Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model

Yunhe Wang1,4, Xiaojun Yuan2, Haibo Bi1,3,4, Mitchell Bushuk5, Yu Liang1,6, Cuihua Li2, Haijun Huang1,3,4,6

1 CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
2 Lamont-Doherty Earth Observatory of Columbia University, New York, USA.
3 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
5 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
6 University of Chinese Academy of Sciences, Beijing, China

Corresponding author: Xiaojun Yuan (xyuan@ldeo.columbia.edu)
Abstract

In this study, a regional linear Markov model is developed to assess seasonal sea ice predictability in the Pacific-Arctic sector. Unlike an earlier pan-Arctic Markov model that was developed with one set of variables for all seasons, the regional model consists of four seasonal modules with different sets of predictor variables, accommodating seasonally-varying driving processes. A series of sensitivity tests are performed to evaluate the predictive skill in cross-validated experiments and to determine the best model configuration for each season. The prediction skill, as measured by the sea ice concentration (SIC) anomaly correlation coefficient (ACC) between predictions and observations, the percentage of grid points with significant correlations (PGS), increased by 327\% in the Bering Sea and 186\% in the Sea of Okhotsk relative to the pan-Arctic model. The regional Markov model’s skill is also superior to the skill of an anomaly persistence forecast. Sea ice concentration (SIC) trends significantly contribute to the model skill. However, the model retains skill for detrended sea ice extent predictions up to 76 month lead times in the Bering Sea and the Sea of Okhotsk. We find that subsurface ocean heat content (OHC) provides a crucial source of prediction skill in all seasons, especially in the cold season, and adding sea ice thickness (SIT) to the regional Markov model has a substantial contribution to the prediction skill in the warm season but a negative contribution in the cold season. Surface radiative fluxes contribute to predictability in the cold season and geopotential height and winds play an indispensable role in the warm-season forecast, contrasting to the thermodynamic processes dominating the pan-Arctic predictability. The regional model can also capture the seasonal reemergence of predictability, which is missing in the pan-Arctic model.
1 Introduction

Sea ice acts as a major component of the Arctic climate system through modulating the radiative flux, heat, and momentum exchanges between the ocean and the atmosphere (Peterson et al., 2017; Porter et al., 2011; Smith et al., 2017). Sea ice also modulates sea surface salinity, which is one of the key drivers for thermohaline circulations (Sévellec et al., 2017). The rapid retreat of Arctic sea-ice extent in the past few decades has been considered a key indicator of climate change (Koenigk et al., 2016; Swart, 2017). The decreasing Arctic sea ice extent contributes to polar temperature amplification (Kim et al., 2016; Screen and Francis, 2016), an increase in wintertime snowfall over Siberia, northern Canada, and Alaska (Deser et al., 2010), polar stratospheric cooling (Screen et al., 2013; Wu et al., 2016), and potentially contributes to a weakening of the mid-latitude jet (Francis and Vavrus, 2012) and increased frequency of cold Northern Hemisphere midlatitude winter events (Cohen et al., 2020; Meleshko et al., 2018).

Also, the rapid retreat of summer Arctic sea ice extent has created more commercial opportunities in the newly opened Arctic waters. The Northwest Passage (through northern Canada) and the Northern Sea Route (north of Russia) could offer faster and less expensive shipping between the Pacific and Atlantic (Smith and Stephenson, 2013). Information on the Arctic marine accessibility and ice-free season duration in the marginal ice zone would enable planning of merchant shipping, conservation efforts, resource extraction, and fishing activities. The growing polar ecotourism industry could also benefit from shrinking sea-ice cover. Therefore, increased efforts have been devoted to developing Arctic sea-ice forecast systems in recent decades.

Substantial efforts have gone toward developing both statistical and dynamical sea ice prediction models. Dynamic models numerically solve equations that govern the sea ice physics using sea-ice, ocean, and/or atmospheric conditions to initialize the models for each season (Bushuk et al., 2019; Bushuk et al., 2020; Bushuk et al., 2021; Dai et al., 2020; Msadek et al., 2014). Numerous studies using fully coupled general
circulation models (GCMs) have quantified the seasonal prediction skill of pan-Arctic sea ice extent (SIE), which have found forecast skill for detrended pan-Arctic SIE at lead times of 1 to 6 months (Blanchard-Wrigglesworth et al., 2015; Day et al., 2014b; Guemas et al., 2016a; Peterson et al., 2015; Sigmond et al., 2013). Bushuk et al. (2017a) evaluated regional Arctic sea ice prediction skill in a Geophysical Fluid Dynamics Laboratory (GFDL) seasonal prediction system. They found skillful detrended regional SIE predictions, and found that skill varied strongly with both region and season.

On the other hand, statistical methods are also appealing for seasonal sea ice predictions (Petty et al., 2017). Statistical models capture relationships between sea ice and oceanic, atmospheric, or time-lagged sea ice predictor. Recently, statistical methods have been used to provide sea ice field predictions using numerous techniques such as linear Markov model (Chen and Yuan, 2004; Yuan et al., 2016), vector autoregressive model (Wang et al., 2019a; Wang et al., 2016), deep neural network (Andersson et al., 2021; Chi and Kim, 2017; Wang et al., 2017), Bayesian logistic regression (Horvath et al., 2020), and the combination of complex networks and Gaussian process regression model (Gregory et al., 2020). In some cases, statistical models provide better performance than dynamical models (Hamilton and Stroeve, 2016). For example, Yuan et al. (2016) showed that a linear Markov model has skillful sea ice concentration (SIC) predictions up to 9-month lead times in many regions of the Arctic and that this statistical model consistently captured more sea ice prediction skill than NOAA/NCEP Climate Forecast System (CFSv2) and the Canadian seasonal and interannual prediction system at the seasonal time scale. The Markov model prediction skill also exhibits strong regional and seasonal dependence.

Two common characteristics of sea ice predictability emerged from both dynamic (e.g. CFSv2 and GFDL climate models) and statistical models (e.g. linear Markov models, and linear regression models). First, low prediction skill occurs in the Pacific sector of the Arctic, particularly in the Bering Sea and the Sea of Okhotsk, compared with other Arctic regions (Bushuk et al., 2017a; Yuan et al., 2016). Many factors may
lead to this low predictability. Bushuk et al. (2017a) suggest that less persistent sea ice anomalies in the North Pacific sector possibly lead to less predictability in the region by the GFDL dynamical model. The Markov model of Yuan et al. (2016) was built in multivariate empirical orthogonal functions (MEOF) space in the pan-Arctic and the leading modes are dominated by the large long-term trend and strong climate variability in the Atlantic sector (Figure 1). So the signal of sea ice variability in the Pacific sector could be under-represented in the model. Therefore, it is necessary to evaluate the sea ice predictability in the Pacific sector with a new regional model.

Second, many studies have shown evidence for an Arctic sea ice spring predictability barrier that causes forecasts initialized prior to May to be less skillful and imposes a relatively sharp limit on regional summer sea ice prediction skill. Low-predictability occurs in the spring months or is initialized in spring (Bushuk et al., 2017a; Day et al., 2014b; Yuan et al., 2016). Spring sea ice variability is complicated by surface melt ponds. The sea ice driven processes in spring could be different from those in other seasons. The spring barrier may result from a sharp increase in predictability at melt onset, when sea-ice-albedo feedback acts to enhance and persist the preexisting export-generated mass anomaly (Bushuk et al., 2020). In the Pacific sector of the Arctic, sea ice does not exist during the summer months in the Bering Sea and the Sea of Okhotsk, and sea ice nearly 100% covers the regions within the Arctic Basin in winter. Both cases lead to no sea ice variability and therefore no predictability. Moreover, the Bering Sea opens to the North Pacific, facing a more divergent environment, while sea ice movement is more constrained by the geographic setting of the Arctic Basin in the Chukchi Sea, East Siberian Sea, and the Beaufort Sea. Strong seasonality and geographic setting dictate that different driving processes may play dominant roles in different seasons. In addition, summer initialization months have little sea ice coverage and have little intrinsic memory of sea ice and, therefore, require another source of memory to provide winter SIE prediction skill.

Actually, re-emergence mechanisms can provide sources of sea ice predictability on time scales from a few months to 1 year (Blanchard-Wrigglesworth et al., 2011). The re-emergence mechanism mainly relies on the persistence of some sea-ice related
variables such as sea ice thickness (SIT) and ocean temperature. Previous studies have shown that summer sea surface temperature (SST) anomalies can provide a significant source of SIE predictability in the ice growth season (Blanchard-Wrigglesworth et al., 2011; Bushuk and Giannakis, 2017; Cheng et al., 2016; Dai et al., 2020). Initializing the upper ocean heat content (OHC) in a seasonal prediction system can also yield remarkable regional skill for winter sea ice (Bushuk et al., 2017a). Moreover, assimilating SIT data can slightly improve the SIC forecast and particularly benefit the sea ice prediction in summer, which is attributed to the long-lived SIT anomalies and their impact on summer sea ice (Blockley and Peterson, 2018; Bushuk et al., 2017b; Guemas et al., 2016b; Xie et al., 2016). Because sea ice is closely coupled with the atmosphere and the ocean, the sea ice predictability is provided by the intrinsic memory of sea ice and its related variables, and accurate initial conditions are of importance for sea ice predictions (Blanchard-Wrigglesworth et al., 2011; Guemas et al., 2016b). Current climate models used for sea ice predictions are usually initialized using various atmospheric and oceanic variables, such as SIC, SIT, OHC, SST, surface air temperature (SAT), or other data from existing reanalysis (Bushuk et al., 2017a; Dai et al., 2020; Kimmritz et al., 2019; Yuan et al., 2016).

In this study, we develop a regional linear Markov model for the seasonal prediction of SIC in the Pacific sector with a focus on understanding unique sea ice driving processes in different seasons. We follow the framework of the pan-Arctic linear Markov model (Yuan et al., 2016). Unlike the pan-Arctic model that was developed with one set of variables (SIC, SAT, SST, surface air temperature, and sea-surface temperature) for all seasons and the entire Arctic region, the regional model consists of four modules with seasonal dependent variables, which isolate the dominant processes for each targeted season. Regional relevant predictors are evaluated. New variables, including surface net radiative flux, turbulent heat flux, and pressure and wind fields, as well as SIT and OHC, are introduced to the model experiments. Sea ice predictability is assessed at grid points and over all seasons, and subsequently compared with the pan-Arctic model and other dynamic models.
2 Data and methodology

2.1 Data

Building on the extensive literature studying the predictability and variability of sea ice (Bushuk and Giannakis, 2017; Bushuk et al., 2020; Guemas et al., 2016a; Horvath et al., 2021; Lenetsky et al., 2021; Yuan et al., 2016), we firstly chose many kinds of oceanic and atmospheric variables and examined their correlations with SIC. The results show that SIC is highly related to OHC in the upper 300 m, SIT, SST, SAT, surface net radiative flux, surface net turbulent heat flux, geopotential height and wind vector at different levels including 850 to 200 hPa. Due to the barotropic nature of the polar troposphere (Chen, 2005; Ting, 1994) and the low correlation between sea level pressure and SIC, we chose geopotential height and wind vector at 850 hPa to define the low-level atmospheric circulation, whose interaction with sea ice is stronger relative to that in higher levels. Therefore, we choose to define the atmosphere-ice-ocean coupled Arctic climate system with 97 variables: SIC, OHC in the upper 300 m, SIT, sea surface temperature (SST), surface air temperature (SAT), surface net radiative flux, surface net turbulent heat flux, 850 hPa geopotential height, and 850 hPa wind vector.

Monthly SICs in 25 km × 25 km grids are obtained from the National Snow and Ice Data Center (NSIDC) from 1979 to 2020 (Comiso, 2017). The dataset is generated from brightness temperatures derived from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), Defense Meteorological Satellite Program (DMSP) –F8, -F11, and -F13 Special Sensor Microwave/Imager (SSM/I), and DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) using the bootstrap algorithm. Monthly SITs are from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) model data. PIOMAS is a sea ice-ocean reanalysis product that compares reasonably well to available satellite, aircraft, and in situ SIT measurements (Schweiger et al., 2011). The system applies a 12-category SIT and enthalpy distribution (Zhang and Rothrock, 2003) and is driven by NCEP/NCAR reanalysis atmospheric forcing including 10-m surface winds and 2-m SAT.
All atmospheric and oceanic variables and SST with a spatial resolution of $1^\circ \times 1^\circ$ are from the latest European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA5 (Hersbach et al., 2020) and are applied to represent the conditions of the atmosphere and ocean. ERA5 is produced using the version of ECMWF’s Integrated Forecast System (IFS), CY41R2, based on a hybrid incremental 4D-Var system, with 137 hybrid sigma/pressure (model) levels in the vertical direction, with the top-level at 0.01 hPa. The OHC used here is global ocean and sea-ice reanalysis (ORAS5: Ocean Reanalysis System 5) monthly mean data and is developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) OCEAN5 ocean analysis-reanalysis system (Zuo et al., 2019). ORAS5 includes five ensemble members and covers the period from 1979 onwards. It is regarded as a global eddy-permitting ocean ensemble reanalysis product. Both the forcing fields and observational datasets are updated in ORAS5.

2.2 The model

The idea of using a Markov model for climate prediction is to build multivariate models, aiming to capture the co-variability in the atmosphere-ocean-sea ice coupled system instead of linearly regressing on individual predictors. Yuan et al. (2016) applied this statistical approach to predict SIC in the Arctic at a seasonal timescale and showed that the Lamont statistical model outperformed the NOAA CFSv2 operational model and the Canadian Seasonal to Interannual Prediction System in sea ice prediction. They used multivariate empirical orthogonal functions (MEOF) as the building blocks of the model to filter out incoherent small-scale features that are basically unpredictable. Similar Markov models were also developed to study ENSO predictability (Cañizares et al., 2001; Xue et al., 2000) and for East Asian monsoon forecasts (Wu et al., 2013). The success of the Markov model is attributed to the dominance of several distinct modes in the coupled atmosphere-ocean-sea ice system and to the model’s ability to pick up these modes.

Here we focus on the atmosphere-ocean-sea ice interactive processes that are unique to the Pacific sector and develop a regional linear Markov model for the
seasonal prediction of SIC. The model consists of four modules with seasonally dependent variables. The model domain extends from 40°N to 84°N in latitude and from 120°E to 240°E in longitude (Figure 1). To reduce model dimensions, we remove land grid cells, mostly open water grid cells and mostly 100% ice cover grid cells from the sea ice field. The mostly open water cells are defined by the grids where SIC ≥ 15% only occurred less than 4% of the total all-season time series (492 months), and mostly ice covered cells are defined by the grids where SIC ≥ 95% for more than 96% of total time series. SIC at the rest grid cells ranges from 0 to 100%.

For the sea ice field, the grid cells where the number of months with variable SIC (15%–95%) is less than 4% of the total time series (492 months) are masked and excluded together with land grid cells. Our model is constructed in the MEOF space. The base functions of the model’s spatial dependence consist of the eigenvectors from the MEOF, while the temporal evolution of the model is a Markov process with its transition functions determined from the corresponding principal components (PCs). We use only several leading MEOF modes, which greatly reduce model space and filter out unpredictable small-scale features. This method of reducing model dimension has been successfully used in earlier Antarctic and Arctic sea ice predictability studies (Chen and Yuan, 2004; Yuan et al., 2016).

We preselect SIC, OHC, SIT, SST, SAT, surface net radiative flux, surface net turbulent heat flux, and geopotential height and winds at 850 hPa to represent different sea ice-driving processes in the Pacific sector. We create anomaly time series for all variables from 1979 to 2020 by subtracting climatologies of the same period from monthly mean data. The initial multivariate space is formed to capture the predictable variability in the atmosphere-ice-ocean system by MEOF analysis. Since our focus is on short-term climate variability, the climatological seasonal cycle for the period from 1979 to 2020 was subtracted to obtain monthly anomalies for all variables. A normalization is applied to the time series at each grid point for all variables. To emphasize sea ice variability in the model construction, we weight SIC by 2 and other variables by 1, although the final model skill is not very sensitive to
this choice of weight. The weighted variables are stacked up into a single matrix $V(n, m)$, where n is the number of grid points of all fields and m is the length of the time series. We then decompose V into eigenvectors (spatial patterns) E and their corresponding PCs (time series) P:

$$V = EP^T,$$ \hspace{1cm} (1)

where the columns of E are orthogonal and the columns of P are orthonormal; the superscript T denotes matrix transpose. It greatly reduces the model space by truncating (1) to the several leading modes. The Markov model is computed using the single-step correlation matrix, that is, a transition matrix A that satisfies the following linear relation:

$$P_{i+1} = AP_i + e_i,$$ \hspace{1cm} (2)

where i denotes the ith month and e_i is the error in the model fit. Transition A is calculated by multiplying (2) with P_i^T

$$P_{i+1}P_i^T = AP_iP_i^T + e_iP_i^T.$$ \hspace{1cm} (3)

For the best model fit, e_i and P_i^T should have no correlation. Thus

$$A = (P_{i+1}P_i^T)(P_iP_i^T)^{-1}.$$ \hspace{1cm} (4)

A is constructed to be seasonally-dependent because of the strong seasonality of SIC and related variables. Thus (4) is applied to 12 subsets of PCs to obtain different transition matrices for each of the 12 calendar months.

After the Markov model is formulated, the SIC prediction can be made through the following eight steps: 1) to examine which variables have the highest prediction potential in the Pacific sector, we create 10 climate variable combinations representing different driving processes. 2) The PCs corresponding to each initial multivariate space are calculated by the MEOF equation (1). 3) Transition matrices, A, for each calendar month are calculated by equation (4). 4) The predictions of the PCs are made by truncating to the first several modes and applying the appropriate transition matrices at different lead times. “Lead time” refers to the number of months
prior to the target month that the forecast was initialized. For example, lead-1 prediction of January SIE is based on December data. 5) The predicted PCs are combined with the respective eigenvectors to produce a spatially-resolved SIC anomaly prediction for each variable combination. 6) We evaluate the prediction skill measured by the SIC anomaly correlation coefficient (ACC), percentage of grid points with significant ACC (PGS), and root mean square error (RMSE) using cross-validated model experiments to identify the superior model for each season. 7) The complete SIC anomaly prediction can then be generated by combining predicted PCs by the corresponding optimal model in each season with eigenvectors. We differentiate the seasons as follows: winter (December through February), spring (March through May), summer (June through August), and autumn (September through November). 8) The predicted SIC anomalies are divided by weight value 2, multiplied by standard deviation, and added the climatology to generate the complete prediction field.

To determine model variables and the number of modes to be used in the model, we evaluate the prediction skill at all grid points and all seasons in a cross-validated fashion for the period 1980-2020, by calculating the ACC and RMSE between predictions and observations. Notably, the dramatic declining trend in SIC prohibits us to use the first half of the time series for training the model and the second half of the time series to validate the model since the climate system mean state has changed dramatically over the last four decades. Another cross-validation scheme (Barnston and Ropelewski, 1992) is jackknifing, where one case is withheld from the regression development in the Markov model as an independent sample for testing. Thus, we built a Markov model for each month with a 1-yr moving window of data removal, and then used this window of predictions data to evaluate the model predictions performance. Here, we subtract one-year data from PCs and recalculate the transition matrix in equation (4); then twelve-month predictions are generated for that year. This procedure is repeated for each year of the time series. Such a cross-
validated experimental design reduces artificial skill without compromising the length of the time series.

The long-term trend is an essential part of the Arctic sea ice variability. A substantial declining trend exists in Arctic SIC, particularly in the Barents Sea, the Kara Sea, the Beaufort Sea, and the Chukchi Sea (Figure 1). However, outside of the Arctic Basin, the long-term trends are relatively weak in the Pacific sector. As the trends are parts of the total variability, we retain the SIC trends in anomalies while building the model and then conduct a post prediction evaluation of the impact of trends on the model skill.

Figure 1. Arctic SIC trends (left) and standard deviation (right) computed using SIC anomalies over all 12 months of the period 1979-2020. The Pacific-Arctic model domain is enclosed by blue lines, which covers 40° - 84°N and 120° - 240°E. Two
focused areas marked in black boxes in the Bering Sea (between 58°- 62°N and 182°-192°E) and the Sea of Okhotsk (between 52°- 56°N and 144°-152°E) have large standard deviations and are selected to evaluate the ACC skill improvement in the regional model compared with the pan-Arctic Markov model developed by Yuan et al. (2016).

3 Model construction and assessments

3.1 EOF analysis of Pacific SIC

Before constructing the model, we first examine whether the EOF analysis can isolate the regional and seasonal SIC variability in the Pacific–Arctic sector. Figure 2 shows the eigenvectors of the three leading EOF modes of SIC. The first mode of SIC variability, accounting for 23% of the total variance, mainly shows a positive pattern within the Arctic Basin from 1979 to 2002 and a negative pattern after 2003 with a record low in 2007 and 2012, representing the decreasing trend in summer and early fall SIC. The declining trend is heavily loaded inside the Arctic Basin from the East Siberian Sea to the Beaufort Sea. The second SIC mode (9% of total variance) primarily captures out-of-phase SIC anomalies in the Bering Sea and the Sea of Okhotsk and is associated with the Aleutian-Icelandic low seesaw, representing SIC variability in cold seasons (Frankignoul et al., 2014). This pattern suggests consistently positive SIC anomalies in the Bering Sea and negative anomalies in the Sea of Okhotsk after 2004, with a positive pattern in the Bering Sea after 2004 and an opposite phase in the Sea of Okhotsk, which represents SIC variability in cold seasons and is associated with the Aleutian–Icelandic low seesaw (Frankignoul et al., 2014).

The SIC variability in the central sector (approximately 60°-70°N) stands out in the third EOF mode (7% of the total variance), which is a commonly observed feature in the region during spring and autumn. This finding shows that the EOF (MEOF) analysis can well isolate the regional and seasonal SIC variability including the trend in the Pacific-Arctic sector.
We further divided the SIC time series into four seasons and conducted EOF analysis respectively. The results show that fewer modes can explain the dominant SIC variance in autumn and summer benefiting from the large SIC variability and trend (Figure S1). For example, the leading 10 modes can explain 70% of the SIC total variance in autumn and summer, while about 25 modes are needed for explaining the same amount of variance in the cold seasons. It turns out that the several leading modes can explain the dominant SIC variability. This is an important premise to reduce the model dimension and, more importantly, to filter out incoherent small-scale features that are likely unpredictable. In addition, it is necessary to build the sea ice prediction model for individual seasons because of the differences in seasonal patterns of variability and the different number of leading modes required to capture predictable variability.
Figure 2. The eigenvectors and PCs of the three leading EOF modes of SIC in the Pacific-Arctic sector for the period 1979-2020. The bottom panel shows the explained variance as a function of the number of leading modes of SIC.

3.2 Construct an optimal model for each season

A practical issue in building a Markov model in MEOF spaces is which combination of variables and number of leading modes to retain in the model. Using too few modes may miss some predictable signals, and too many may result in overfitting and contaminate the model with incoherent small-scale features. To determine optimal predictor variables and reasonable mode truncations, we calculate the prediction skill from a series of cross-validated model experiments, which used different numbers of modes and different variables. Table 1 shows the detailed variable-combinations. Models V2-V4, V6-V8, V10-V11 are weighted towards surface thermodynamic processes, whereas V9 and V12 represent integration of thermodynamic and dynamic processes.

Table 1. Variable combinations in cross-validated experiments. V1 represents the No. 1 variable-combination. √ represents the variable included in the corresponding combination.

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>V11</th>
<th>V12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC</td>
<td>√</td>
</tr>
<tr>
<td>OHC</td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>SIT</td>
<td></td>
</tr>
<tr>
<td>SAT</td>
<td></td>
</tr>
<tr>
<td>Surface net turbulent heat flux</td>
<td></td>
</tr>
<tr>
<td>Surface net radiative flux</td>
<td></td>
</tr>
<tr>
<td>850hPa GPH, U, V</td>
<td></td>
</tr>
</tbody>
</table>

The cross-validation scheme is carried out for the time series to produce predictions at 1- to 12-month lead. The PGS and mean RMSE for each lead time in each season are calculated. To avoid missing predictable signals, we initially
retain large amounts of modes (up to 52) in the model and then narrow the range of mode numbers to determine the best model configuration for each season. Figure S2 presents the PGS for each lead time for winter target months. It shows that the model prediction skill in winter steeply decreases after 362 modes in most lead months. Similarly, RMSE increases rapidly after 362 modes (Figure S3). This indicates that including modes beyond mode 362 in winter, mainly representative of unpredictable small-scale features, leads to the rapid decrease of predictive skill.

To select a model configuration that fits all lead times, we average the 12 panels in Figures S2 and S3, respectively, and display them in the first column of Figure S4. Similarly, predictive skills for other seasons are also examined. We further narrow the modes’ range to display the predictive skill according to Figure S4 so that we can determine the optimal model more accurately (Figure 3).

Generally, the model skills are better in summer and autumn than in winter and spring, and more modes are needed in the cold season to capture the predictable signal of SIC. This indicates that sea ice in the cold season has requires more modes to capture its variability, which is likely due to the weaker trends in these months. Models with high correlation also have smaller RMSE but the RMSE differences between models are relatively small.

Based on the PGS and RMSE, we primarily chose three superior model configurations marked by black boxes in Figure 3 for winter, summer, and autumn respectively, and chose five superior models in spring since high predictive skills are scattered.
Figure 3. Mean PGS and mean RMSE between the observations and predictions in four seasons. (a) Mean PGS is obtained by averaging all lead months for winter predictions. The x-axis represents the number of MEOF modes, and the y-axis represents the combination of the variables corresponding to Table 1. (b, e, and f) are the same as (a) except for spring, summer, and autumn respectively. (c, d, g, and h) are the same as (a, b, e, and f) except for RMSE.

Based on the PGS and RMSE, we primarily chose three superior model configurations marked by black boxes in Figure 3 for each season respectively. To determine which model configuration produces the best prediction in each season, we spatially average the SIC prediction skill from these superior models with 1- to 12-month leads (Figures 4 and 5). Figure 4 shows the cross-validation skill measured by
PGS. In general, the predictive skill in summer and autumn (the warm season) is higher (by roughly 35%) than that in winter and spring (the cold season), although the RMSEs are also relatively large in the warm season (Figure 5). The model prediction skills based on those superior model configurations have similar variability and magnitude in winter and spring respectively, while large differences of that occur in the warm season, especially in autumn. It also shows that the model prediction skill steeply decreases at the 2-month lead in winter and at the 2- and 3-month lead in spring.

These models also exhibit a local minimum of PGS in each season at a 10-month lead for winter, at a 3-month lead for spring, at a 4- and 6-month lead for summer, and at a 7-month lead for autumn. In other words, the seasonal models show a common feature of low prediction skill for forecasts initialized in the month of March, but show higher skill at lead times beyond this, suggesting that certain sources of predictability present in March are absent in these models.

As a model construction principle, we choose the minimum number of variables and modes to achieve the same level of skill, avoiding possible overfitting. Based on the PGS and RMSE, we chose V97M165 as the best model in winter since it shows the lowest RMSEPGS. Similarly, we chose V11M20 in spring and V5M10 in summer. In autumn, The model skill from V5 is obviously superior at 1-5 lead months, while V12 dominates prediction skill beyond the 8-month lead. We decided to choose V5M7 because it has a relatively higher mean skill and fewer variables and modes. In spring, we ruled out V8M28 and V10M28 because of the large RMSE and chose V7M13 since it shows a slightly larger correlation among the rest of the models. In the warm season, V8 and V10 show nearly the same skill, indicating that the surface turbulent heat flux and radiative flux do not contribute to the model skill. So we selected the V8M11 in summer and V8M9 in autumn.

The contribution of different variables in ice prediction skill for each season is also assessed. OHC contributes more model prediction skill than SST in all seasons (Figure 3). The model built on the data matrix of SIC, OHC performs better in winter and spring, which indicates that the OHC provides a considerable source of memory.
for SIC prediction skill in the cold season and plays a key role in the evolution of sea ice conditions. The results are consistent with many previous studies (Bushuk et al., 2017a; Dai et al., 2020; Guemas et al., 2016b; Lenetsky et al., 2021). 850 hPa geopotential height and winds can still contribute additional prediction skill in winter since including OHC, geopotential height and winds slightly outperforms the case without geopotential height and winds (Figure 4). 850 hPa GPH and wind not only affect the heat and moisture transport by atmospheric circulation anomaly but also drive sea-ice drift. For example, the dipole structure anomaly of the Arctic atmospheric circulation shows strong meridionality and plays a profound role in sea-ice export/import, and heat and moisture transport through the Pacific-Arctic sector (Wu et al., 2006).

Similarly, SST and turbulent heat flux also contribute additional skill in spring although the contribution is minor (Figures 3 and 4). It is worth mentioning that the variable such as SST with minor additional contributions to the model does not mean that it is a minor contributor since the contributions from different variables to prediction skill partially overlap. In addition, adding SIT to the model has a substantial contribution to the prediction skill in the warm season, indicating that sea ice thickness is a key source of sea ice predictability within the Arctic Basin in the warm season especially in summer, which is consistent with previous studies (Blanchard-Wrigglesworth et al., 2011; Blockley and Peterson, 2018; Day et al., 2014a; Morioka et al., 2021; Tian et al., 2021; Yuan et al., 2016). However, SIT has a negative contribution to the prediction skill in the cold season (Figure 3). The contributions of SIT to the prediction skill in autumn are very sensitive to the number of lead months that the skill steeply decreases beyond a 5-month lead (Figure 4). In other words, the model didn't perform well in autumn prediction initialized in winter and spring. In addition to SIC, SST, and SAT, the surface net radiative flux mainly also contributes to the model skill in the cold season (Figure 3), reflecting Early studies suggested that the surface longwave radiation plays an indispensable role in the polar climate system in the cold season when
shortwave radiation is at its annual minimum. Previous studies suggested that cloud-cover is capable of controlling sea-ice growth processes through its influences on the surface energy budget via transmitting longwave radiation (Huang et al., 2015; Kapsch et al., 2013; Lee et al., 2017; Liu and Key, 2014; Luo et al., 2017; Wang et al., 2019b). On the other hand, argued that negative cloud anomalies combined with increased surface solar radiation in summer had no substantial contribution to the minimum SIE record in 2007. Conclude that the accumulation of surface downwelling shortwave radiation did not correspond well to negative SIC anomalies in summer.

Our model experiments also suggest that the surface net radiative flux does not contribute to the prediction skill in warm season. Instead, 850 hPa GPH and wind, not only affect the heat and moisture transport by atmospheric circulation anomaly but also drive sea-ice drift, mainly contribute to the model skill in warm season. For example, the dipole structure anomaly of the Arctic atmospheric circulation shows strong meridionality and plays a profound role in sea-ice export/import, and heat and moisture transport through the Pacific-Arctic sector (Wu et al., 2006).
Figure 4. PGS for the preliminary selection of superior models in each season.
Figure 5. Same as Figure 4 but for RMSE.

3.3 Assessment of model skill
To test the forecast skill of the model, the SIC predictions were evaluated at each grid cell and for all seasons using the ACC and RMSE between predicted and observed anomalies, and the skill is presented at 3, 6, 9, and 12 lead months. In winter (DJF), high forecast skill is concentrated in the Arctic marginal seas and peripheral seas: the northern Chukchi Sea, Bering Strait, and northern Sea of Okhotsk (Figure 6). The skill is slightly lower at a 12-month lead in the Sea of Okhotsk and from a 6-month to a 9-month lead in the southern Chukchi Sea, Bering Sea, whereas high skill values (>0.6) are maintained up to a 12-month lead in the Bering Strait. Overall, the winter skill is roughly 0.4 in the Sea of Okhotsk and 0.5 in the southern Chukchi Sea at up to 12-month leads. The spring (MAM) prediction skill shows a similar pattern as that in winter but with a 0.1 increase in the ACC skill. The southern Chukchi Sea and Bering Strait have higher skills than the Bering Sea southern part of the strait. For summer (JJA) predictions, the prediction skill is concentrated in the Arctic basin since sea ice nearly totally melts in the Arctic peripheral seas. The 3-month lead prediction has the highest skill (>0.6) in most of the Arctic basin, while the lowest prediction skill (<0.54) is found at a 12-month lead. This skill dip indicates that using winter SIC to forecast summer sea ice is unsatisfactory. However, the 9-month and 12-month lead predictions again show high skill (>0.6) in most of the Arctic Basin. The autumn (SON) prediction skill shows a similar pattern as the summer skill but with higher correlations than that in summer. For targeted autumn predictions, the significantly increased skill at 6-month lead relative to other seasons could be related to the sea ice anomaly reemergence from spring to autumn due to the oceanic memory (Blanchard-Wrigglesworth et al., 2011). Still, the autumn prediction skill at a 6-month lead is lower than that at other lead months, indicating that the impact of the spring predictability barrier on prediction was not offset by the SST anomaly reemergence. In general, the model has higher prediction skills for warm seasons, especially for autumn, than that for cold seasons, while the lowest skill is in springwinter.
Figure 6. Cross-validated model skills measured by ACC between SIC predictions and observation anomalies as a function of seasons and lead months. Only the correlations that are significantly above the 95% confidence level based on a Student’s t test are included in the panels.
RMSEs are consistent with correlations: high correlations correspond to low RMSEs, and vice versa, although minor inconsistencies occur in some seasons and regions (Figure 7). The RMSE is large around the Arctic basin for the warm season and in the peripheral sea for the cold season where SIC has large variability. In the cold season, the RMSE is larger in the Bering Sea than that in the Sea of Okhotsk. The magnitudes of RMSE remain at roughly the same level from 3- to 12-month lead and all seasons in most locations for all seasons. The marginal seas have larger RMSEs than the central Arctic basin in both summer and autumn, while the error magnitudes in autumn are slightly larger than those in summer but smaller than the SIC standard deviation across the Pacific sector (Figure 1).
Figure 7. Same as Figure 6 except for RMSEs. The color bar is in a unit of percentage. Also, the model performance is further evaluated against anomaly persistence and climatology. Averaged over the grid points in the model domain and over all seasons for the period of 1980-2020, the regional Markov model's mean correlation is
manifestly higher, and the mean RMSE of the regional Markov model is much lower than still quite skillful compared with the climatology and anomaly persistence for all the lead months whether the sea ice trend is removed or not, especially from 2-month lead to 10-month lead (Figure 8). In addition, RMSE is not sensitive to the lead months, showing the superiority of the regional model. These results suggest that the regional Markov model can capture significantly more predictability beyond SIC anomaly persistence. This indicates that there are crucial sources of predictability beyond SIC anomaly persistence that the regional Markov model is able to capture.
Figure 8. The prediction skill of the regional Markov model compared against that of anomaly persistence and climatology averaged over the model domain as a function of the number of month lead times.

To assess the regional model skill improvements from the pan-Arctic model presented by Yuan et al. (2016), we calculated the PGS and ACC as a function of lead months (Figure 9). Note that the PGS is calculated in the entire area for the Bering Sea and the Sea of Okhotsk, and the ACC is calculated only in typical regions with large standard deviations marked in Figure 1. The regional model evidently substantially enhances the PGS-ACC skill from the pan-Arctic model for the 42- to 12-month lead predictions in the Bering Sea and the 1- to 7-month lead predictions in the Sea of Okhotsk. The mean PGS improvement is 75% in the Bering Sea and 16% in the Sea of Okhotsk. Similarly, the ACC is also increased by 3221% in the Bering Sea and 188% in the Sea of Okhotsk. The prediction skill of the regional Markov model within the Arctic basin also remains at the same high level as that of the Pan-Arctic model (not shown), so significant skill improvements occur in the peripheral sea of the Pacific sector, demonstrating the superiority of the regional model.
Figure 9. Cross-validated model skills of the regional Markov model vs. the Pan-Arctic Markov model. (a–e) The skills are measured by the PGS-ACC between predictions and observations with trends from 1980 to 2020 as a function of lead months in the Bering Sea and the Sea of Okhotsk. (b–d) are the same as (a–e) except for the Sea of Okhotsk the ACC. The red numbers in the bottom left bottom of each panel represent the mean regional model skill improvements from the pan-Arctic model.

4 Discussion

4.13.4 Contribution of linear trends to SIE prediction skill
Sigmond et al. (2013) show that the linear trend in Arctic SIE dramatically contributes to its forecast skill in the Canadian Seasonal to Interannual Prediction System. Lindsay et al. (2008) show that their dynamic model prediction skill is much lower when the trend is not included. They suggested that the trend accounts for 76% of the variance of the pan-Arctic ice extent in September. The trend also contributes to the pan-Arctic prediction in the linear Markov model (Yuan et al., 2016). In the Arctic, SIE has declined at -0.35 million square kilometers per decade during 1979-2020, which is significant at the 95% confidence level. The large SIC trend is mainly in the Barents Sea and the Kara Sea, followed by the Chukchi Sea, while the mean SIC trend in the Bering Sea and the Sea of Okhotsk is relatively weak (Figure 1). To evaluate the contribution of long-term trends to the regional Markov model skill, we conducted post-prediction analysis on linear trends’ contribution to the predictions. We examine the time series of SIE in all calendar and lead months calculated by summing the Pacific-Arctic areas that have at least 15% SIC from observations and predictions. Monthly trends were removed from the predictions and observations, respectively. Then, the model skill is compared between the original SIE predictions and detrended SIE predictions.
Figure 10. (a) The SIE forecast skill of the regional Markov model as a function of the calendar month and lead months. (b) The SIE forecast skill when monthly trends are removed from the predictions and observations respectively. The black dots in (a) and (b) represent the correlations that are significantly above the 95% confidence level. (c) Difference between (a) and (b). The black dots in (c) indicate that the correlation differences are significant above the 95% confidence level. (d) Observed trends in SIE as a function of the calendar month. All monthly SIE trends are significantly above the 95% confidence level. (e, f) The prediction skill of the regional Markov model compared against that of anomaly persistence and climatology averaged over the model domain as a function of the number of month lead times.
Figure 10 shows the model skill of the SIE forecast in the Arctic Pacific sector and the contribution of linear trends to the skill. The model has good skillful in predicting SIE from January to November at a 1-to-2-month lead (Figure 10a). The skill is particularly high for the predictions in summer and autumn predictions, where ACC is higher than 0.6 from July through October-November even at a 12-month lead months 9-12. The model skill is relatively low in May and December, especially at 8-11 lead months. This pattern is consistent with the seasonal variation of the model skill for SIC prediction presented in Figure 6.

After monthly trends are removed from both predictions and observations respectively, the model skill is significantly reduced for all seasons, especially for the warm season at 6-12 months lead (Figure 10b, c). This is consistent with the seasonality of the observed trend (Figure 10d), which also peaks in late summer and early fall.

Averaging the differences in Figure 10c over all lead times and predicted months, the trend removal results in a mean reduction of 0.31 from the SIE forecast skill; a 53.5% reduction of the mean ACC. However, the model retains high prediction skill (0.613) from January to October-November at 1-2 lead months, representing a 19.6% reduction by the trend removal in these leads (Figure 10b), which shows the model’s capability of capturing sea ice internal variability. In addition, the trend is relatively large in the Chukchi Sea and weak outside of the Arctic Ocean. The model only reduces 13.4% of the mean ACC from January to November-October at 1-2 lead months after the trend removal for the area outside of the Arctic Ocean. Although linear trends contribute significantly to the model skill, the regional Markov model’s mean correlation is manifestly higher, and the mean RMSE of the regional Markov model is much lower than the climatology and anomaly persistence for all the lead months when the sea ice trend is removed (Figure 10e, f).

4.2.3.5 Comparison with the GFDL model
Yuan et al. (2016) showed that the pan-Arctic Markov model consistently outperforms the NOAA/NCEP Climate Forecast System (CFSv2) and the Canadian seasonal and interannual prediction system for sea ice seasonal predictions. Here the regional Markov model is compared with the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution (GFDL-FLOR) seasonal prediction system (Bushuk et al., 2017a) in detrended SIE forecasts. The hindcast model skills measured by the ACC for detrended SIE are high from both the regional Markov model and GFDL seasonal prediction system during January to June at a 1- to 3-month lead in the Pacific sector (Figure 11). The regional Markov model skill is statistically significant at lead times ranging from 1 to 6 months for target months of January-June in both the Bering Sea and the Sea of Okhotsk. Below we highlight some key differences between these two models in the Bering Sea and the Sea of Okhotsk.
Figure 11. (a, b) Hindcast model skill (ACC) for detrended regional SIE forecasts from 1982 to 2020 for the regional Markov model. (c, d) Same as (a, b) except for the GFDL seasonal prediction system. (e, f) is the skill difference between these two models. The black dots in (a-d) represent ACCs that are significantly above the 95% confidence level, and the circles in (a-d) indicate months in which the model’s skill exceeds that of a persistence forecast. The black dots in (e-f) represent ACC differences that are significant above the 95% confidence level.
Notably, the skill from the regional Markov model is higher than that from the GFDL seasonal prediction system during February to June at 31- to 62-month leads in the Bering Sea and during December to March-June at 1- to 87-month leads in the Sea of Okhotsk. In other words, the regional Markov model performs better in spring prediction using winter observations for the Bering Sea and autumn observations for the Sea of Okhotsk. Nevertheless, the regional Markov model slightly underperforms the GFDL seasonal prediction system in predictions during November to December using the previous winter and spring observations for the Bering Sea and using the previous winter observations for the Sea of Okhotsk. The model also performs better in winter to early spring prediction using the observations in previous summer and fall in the Sea of Okhotsk. Nevertheless, the regional Markov model slightly underperforms the GFDL seasonal prediction system for cold season predictions using the previous summer observations in the Bering Sea, and for early summer predictions using previous early fall observations in the Sea of Okhotsk. It indicates that the weakness of the regional Markov model is mainly reflected in the SIE prediction using the previous late summer and early fall observations compared with the GFDL seasonal prediction system, which is likely because the surface climate anomaly in late summer/early fall loses its identity in fall and does not contribute to winter sea ice variability. Overall, the regional Markov model delivers skillful SIE predictions in seasonal ice zones of the Pacific sector up to 76 month lead times, an improvement from the 3 month leads displayed in the GFDL seasonal prediction system.

4.3 Sensitivity of model domain on the prediction skill

We conducted a sensitivity analysis of the model domain on prediction skills in the Bering Sea and the Sea of Okhotsk with the same model configuration and different sizes of the model domain. The model domain is defined by 90°E to 270°E, 120°E to 240°E and 135°E to 225°E respectively. The results show that the prediction skill patterns based on three model domains show high similarity in the Bering Sea.
and the skill based on the model domain (120°E to 240°E) is highest at all month leads. The prediction skill in the Sea of Okhotsk based on the model domain (135°E to 225°E) is highlighted at 5- to 8-month leads, but not well at 11- to 12-month leads. Although the models with different sizes of model domain have different prediction skills in the Bering Sea and the Sea of Okhotsk, the differences are not significant because all those model domains contain highly similar signals of climate variability. Therefore, the regional model is not highly sensitive to the size of the model domain within the Pacific-Arctic sector.

Figure 12. Cross-validated model skills of the regional Markov model with the same model configuration and different sizes of the model domain. (a) The skills are measured by the ACC between predictions and observations with trends from 1980 to 2020 as a function of lead months in the Bering Sea. (b) is the same as (a) except for the Sea of Okhotsk. The model is configured by V9M16 in winter, V11M20 in spring, V5M10 in summer, and V5M7 in autumn. The ACC values are averaged over the area marked in the black box in Figure 1.
Conclusions

Here, we developed a regional Markov model to predict SIC in the Pacific-Arctic-Pacific sector at the seasonal time scale. The model was constructed in the MEOF space so that the model can capture the covariability of the North Pacific climate system defined by 97 variables (SIC, OHC, SIT, SST, SAT, surface net radiative flux, surface net turbulent heat flux, and geopotential height and winds at 850 hPa). Based on cross-validation experiments, we selected model variables and mode truncations that provided the best results in each season. These model configurations were V92M165 for winter, V117M2043 for spring, V58M104 for summer, and V58M79 for autumn. The V7 models utilize SIC, SST, SAT, and surface net radiative flux as predictor variables, whereas the V8 models use SIC, SST, SAT, winds and geopotential height.

The SIC prediction skill was evaluated at each grid cell and for all seasons using ACC. The regional Markov model's skill is superior to the skill derived from anomaly persistence, revealing the model's ability to capture more predictable SIC internal variability than anomaly persistence. The winter skill is about 0.4 in the Sea of Okhotsk and 0.5 in the northern Bering Strait Sea at up to 12-month leads. The spring prediction shows a similar pattern but with a 0.1 increase in the ACC skill. The model skill in summer and autumn is more than 0.6 within the Arctic basin. Compared with the pan-Arctic seasonal prediction model (Yuan et al., 2016), the regional Markov model distinctly improves the SIC prediction skill in the peripheral seas of the Pacific-Arctic sector. The regional model significantly enhances the correlation skill from the pan-Arctic model for 42- to 12-month lead predictions in the Bering Sea and 1- to 7-month lead predictions in the Sea of Okhotsk. The improvement measured by the PGS is a 253% ACC increase in the Bering Sea and 186% in the Sea of Okhotsk. The ACC is also increased by 21% in the Bering Sea and 8% in the Sea of Okhotsk. In addition, similar to the pan-Arctic Markov model, the regional model is not sensitive to the number of MEOF modes retained, which indicates that the performance of this Markov model is robust.
Additionally, the regional Markov model’s skill is superior to the skill derived from anomaly persistence, revealing the model’s ability to capture more predictable SIC internal variability than anomaly persistence.

The model retains prediction skill after regardless of whether the sea ice trend is removed or not. However, the detrended skill is notably lower, consistent with earlier sea ice prediction studies. When sea ice time series includes the trend, the model can skillfully predict good skill at predicting SIE from January to November. The skill is particularly high for the predictions of summer and autumn sea ice at longer lead times, especially in July to November when the skill is high (0.6) even at 9-12-month lead-months. Conversely, in May, the model skill is relatively low in May and December, especially at 4-8-11 lead months. Trend removal from both predictions and observations results in a 35% reduction of the mean ACC for the entire Pacific-Arctic sector. However, the model only reduces 13% of the mean ACC from January to November at 1-2 lead months after the trend removal for the North Pacific sector, including the Bering Sea and the Sea of Okhotsk. This detrended analysis shows the model’s capability of capturing sea ice internal variability beyond linear trends. Furthermore, the regional Markov model improves the detrended SIE prediction skill in the Pacific-Arctic sector to 76 month lead times from the 3 month lead skill displayed in the GFDL-FLOR seasonal prediction system.

The following reasons contribute to the improvements. First, the dominant climate variability in the northern mid-high latitudes mostly occurs in the Atlantic sector of the Arctic and subarctic, which dictates the leading MEOF mode in the pan-Arctic model. The unique characteristics of atmosphere-ocean-ice coupled relationships in the Pacific sector may not be included in the leading MEOF decompositions of the pan-Arctic climate system and thus are not correctly represented in the model. The regional model focuses on the Pacific-Arctic coupled atmosphere-ocean-ice system and captures the dominant regional climate variability. Second, the Pacific sector of the Arctic needs a different set of variables to maximize the model’s
predictability. We added OHC and SIT in the regional model, which provides a crucial source of predictability in winter and summer months respectively. Surface net radiative flux, which partially controls the sea-ice growth processes through its influences on the surface energy budget. We also include 850 hPa GPH and winds to represent dynamic atmospheric processes in winter and include turbulent heat flux to improve the model skill in spring. Finally, we constructed a superior model for each season, isolating the seasonally dominant processes separately.

The sensitivity experiments revealed that surface longwave radiation plays a significant role in the Pacific Arctic climate system variability in cold seasons when shortwave radiation is at its annual minimum. The 850 hPa GPH and winds mainly contribute to the model skill in warm seasons, reflecting that the influence of atmospheric circulation on sea ice is more easily captured by MEOF in warm seasons than in the cold season. It was also found that more modes were needed in the cold season to capture the predictable signal of SIC. This suggests that sea ice in cold seasons has more variability patterns compared with that in warm seasons, which may bring more errors in prediction. SIC trends are also strongest in the warm season months, which may contribute to the smaller number of modes required. In addition to the climate system in the Arctic Basin, the coupled atmosphere-ocean-sea ice variability in the North Pacific plays a more important role in the cold season and needs more modes to capture the covariability signals.

However, weaknesses of the model remain. The summer initialization months have little sea-ice coverage, and SST does not provide enough memory for winter predictions in the Bering Sea and the Sea of Okhotsk due to shallow summer mixed layers. Thus, other sources of memory are required to provide sea ice prediction skill in cold seasons. By the mechanism for mid-latitude SST reemergence, subsurface ocean temperature anomalies in summer would potentially impact sea ice growth rates the following cold season (Bushuk et al., 2017a; Bushuk et al., 2020). These deficiencies provide us with opportunities for improvements in future work.
Data availability. The sea ice concentration data were obtained from the National Snow and Ice Data Center (NSIDC, https://nsidc.org/data/NSIDC-0079, last access: 1 July 2021, Comiso, 2017). Monthly SIT from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) can be obtained from the Polar Science Center (PSC) (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid, last access: 1 July 2021, Zhang and Rothrock, 2003). The ocean heat content in the upper 300 m, sea surface temperature, surface air temperature, surface net radiative flux, surface net turbulent heat flux, 850 hPa geopotential height, and 850 hPa wind vector from the ERA5 can be obtained from the ECMWF (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset, last access: 1 July 2021, Hersbach et al., 2020).

Supplement. The supplement related to this article is available online at: xxxx.

Author contributions. YW, XY and HB conceived the idea for the protocol and experimental design. MB and HH provided primary support and guidance on the research. YW, YL and CL performed data processing. All authors drafted the manuscript, and contributed to the manuscript revision.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work is supported by the Lamont endowment, the National Natural Science Foundation of China (42106223), and the China Postdoctoral Science Foundation (2020TQ0322). We thank the NSIDC for providing the sea ice concentration data on their website (https://nsidc.org/data/NSIDC-0079). Monthly SIT from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) can be obtained from the Polar Science Center (PSC) (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid). The ocean heat content in the upper 300 m, sea surface
temperature, surface air temperature, surface net radiative flux, surface net turbulent heat flux, 850 hPa geopotential height, and 850 hPa wind vector from the ERA5 can be obtained from the ECMWF (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset).

Financial support. This work is supported by the Lamont endowment, the National Natural Science Foundation of China (42106223; 42076185), and the Natural Science Foundation of Shandong Province, China (ZR2021QD059), the China Postdoctoral Science Foundation (2020TQ0322), and the Open Funds for the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences (MGE2021KG15; MGE2020KG04).

Lamont contribution number xxxx.

References

