-70°N) stands out in the third EOF mode (7% of the total variance), which is a 311 

commonly observed feature in the region during spring and autumn. This finding 312 

shows that the EOF (MEOF) analysis can well isolate the regional and seasonal SIC 313 

variability including the trend in the Pacific-Arctic sector.  314 

We further divided the SIC time series into four seasons and conducted EOF 315 

analysis respectively. The results show that fewer modes can explain the dominant 316 

SIC variance in autumn and summer benefiting from the large SIC variability and 317 

trend (Figure S1). For example, the leading 10 modes can explain 70% of the SIC 318 

total variance in autumn and summer, while about 25 modes are needed for explaining 319 

the same amount of variance in cold seasons. It turns out that the several leading 320 

modes can explain the dominant SIC variability. This is an important premise to 321 

reduce the model dimension and, more importantly, to filter out incoherent small-322 

scale features that are likely unpredictable. In addition, it is necessary to build the sea 323 

ice prediction model for individual seasons because of the differences in seasonal 324 

patterns of variability and the different number of leading modes required to capture 325 

predictable variability. 326 
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 327 

Figure 2. The eigenvectors and PCs of the three leading EOF modes of SIC in the 328 

Pacific-Arctic sector for the period 1979-2020. The bottom panel shows the explained 329 

variance as a function of the number of leading modes of SIC. 330 

3.2 Construct an optimal model for each season 331 

A practical issue in building a Markov model in MEOF spaces is which 332 

combination of variables and number of leading modes to retain in the model. Using 333 

too few modes may miss some predictable signals, and too many may result in 334 

overfitting and contaminate the model with incoherent small-scale features. To 335 

determine optimal predictor variables and reasonable mode truncations, we calculate 336 

the prediction skill from a series of cross-validated model experiments, which used 337 

different numbers of modes and different variables. Table 1 shows the detailed 338 

variable-combinations. Models V2-V4, V6-V8, and V10-V11 are weighted toward 339 
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thermodynamic processes, whereas V9 and V12 represent integration of 340 

thermodynamic and dynamic processes. 341 

Table 1. Variable combinations in cross-validated experiments. V1 represents the 342 

No. 1 variable-combination. √ represents the variable included in the corresponding 343 

combination. 344 

 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

SIC √ √ √ √ √ √ √ √ √ √ √ √ 

OHC  √  √ √ √ √ √ √ √ √ √ 

SST 
  

√ √      √ √ √ 

SIT     √       √ 

SAT 
     

√ 
  

   √ 

Surface net turbulent 

heat flux 

       
√   √ √ 

Surface net radiative 

flux 

      
√ 

 
 √  √ 

850hPa GPH, U, V 
        

√ 
 

 √ 

The cross-validation scheme is carried out for the time series to produce 345 

predictions at 1- to 12-month lead. The PGS and mean RMSE for each lead time in 346 

each season are calculated. To avoid missing predictable signals, we initially retain 347 

large amounts of modes (up to 52) in the model and then narrow the range of mode 348 

numbers to determine the best model configuration for each season. Figure S2 349 

presents the PGS for each lead time for winter target months. It shows that the model 350 

prediction skill in winter steeply decreases after 36 modes in most lead months. 351 

Similarly, RMSE increases rapidly after 36 modes (Figure S3). This indicates that 352 

including modes beyond mode 36 in winter, mainly representative of unpredictable 353 

small-scale features, leads to the rapid decrease of predictive skill.  354 

To select a model configuration that fits all lead times, we average the 12 panels 355 

in Figures S2 and S3, respectively, and display them in the first column of Figure S4. 356 

Similarly, predictive skills for other seasons are also examined. We further narrow the 357 

modes’ range to display the predictive skill according to Figure S4 so that we can 358 

determine the optimal model more accurately (Figure 3). Generally, the model skills 359 

are better in summer and autumn than in winter and spring, and more modes are 360 
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needed in the cold season to capture the predictable signal of SIC, which is likely due 361 

to the weaker trends in these months. Models with high correlation also have smaller 362 

RMSE but the RMSE differences between models are relatively small.  363 

 364 

  365 

Figure 3. Mean PGS and mean RMSE between the observations and predictions 366 

in four seasons. (a) Mean PGS is obtained by averaging all lead months for winter 367 

predictions. The x-axis represents the number of MEOF modes, and the y-axis 368 

represents the combination of the variables corresponding to Table 1. (b, e, and f) are 369 

the same as (a) except for spring, summer, and autumn respectively. (c, d, g, and h) 370 

are the same as (a, b, e, and f) except for RMSE.  371 
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Based on the PGS and RMSE, we primarily chose three superior model 372 

configurations marked by black boxes in Figure 3 for each season respectively. To 373 

determine which model configuration produces the best prediction in each season, we 374 

spatially average the SIC prediction skill from these superior models with 1- to 12-375 

month leads (Figures 4 and 5). Figure 4 shows the cross-validation skill measured by 376 

PGS. In general, the predictive skill in the warm season is higher than that in the cold 377 

season, although the RMSEs are also relatively large in the warm season (Figure 5). 378 

The model prediction skills based on those superior model configurations have similar 379 

variability and magnitude in winter and spring respectively, while large differences of 380 

that occur in the warm season, especially in autumn. It also shows that the model 381 

prediction skill steeply decreases at the 2-month lead in winter and at the 2- and 3-382 

month lead in spring.  383 

As a model construction principle, we choose the minimum number of variables 384 

and modes to achieve the same level of skill, avoiding possible overfitting. Based on 385 

the PGS and RMSE, we chose V9M16 as the best model in winter since it shows the 386 

highest PGS. Similarly, we chose V11M20 in spring and V5M10 in summer. In 387 

autumn, The model skill from V5 is obviously superior at 1-5 lead months, while V12 388 

dominates prediction skill beyond the 8-month lead. We decided to choose V5M7 389 

because it has a relatively higher mean skill and fewer variables and modes.  390 

The contribution of different variables in ice prediction skill for each season is 391 

also assessed. OHC contributes more model prediction skill than SST in all seasons 392 

(Figure 3). The model built on the data matrix of SIC, OHC performs better in winter 393 

and spring, which indicates that the OHC provides a considerable source of memory 394 

for SIC prediction skill in the cold season and plays a key role in the evolution of sea 395 

ice conditions. The results are consistent with many previous studies (Bushuk et al., 396 

2017a; Dai et al., 2020; Guemas et al., 2016b; Lenetsky et al., 2021). 850 hPa 397 

geopotential height and winds can still contribute additional prediction skill in winter 398 

since including OHC, geopotential height and winds slightly outperforms the case 399 

without geopotential height and winds (Figure 4). 850 hPa GPH and wind not only 400 
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affect the heat and moisture transport by atmospheric circulation anomaly but also 401 

drive sea-ice drift. For example, the dipole structure anomaly of the Arctic 402 

atmospheric circulation shows strong meridionality and plays a profound role in sea-403 

ice export/import, and heat and moisture transport through the Pacific-Arctic sector 404 

(Wu et al., 2006). 405 

Similarly, SST and turbulent heat flux also contribute additional skill in spring 406 

although the contribution is minor (Figures 3 and 4). It is worth mentioning that the 407 

variable such as SST with minor additional contributions to the model does not mean 408 

that it is a minor contributor since the contributions from different variables to 409 

prediction skill partially overlap. In addition, adding SIT to the model has a 410 

substantial contribution to the prediction skill in the warm season, indicating that sea 411 

ice thickness is a key source of sea ice predictability within the Arctic Basin in the 412 

warm season especially in summer, which is consistent with previous studies 413 

(Blanchard-Wrigglesworth et al., 2011; Blockley and Peterson, 2018; Day et al., 414 

2014a; Morioka et al., 2021; Tian et al., 2021; Yuan et al., 2016). However, SIT has a 415 

negative contribution to the prediction skill in the cold season (Figure 3). The 416 

contributions of SIT to the prediction skill in autumn are very sensitive to the number 417 

of lead months that the skill steeply decreases beyond a 5-month lead (Figure 4). In 418 

other words, the model didn't perform well in autumn prediction initialized in winter 419 

and spring. In addition, the surface net radiative flux also contributes to the model 420 

skill in the cold season (Figure 3). Early studies suggested that the surface longwave 421 

radiation plays an indispensable role in the polar climate system in the cold season 422 

when shortwave radiation is at its annual minimum (Huang et al., 2015; Kapsch et al., 423 

2013; Lee et al., 2017; Liu and Key, 2014; Luo et al., 2017; Wang et al., 2019b).  424 
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425 

Figure 4. PGS for the preliminary selection of superior models in each season. 426 



20 

 

 427 

Figure 5. Same as Figure 4 but for RMSE. 428 

3.3 Assessment of model skill 429 

To test the forecast skill of the model, the SIC predictions were evaluated at each 430 

grid cell and for all seasons using the ACC and RMSE between predicted and 431 

observed anomalies, and the skill is presented at 3, 6, 9, and 12 lead months. In winter 432 

(DJF), high forecast skill is concentrated in the Arctic marginal seas and peripheral 433 

seas: the southern Chukchi Sea and Sea of Okhotsk (Figure 6). The skill is slightly 434 

lower at a 12-month lead in the Sea of Okhotsk and a 9-month lead in the southern 435 

Chukchi Sea. Overall, the winter skill is roughly 0.4 in the Sea of Okhotsk and 0.5 in 436 

the southern Chukchi Sea at up to 12-month leads. The spring (MAM) prediction skill 437 

shows a similar pattern as that in winter but with a 0.1 increase in the ACC skill. The 438 

southern Chukchi Sea and Bering Strait have higher skills than the Bering Sea. For 439 

summer (JJA) predictions, the prediction skill is concentrated in the Arctic basin since 440 

sea ice totally melts in the Arctic peripheral seas. The 3-month lead prediction has the 441 
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highest skill (>0.6) in most of the Arctic basin, while the lowest prediction skill (<0.5) 442 

is found at a 12-month lead. The autumn (SON) prediction skill shows a similar 443 

pattern as the summer skill but with higher correlations. In general, the model has 444 

higher prediction skills for warm seasons, especially for autumn, than that for cold 445 

seasons, while the lowest skill is in winter.  446 

 447 

Figure 6. Cross-validated model skills measured by ACC between SIC 448 

predictions and observation anomalies as a function of seasons and lead months. Only 449 

the correlations that are significantly above the 95% confidence level based on a 450 

Student’s t test are included in the panels. 451 

RMSEs are consistent with correlations: high correlations correspond to low 452 

RMSEs, and vice versa, although minor inconsistencies occur in some seasons and 453 

regions (Figure 7). The RMSE is large around the Arctic basin for the warm season 454 

and in the peripheral sea for the cold season where SIC has large variability. In the 455 

cold season, the RMSE is larger in the Bering Sea than that in the Sea of Okhotsk. 456 

The magnitudes of RMSE remain at roughly the same level from 3- to 12-month lead 457 

in most locations for all seasons. The marginal seas have larger RMSEs than the 458 

central Arctic basin in both summer and autumn, while the error magnitudes in 459 
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autumn are slightly larger than those in summer but smaller than the SIC standard 460 

deviation across the Pacific sector (Figure 1).  461 

 462 

 463 

Figure 7. Same as Figure 6 except for RMSEs. The color bar is in a unit of 464 

percentage. 465 

Also, the model performance is further evaluated against anomaly persistence and 466 

climatology. Averaged over the grid points in the model domain and over all seasons 467 

for the period of 1980-2020, the regional Markov model's mean correlation is 468 

manifestly higher, and the mean RMSE of the regional Markov model is much lower 469 

than the climatology and anomaly persistence for all the lead months, especially from 470 

2-month lead to 10-month lead (Figure 8). In addition, RMSE is not sensitive to the 471 

lead months, showing the superiority of the regional model. These results suggest that 472 

the regional Markov model can capture significantly more predictability beyond SIC 473 

anomaly persistence. 474 
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 475 

 476 

Figure 8. The prediction skill of the regional Markov model compared against 477 

that of anomaly persistence and climatology averaged over the model domain as a 478 

function of the number of month lead times.  479 

To assess the regional model skill improvements from the pan-Arctic model 480 

presented by Yuan et al. (2016), we calculated the ACC as a function of lead months 481 

(Figure 9). Note that the ACC is calculated only in typical regions with large standard 482 

deviations marked in Figure 1. The regional model evidently enhances the ACC skill 483 

from the pan-Arctic model for the 4- to 12-month lead predictions in the Bering Sea 484 

and the 1- to 7-month lead predictions in the Sea of Okhotsk. The mean ACC is also 485 

increased by 32% in the Bering Sea and 18% in the Sea of Okhotsk. The prediction 486 

skill of the regional Markov model within the Arctic basin also remains at the same 487 

high level as that of the Pan-Arctic model (not shown), so significant skill 488 

improvements occur in the peripheral sea of the Pacific sector. 489 
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  490 

Figure 9. Cross-validated model skills of the regional Markov model vs. the Pan-491 

Arctic Markov model. (a) The skills are measured by the ACC between predictions 492 

and observations with trends from 1980 to 2020 as a function of lead months in the 493 

Bering Sea. (b) is the same as (a) except for the Sea of Okhotsk. The red numbers in 494 

the bottom left of each panel represent the mean regional model skill improvements 495 

from the pan-Arctic model. 496 

4 Discussion 497 

4.1 Contribution of linear trends to SIE prediction skill 498 

Sigmond et al. (2013) show that the linear trend in Arctic SIE dramatically 499 

contributes to its forecast skill in the Canadian Seasonal to Interannual Prediction 500 

System. Lindsay et al. (2008) show that their dynamic model prediction skill is much 501 

lower when the trend is not included. They suggested that the trend accounts for 76% 502 

of the variance of the pan-Arctic ice extent in September. The trend also contributes 503 

to the pan-Arctic prediction in the linear Markov model (Yuan et al., 2016). In the 504 

Arctic, SIE has declined at -0.35 million square kilometers per decade during 1979-505 

2020, which is significant at the 95% confidence level. The large SIC trend is mainly 506 

in the Barents Sea and the Kara Sea, followed by the Chukchi Sea, while the mean 507 

SIC trend in the Bering Sea and the Sea of Okhotsk is relatively weak (Figure 1). To 508 
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evaluate the contribution of long-term trends to the regional Markov model skill, we 509 

conducted post-prediction analysis on linear trends’ contribution to the predictions 510 

skill of SIE in the Pacific-Arctic sector. We examine the time series of SIE in all 511 

calendar and lead months calculated by summing the Pacific-Arctic areas that have at 512 

least 15% SIC from observations and predictions. Monthly trends were removed from 513 

the predictions and observations, respectively. Then, the model skill is compared 514 

between the original SIE predictions and detrended SIE predictions.  515 

  516 

Figure 10. (a) The SIE forecast skill of the regional Markov model as a function 517 

of the calendar month and lead months. (b) The SIE forecast skill when monthly 518 

trends are removed from the predictions and observations respectively. The black dots 519 

in (a) and (b) represent the correlations that are significantly above the 95% 520 
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confidence level. (c) Difference between (a) and (b). The black dots in (c) indicate 521 

that the correlation differences are significant above the 95% confidence level. (d) 522 

Observed trends in SIE as a function of the calendar month. All monthly SIE trends 523 

are significantly above the 95% confidence level. (e, f) The prediction skill of the 524 

regional Markov model compared against that of anomaly persistence and 525 

climatology averaged over the model domain as a function of the number of month 526 

lead times.  527 

The model is skillful in predicting SIE from January to November at a 1-month 528 

lead (Figure 10a). The skill is particularly high for summer and autumn predictions, 529 

where ACC is higher than 0.6 from July through November even at a 12-month lead. 530 

The model skill is relatively low in May, especially at 4-8 lead months. This pattern is 531 

consistent with the seasonal variation of the model skill for SIC prediction presented 532 

in Figure 6. After monthly trends are removed from predictions and observations 533 

respectively, the model skill is significantly reduced for all seasons, especially for the 534 

warm season at 6-12 months lead (Figure 10b, c). This is consistent with the 535 

seasonality of the observed trend (Figure 10d), which also peaks in late summer and 536 

early fall.  537 

Averaging the differences in Figure 10c over all lead times and predicted months, 538 

the trend removal results in a mean reduction of 0.31 from the SIE forecast skill; a 539 

53% reduction of the mean ACC. However, the model retains high prediction skill 540 

(0.61) from January to November at 1-2 lead months, representing a 19% reduction 541 

by the trend removal (Figure 10b), which shows the model’s capability of capturing 542 

sea ice internal variability. In addition, the trend is relatively large in the Chukchi Sea 543 

and weak outside of the Arctic Ocean. The model only reduces 13% of the mean ACC 544 

from January to November at 1-2 lead months after the trend removal for the area 545 

outside of the Arctic Ocean. Although linear trends contribute significantly to the 546 

model skill, the regional Markov model's mean correlation is manifestly higher, and 547 

the mean RMSE of the regional Markov model is much lower than the climatology 548 
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and anomaly persistence for all the lead months when the sea ice trend is removed 549 

(Figure 10e, f). 550 

4.2 Comparison with the GFDL model 551 

Yuan et al. (2016) showed that the pan-Arctic Markov model consistently 552 

outperforms the NOAA/NCEP Climate Forecast System (CFSv2) and the Canadian 553 

seasonal and interannual prediction system for sea ice seasonal predictions. Here the 554 

regional Markov model is compared with the Geophysical Fluid Dynamics 555 

Laboratory Forecast-oriented Low Ocean Resolution (GFDL-FLOR) seasonal 556 

prediction system (Bushuk et al., 2017a) in detrended SIE forecasts. The hindcast 557 

model skills measured by the ACC for detrended SIE are high from both the regional 558 

Markov model and GFDL model during January to June at a 1- to 3-month lead in the 559 

Pacific sector (Figure 11). The regional Markov model skill is statistically significant 560 

at lead times ranging from 1 to 6 months for target months of January-June in both the 561 

Bering Sea and the Sea of Okhotsk. Below we highlight some key differences 562 

between these two models in the Bering Sea and the Sea of Okhotsk. 563 
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 564 

Figure 11. (a, b) Hindcast model skill (ACC) for detrended regional SIE forecasts 565 

from 1982 to 2020 for the regional Markov model. (c, d) Same as (a, b) except for the 566 

GFDL seasonal prediction system. (e, f) is the skill difference between these two 567 

models. The black dots in (a-d) represent ACCs that are significantly above the 95% 568 

confidence level, and the circles in (a-d) indicate months in which the model’s skill 569 

exceeds that of a persistence forecast. The black dots in (e-f) represent ACC 570 

differences that are significant above the 95% confidence level. 571 
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Notably, the skill from the regional Markov model is higher than that from the 572 

GFDL seasonal prediction system during February to June at 3- to 6-month leads in 573 

the Bering Sea and during December to June at 1- to 8-month leads in the Sea of 574 

Okhotsk. In other words, the regional Markov model performs better in spring 575 

prediction using winter observations for the Bering Sea and autumn observations for 576 

the Sea of Okhotsk. Nevertheless, the regional Markov model slightly underperforms 577 

the GFDL seasonal prediction system in predictions during November to December 578 

using the previous winter and spring observations for the Bering Sea and using the 579 

previous winter observations for the Sea of Okhotsk. Overall, the regional Markov 580 

model delivers skillful SIE predictions in seasonal ice zones of the Pacific sector up to 581 

7 month lead times, an improvement from the 3 month leads displayed in the GFDL 582 

seasonal prediction system.  583 

4.3 Sensitivity of model domain on the prediction skill 584 

We conducted a sensitivity analysis of the model domain on prediction skills in 585 

the Bering Sea and the Sea of Okhotsk with the same model configuration and 586 

different sizes of the model domain. The model domain is defined by 90°E to 270°E, 587 

120°E to 240°E and 135°E to 225°E respectively. The results show that the prediction 588 

skill patterns based on three model domains show high similarity in the Bering Sea 589 

and the skill based on the model domain (120°E to 240°E) is highest at all month 590 

leads. The prediction skill in the Sea of Okhotsk based on the model domain (135°E 591 

to 225°E) is highlighted at 5- to 8-month leads, but not well at 11- to 12-month leads. 592 

Although the models with different sizes of model domain have different prediction 593 

skills in the Bering Sea and the Sea of Okhotsk, the differences are not significant 594 

because all those model domains contain highly similar signals of climate variability. 595 

Therefore, the regional model is not highly sensitive to the size of the model domain 596 

within the Pacific-Arctic sector. 597 
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 598 

Figure 12. Cross-validated model skills of the regional Markov model with the 599 

same model configuration and different sizes of the model domain. (a) The skills are 600 

measured by the ACC between predictions and observations with trends from 1980 to 601 

2020 as a function of lead months in the Bering Sea. (b) is the same as (a) except for 602 

the Sea of Okhotsk. The model is configured by V9M16 in winter, V11M20 in spring, 603 

V5M10 in summer, and V5M7 in autumn. The ACC values are averaged over the area 604 

marked in the black box in Figure 1. 605 

5 Conclusions 606 

Here, we developed a regional Markov model to predict SIC in the Pacific-Arctic 607 

sector at the seasonal time scale. The model was constructed in the MEOF space so 608 

that the model can capture the covariability of the North Pacific climate system 609 

defined by 9 variables (SIC, OHC, SIT, SST, SAT, surface net radiative flux, surface 610 

net turbulent heat flux, and geopotential height and winds at 850 hPa). Based on 611 

cross-validation experiments, we selected model variables and mode truncations that 612 

provided the best results in each season. These model configurations were V9M16 for 613 

winter, V11M20 for spring, V5M10 for summer, and V5M7 for autumn.  614 
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The SIC prediction skill was evaluated at each grid cell and for all seasons using 615 

ACC. The regional Markov model's skill is superior to the skill derived from anomaly 616 

persistence, revealing the model’s ability to capture more predictable SIC internal 617 

variability than anomaly persistence. The winter skill is about 0.4 in the Sea of 618 

Okhotsk and 0.5 in the northern Bering Sea at up to 12-month leads. The spring 619 

prediction shows a similar pattern but with a 0.1 increase in the ACC skill. The model 620 

skill in summer and autumn is more than 0.6 within the Arctic basin. Compared with 621 

the pan-Arctic seasonal prediction model, the regional Markov model distinctly 622 

improves the SIC prediction skill in the peripheral seas of the Pacific-Arctic sector. 623 

The regional model significantly enhances the correlation skill from the pan-Arctic 624 

model for 4- to 12-month lead predictions in the Bering Sea and 1- to 7-month lead 625 

predictions in the Sea of Okhotsk. The improvement is a 32% ACC increase in the 626 

Bering Sea and 18% in the Sea of Okhotsk. In addition, similar to the pan-Arctic 627 

Markov model, the regional model is not sensitive to the number of MEOF modes 628 

retained, which indicates that the performance of this Markov model is robust. 629 

The model retains prediction skill after sea ice trend is removed or not. However, 630 

the detrended skill is notably lower, consistent with earlier sea ice prediction studies. 631 

When sea ice time series includes the trend, the model can skillfully predict SIE from 632 

January to November. The skill is particularly high for the predictions of summer and 633 

autumn sea ice at longer lead times, especially in July to November when the skill 634 

is >0.6 even at a 12-month lead. Conversely, in May, the model skill is relatively low, 635 

especially at 4-8 lead months. Trend removal from predictions and observations 636 

results in a 53% reduction of the mean ACC for the entire Pacific-Arctic sector. 637 

However, the model only reduces 13% of the mean ACC from January to November 638 

at 1-2 lead months after the trend removal in the Bering Sea and the Sea of Okhotsk. 639 

This detrended analysis shows the model’s capability of capturing sea ice internal 640 

variability beyond linear trends. Furthermore, the regional Markov model improves 641 

the detrended SIE prediction skill in the Pacific-Arctic sector to 7 month lead times 642 

from the 3 month lead skill displayed in the GFDL-FLOR seasonal prediction system. 643 
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The following reasons contribute to the improvements. First, the dominant climate 644 

variability in the northern mid-high latitudes mostly occurs in the Atlantic sector of 645 

the Arctic and subarctic, which dictates the leading MEOF mode in the pan-Arctic 646 

model. The unique characteristics of atmosphere-ocean-sea ice coupled relationships 647 

in the Pacific sector may not be included in the leading MEOF decompositions of the 648 

pan-Arctic climate system and thus are not correctly represented in the model. The 649 

regional model focuses on the Pacific-Arctic coupled atmosphere-ocean-sea ice 650 

system and captures the dominant regional climate variability. Second, the Pacific 651 

sector of the Arctic needs a different set of variables to maximize the model’s 652 

predictability. We added OHC and SIT in the regional model, which provides a 653 

crucial source of predictability in winter and summer months respectively. We also 654 

include 850 hPa GPH and winds to represent dynamic atmospheric processes in 655 

winter and include turbulent heat flux to improve the model skill in spring. Finally, 656 

we constructed a superior model for each season, isolating the seasonally dominant 657 

processes separately.  658 

It was also found that more modes were needed in the cold season to capture the 659 

predictable signal of SIC. This suggests that sea ice in cold seasons has more 660 

variability patterns compared with that in warm seasons, which may bring more errors 661 

in prediction. SIC trends are strongest in the warm season months, which may 662 

contribute to the smaller number of modes required. In addition to the climate system 663 

in the Arctic Basin, the coupled atmosphere-ocean-sea ice variability in the North 664 

Pacific plays a more important role in the cold season and needs more modes to 665 

capture the covariability signals. 666 
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