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Abstract 15 

In this study, a regional linear Markov model is developed to assess seasonal sea ice 16 

predictability in the Pacific-ArcticArctic Pacific sector. Unlike an earlier pan-Arctic 17 

Markov model that was developed with one set of variables for all seasons, the 18 

regional model consists of four seasonal modules with different sets of predictor 19 

variables, accommodating seasonally-varying driving processes. A series of 20 

sensitivity tests are performed to evaluate the predictive skill in cross-validated 21 

experiments and to determine the best model configuration for each season. The 22 

prediction skill, as measured by the sea ice concentration (SIC) anomaly correlation 23 

coefficient (ACC) between predictions and observationsthe percentage of grid points 24 

with significant correlations (PGS), increased by 3275% in the Bering Sea and 186% 25 

in the Sea of Okhotsk relative to the pan-Arctic model. The regional Markov model's 26 

skill is also superior to the skill of an anomaly persistence forecast. Sea ice 27 

concentration (SIC) trends significantly contribute to the model skill. However, the 28 

model retains skill for detrended sea ice extent predictions up to 76 month lead times 29 

in the Bering Sea and the Sea of Okhotsk. We find that subsurface ocean heat content 30 

(OHC) provides a crucial source of prediction skill in all seasons, especially in the 31 

cold season, and adding sea ice thickness (SIT) to the regional Markov model has a 32 

substantial contribution to the prediction skill in the warm season but a negative 33 

contribution in the cold season.surface radiative fluxes contribute to predictability in 34 

the cold season and geopotential height and winds play an indispensable role in the 35 

warm-season forecast, contrasting to the thermodynamic processes dominating the 36 

pan-Arctic predictability. The regional model can also capture the seasonal 37 

reemergence of predictability, which is missing in the pan-Arctic model.   38 
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1 Introduction 39 

Sea ice acts as a major component of the Arctic climate system through 40 

modulating the radiative flux, heat, and momentum exchanges between the ocean and 41 

the atmosphere (Peterson et al., 2017; Porter et al., 2011; Smith et al., 2017). Sea ice 42 

also modulates sea surface salinity, which is one of the key drivers for thermohaline 43 

circulations (Sévellec et al., 2017). The rapid retreat of Arctic sea-ice extent in the 44 

past few decades has been considered a key indicator of climate change (Koenigk et 45 

al., 2016; Swart, 2017). The decreasingshrinking Arctic sea ice extent contributes to 46 

polar temperature amplification (Kim et al., 2016; Screen and Francis, 2016), an 47 

increase in wintertime snowfall over Siberia, northern Canada, and Alaska (Deser et 48 

al., 2010), polar stratospheric cooling (Screen et al., 2013; Wu et al., 2016), and 49 

potentially contributes to a weakening of the mid-latitude jet (Francis and Vavrus, 50 

2012) and increased frequency of cold Northern Hemisphere midlatitude winter 51 

events (Cohen et al., 2020; Meleshko et al., 2018).  52 

Also, tThe rapid retreat of summer Arctic sea ice extent retreat has also created 53 

more commercial opportunities in the newly opened Arctic waters. The Northwest 54 

Passage (through northern Canada) and the Northern Sea Route (north of Russia) 55 

could offer faster and less expensive shipping between the Pacific and Atlantic (Smith 56 

and Stephenson, 2013). Information on the Arctic marine accessibility and ice-free 57 

season duration in the marginal ice zone would enable planning of merchant shipping, 58 

conservation efforts, resource extraction, and fishing activities. The growing polar 59 

ecotourism industry could also benefit from shrinking sea-ice cover. Therefore, 60 

increased efforts have been devoted to developing Arctic sea-ice forecast systems in 61 

recent decades.  62 

Substantial efforts have gone toward developing both statistical and dynamical sea 63 

ice prediction models. Dynamic models numerically solve equations that govern the 64 

sea ice physics using sea-ice, ocean, and/or atmospheric conditions to initialize the 65 

models for each season (Bushuk et al., 2019; Bushuk et al., 2020; Bushuk et al., 2021; 66 

Dai et al., 2020; Msadek et al., 2014). Numerous studies using fully coupled general 67 
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circulation models (GCMs) have quantified the seasonal prediction skill of pan-Arctic 68 

sea ice extent (SIE) , which and have found forecast skill for detrended pan-Arctic 69 

SIE at lead times of 1 to 6 months (Blanchard-Wrigglesworth et al., 2015; Day et al., 70 

2014b; Guemas et al., 2016a; Peterson et al., 2015; Sigmond et al., 2013). Bushuk et 71 

al. (2017a) evaluated regional Arctic sea ice prediction skill in a Geophysical Fluid 72 

Dynamics Laboratory (GFDL) seasonal prediction system. They found skillful 73 

detrended regionalreigonal SIE predictions, and found that skill varied strongly with 74 

both region and season.  75 

On the other hand, statistical methods are also appealing for seasonal sea ice 76 

predictions (Petty et al., 2017). Statistical models capture relationships between sea 77 

ice and oceanic, atmospheric, or time-lagged sea ice predictor. Recently, statistical 78 

methods have been used to provide sea ice field predictions using numerous 79 

techniques such as linear Markov model (Chen and Yuan, 2004; Yuan et al., 2016), 80 

vector autoregressive model (Wang et al., 2019a; Wang et al., 2016), deep neural 81 

network (Andersson et al., 2021; Chi and Kim, 2017; Wang et al., 2017), Bayesian 82 

logistic regression (Horvath et al., 2020), and the combination of complex networks 83 

and Gaussian process regression model (Gregory et al., 2020). In some cases, 84 

statistical models provide better performance than dynamical models (Hamilton and 85 

Stroeve, 2016). For example, Yuan et al. (2016) showed that a linear Markov model 86 

has skillful sea ice concentration (SIC) predictions up to 9-month lead times in many 87 

regions of the Arctic and that this statistical model consistently captured more sea ice 88 

prediction skill than NOAA/NCEP Climate Forecast System (CFSv2) and the 89 

Canadian seasonal and interannual prediction system at the seasonal time scale. The 90 

Markov model prediction skill also exhibits strong regional and seasonal dependence.  91 

Two common characteristics of sea ice predictability emerged from both dynamic 92 

(e.g. CFSv2 and GFDL climate models) and statistical models (e.g. linear Markov 93 

models, and linear regression models). First, low prediction skill occurs in the Pacific 94 

sector of the Arctic, particularly in the Bering Sea and the Sea of Okhotsk, compared 95 

with other Arctic regions (Bushuk et al., 2017a; Yuan et al., 2016). Many factors may 96 
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lead to this low predictability. Bushuk et al. (2017a) suggest that less persistent sea ice 97 

anomalies in the North Pacific sector possibly lead to less predictability in the region 98 

by the GFDL dynamical model. The Markov model of Yuan et al. (2016) was built in 99 

multivariate empirical orthogonal functions (MEOF) space in the pan-Arctic and the 100 

leading modes are dominated by the large long-term trend and strong climate 101 

variability in the Atlantic sector (Figure 1). So the signal of sea ice variability in the 102 

Pacific sector could be under-represented in the model. Therefore, it is necessary to 103 

evaluate the sea ice predictability in the Pacific sector with a new regional model. 104 

Second, many studies have shown evidence for an Arctic sea ice spring 105 

predictability barrier that causes forecasts initialized prior to May to be less skillful 106 

and imposes a relatively sharp limit on regional summer sea ice prediction skilllow 107 

predictability occurs in the spring months or is initialized in spring (Bushuk et al., 108 

2017a; Day et al., 2014b; Yuan et al., 2016). Spring sea ice variability is complicated 109 

by surface melt ponds. The sea ice driven processes in spring could be different from 110 

those in other seasons. The spring barrier may result from a sharp increase in 111 

predictability at melt onset, when sea-ice‐albedo feedback acts to enhance and persist 112 

the preexisting export‐generated mass anomaly (Bushuk et al., 2020). In the Pacific 113 

sector of the Arctic, sea ice does not exist during the summer months in the Bering 114 

Sea and the Sea of Okhotsk, and sea ice nearly 100% covers the regions within the 115 

Arctic Basin in winter. Both cases lead to no sea ice variability and therefore no 116 

predictability. Moreover, the Bering Sea opens to the North Pacific, facing a more 117 

divergent environment, while sea ice movement is more constrained by the 118 

geographic setting of the Arctic Basin in the Chukchi Sea, East Siberian Sea, and the 119 

Beaufort Sea. Strong seasonality and geographic setting dictate that different driving 120 

processes may play dominant roles in different seasons. In addition, summer 121 

initialization months have little sea ice coverage and have little intrinsic memory of 122 

sea ice and, therefore, require another source of memory to provide winter SIE 123 

prediction skill. 124 

Actually, re-emergence mechanisms can provide sources of sea ice predictability 125 

on time scales from a few months to 1 year (Blanchard-Wrigglesworth et al., 2011). 126 

The re-emergence mechanism mainly relies on the persistence of some sea-ice related 127 
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variables such as sea ice thickness (SIT) and ocean temperature. Previous studies have 128 

shown that summer sea surface temperature (SST) anomalies can provide a significant 129 

source of SIE predictability in the ice growth season (Blanchard-Wrigglesworth et al., 130 

2011; Bushuk and Giannakis, 2017; Cheng et al., 2016; Dai et al., 2020). Initializing 131 

the upper ocean heat content (OHC) in a seasonal prediction system can also yield 132 

remarkable regional skill for winter sea ice (Bushuk et al., 2017a). Moreover, 133 

assimilating SIT data can slightly improve the SIC forecast and particularly benefit 134 

the sea ice prediction in summer, which is attributed to the long-lived SIT anomalies 135 

and their impact on summer sea ice (Blockley and Peterson, 2018; Bushuk et al., 136 

2017b; Guemas et al., 2016b; Xie et al., 2016). Because sea ice is closely coupled 137 

with the atmosphere and the ocean, the sea ice predictability is provided by the 138 

intrinsic memory of sea ice and its related variables, and accurate initial conditions are 139 

of importance for sea ice predictions (Blanchard-Wrigglesworth et al., 2011; Guemas 140 

et al., 2016b). Current climate models used for sea ice predictions are usually 141 

initialized using various atmospheric and oceanic variables, such as SIC, SIT, OHC, 142 

SST, surface air temperature (SAT), or other data from existing reanalysis (Bushuk et 143 

al., 2017a; Dai et al., 2020; Kimmritz et al., 2019; Yuan et al., 2016). 144 

In this study, we develop a regional linear Markov model for the seasonal 145 

prediction of SIC in the Pacific sector with a focus on understanding unique sea ice 146 

driving processes in different seasons. We follow the framework of the pan-Arctic 147 

linear Markov model (Yuan et al., 2016). Unlike the pan-Arctic model that was 148 

developed with one set of variables (SIC, SAT, SSTsurface air temperature, and sea 149 

surface temperature) for all seasons and the entire Arctic region, the regional model 150 

consists of four modules with seasonal dependent variables, which isolate the 151 

dominant processes for each targeted season. Regional relevant predictors are 152 

evaluated. New variables, including surface net radiative flux, turbulent heat flux, and 153 

pressure and wind fields, as well as SIT and OHC, are introduced to the model 154 

experiments. Sea ice predictability is assessed at grid points and over all seasons, and 155 

subsequently compared with the pan-Arctic model and other dynamic models.  156 
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2 Data and methodology 157 

2.1 Data 158 

Building on the extensive literature studying the predictability and variability of 159 

sea ice (Bushuk and Giannakis, 2017; Bushuk et al., 2020; Guemas et al., 2016a; 160 

Horvath et al., 2021; Lenetsky et al., 2021; Yuan et al., 2016), we firstly chose many 161 

kinds of oceanic and atmospheric variables and examined their correlations with SIC. 162 

The results show that SIC is highly related to OHC in the upper 300 m, SIT, SST, 163 

SAT, surface net radiative flux, surface net turbulent heat flux, geopotential height 164 

and wind vector at different levels including 850 to 200 hPa. Due to the barotropic 165 

nature of the polar troposphere (Chen, 2005; Ting, 1994) and the low correlation 166 

between sea level pressure and SIC, we chose geopotential height and wind vector at 167 

850 hPa to define the low-level atmospheric circulation, whose interaction with sea 168 

ice is stronger relative to that in higher levels. Therefore, Wwe choose to define the 169 

atmosphere-ice-ocean coupled Arctic climate system with 97 variables: SIC, OHC in 170 

the upper 300 m, SIT, sea surface temperature (SST), surface air temperature (SAT), 171 

surface net radiative flux, surface net turbulent heat flux, 850 hPa geopotential height, 172 

and 850 hPa wind vector.  173 

Monthly SICs in 25 km × 25 km grids are obtained from the National Snow and 174 

Ice Data Center (NSIDC) from 1979 to 2020 (Comiso, 2017). The dataset is generated 175 

from brightness temperatures derived from Nimbus-7 Scanning Multichannel 176 

Microwave Radiometer (SMMR), Defense Meteorological Satellite Program (DMSP) 177 

–F8, -F11, and -F13 Special Sensor Microwave/Imager (SSM/I), and DMSP-F17 178 

Special Sensor Microwave Imager/Sounder (SSMIS) using the bootstrap algorithm. 179 

Monthly SITs are from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) 180 

model data. PIOMAS is a sea ice-ocean reanalysis product that compares reasonably 181 

well to available satellite, aircraft, and in situ SIT measurements (Schweiger et al., 182 

2011). The system applies a 12-category SIT and enthalpy distribution (Zhang and 183 

Rothrock, 2003) and is driven by NCEP/NCAR reanalysis atmospheric forcing 184 

including 10-m surface winds and 2-m SAT.  185 
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All atmospheric and oceanic variables and SST with a spatial resolution of 1° × 1° 186 

are from the latest European Centre for Medium-Range Weather Forecasts (ECMWF) 187 

reanalysis product ERA5 (Hersbach et al., 2020) and are applied to represent the 188 

conditions of the atmosphere and ocean. ERA5 is produced using the version of 189 

ECMWF’s Integrated Forecast System (IFS), CY41R2, based on a hybrid incremental 190 

4D-Var system, with 137 hybrid sigma/pressure (model) levels in the vertical 191 

direction, with the top-level at 0.01 hPa. The OHC used here is global ocean and sea-192 

ice reanalysis (ORAS5: Ocean Reanalysis System 5) monthly mean data and is 193 

developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) 194 

OCEAN5 ocean analysis-reanalysis system (Zuo et al., 2019). ORAS5 includes five 195 

ensemble members and covers the period from 1979 onwards. It is regarded as a 196 

global eddy-permitting ocean ensemble reanalysis product. Both the forcing fields and 197 

observational datasets are updated in ORAS5. 198 

2.2 The model 199 

The idea of using a Markov model for climate prediction is to build multivariate 200 

models, aiming to capture the co-variability in the atmosphere-ocean-sea ice coupled 201 

system instead of linearly regressing on individual predictors. Yuan et al. (2016) 202 

applied this statistical approach to predict SIC in the Arctic at a seasonal timescale 203 

and showed that the Lamont statistical model outperformed the NOAA CFSv2 204 

operational model and the Canadian Seasonal to Interannual Prediction System in sea 205 

ice prediction. They used multivariate empirical orthogonal functions (MEOF) as the 206 

building blocks of the model to filter out incoherent small-scale features that are 207 

basically unpredictable. Similar Markov models were also developed to study ENSO 208 

predictability (Cañizares et al., 2001; Xue et al., 2000) and for East Asian monsoon 209 

forecasts (Wu et al., 2013). The success of the Markov model is attributed to the 210 

dominance of several distinct modes in the coupled atmosphere-ocean-sea ice system 211 

and to the model’s ability to pick up these modes. 212 

Here we focus on the atmosphere-ocean-sea ice interactive processes that are 213 

unique to the Pacific sector and develop a regional linear Markov model for the 214 
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seasonal prediction of SIC. The model consists of four modules with seasonally 215 

dependent variables. The model domainarea extends from 40°N to 84°N in latitude 216 

and from 120°E to 240°E in longitude (Figure 1). To reduce model dimensions, we 217 

remove land grid cells, mostly open water grid cells and mostly 100% ice cover grid 218 

cells from the sea ice field. The mostly open water cells are defined by the grids 219 

where SIC ≥ 15% only occurred less than 4% of the total all-season time series (492 220 

months), and mostly ice covered cells are defined by the grids where SIC ≥95% for 221 

more than 96% of total time series. SIC at the rest grid cells ranges from 0 to 100%. 222 

For the sea ice field, the grid cells where the number of months with variable SIC 223 

(15%-95%) is less than 4% of the total time series (492 months) are masked and 224 

excluded together with land grid cells.  Our model is constructed in the MEOF 225 

space. The base functions of the model’s spatial dependence consist of the 226 

eigenvectors from the MEOF, while the temporal evolution of the model is a Markov 227 

process with its transition functions determined from the corresponding principal 228 

components (PCs). We use only several leading MEOF modes, which greatly reduce 229 

model space and filter out unpredictable small-scale features. This method of reducing 230 

model dimension has been successfully used in earlier Antarctic and Arctic sea ice 231 

predictability studies (Chen and Yuan, 2004; Yuan et al., 2016). 232 

We preselect SIC, OHC, SIT, SST, SAT, surface net radiative flux, surface net 233 

turbulent heat flux, and geopotential height and winds at 850 hPa to represent 234 

different sea ice-driving processes in the Pacific sector. We create anomaly time 235 

series for all variables from 1979 to 2020 by subtracting climatologies of the same 236 

period from monthly mean data. The initial multivariate space is formed to capture the 237 

predictable variability in the atmosphere-ice-ocean system by MEOF analysis. Since 238 

our focus is on short-term climate variability, the climatological seasonal cycle for the 239 

period from 1979 to 2020 was subtracted to obtain monthly anomalies for all 240 

variables. A normalization is applied to the time series at each grid point for all 241 

variables. To emphasize sea ice variability in the model construction, we weight SIC 242 

by 2 and other variables by 1, although the final model skill is not very sensitive to 243 
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this choice of weight. The weighted variables are stacked up into a single matrix V(n, 244 

m), where n is the number of grid points of all fields and m is the length of the time 245 

series. We then decompose V into eigenvectors (spatial patterns) E and their 246 

corresponding PCs (time series) P: 247 

                            V = EPT,                        (1) 248 

where the columns of E are orthogonal and the columns of P are orthonormal; the 249 

superscript T denotes matrix transpose. It greatly reduces the model space by 250 

truncating (1) to the several leading modes. The Markov model is computed using the 251 

single-step correlation matrix, that is, a transition matrix A that satisfies the following 252 

linear relation: 253 

𝑷𝑖+1 = 𝑨𝑷𝑖+𝑒𝑖,                   (2) 254 

where 𝑖 denotes the 𝑖th month and 𝑒𝑖 is the error in the model fit. Transition A is 255 

calculated by multiplying (2) with 𝑷𝑖
𝑇
 256 

𝑷𝑖+1𝑷𝑖
𝑇 = 𝑨𝑷𝑖𝑷𝑖

𝑇+ 𝑒𝑖𝑷𝑖
𝑇
,              (3) 257 

For the best model fit, 𝑒𝑖 and 𝑷𝑖
𝑇
should have no correlation. Thus 258 

𝑨 = (𝑷𝑖+1𝑷𝑖
𝑇)(𝑷𝑖𝑷𝑖

𝑇)−1.              (4) 259 

A is constructed to be seasonally-dependent because of the strong seasonality of SIC 260 

and related variables. Thus (4) is applied to 12 subsets of PCs to obtain different 261 

transition matrices for each of the 12 calendar months.  262 

After the Markov model is formulated, the SIC prediction can be generatedmade 263 

through the following eight steps: 1) to examine which variables have the highest 264 

prediction potential in the Pacific sector, we create 10 climate variable combinations 265 

representing different driving processes. 2) The PCs corresponding to each initial 266 

multivariate space are calculated by the MEOF equation (1). 3) Transition matrices, 267 

A, for each calendar month are calculated by equation (4). 4) The predictions of the 268 

PCs are made by truncating to the first several modes and applying the appropriate 269 

transition matrices at different lead times. “Lead time” refers to the number of months 270 
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prior to the target month that the forecast was initialized. For example, lead-1 271 

prediction of January SIE is based on December data. 5) The predicted PCs are 272 

combined with the respective eigenvectors to produce a spatially-resolved SIC 273 

anomaly prediction for each variable combination. 6) We evaluate the prediction skill 274 

measured by the SIC anomaly correlation coefficient (ACC), percentage of grid points 275 

with significant ACC (PGS), and root mean square error (RMSE) using cross-276 

validated model experiments to identify the superior model for each season. 7) The 277 

complete SIC anomaly prediction can then be generated by combining predicted PCs 278 

by the corresponding optimal model in each season with eigenvectors. We 279 

differentiate the seasons as follows: winter (December through February), spring 280 

(March through May), summer (June through August), and autumn (September 281 

through November). 8) The predicted SIC anomalies are divided by weight value 2, 282 

multiplied by standard deviation, and added the climatology to generate the complete 283 

prediction field. 284 

To determine model variables and the number of modes to be used in the model, 285 

we evaluate the prediction skill at all grid points and all seasons in a cross-validated 286 

fashion for the period 1980-2020, by calculating the ACC and RMSE between 287 

predictions and observations. Notably, the dramatic declining trend in SIC prohibits 288 

us to use the first half of the time series for training the model and the second half of 289 

the time series to validate the model since the climate system mean state has changed 290 

dramatically over the last four decades. Another cross-validation scheme (Barnston 291 

and Ropelewski, 1992) is jackknifing, where one case is withheld from the regression 292 

development in the Markov model as an independent sample for testing. Thus, we 293 

built a Markov model for each month with a 1-yr moving window of data removal, 294 

and then used this window of predictionsdata to evaluate the model 295 

predictionsperformance. Here, we subtract one-year data from PCs and recalculate the 296 

transition matrix in equation (4); then twelve-month predictions are generated for that 297 

year. This procedure is repeated for each year of the time series. Such a cross-298 



12 

 

validated experimental design reduces artificial skill without compromising the length 299 

of the time series.  300 

The long-term trend is an essential part of the Arctic sea ice variability. A 301 

substantial declining trend exists in Arctic SIC, particularly in the Barents Sea, the 302 

Kara Sea, the Beaufort Sea, and the Chukchi Sea (Figure 1). However, outside of the 303 

Arctic Basin, the long-term trends are relatively weak in the Pacific sector. As the 304 

trends are parts of the total variability, we retain the SIC trends in anomalies while 305 

building the model and then conduct a post prediction evaluation of the impact of 306 

trends on the model skill.  307 

308 

 309 

Figure 1. Arctic SIC trends (left) and standard deviation (right) computed using 310 

SIC anomalies over all 12 months of the period 1979-2020. The Pacific-Arctic model 311 

domain is enclosed by blue lines, which covers 40° - 84°N and 120° - 240°E. Two 312 
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focused areas marked in blackue boxes in the Bering Sea (between 58°- 62°N and 313 

182°-192°E) and the Sea of Okhotsk (between 52°- 56°N and 144°-152°E) have large 314 

standard deviations and are selected to evaluate the ACC skill improvement in the 315 

regional model compared with the pan-Arctic Markov model developed by Yuan et 316 

al. (2016). 317 

3 Model construction and assessments 318 

3.1 EOF analysis of Pacific SIC 319 

Before constructing the model, we first examine whether the EOF analysis can 320 

isolate the regional and seasonal SIC variability in the Pacific-Arctic sector. Figure 2 321 

shows the eigenvectors of the three leading EOF modes of SIC. The first mode of SIC 322 

variability, accounting for 23% of the total variance, mainly shows a positive pattern 323 

within the Arctic Basin from 1979 to 2002 and a negative pattern after 2003 with a 324 

record low in 2007 and 2012, representing the decreasing trend in summer and early 325 

fall SIC. The declining trend is heavily loaded inside the Arctic Basin from the East 326 

Siberian Sea to the Beaufort Sea. The second SIC mode (9% of total variance) 327 

primarily captures out-of-phase SIC anomalies in the Bering Sea and the Sea of 328 

Okhotsk and is associated with the Aleutian-Icelandic low seesaw, representing SIC 329 

variability in cold seasons (Frankignoul et al., 2014). This pattern suggests 330 

consistently positive SIC anomalies in the Bering Sea and negative anomalies in the 331 

Sea of Okhotsk after 2004.with a positive pattern in the Bering Sea after 2004 and an 332 

opposite phase in the Sea of Okhotsk, which represents SIC variability in cold seasons 333 

and is associated with the Aleutian-Icelandic low seesaw (Frankignoul et al., 2014). 334 

The SIC variability in the central sector (approximately 60°-70°N) stands out in the 335 

third EOF mode (7% of the total variance), which is a commonly observed feature in 336 

the region during spring and autumn. This finding shows that the EOF (MEOF) 337 

analysis can well isolate the regional and seasonal SIC variability including the trend 338 

in the Pacific-Arctic sector.  339 
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We further divided the SIC time series into four seasons and conducted EOF 340 

analysis respectively. The results show that fewer modes can explain the dominant 341 

SIC variance in autumn and summer benefiting from the large SIC variability and 342 

trend (Figure S1). For example, the leading 10 modes can explain 70% of the SIC 343 

total variance in autumn and summer, while about 25 modes are needed for explaining 344 

the same amount of variance in the cold seasons. It turns out that the several leading 345 

modes can explain the dominant SIC variability. This is an important premise to 346 

reduce the model dimension and, more importantly, to filter out incoherent small-347 

scale features that are likely unpredictable. In addition, it is necessary to build the sea 348 

ice prediction model for individual seasons because of the differences in seasonal 349 

patterns of variability and the different number of leading modes required to capture 350 

predictablethis variability. 351 

 352 
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Figure 2. The eigenvectors and PCs of the three leading three EOF modes of SIC 353 

in the Pacific-ArcticArctic Pacific sector for the period 1979-2020. The bottom panel 354 

shows the explained variance as a function of the number of leading modes of SIC. 355 

3.2 Construct an optimal model for each season 356 

A practical issue in building a Markov model in MEOF spaces is which 357 

combination of variables and number of leading modes to retain in the model. Using 358 

too few modes may miss some predictable signals, and too many may result in 359 

overfitting and contaminate the model with incoherent small-scale features. To 360 

determine optimal predictor variables and reasonable mode truncations, we calculate 361 

the prediction skill from a series of cross-validated model experiments, which used 362 

different numbers of modes and different variables. Table 1 shows the detailed 363 

variable-combinations. Models V2-V4, V6-V8,7 and V10-V119 are weighted towards 364 

surface thermodynamic processes, whereas V98 and V120 represent integration of 365 

thermodynamic and dynamic processes. 366 

Table 1. Variable combinations in cross-validated experiments. V1 represents the 367 

No. 1 variable-combination. √ represents the variable included in the corresponding 368 

combination. 369 

 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

SIC √ √ √ √ √ √ √ √ √ √ √ √ 

OHC  √  √ √ √ √ √ √ √ √ √ 

SST 
 

√ √ √√ √ √ √ √ √ √√ √ √ 

SIT     √       √ 

SAT 
  

√ 
  

√ √ √ √ √  √ 

Surface net turbulent 

heat flux 

   

√ 
 

√ 
 

√ √ √ √ √ 

Surface net radiative 

flux 

    

√ 
 

√ 
 

√ √  √ 

850hPa GPH, U, V 
       

√ √ √  √ 

The cross-validation scheme is carried out for the time series to produce 370 

predictions at 1- to 12-month lead. The PGS and mean RMSE for each lead time in 371 

each season are calculated. To avoid missing predictable signals, we initially 372 
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retainallow large amounts of modes (up to 52) in the model and then narrow the range 373 

of mode numbers to determine the best model configuration for each season. Figure 374 

S2 presents the PGS for each lead time for winter target months. It shows that the 375 

model prediction skill in winter steeply decreases after 362 modes in most lead 376 

months. Similarly, RMSE increases rapidly after 362 modes (Figure S3). This 377 

indicates that including modes beyond mode 362 in winter, mainly representative of 378 

unpredictable small-scale features, leads to the rapid decrease of predictive skill.  379 

To select a model configuration that fits all lead times, we average the 12 panels 380 

in Figures S2 and S3, respectively, and display them in the first column of Figure S4. 381 

Similarly, predictive skills for other seasons are also examined. We further 382 

narrowshrink the modes’ range to display the predictive skill according to Figure S4 383 

so that we can determine the optimal model more accurately (Figure 3). 384 

GenerallyAltogether, the model skills are better in summer and autumn than in winter 385 

and spring, and more modes are needed in the cold season to capture the predictable 386 

signal of SIC. This indicates that sea ice in the cold season has requires more modes 387 

to capture its variability, which is likely due to the weaker trends in these months. 388 

Models with high correlation also have smaller RMSE but the RMSE differences 389 

between models are relatively small.  390 

Based on the PGS and RMSE, we primarily chose three superior model 391 

configurations marked by black boxes in Figure 3 for winter, summer, and autumn 392 

respectively, and chose five superior models in spring since high predictive skills are 393 

scattered. 394 
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 396 

Figure 3. Mean PGS and mean RMSE between the observations and predictions 397 

in four seasons. (a) Mean PGS is obtained by averaging all lead months for winter 398 

predictions. The x-axis represents the number of MEOF modes, and the y-axis 399 

represents the combination of the variables corresponding to Table 1. (b, e, and f) are 400 

the same as (a) except for spring, summer, and autumn respectively. (c, d, g, and h) 401 

are the same as (a, b, e, and f) except for RMSE.  402 

Based on the PGS and RMSE, we primarily chose three superior model 403 

configurations marked by black boxes in Figure 3 for each season respectively. To 404 

determine which model configuration produces the best prediction in each season, we 405 

spatially average the SIC prediction skill from these superior models with 1- to 12-406 

month leads (Figures 4 and 5). Figure 4 shows the cross-validation skill measured by 407 
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PGS. In general, the predictive skill in summer and autumnthe warm season is higher 408 

(by roughly 35%) than that in winter and springthe cold season, although the RMSEs 409 

are also relatively large in the warm season (Figure 5). The model prediction skills 410 

based on those superior model configurations have similar variability and magnitude 411 

in winter and spring respectively, while large differences of that occur in the warm 412 

season, especially in autumn. It also shows that the model prediction skill steeply 413 

decreases at the 2-month lead in winter and at the 2- and 3-month lead in spring. 414 

These models also exhibit a local minimum of PGS in each season at a 10-month lead 415 

for winter, at a 3-month lead for spring, at a 4- and 6-month lead for summer, and at a 416 

7-month lead for autumn. In other words, the seasonal models show a common 417 

feature of low prediction skill for forecasts initialized in the month of March, but 418 

show higher skill at lead times beyond this, suggesting that certain sources of 419 

predictability present in March are absent in these models.  420 

As a model construction principle, we choose the minimum number of variables 421 

and modes to achieve the same level of skill, avoiding possible overfitting. Based on 422 

the PGS and RMSE, we chose V97M165 as the best model as the best model in 423 

winter since it shows the lowest highest RMSEPGS. Similarly, we chose V11M20 in 424 

spring and V5M10 in summer. In autumn, The model skill from V5 is obviously 425 

superior at 1-5 lead months, while V12 dominates prediction skill beyond the 8-month 426 

lead. We decided to choose V5M7 because it has a relatively higher mean skill and 427 

fewer variables and modes.In spring, we ruled out V8M28 and V10M28 because of 428 

the large RMSE and chose V7M13 since it shows a slightly larger correlation among 429 

the rest of the models. In the warm season, V8 and V10 show nearly the same skill, 430 

indicating that the surface turbulent heat flux and radiative flux do not contribute to 431 

the model skill. So we selected the V8M11 in summer and V8M9 in autumn.  432 

The contribution of different variables in ice prediction skill for each season is 433 

also assessed. OHC contributes more model prediction skill than SST in all seasons 434 

(Figure 3). The model built on the data matrix of SIC, OHC performs better in winter 435 

and spring, which indicates that the OHC provides a considerable source of memory 436 
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for SIC prediction skill in the cold season and plays a key role in the evolution of sea 437 

ice conditions. The results are consistent with many previous studies (Bushuk et al., 438 

2017a; Dai et al., 2020; Guemas et al., 2016b; Lenetsky et al., 2021). 850 hPa 439 

geopotential height and winds can still contribute additional prediction skill in winter 440 

since including OHC, geopotential height and winds slightly outperforms the case 441 

without geopotential height and winds (Figure 4). 850 hPa GPH and wind not only 442 

affect the heat and moisture transport by atmospheric circulation anomaly but also 443 

drive sea-ice drift. For example, the dipole structure anomaly of the Arctic 444 

atmospheric circulation shows strong meridionality and plays a profound role in sea-445 

ice export/import, and heat and moisture transport through the Pacific-Arctic sector 446 

(Wu et al., 2006). 447 

Similarly, SST and turbulent heat flux also contribute additional skill in spring 448 

although the contribution is minor (Figures 3 and 4). It is worth mentioning that the 449 

variable such as SST with minor additional contributions to the model does not mean 450 

that it is a minor contributor since the contributions from different variables to 451 

prediction skill partially overlap. In addition, adding SIT to the model has a 452 

substantial contribution to the prediction skill in the warm season, indicating that sea 453 

ice thickness is a key source of sea ice predictability within the Arctic Basin in the 454 

warm season especially in summer, which is consistent with previous studies 455 

(Blanchard-Wrigglesworth et al., 2011; Blockley and Peterson, 2018; Day et al., 456 

2014a; Morioka et al., 2021; Tian et al., 2021; Yuan et al., 2016). However, SIT has a 457 

negative contribution to the prediction skill in the cold season (Figure 3). The 458 

contributions of SIT to the prediction skill in autumn are very sensitive to the number 459 

of lead months that the skill steeply decreases beyond a 5-month lead (Figure 4). In 460 

other words, the model didn't perform well in autumn prediction initialized in winter 461 

and spring. In addition to SIC, SST, and SAT, , the surface net radiative flux mainly 462 

also contributes to the model skill in the cold season (Figure 3)., reflecting Early 463 

studies suggested that the surface longwave radiation plays an 464 

indispensablesignificant role in the polar climate system in the cold season when 465 
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shortwave radiation is at its annual minimum . Previous studies suggested that cloud 466 

cover is capable of controlling sea ice growth processes through its influences on the 467 

surface energy budget via transmitting longwave radiation (Huang et al., 2015; 468 

Kapsch et al., 2013; Lee et al., 2017; Liu and Key, 2014; Luo et al., 2017; Wang et 469 

al., 2019b). On the other hand, argued that negative cloud anomalies combined with 470 

increased surface solar radiation in summer had no substantial contribution to the 471 

minimum SIE record in 2007. conclude that the accumulation of surface downwelling 472 

shortwave radiation did not correspond well to negative SIC anomalies in summer. 473 

Our model experiments also suggest that the surface net radiative flux does not 474 

contribute to the prediction skill in warm season. Instead, 850 hPa GPH and wind, not 475 

only affect the heat and moisture transport by atmospheric circulation anomaly but 476 

also drive sea-ice drift, mainly contribute to the model skill in warm season. For 477 

example, the dipole structure anomaly of the Arctic atmospheric circulation shows 478 

strong meridionality and plays a profound role in sea-ice export/import, and heat and 479 

moisture transport through the Pacific-Arctic sector (Wu et al., 2006).  480 
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481 

482 

Figure 4. PGS for the preliminary selection of superior models in each season. 483 
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484 

 485 

Figure 5. Same as Figure 4 but for RMSE. 486 

3.3 Assessment of model skill 487 
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To test the forecast skill of the model, the SIC predictions were evaluated at each 488 

grid cell and for all seasons using the ACC and RMSE between predicted and 489 

observed anomalies, and the skill is presented at 3, 6, 9, and 12 lead months. In winter 490 

(DJF), high forecast skill is concentrated in the Arctic marginal seas and peripheral 491 

seas: the northernsouthern Chukchi SeaBering Strait and northern Sea of Okhotsk 492 

(Figure 6). The skill is slightly lower at a 126-month lead in the Sea of Okhotsk and 493 

from a 6-month to a 9-month lead in the southern Chukchi SeaBering Sea, whereas 494 

high skill values (>0.6) are maintained up to a 12-month lead in the Bering Strait. 495 

Overall, the winter skill is roughly 0.4 in the Sea of Okhotsk and 0.5 in the southern 496 

Chukchi Sea at up to 12-month leads. The spring (MAM) prediction skill shows a 497 

similar pattern as that in winter but with a 0.1 increasereduction in the ACC skill. The 498 

southern Chukchi Sea and Bering Strait have higher skills than the Bering 499 

Seasouthern part of the strait. For summer (JJA) predictions, the prediction skill is 500 

concentrated in the Arctic basin since sea ice nearly totally melts in the Arctic 501 

peripheral seas. The 3-month lead prediction has the highest skill (>0.6) in most of the 502 

Arctic basin, while the lowest prediction skill (<0.54) is found at a 126-month lead. 503 

This skill dip indicates that using winter SIC to forecast summer sea ice is 504 

unsatisfactory. However, the 9-month and 12-month lead predictions again show high 505 

skill (>0.6) in most of the Arctic Basin. The autumn (SON) prediction skill shows a 506 

similar pattern as the summer skill but with higher correlations than that in summer. 507 

For targeted autumn predictions, the significantly increased skill at 6-month lead 508 

relative to other seasons could be related to the sea ice anomaly reemergence from 509 

spring to autumn due to the oceanic memory (Blanchard-Wrigglesworth et al., 2011). 510 

Still, the autumn prediction skill at a 6-month lead is lower than that at other lead 511 

months, indicating that the impact of the spring predictability barrier on prediction 512 

was not offset by the SST anomaly reemergence. In general, the model has higher 513 

prediction skills for warm seasons, especially for autumn, than that for cold seasons, 514 

while the lowest skill is in springwinter.  515 
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516 

 517 

Figure 6. Cross-validated model skills measured by ACC between SIC 518 

predictions and observation anomalies as a function of seasons and lead months. Only 519 

the correlations that are significantly above the 95% confidence level based on a 520 

Student’s t test are included in the panels. 521 
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RMSEs are consistent with correlations: high correlations correspond to low 522 

RMSEs, and vice versa, although minor inconsistencies occur in some seasons and 523 

regions (Figure 7). The RMSE is large around the Arctic basin for the warm season 524 

and in the peripheral sea for the cold season where SIC has large variability. In the 525 

cold season, the RMSE is larger in the Bering Sea than that in the Sea of Okhotsk. 526 

The magnitudes of RMSE remain at roughly the same level from 3- to 12-month lead 527 

and all seasons in most locations for all seasons. The marginal seas have larger 528 

RMSEs than the central Arctic basin in both summer and autumn, while the error 529 

magnitudes in autumn are slightly larger than those in summer but smaller than the 530 

SIC standard deviation across the Pacific sector (Figure 1).  531 
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 532 

 533 

Figure 7. Same as Figure 6 except for RMSEs. The color bar is in a unit of 534 

percentage%. 535 

Also, the model performance is further evaluated against anomaly persistence and 536 

climatology. Averaged over the grid points in the model domain and over all seasons 537 

for the period of 1980-2020, the regional Markov model's mean correlation is 538 
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manifestly higher, and the mean RMSE of the regional Markov model is much lower 539 

thanstill quite skillful compared with the climatology and anomaly persistence for all 540 

the lead months whether the sea ice trend is removed or not, especially from 2-month 541 

lead to 10-month lead (Figure 8). In addition, RMSE is not sensitive to the lead 542 

months, showing the superiority of the regional model. These results suggest that the 543 

regional Markov model can capture significantly more predictability beyond SIC 544 

anomaly persistence.This indicates that there are crucial sources of predictability 545 

beyond SIC anomaly persistence that the regional Markov model is able to capture. 546 



29 

 

 547 

 548 



30 

 

Figure 8. The prediction skill of the regional Markov model compared against 549 

that of anomaly persistence and climatology averaged over the model domain as a 550 

function of the number of month lead times.  551 

To assess the regional model skill improvements from the pan-Arctic model 552 

presented by Yuan et al. (2016), we calculated the PGS and ACC as a function of lead 553 

months (Figure 9). Note that the PGS is calculated in the entire area for the Bering 554 

Sea and the Sea of Okhotsk, and the ACC is calculated only in typical regions with 555 

large standard deviations marked in Figure 1. The regional model evidently 556 

substantially enhances the PGS ACC skill from the pan-Arctic model for the 42- to 557 

12-month lead predictions in the Bering Sea and the 1- to 7-month lead predictions in 558 

the Sea of Okhotsk. The mean PGS improvement is 75% in the Bering Sea and 16% 559 

in the Sea of Okhotsk. Similarly, the ACC is also increased by 3221% in the Bering 560 

Sea and 188% in the Sea of Okhotsk. The prediction skill of the regional Markov 561 

model withinin the Arctic basin also remains at the same high level as that of the Pan-562 

Arctic model (not shown), so significant skill improvements occur in the peripheral 563 

sea of the Pacific sector, demonstrating the superiority of the regional model. 564 
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 565 

 566 

Figure 9. Cross-validated model skills of the regional Markov model vs. the Pan-567 

Arctic Markov model. (a, c) The skills are measured by the PGS ACC between 568 

predictions and observations with trends from 1980 to 2020 as a function of lead 569 

months in the Bering Sea and the Sea of Okhotsk. (b, d) are is the same as (a, c) 570 

except for the Sea of Okhotskthe ACC. The red numbers in the bottom left bottom of 571 

each panel represent the mean regional model skill improvements from the pan-Arctic 572 

model. 573 

4 Discussion 574 

4.13.4 Contribution of linear trends to SIE prediction skill 575 
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Sigmond et al. (2013) show that the linear trend in Arctic SIE dramatically 576 

contributes to its forecast skill in the Canadian Seasonal to Interannual Prediction 577 

System. Lindsay et al. (2008) show that their dynamic model prediction skill is much 578 

lower when the trend is not included. They suggested that the trend accounts for 76% 579 

of the variance of the pan-Arctic ice extent in September. The trend also contributes 580 

to the pan-Arctic prediction in the linear Markov model (Yuan et al., 2016). In the 581 

Arctic, SIE has declined at -0.35 million square kilometers per decade during 1979-582 

2020, which is significant at the 95% confidence level. The large SIC trend is mainly 583 

in the Barents Sea and the Kara Sea, followed by the Chukchi Sea, while the mean 584 

SIC trend in the Bering Sea and the Sea of Okhotsk is relatively weak (Figure 1). To 585 

evaluate the contribution of long-term trends to the regional Markov model skill, we 586 

conducted post-prediction analysis on linear trends’ contribution to the predictions 587 

skill of SIE in the Pacific-Arctic sector. wWe examine the time series of SIE in all 588 

calendar and lead months calculated by summing the Pacific-Arctic areas that have at 589 

least 15% SIC from observations and predictions. Monthly trends were removed from 590 

the predictions and observations, respectively. Then, the model skill is compared 591 

between the original SIE predictions and detrended SIE predictions.  592 
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  594 

Figure 10. (a) The SIE forecast skill of the regional Markov model as a function 595 

of the calendar month and lead months. (b) The SIE forecast skill when monthly 596 

trends are removed from the predictions and observations respectively. The black dots 597 

in (a) and (b) represent the correlations that are significantly above the 95% 598 

confidence level. (c) Difference between (a) and (b). The black dots in (c) indicate 599 

that the correlation differences are significant above the 95% confidence level. (d) 600 

Observed trends in SIE as a function of the calendar month. All monthly SIE trends 601 

are significantly above the 95% confidence level. (e, f) The prediction skill of the 602 

regional Markov model compared against that of anomaly persistence and 603 

climatology averaged over the model domain as a function of the number of month 604 

lead times.  605 
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Figure 10 shows the model skill of the SIE forecast in the Arctic Pacific sector 606 

and the contribution of linear trends to the skill. The model has goodis skillful in 607 

predicting SIE from January to November at a 1- to 2-month lead (Figure 10a). The 608 

skill is particularly high for the predictions in summer and autumn predictions, where 609 

ACC. It is higher than 0.6 from July through October November even at a 12-month 610 

lead months 9-12. The model skill is relatively low in May and December, especially 611 

at 84-11 8 lead months. This pattern is consistent with the seasonal variation of the 612 

model skill for SIC prediction presented in Figure 6.  613 

After monthly trends are removed from both predictions and observations 614 

respectively, the model skill is significantly reduced for all seasons, especially for the 615 

warm season at 6-12 months lead (Figure 10b, c). This is consistent with the 616 

seasonality of the observed trend (Figure 10d), which also peaks in late summer and 617 

early fall.  618 

Averaging the differences in Figure 10c over all lead times and predicted months, 619 

the trend removal results in a mean reduction of 0.31 from the SIE forecast skill; a 620 

535% reduction of the mean ACC. However, the model retains high prediction skill 621 

(0.613) from January to October November at 1-2 lead months, representing a 196% 622 

reduction by the trend removal in these leads (Figure 10b), which shows the model’s 623 

capability of capturing sea ice internal variability. In addition, the trend is relatively 624 

large in the Chukchi Sea and weak outside of the Arctic Ocean. The model only 625 

reduces 131% of the mean ACC from January to November October at 1-2 lead 626 

months after the trend removal for the area outside of the Arctic Ocean. Although 627 

linear trends contribute significantly to the model skill, the regional Markov model's 628 

mean correlation is manifestly higher, and the mean RMSE of the regional Markov 629 

model is much lower than the climatology and anomaly persistence for all the lead 630 

months when the sea ice trend is removed (Figure 10e, f). 631 

4.23.5 Comparison with the GFDL model 632 
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Yuan et al. (2016) showed that the pan-Arctic Markov model consistently 633 

outperforms the NOAA/NCEP Climate Forecast System (CFSv2) and the Canadian 634 

seasonal and interannual prediction system for sea ice seasonal predictions. Here the 635 

regional Markov model is compared with the Geophysical Fluid Dynamics 636 

Laboratory Forecast-oriented Low Ocean Resolution (GFDL-FLOR) seasonal 637 

prediction system (Bushuk et al., 2017a) in detrended SIE forecasts. The hindcast 638 

model skills measured by the ACC for detrended SIE are high from both the regional 639 

Markov model and GFDL seasonal prediction systemmodel during January to June at 640 

a 1- to 3-month lead in the Pacific sector (Figure 11). The regional Markov model 641 

skill is statistically significant at lead times ranging from 1 to 65 months for target 642 

months of January-June in both the Bering Sea and the Sea of Okhotsk. Below we 643 

highlight some key differences between these two models in the Bering Sea and the 644 

Sea of Okhotsk. 645 
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 647 

Figure 11. (a, b) Hindcast model skill (ACC) for detrended regional SIE forecasts 648 

from 1982 to 2020 for the regional Markov model. (c, d) Same as (a, b) except for the 649 

GFDL seasonal prediction system. (e, f) is the skill difference between these two 650 

models. The black dots in (a-d) represent ACCs that are significantly above the 95% 651 

confidence level, and the circles in (a-d) indicate months in which the model’s skill 652 

exceeds that of a persistence forecast. The black dots in (e-f) represent ACC 653 

differences that are significant above the 95% confidence level. 654 
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Notably, the skill from the regional Markov model is higher than that from the 655 

GFDL seasonal prediction system during February toin June at 31- to 67-month leads 656 

in the Bering Sea and during December to March June at 1- to 87-month leads in the 657 

Sea of Okhotsk. In the other words, the regional Markov model performs better in 658 

spring prediction using winter observations for the Bering Sea and autumn 659 

observations for the Sea of Okhotsk. Nevertheless, the regional Markov model 660 

slightly underperforms the GFDL seasonal prediction system in predictions during 661 

November to December using the previous winter and spring observations for the 662 

Bering Sea and using the previous winter observations for the Sea of Okhotsk. the 663 

regional Markov model performs better in June prediction using the observations in 664 

the previous winter and spring in the Bering Sea. The model also performs better in 665 

winter to early spring prediction using the observations in previous summer and fall in 666 

the Sea of Okhotsk. Nevertheless, the regional Markov model slightly underperforms 667 

the GFDL seasonal prediction system for cold season predictions using the previous 668 

summer observations in the Bering Sea, and for early summer predictions using 669 

previous early fall observations in the Sea of Okhotsk. It indicates that the weakness 670 

of the regional Markov model is mainly reflected in the SIE prediction using the 671 

previous late summer and early fall observations compared with the GFDL seasonal 672 

prediction system, which is likely because the surface climate anomaly in late 673 

summer/early fall loses its identity in fall and does not contribute to winter sea ice 674 

variability. Overall, the regional Markov model delivers skillful SIE predictions in 675 

seasonal ice zones of the Pacific sector up to 76 month lead times, an improvement 676 

from the 3 month leads displayed in the GFDL seasonal prediction system.  677 

4.3 Sensitivity of model domain on the prediction skill 678 

We conducted a sensitivity analysis of the model domain on prediction skills in 679 

the Bering Sea and the Sea of Okhotsk with the same model configuration and 680 

different sizes of the model domain. The model domain is defined by 90°E to 270°E, 681 

120°E to 240°E and 135°E to 225°E respectively. The results show that the prediction 682 

skill patterns based on three model domains show high similarity in the Bering Sea 683 
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and the skill based on the model domain (120°E to 240°E) is highest at all month 684 

leads. The prediction skill in the Sea of Okhotsk based on the model domain (135°E 685 

to 225°E) is highlighted at 5- to 8-month leads, but not well at 11- to 12-month leads. 686 

Although the models with different sizes of model domain have different prediction 687 

skills in the Bering Sea and the Sea of Okhotsk, the differences are not significant 688 

because all those model domains contain highly similar signals of climate variability. 689 

Therefore, the regional model is not highly sensitive to the size of the model domain 690 

within the Pacific-Arctic sector. 691 

 692 

Figure 12. Cross-validated model skills of the regional Markov model with the 693 

same model configuration and different sizes of the model domain. (a) The skills are 694 

measured by the ACC between predictions and observations with trends from 1980 to 695 

2020 as a function of lead months in the Bering Sea. (b) is the same as (a) except for 696 

the Sea of Okhotsk. The model is configured by V9M16 in winter, V11M20 in spring, 697 

V5M10 in summer, and V5M7 in autumn. The ACC values are averaged over the area 698 

marked in the black box in Figure 1. 699 
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54 Conclusions 700 

Here, we developed a regional Markov model to predict SIC in the Pacific-701 

ArcticArctic Pacific sector at the seasonal time scale. The model was constructed in 702 

the MEOF space so that the model can capture the covariability of the North Pacific 703 

climate system defined by 97 variables (SIC, OHC, SIT, SST, SAT, surface net 704 

radiative flux, surface net turbulent heat flux, and geopotential height and winds at 705 

850 hPa). Based on cross-validation experiments, we selected model variables and 706 

mode truncations that provided the best results in each season. These model 707 

configurations were V97M165 for winter, V117M2013 for spring, V58M101 for 708 

summer, and V58M79 for autumn. The V7 models utilize SIC, SST, SAT, and surface 709 

net radiative flux as predictor variables, whereas the V8 models use SIC, SST, SAT, 710 

winds and geopotential height.  711 

The SIC prediction skill was evaluated at each grid cell and for all seasons using 712 

ACC. The regional Markov model's skill is superior to the skill derived from anomaly 713 

persistence, revealing the model’s ability to capture more predictable SIC internal 714 

variability than anomaly persistence. The winter skill is about 0.4 in the Sea of 715 

Okhotsk and 0.5 in the northern Bering Strait Sea at up to 12-month leads. The spring 716 

prediction shows a similar pattern but with a 0.1 increasereduction in the ACC skill. 717 

The model skill in summer and autumn is more than 0.6 within the Arctic basin. 718 

Compared with the pan-Arctic seasonal prediction model (Yuan et al., 2016), the 719 

regional Markov model distinctly improves the SIC prediction skill in the peripheral 720 

seas of the Pacific-ArcticArctic Pacific sector. The regional model significantly 721 

enhances the correlation skill from the pan-Arctic model for 42- to 12-month lead 722 

predictions in the Bering Sea and 1- to 7-month lead predictions in the Sea of 723 

Okhotsk. The improvement measured by the PGS is a 7532% ACC increase in the 724 

Bering Sea and 186% in the Sea of Okhotsk. The ACC is also increased by 21% in the 725 

Bering Sea and 8% in the Sea of Okhotsk. In addition, similar to the pan-Arctic 726 

Markov model, the regional model is not sensitive to the number of MEOF modes 727 

retained, which indicates that the performance of this Markov model is robust. 728 
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Additionally, the regional Markov model's skill is superior to the skill derived from 729 

anomaly persistence, revealing the model’s ability to capture more predictable SIC 730 

internal variability than anomaly persistence. 731 

The model retains prediction skill after regardless of whether the sea ice trend is 732 

removed or not., Hhowever, the detrended skill is notably lower, consistent with 733 

earlier sea ice prediction studies. When sea ice time series includes the trend, the 734 

model can skillfully predicthas good skill at predicting SIE from January to 735 

November. The skill is particularly high for the predictions of summer and autumn 736 

sea ice at longer lead times, especially in July to NovemberOctober when the skill is 737 

high (>0.6) even at a9- 12-month lead months. Conversely, in May, Tthe model skill 738 

is relatively low in May and December, especially at 4-8-11 lead months. Trend 739 

removal from both predictions and observations results in a 535% reduction of the 740 

mean ACC for the entire Pacific-ArcticArctic Pacific sector. However, the model only 741 

reduces 131% of the mean ACC from January to NovemberOctober at 1-2 lead 742 

months after the trend removal for the North Pacific sector, includingin the Bering 743 

Sea and the Sea of Okhotsk. This detrended analysis shows the model’s capability of 744 

capturing sea ice internal variability beyond linear trends. Furthermore, the regional 745 

Markov model improves the detrended SIE prediction skill in the Pacific-Arctic sector 746 

to 76 month lead times from the 3 month lead skill displayed in the GFDL-FLOR 747 

seasonal prediction system. 748 

The following reasons contribute to the improvements. First, the dominant climate 749 

variability in the northern mid-high latitudes mostly occurs in the Atlantic sector of 750 

the Arctic and subarctic, which dictates the leading MEOF mode in the pan-Arctic 751 

model. The unique characteristics of atmosphere-ocean-sea ice coupled relationships 752 

in the Pacific sector may not be included in the leading MEOF decompositions of the 753 

pan-Arctic climate system and thus are not correctly represented in the model. The 754 

regional model focuses on the Pacific-Arctic coupled atmosphere-ocean-sea ice 755 

system and captures the dominant regional climate variability. Second, the Pacific 756 

sector of the Arctic needs a different set of variables to maximize the model’s 757 
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predictability. We added OHC and SIT in the regional model, which provides a 758 

crucial source of predictability in winter and summer months respectively surface net 759 

radiative flux, which partially controls the sea-ice growth processes through its 760 

influences on the surface energy budget. We also include 850 hPa GPH and winds to 761 

represent dynamic atmospheric processes in winter and include turbulent heat flux to 762 

improve the model skill in spring. Finally, we constructed a superior model for each 763 

season, isolating the seasonally dominant processes separately.  764 

The sensitivity experiments revealed that surface longwave radiation plays a 765 

significant role in the Pacific Arctic climate system variability in cold seasons when 766 

shortwave radiation is at its annual minimum. The 850 hPa GPH and winds mainly 767 

contribute to the model skill in warm seasons, reflecting that the influence of 768 

atmospheric circulation on sea ice is more easily captured by MEOF in warm seasons 769 

than in the cold season. It was also found that more modes were needed in the cold 770 

season to capture the predictable signal of SIC. This suggests that sea ice in cold 771 

seasons has more variability patterns compared with that in warm seasons, which may 772 

bring more errors in prediction. SIC trends are also strongest in the warm season 773 

months, which may contribute to the smaller number of modes required. In addition to 774 

the climate system in the Arctic Basin, the coupled atmosphere-ocean-sea ice 775 

variability in the North Pacific plays a more important role in the cold season and 776 

needs more modes to capture the covariability signals.  777 

However, weaknesses of the model remain. The summer initialization months 778 

have little sea ice coverage, and SST does not provide enough memory for winter 779 

predictions in the Bering Sea and the Sea of Okhotsk due to shallow summer mixed 780 

layers. Thus, other sources of memory are required to provide sea ice prediction skill 781 

in cold seasons. By the mechanism for mid-latitude SST reemergence, subsurface 782 

ocean temperature anomalies in summer would potentially impact sea ice growth rates 783 

the following cold season (Bushuk et al., 2017a; Bushuk et al., 2020). These 784 

deficiencies provide us with opportunities for improvements in future work. 785 

 786 



44 

 

Data availability. The sea ice concentration data were obtained from the National 787 

Snow and Ice Data Center (NSIDC, https://nsidc.org/data/NSIDC-0079, last access: 1 788 

July 2021, Comiso, 2017). Monthly SIT from the Pan-Arctic Ice-Ocean and 789 

Assimilating System (PIOMAS) can be obtained from the Polar Science Center (PSC) 790 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-791 

anomaly/data/model_grid, last access: 1 July 2021, Zhang and Rothrock, 2003). The 792 

ocean heat content in the upper 300 m, sea surface temperature, surface air 793 

temperature, surface net radiative flux, surface net turbulent heat flux, 850 hPa 794 

geopotential height, and 850 hPa wind vector from the ERA5 can be obtained from 795 

the ECMWF (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset, last 796 

access: 1 July 2021, Hersbach et al., 2020). 797 

 798 

Supplement. The supplement related to this article is available online at: xxxx. 799 

 800 

Author contributions. YW, XY and HB conceived the idea for the protocol and 801 

experimental design. MB and HH provided primary support and guidance on the 802 

research. YW, YL and CL performed data processing. All authors drafted the 803 

manuscript, and contributed to the manuscript revision. 804 

 805 

Competing interests. The authors declare that they have no conflict of interest. 806 

 807 

Acknowledgements. This work is supported by the Lamont endowment, the National 808 

Natural Science Foundation of China (42106223), and the China Postdoctoral Science 809 

Foundation (2020TQ0322). We thank the NSIDC for providing the sea ice 810 

concentration data on their website (https://nsidc.org/data/NSIDC-0079). Monthly 811 

SIT from the Pan-Arctic Ice-Ocean and Assimilating System (PIOMAS) can be 812 

obtained from the Polar Science Center (PSC) 813 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-814 

anomaly/data/model_grid). The ocean heat content in the upper 300 m, sea surface 815 

http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid


45 

 

temperature, surface air temperature, surface net radiative flux, surface net turbulent 816 

heat flux, 850 hPa geopotential height, and 850 hPa wind vector from the ERA5 can 817 

be obtained from the ECMWF 818 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). 819 

  820 

Financial support. This work is supported by the Lamont endowment, the National 821 

Natural Science Foundation of China (42106223; 42076185), and the Natural Science 822 

Foundation of Shandong Province, China (ZR2021QD059), the China Postdoctoral 823 

Science Foundation (2020TQ0322), and the Open Funds for the Key Laboratory of 824 

Marine Geology and Environment, Institute of Oceanology, Chinese Academy of 825 

Sciences (MGE2021KG15; MGE2020KG04). 826 

Lamont contribution number xxxx.  827 

References 828 

 829 

Andersson, T. R., Hosking, J. S., Perez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. 830 

C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-831 

Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice 832 

forecasting with probabilistic deep learning, Nature Communications, 12, 833 

https://doi.org/10.1038/s41467-021-25257-4, 2021. 834 

Barnston, A. G. and Ropelewski, C. F.: Prediction of ENSO Episodes Using Canonical Correlation 835 

Analysis, J. Clim., 5, 1316-1345, https://doi.org/10.1175/1520-836 

0442(1992)005<1316:poeeuc>2.0.co;2, 1992. 837 

Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent 838 

Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Clim., 24, 231-250, 839 

https://doi.org/10.1175/2010jcli3775.1, 2011. 840 

Blanchard-Wrigglesworth, E., Cullather, R., Wang, W., Zhang, J., and Bitz, C.: Model forecast skill 841 

and sensitivity to initial conditions in the seasonal Sea Ice Outlook, Geophys. Res. Lett., 42, 842 

8042-8048, https://doi.org/10.1002/2015GL065860, 2015. 843 

Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using 844 

assimilation of CryoSat-2 thickness, Cryosphere, 12, 3419-3438, https://doi.org/10.5194/tc-845 

12-3419-2018, 2018. 846 

Bushuk, M. and Giannakis, D.: The Seasonality and Interannual Variability of Arctic Sea Ice 847 

Reemergence, J. Clim., 30, 4657-4676, https://doi.org/10.1175/jcli-d-16-0549.1, 2017. 848 

Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A., and Gudgel, R.: Regional 849 

Arctic sea-ice prediction: potential versus operational seasonal forecast skill, ClDy, 52, 2721-850 

2743, https://doi.org/10.1007/s00382-018-4288-y, 2019. 851 

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset


46 

 

Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and Yang, X.: Skillful 852 

regional prediction of Arctic sea ice on seasonal timescales, Geophys. Res. Lett., 44, 4953-853 

4964, https://doi.org/10.1002/2017GL073155, 2017a. 854 

Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and Yang, X.: Summer 855 

Enhancement of Arctic Sea Ice Volume Anomalies in the September-Ice Zone, J. Clim., 30, 856 

2341-2362, https://doi.org/10.1175/jcli-d-16-0470.1, 2017b. 857 

Bushuk, M., Winton, M., Bonan, D. B., Blanchard-Wrigglesworth, E., and Delworth, T. L.: A 858 

Mechanism for the Arctic Sea Ice Spring Predictability Barrier, Geophys. Res. Lett., 47, 859 

https://doi.org/10.1029/2020gl088335, 2020. 860 

Bushuk, M., Winton, M., Haumann, F. A., Delworth, T., Lu, F., Zhang, Y., Jia, L., Zhang, L., Cooke, 861 

W., Harrison, M., Hurlin, B., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami, H., 862 

Rosati, A., Tseng, K.-C., Wittenberg, A. T., Yang, X., and Zeng, F.: Seasonal Prediction and 863 

Predictability of Regional Antarctic Sea Ice, J. Clim., 34, 6207-6233, 864 

https://doi.org/10.1175/jcli-d-20-0965.1, 2021. 865 

Cañizares, R., Kaplan, A., Cane, M. A., Chen, D., and Zebiak, S. E.: Use of data assimilation via linear 866 

low‐order models for the initialization of El Niño‐Southern Oscillation predictions, Journal of 867 

Geophysical Research: Oceans, 106, 30947-30959, https://doi.org/10.1029/2000JC000622, 868 

2001. 869 

Chen, D. and Yuan, X.: A Markov model for seasonal forecast of Antarctic sea ice, J. Clim., 17, 3156-870 

3168, https://doi.org/10.1175/1520-0442(2004)017<3156:AMMFSF>2.0.CO;2, 2004. 871 

Chen, T. C.: The structure and maintenance of stationary waves in the winter Northern Hemisphere, 872 

Journal of the Atmospheric Sciences, 62, 3637-3660, https://doi.org/10.1175/jas3566.1, 2005. 873 

Cheng, W., Blanchard-Wrigglesworth, E., Bitz, C. M., Ladd, C., and Stabeno, P. J.: Diagnostic sea ice 874 

predictability in the pan-Arctic and US Arctic regional seas, Geophys. Res. Lett., 43, 11688-875 

11696, https://doi.org/10.1002/2016gl070735, 2016. 876 

Chi, J. and Kim, H.-c.: Prediction of Arctic Sea Ice Concentration Using a Fully Data Driven Deep 877 

Neural Network, Remote Sensing, 9, https://doi.org/10.3390/rs9121305, 2017. 878 

Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T., Bhatt, U., Chen, H., 879 

and Coumou, D.: Divergent consensuses on Arctic amplification influence on midlatitude 880 

severe winter weather, Nature Climate Change, 10, 20-29, https://doi.org/10.1038/s41558-881 

019-0662-y, 2020. 882 

Comiso, J. C.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, 883 

Version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, 884 

Boulder, Colorado USA, 2017. 885 

Dai, P., Gao, Y., Counillon, F., Wang, Y., Kimmritz, M., and Langehaug, H. R.: Seasonal to decadal 886 

predictions of regional Arctic sea ice by assimilating sea surface temperature in the 887 

Norwegian Climate Prediction Model, ClDy, 54, 3863-3878, https://doi.org/10.1007/s00382-888 

020-05196-4, 2020. 889 

Day, J. J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness initialization improve seasonal 890 

forecast skill?, Geophys. Res. Lett., 41, 7566-7575, https://doi.org/10.1002/2014gl061694, 891 

2014a. 892 

Day, J. J., Tietsche, S., and Hawkins, E.: Pan-Arctic and Regional Sea Ice Predictability: Initialization 893 

Month Dependence, J. Clim., 27, 4371-4390, https://doi.org/10.1175/JCLI-D-13-00614.1, 894 

2014b. 895 



47 

 

Deser, C., Tomas, R., Alexander, M., and Lawrence, D.: The seasonal atmospheric response to 896 

projected Arctic sea ice loss in the late twenty-first century, J. Clim., 23, 333-351, 897 

https://doi.org/10.1175/2009JCLI3053.1, 2010. 898 

Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid‐899 

latitudes, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL051000, 2012. 900 

Frankignoul, C., Sennechael, N., and Cauchy, P.: Observed Atmospheric Response to Cold Season Sea 901 

Ice Variability in the Arctic, J. Clim., 27, 1243-1254, https://doi.org/10.1175/jcli-d-13-902 

00189.1, 2014. 903 

Gregory, W., Tsamados, M., Stroeve, J., and Sollich, P.: Regional September Sea Ice Forecasting with 904 

Complex Networks and Gaussian Processes, Weather and Forecasting, 35, 793-806, 905 

https://doi.org/10.1175/WAF-D-19-0107.1, 2020. 906 

Guemas, V., Blanchard‐Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas‐Reyes, F. J., 907 

Fučkar, N. S., Germe, A., Hawkins, E., and Keeley, S.: A review on Arctic sea‐ice 908 

predictability and prediction on seasonal to decadal time‐scales, QJRMS, 142, 546-561, 909 

https://doi.org/10.1002/qj.2401, 2016a. 910 

Guemas, V., Chevallier, M., Deque, M., Bellprat, O., and Doblas-Reyes, F.: Impact of sea ice 911 

initialization on sea ice and atmosphere prediction skill on seasonal timescales, Geophys. Res. 912 

Lett., 43, 3889-3896, https://doi.org/10.1002/2015gl066626, 2016b. 913 

Hamilton, L. C. and Stroeve, J.: 400 predictions: The search sea ice outlook 2008–2015, Polar Geogr, 914 

39, 274-287, https://doi.org/10.1080/1088937X.2016.1234518, 2016. 915 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., 916 

Peubey, C., Radu, R., and Schepers, D.: The ERA5 global reanalysis, QJRMS, 146, 1999-917 

2049, https://doi.org/10.1002/qj.3803, 2020. 918 

Horvath, S., Stroeve, J., and Rajagopalan, B.: A linear mixed effects model for seasonal forecasts of 919 

Arctic sea ice retreat, Polar Geogr, doi: 10.1080/1088937X.2021.1987999, 2021. 1-18, 920 

https://doi.org/10.1080/1088937X.2021.1987999, 2021. 921 

Horvath, S., Stroeve, J., Rajagopalan, B., and Kleiber, W.: A Bayesian Logistic Regression for 922 

Probabilistic Forecasts of the Minimum September Arctic Sea Ice Cover, Earth and Space 923 

Science, 7, https://doi.org/10.1029/2020ea001176, 2020. 924 

Huang, Y., Dong, X., Xi, B., Dolinar, E. K., and Stanfield, R. E.: Quantifying the Uncertainties of 925 

Reanalyzed Arctic Cloud and Radiation Properties using Satellite-surface Observations, ClDy, 926 

30, 8007-8029, https://doi.org/10.1175/JCLI-D-16-0722.1, 2015. 927 

Kapsch, M. L., Graversen, R. G., and Tjernström, M.: Springtime atmospheric energy transport and the 928 

control of Arctic summer sea-ice extent, Nature Climate Change, 3, 744-748, 929 

https://doi.org/10.1038/nclimate1884, 2013. 930 

Kim, K.-Y., Hamlington, B. D., Na, H., and Kim, J.: Mechanism of seasonal Arctic sea ice evolution 931 

and Arctic amplification, The Cryosphere, 10, 2191-2202, https://doi.org/10.5194/tc-10-2191-932 

2016, 2016. 933 

Kimmritz, M., Counillon, F., Smedsrud, L. H., Bethke, I., Keenlyside, N., Ogawa, F., and Wang, Y.: 934 

Impact of Ocean and Sea Ice Initialisation On Seasonal Prediction Skill in the Arctic, Journal 935 

of Advances in Modeling Earth Systems, 11, 4147-4166, 936 

https://doi.org/10.1029/2019ms001825, 2019. 937 



48 

 

Koenigk, T., Caian, M., Nikulin, G., and Schimanke, S.: Regional Arctic sea ice variations as predictor 938 

for winter climate conditions, ClDy, 46, 317-337, https://doi.org/10.1007/s00382-015-2586-1, 939 

2016. 940 

Lee, S., Gong, T., Feldstein, S. B., Screen, J. A., and Simmonds, I.: Revisiting the Cause of the 1989–941 

2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared 942 

Radiation Dominates the Surface Fluxes, Geophys. Res. Lett., 44, 10654-10661, 943 

https://doi.org/10.1002/2017GL075375, 2017. 944 

Lenetsky, J. E., Tremblay, B., Brunette, C., and Meneghello, G.: Subseasonal Predictability of Arctic 945 

Ocean Sea Ice Conditions: Bering Strait and Ekman-Driven Ocean Heat Transport, J. Clim., 946 

34, 4449-4462, https://doi.org/10.1175/jcli-d-20-0544.1, 2021. 947 

Lindsay, R., Zhang, J., Schweiger, A., and Steele, M.: Seasonal predictions of ice extent in the Arctic 948 

Ocean, Journal of Geophysical Research: Oceans, 113, 949 

https://doi.org/10.1029/2007JC004259, 2008. 950 

Liu, Y. and Key, J. R.: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum, 951 

Environmental Research Letters, 9, 044002, https://doi.org/10.1088/1748-9326/9/4/044002, 952 

2014. 953 

Luo, B., Luo, D., Wu, L., Zhong, L., and Simmonds, I.: Atmospheric circulation patterns which 954 

promote winter Arctic sea ice decline, Environmental Research Letters, 12, 1-13, 955 

https://doi.org/10.1088/1748-9326/aa69d0, 2017. 956 

Meleshko, V., Kattsov, V., Mirvis, V., Baidin, A., Pavlova, T., and Govorkova, V.: Is there a link 957 

between Arctic sea ice loss and increasing frequency of extremely cold winters in Eurasia and 958 

North America? Synthesis of current research, Russian Meteorology and Hydrology, 43, 743-959 

755, https://doi.org/10.3103/S1068373918110055, 2018. 960 

Morioka, Y., Iovino, D., Cipollone, A., Masina, S., and Behera, S.: Summertime sea-ice prediction in 961 

the Weddell Sea improved by sea-ice thickness initialization, Sci. Rep., 11, 962 

https://doi.org/10.1038/s41598-021-91042-4, 2021. 963 

Msadek, R., Vecchi, G. A., Winton, M., and Gudgel, R. G.: Importance of initial conditions in seasonal 964 

predictions of Arctic sea ice extent, Geophys. Res. Lett., 41, 5208-5215, 965 

https://doi.org/10.1002/2014gl060799, 2014. 966 

Peterson, A. K., Fer, I., McPhee, M. G., and Randelhoff, A.: Turbulent heat and momentum fluxes in 967 

the upper ocean under Arctic sea ice, Journal of Geophysical Research: Oceans, 122, 1439-968 

1456, https://doi.org/10.1002/2016JC012283, 2017. 969 

Peterson, K. A., Arribas, A., Hewitt, H., Keen, A., Lea, D., and McLaren, A.: Assessing the forecast 970 

skill of Arctic sea ice extent in the GloSea4 seasonal prediction system, ClDy, 44, 147-162, 971 

https://doi.org/10.1007/s00382-014-2190-9, 2015. 972 

Petty, A., Schröder, D., Stroeve, J., Markus, T., Miller, J., Kurtz, N., Feltham, D., and Flocco, D.: 973 

Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice 974 

observations, Earth's Future, 5, 254-263, https://doi.org/10.1002/2016EF000495, 2017. 975 

Porter, D. F., Cassano, J. J., and Serreze, M. C.: Analysis of the Arctic atmospheric energy budget in 976 

WRF: A comparison with reanalyses and satellite observations, Journal of Geophysical 977 

Research Atmospheres, 116, https://doi.org/10.1029/2011JD016622, 2011. 978 

Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline weakens the Atlantic meridional 979 

overturning circulation, Nature Climate Change, 7, 604-610, 980 

https://doi.org/10.1038/NCLIMATE3353, 2017. 981 



49 

 

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled 982 

Arctic sea ice volume, Journal of Geophysical Research-Oceans, 116, 983 

https://doi.org/10.1029/2011jc007084, 2011. 984 

Screen, J. A. and Francis, J. A.: Contribution of sea-ice loss to Arctic amplification is regulated by 985 

Pacific Ocean decadal variability, Nature Climate Change, 6, 856-860, 986 

https://doi.org/10.1038/NCLIMATE3011, 2016. 987 

Screen, J. A., Simmonds, I., Deser, C., and Tomas, R.: The atmospheric response to three decades of 988 

observed Arctic sea ice loss, J. Clim., 26, 1230-1248, https://doi.org/10.1175/JCLI-D-12-989 

00063.1, 2013. 990 

Sigmond, M., Fyfe, J. C., Flato, G. M., Kharin, V. V., and Merryfield, W. J.: Seasonal forecast skill of 991 

Arctic sea ice area in a dynamical forecast system, Geophys. Res. Lett., 40, 529-534, 992 

https://doi.org/10.1002/grl.50129, 2013. 993 

Smith, D. M., Dunstone, N. J., Scaife, A. A., Fiedler, E. K., Copsey, D., and Hardiman, S. C.: 994 

Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere 995 

coupling and the background state, J. Clim., 30, 4547-4565, https://doi.org/10.1175/JCLI-D-996 

18-0100.1, 2017. 997 

Smith, L. C. and Stephenson, S. R.: New Trans-Arctic shipping routes navigable by midcentury, 998 

Proceedings of the National Academy of Sciences, 110, E1191-E1195, 999 

https://doi.org/10.1073/pnas.1214212110, 2013. 1000 

Swart, N.: Natural causes of Arctic sea-ice loss, Nature Climate Change, 7, 239-241, 1001 

https://doi.org/10.1038/nclimate3254, 2017. 1002 

Tian, T., Yang, S., Karami, M. P., Massonnet, F., Kruschke, T., and Koenigk, T.: Benefits of sea ice 1003 

initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3, 1004 

Geoscientific Model Development, 14, 4283-4305, https://doi.org/10.5194/gmd-14-4283-1005 

2021, 2021. 1006 

Ting, M. F.: MAINTENANCE OF NORTHERN SUMMER STATIONARY WAVES IN A GCM, 1007 

Journal of the Atmospheric Sciences, 51, 3286-3308, https://doi.org/10.1175/1520-1008 

0469(1994)051<3286:monssw>2.0.co;2, 1994. 1009 

Wang, L., Scott, K. A., and Clausi, D. A.: Sea ice concentration estimation during freeze-up from SAR 1010 

imagery using a convolutional neural network, Remote Sensing, 9, 408, 1011 

https://doi.org/10.3390/rs9050408, 2017. 1012 

Wang, L., Yuan, X., and Li, C.: Subseasonal forecast of Arctic sea ice concentration via statistical 1013 

approaches, ClDy, 52, 4953-4971, https://doi.org/10.1007/s00382-018-4426-6, 2019a. 1014 

Wang, L., Yuan, X., Ting, M., and Li, C.: Predicting summer Arctic sea ice concentration intraseasonal 1015 

variability using a vector autoregressive model, J. Clim., 29, 1529-1543, 1016 

https://doi.org/10.1175/JCLI-D-15-0313.1, 2016. 1017 

Wang, Y., Yuan, X., Bi, H., Liang, Y., Huang, H., Zhang, Z., and Liu, Y.: The Contributions of Winter 1018 

Cloud Anomalies in 2011 to the Summer Sea‐Ice Rebound in 2012 in the Antarctic, Journal 1019 

of Geophysical Research: Atmospheres, 124, 3435-3447, 1020 

https://doi.org/10.1029/2018JD029435, 2019b. 1021 

Wu, B., Wang, J., and Walsh, J. E.: Dipole Anomaly in the Winter Arctic Atmosphere and Its 1022 

Association with Sea Ice Motion, J. Clim., 19, 210-225, https://doi.org/10.1175/JCLI3619.1, 1023 

2006. 1024 



50 

 

Wu, Q., Cheng, L., Chan, D., Yao, Y., Hu, H., and Yao, Y.: Suppressed midlatitude summer 1025 

atmospheric warming by Arctic sea ice loss during 1979–2012, Geophys. Res. Lett., 43, 2792-1026 

2800, https://doi.org/10.1002/2016GL068059, 2016. 1027 

Wu, Q., Yan, Y., and Chen, D.: A linear Markov model for East Asian monsoon seasonal forecast, J. 1028 

Clim., 26, 5183-5195, https://doi.org/10.1175/JCLI-D-12-00408.1, 2013. 1029 

Xie, J., Counillon, F., Bertino, L., Tian-Kunze, X., and Kaleschke, L.: Benefits of assimilating thin sea 1030 

ice thickness from SMOS into the TOPAZ system, Cryosphere, 10, 2745-2761, 1031 

https://doi.org/10.5194/tc-10-2745-2016, 2016. 1032 

Xue, Y., Leetmaa, A., and Ji, M.: ENSO prediction with Markov models: The impact of sea level, J. 1033 

Clim., 13, 849-871, https://doi.org/10.1175/1520-0442(2000)013, 2000. 1034 

Yuan, X., Chen, D., Li, C., Wang, L., and Wang, W.: Arctic sea ice seasonal prediction by a linear 1035 

Markov model, J. Clim., 29, 8151-8173, https://doi.org/10.1175/JCLI-D-15-0858.1, 2016. 1036 

Zhang, J. L. and Rothrock, D. A.: Modeling global sea ice with a thickness and enthalpy distribution 1037 

model in generalized curvilinear coordinates, MWRv, 131, 845-861, 1038 

https://doi.org/10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.co;2, 2003. 1039 

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational 1040 

ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and 1041 

assessment, Ocean Sci., 15, 779-808, https://doi.org/10.5194/os-15-779-2019, 2019. 1042 

 1043 


