
 

1 

 

Natural climate variability is an important aspect of future 

projections of snow water resources and rain-on-snow events 

Michael Schirmer1,2, Adam Winstral2†, Tobias Jonas2, Paolo Burlando3, Nadav Peleg3,4 

1Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland 
2WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland 5 
† Deceased in March, 2021 
3Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland 
4Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland 

Correspondence to: Michael Schirmer (michael.schirmer@wsl.ch) 

Abstract.  10 

Climate projection studies of future changes in snow conditions and resulting rain-on-snow (ROS) flood events are subject to 

large uncertainties. Typically, emission scenario uncertainties and climate model uncertainties are included. This is the first 

study on this topic to also include quantification of natural climate variability, which is the dominant uncertainty for 

precipitation at local scales with large implications for e.g. runoff projections. To quantify natural climate variability, a weather 

generator was applied to simulate inherently consistent climate variables for multiple realizations of current and future climates 15 

at 100 m spatial and hourly temporal resolution over a 12 x 12 km high-altitude study area in the Swiss Alps. The output of 

the weather generator was used as input for subsequent simulations with an energy balance snow model. The climate change 

signal for snow water resources stands out as early as mid-century from the noise originating from the three sources of 

uncertainty investigated, namely uncertainty in emission scenarios, uncertainty in climate models, and natural climate 

variability. For ROS events, a climate change signal toward more frequent and intense events was found for an RCP 8.5 20 

scenario at high elevations at the end of the century, consistently with other studies. However, for ROS events with a substantial 

contribution of snowmelt to runoff (>20%), the climate change signal was largely masked by sources of uncertainty. Only 

those ROS events where snowmelt does not play an important role during the event will occur considerably more frequently 

in the future, while ROS events with substantial snowmelt contribution will mainly occur earlier in the year but not more 

frequently. There are two reasons for this: first, although it will rain more frequently in midwinter, the snowpack will typically 25 

still be too cold and dry and thus cannot contribute significantly to runoff; second, the very rapid decline in snowpack toward 

early summer, when conditions typically prevail for substantial contributions from snowmelt, will result in a large decrease in 

ROS events at that time of the year. Finally, natural climate variability is the primary source of uncertainty in projections of 

ROS metrics until the end of the century, contributing more than 70% of the total uncertainty. These results imply that both 

the inclusion of natural climate variability and the use of a snow model, which includes a physically-based processes 30 

representation of water retention, are important for ROS projections at the local scale. 
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1 Introduction 

The future decrease of snow depth and snow water equivalent in mountainous environments due to global warming has been 

shown in several studies (e.g. Musselman et al., 2017; Marty et al., 2017; Verfaillie et al., 2018, Willibald et al., 2020). The 35 

frequency and intensity of rain-on-snow (ROS) events are also foreseen to alter due to changes in the snow cover, the 

precipitation phase, and the rain frequency and intensity (e.g. Beniston and Stoffel, 2016). Despite a decreasing snow cover, 

ROS events have been predicted to become more frequent and intense at high elevations (Surfleet and Tullos, 2013; Beniston 

and Stoffel, 2016; Morán-Tejeda et al., 2016; Musselman et al., 2018; Ohba and Kawase, 2020; Sezen et al., 2020). Different 

sources of uncertainty were considered in some of these studies, however, none of them have included internal climate 40 

variability in their analysis.A contrary study found that ROS events as a cause of annual runoff maxima will disappear at lower 

elevations and slightly decrease at higher elevations by the end of the century (Chegwidden et al., 2020). They analyzed only 

annual runoff maxima, identifying this as a key difference in methodology from Musselman et al. (2018) which may cause the 

difference in findings. Furthermore, process-based hydrological models were used to investigate ROS events, thus 

encompassing a wider range of processes than the former studies, which were limited to the coincidence of snow and rain. 45 

When analyzing historic observations, Sikoska-Senoner and Seibert (2020) found a decreasing number of ROS events also in 

high elevated catchments.  

Different sources of uncertainty were considered in some of these ROS studies, however, the relative importance of internal 

climate variability compared to other uncertainty sources has not been previously assessed. The latter is largely a consequence 

of the chaotic nature of the atmosphere (Deser et al., 2012a). It is a result of purely periodic external forcing, a non-linear 50 

interplay of feedbacks within the climate system, and random fluctuations in physical or chemical factors in the atmosphere 

(Ghil, 2002). For climate change analyses, the role of internal climate variability on projections of air temperature and 

precipitation has been quantified together with other uncertainty sources, e.g. emission scenario and climate model uncertainty 

(Hawkins and Sutton, 2009; 2011; Deser et al., 2012b, Fatichi et al., 2016)., Lehner et al., 2020). In general, the smaller the 

scale and the shorter the time horizon of the projections, the more important is the relative contribution of internal climate 55 

variability to overall uncertainty (e.g. Hawkins and Sutton, 2011). Projections of precipitation are generally more affected by 

natural climate variability than those of air temperature (Hawkins and Sutton, 2009; 2011; Peleg et al., 2019). For mean and 

extreme precipitation at local scales (i.e. weather stations) internal climate variability is the dominant source of uncertainty, 

not only for short time horizons but also through the end of this century (Fatichi et al., 2016). While it is possible for future 

research to reduce the amount of uncertainty if climate models are improved or emission scenarios are constrained, the amount 60 

of natural climate variability is not reducible. These findings raise the question of how informative climate projections based 

only on climate model outputs are and will be at local scales (Fatichi et al., 2016). 

Willibald et al. (2020) studied the effects of internal climate variability on the change of mean and maximum snow depth at 

eight stations in the Swiss Alps and concluded that it is a major source of uncertainty for time horizons up to 50 years and 

more. For a high elevated station (Weissfluhjoch, 2540 m a.s.l.) they found no significant trends for maximum snow depth in 65 
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80% of 50 realizations of future climate periods for a 50-year period, and no significant trends in 20% of the realizations for a 

period up to the end of the century. The effects of internal climate variability on projected runoff have been highlighted in 

several studies. For instance, the climate change signals for the mean, frequency, and seasonality of runoff in the middle of 

this century are masked by natural climate variability (Fatichi et al., 2014), while itthey will emerge by the end of the century 

(Addor et al., 2014). The signal varies with elevation and is dependent on the hydrological components (e.g. snowmelt, 70 

evapotranspiration) that drives thedrive runoff (Moraga et al., 2021). Lafaysse et al. (2014) concluded that internal climate 

variability is capable of exacerbating, moderating, or even reversing a climate change signal of streamflow. These studies 

indicate the importance of including internal climate variability in studies of climate change impacts on catchment-scale 

hydrologic response. 

In this study, the uncertainty of future projection of snow water resources and rain-on-snow characteristics at local scales were 75 

quantified in relation to natural climate variability, climate model and scenario uncertainty at the local scale. We hypothesize 

that snow water resources are less affected by internal climate variability than rainfall-driven runoff because they are more 

dependent on air temperature. We will show for which time horizon (e.g. for projections for mid and end of the century) and 

emission scenario the signal of change in snow water equivalent (SWE) amounts is not masked by internal climate variability. 

The frequency and intensity of ROS events are hypothesized to be more influenced by natural precipitation variations compared 80 

to snow water equivalent (SWE,), as they may be less dependent on air temperature. The research questions are as follows: 

• How important is internal variability for future projections of snow resources and rain-on-snow events? 

• When is the time of emergence of changes in snow resources and rain-on-snow events? 

We will explore whether the commonly found increase in ROS frequency and intensity hold for future climates when natural 

climate variability is considered. To this end we used simulations of a high-resolution weather generator, AWE-GEN-2D, 85 

generating multiple stochastic ensembles of future climate projections that have been shown to realistically represent natural 

climate variability (Peleg et al., 2017). To account for the complexity of snow accumulation and melt processes and their 

response to a changing climate (in line with the discussion in Clark et al., 2016) we used in our analysis an energy balance 

snow model at high spatial and temporal resolution.  

2 Methods 90 

2.1 Study area 

The “Gletsch” area in central Switzerland, with altitudes between 1400 and 3500 m a.s.l. and with an extent of 144 km2 (Fig. 1), 

has been selected as the study area. It has a mean annual air temperature of -1.3°C and a mean annual precipitation of 1700 mm. 

Nival conditions prevail at these elevations today, yet the area is low enough that climate change may affect the current snow 

regime (e.g. Marty et al., 2016). The study area was chosen to encompass the elevation range for which an increase in the 95 

number of ROS events has been shown in other studies. Observational data for training the weather generator and validating 

the model chain in and near the study area were available as detailed in Table 1. Note that the Rhone glacier is located within 
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the study area, but its receding effect was not considered because only seasonal snow was of interest in this study.. In this 

study, we do not intend to investigate the combined effects of snow and glacier retreat on mean snow water resources or ROS 

properties, but only the climatic effects on seasonal snow. The study area can therefore be considered more as an example 100 

area, as opposed to modelling the situation in-situ.  

 

 

a) b) c)

Figure 1. Location of the study area in Switzerland (46.56° N, 8.36° E, WGS 84) (a) and map showing the extent of the model domain 

(source: Federal Office of Topography swisstopo) (b). Example of modeled SWE at April 1 of a random year during current climate 

conditions (c). 
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2.2 Modelling setup 

The model chain consists of a two-dimensional weather generator and an energy balance snow model (squares in Fig. 2). The 105 

data used or delivered by these models (ellipses in Fig. 2 are described in the following subsections). 

 

 

 

2.2.1 Climate model data 110 

Regional climate models from the EURO-CORDEX archive (Jacob et al., 2014) were used to obtain the CH2018 climate 

scenarios (CH2018 Project Team, 2018), which was used in this study to calculate factors of change (FC) (Anandhi et al., 

2011) needed to re-parameterize the weather generator AWE-GEN-2d in order to generate downscaled ensembles of future 

climate variables  (cp. Sect. 2.3). The 10 EURO-CORDEX model chains with the highest spatial resolution of 11 km were 
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Figure 2. Flow chart of the modelling setup. 

Figure 1. Location of the study area in Switzerland (46.56° N, 8.36° E, WGS 84) (a) and map showing the extent of the model domain 

(source: Federal Office of Topography swisstopo) (b). Example of modeled SWE at April 1 of a random year during current climate 

conditions (c). 
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used (Table S1). The FC consist of gridded values and were calculated for mean temperature and precipitation change for two 115 

emission scenarios (i.e. RCP 4.5 and RCP 8.5) and two time horizons (i.e. a mid-century period from 2030 to 2059 and an 

end-of-century period from 2070 to 2099). A control period of 30 years (1981-2010) was used to compute the FC. Finally, FC 

were linearly interpolated to our 100 m resolution. 

2.2.2 Weather generator 

The AWE-GEN-2D model (Peleg et al., 2017) was used to stochastically generate gridded climate variables for the study area 120 

at 100 m spatial and hourly temporal resolution. The model was developed to simulate climate variables in complex terrain by 

combining physical and stochastic-statistical methods that enable preserving physical and observed dependencies between 

climate variables. The weather generator is capable of reproducing both principal climate statistics and the natural climate 

variability for the climate variables needed for subsequent energy balance snow modeling. A short description of the model 

structure is brought here, the readers are referred to the paper by Peleg et al. (2017) where the model and its equations are 125 

described in detail. The model first simulates a time series of dry and wet periods based on a simple renewal process, then 

simulates the cloud cover and precipitation (together) for each wet time step, and the cloud cover during dry periods based on 

the time passes from/to the closest wet period. Wind speed and direction are then simulated independently and enable the 2-

dimensional advection of the precipitation fields. The near-surface air temperature is next simulated, conditioned on the cloud 

cover of each time step. Shortwave radiation is also directly dependent on cloud cover and on the relative humidity and dew-130 

point temperature, which are simulated as an iterative procedure with the near-surface air temperature and vapor pressure at 

each time step. The longwave radiation is last computed for each time step, based on the cloud cover and near-surface air 

temperature. 

The weather generator requires observational data for calibration, which are summarized in Table 1. Different sets of 

parameters are assign for each month to consider the seasonality. The spatial structure of precipitation fields, the areal intensity 135 

and the wet fraction of precipitation are calibrated using the radar data at fine space-time scales. The storm renewal process is 

calibrated based on precipitation data from the Grimsel station, also at fine temporal scale. Correction to the precipitation 

intensities, to reduce errors due to high uncertainties in the radar estimation, are conducted at the grid cell scale using 

MeteoSwiss RhiresD product. In general the calibration procedure follows the procedure presented in Peleg et al. (2017); two 

important adjustments were made to ensure a realistic input for the energy balance modelling: first, the filter used in AWE-140 

GEN-2d to account for orographic precipitation effects was adjusted to overcome the typical problem of undercatch by rain 

gauges in mountainous terrain. For this purpose, the methods described by Magnusson et al. (2014) were used to assimilate 

daily snow depth sensor data into the Swiss gridded precipitation product RhiresD (Scharb, 2000; MeteoSwiss, 2019). With 

optimal interpolation, a precipitation partitioning method, and a daily gridded temperature field (see Magnusson et al. 2014 

for details), the solid precipitation fraction was adjusted. The final product are fields of total precipitation in a 1 km resolution 145 

for more than 20 years for whole Switzerland. This final product also benefits from the much denser station network of snow 

depth sensors at high elevations in Switzerland compared to the rain gauge network used for RhiresD. The weather generator 
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used these gridded fields to model the spatial distribution of total precipitation on an annual basis. Second, the wind speed was 

spatially adjusted to match the debiased wind speeds of a numerical weather prediction model in this region (Winstral et al., 

2017).  150 

The weather generator is used in two ways, first in the trained setup with the above-mentioned data as input to generate current 

climate conditions, and second in a reparametrized setup using a factors of change (FC) (see section 2.2.1) approach to generate 

future climate conditions (Peleg et al., 2019). Note that for generating current climate conditions, no information of the regional 

climate models was used (Fig. 2, Peleg et al., 2017). For both setups, a spatial resolution of 100 m was chosen to account for 

small-scale processes that are imperative for capturing the spatial variability of snowmelt dynamics in small mountain 155 

catchments (e.g. terrain shading of direct radiation). A resolution of 1 km was chosen for precipitation but simulations were 

subsequently linearly resampled to 100 m. The model domain consists of 120 x 120 grid points. 50 realizations of 30 years 

each, representing the same climatic period, were used to explore the natural climate variability. This is consistent with the 

setup presented by Peleg et al. (2017; 2019). While for future climate conditions, the weather generator was re-parameterized 

using factors of change (see Sect. 2.2, Peleg et al., 2019). 160 

In summary, the weather generator was used to (1) provide hourly data, (2) generate the full set of required inputs for the 

energy balance snow model, (3) generate climate variables with intervariable consistency, (4) downscale and debias regional 

climate model output, and (5) generate multiple realizations of current and future climate periods.  

2.22.2.3 Snow model 

The snow model used in this study is an energy balance snow model, an evolution of the Jules Investigation Model (JIM; 165 

Essery, 2013). Only a single model configuration from this multi-model framework was used, determined by comparison 

against comprehensive datasets including snow lysimeter data (Magnusson et al., 2015). This model was advanced by 

integrating a seasonal algorithm for the fraction of snow-covered area (Helbig et al., 2015; 2021), a sub-grid precipitation 

adjustment that implicitly accounts for preferential deposition and avalanches using LiDAR data, and a local 

calibrationadjustment of the albedo routine that better reflects the observed variabilityelevation dependency of the albedo 170 

decrease rate in Switzerland (not published).and a subgrid precipitation adjustment that takes into account the influence of 

topography on the distribution and redistribution of snow in 

mountainous terrain. Correction functions depending on aspect and slope were trained with a set of high-resolution snow depth 

maps from airborne LiDAR images in the European Alps as described in Grünewald and Lehning (2015). This method provides 

an accurate derivation of mean snow depths from snow and precipitation measurements at flat sites. This model setup is used 175 

for the Operational Snow Hydrological Service in Switzerland to predict snowmelt runoff and has been thoroughly developed 

through several studies (Griessinger et al., 2019; Winstral et al., 2019; Helbig et al., 2021). The snow model requires total 

precipitation (Precip), air temperature (TA), incoming shortwave radiation (ISWR), incoming longwave radiation (ILWR), 

wind, air pressure and relative humidity in an hourly resolution. which was provided by the weather generator (see Sect. 2.2.2). 

Precipitation was split into solid and liquid phases using an adaptation of the method presented in Magnusson et al. (2014) 180 
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originally developed for daily data. The snow model was run on the same resolution as the weather generator (i.e. 120 x 120 

grid points with a 100 m spatial resolution). 

2.3 Verification 

The weather generator was evaluated similarly as in Peleg et al. (2017) with emphasis on precipitation extremes as this is 

considered as relevant to study ROS events. An example for the precipitation validation between observed data (RhiresD, i.e. 185 

single time series of 30 years, see Table 1) and simulated data (ensemble, multiple time series representing the same 30-year 

period), with an emphasis on the extreme precipitation intensities, for a random grid cell in the domain is illustrated in Fig. S2. 

Additionally, monthly values at stations within the study area (see Table 1) of air temperature (OBW 1, OBW 2), incoming 

longwave and shortwave radiation (GRH) were compared to the output of the weather generator.  

For evaluating the ability of the energy balance model to simulate snow depth (HS) and SWE with measured input, the station 190 

GUE was selected providing all required meteorological input data for energy balance snow modeling without major gaps and 

in good quality during two subsequent years (see section 2.2.3). This station is located at 2286 m a.s.l. at about 13 km from 

the study area (see Table 1). Except for precipitation, all input data were used without any preprocessing. For precipitation, a 

method similar to that used to train the weather generator using optimal interpolation was chosen (Magnusson et al., 2014, see 

Sect. 2.2.2). Since optimal interpolation is not able to handle structural biases (i.e. site-specific undercatch in the background 195 

field), a correction factor of 1.3 was chosen to correct for local undercatch and achieve better HS comparison during 

accumulation phases. With this precipitation input, the ablation and settling behavior of the snow model could be well assessed. 

To demonstrate that the combined model chain is capable of providing reasonable HS and SWE values observed HS data and 

derived SWE from the OBW 2 station are available. Derived SWE was determined using observed HS and a parametric model 

(HS2SWE) that accumulates, compacts, and melts snow layer by layer (Magnusson et al., 2014). 200 

For all three verification steps grid points were selected to compare them with observed station data, either by exact location 

when the station is located within the study area (OBW1, OBW 2, GRH), or by selecting a similar grid point (elevation, slope, 

shading), if the station is outside the study area (GUE). Root mean square errors (RMSE) and an additive bias was calculated 

for all comparisons. The stations for validation were selected to be as close as possible to the study area and to provide all 

relevant data in good quality. 205 

2.31.1.1 Weather generator 

The AWE-GEN-2D model (Peleg et al., 2017) was used to stochastically generate gridded climate variables for the study area 

at 100 m spatial and hourly temporal resolution. The model was developed to simulate climate variables in complex terrain by 

combining physical and stochastic-statistical methods that enable preserving physical and observed dependencies between 

climate variables. This combination provides the necessary computational efficiency to generate a multiplicity of climate 210 

periods to analyze the influence of natural variability. This weather generator is capable of reproducing both principal statistics 

and natural climate variability for those climate variables needed for subsequent energy balance snow modeling (Peleg et al., 
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2017). It requires observational data for calibration, which are summarized in Table 1. Spatial fields of total annual 

precipitation were created specifically for this study with optimal interpolation (OI) of snow depth sensor data and a gridded 

precipitation product, RhiresD (Scharb, 2000; MeteoSwiss, 2019), using a >20-year data set following the procedures detailed 215 

in Magnusson et al. (2014). This method corrects for undercatch in snowfall data, a typical problem of mountainous regions. 

The wind speed was spatially adjusted to match the debiased wind speeds of a numerical weather prediction model in this 

region (Winstral et al., 2017). For future climate conditions, the weather generator is reparametrized using a factor of change 

approach that requires the output of climate models (Peleg et al., 2019). For this study, a spatial resolution of 100 m was chosen 

to account for small-scale processes that are imperative for capturing the spatial variability of snowmelt dynamics in small 220 

mountain catchments (e.g. terrain shading of direct radiation). A resolution of 1 km was chosen for precipitation but simulations 

were subsequently linearly resampled to 100 m. The model domain consists of 120 x 120 grid points. 50 realizations of 30 

years each, representing the same climatic period, were used to explore the natural climate variability. This is consistent with 

the setup presented by Peleg et al. (2017; 2019). 

In summary, the weather generator was used to (1) downscale and debias regional climate model output, (2) provide hourly 225 

data, (3) generate the full set of required inputs for the energy balance snow model, (4) generate climate variables with 

intervariable consistency, and (5) generate multiple realizations of current and future climate periods.  

 

Table 1. Overview of observational data used for calibration and validation. The italic inputs are weather stations either within or 

with shown distance to the study area. TA is air temperature, RH is relative humidity, ISWR is incoming shortwave radiation, ILWR 230 
is incoming longwave radiation, P is air pressure, Precip is total precipitation, and HS is snow depth. 

Input Variable Spatial resolution Temporal resolution Calibration purpose Distance in km 

Calibration 

Grimsel Hospiz (1980 m) Precip Point 10 min (Inter-)Storm duration 0 

Engelberg (1036 m) TA Point 1 h TA lapse rate 18 

Titlis (3040 m) TA Point 1 h TA lapse rate 13 

Grimsel Hospiz (1980 m) TA, RH, ISWR Point 1 h 
TA lapse rate, vapour 

pressure 
0 

Weather radar Precip 2 km x 2 km 5 min 
mean areal 

rainfallprecipitation, wet 
area ratio         

0 

Merra-2 reanalysis  0.5° x 0.66° 1 h cloud area ratio 0 

RhiresD Precip  2 km x 2 km daily mean areal precipitation 0 

Optimal interpolated 
fieldsprecipitation      

Precip 1 km x 1 km annual 
Monthly mean rainfallareal 

precipitation 
0 

Validation      

Verification 

Grimsel Hospiz (GRH, 1980 m) TA, ISWR, ILWR Point monthly  0 

Guetsch (GUE, 2286 m) HS  13 

Oberwald 1 (OBW1, 2733 m) TA  Point monthly   0 

Oberwald 2 (OBW2, 2432 m) TA, HS  Point monthly   0 
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Guetsch (GUE, 2286 m) 
TA, RH, P, ISWR, 

ILWR,  
Point 1 h  13 

Guetsch (GUE, 2286 m) HS  Point daily  13 

RhiresD Precip  2 km x 2 km daily  0 

 

2.4 Climate models 

2.4 Rain-on-snow definition 

Based on the high-resolution results, a "contributing area" of a ROS event can be defined. This procedure realistically describes 235 

the elevation-dependent effects on the phase of the precipitation in combination with the presence and condition of the 

snowpack. For a single ROS event, these parameters vary in space, i.e. they delineate an area of varying size that contributes 

significantly to a ROS event ("contributing area"). Four pixel-based criteria were applied for daily values to define a 

contributing area, which can be found in Table 2. The criteria differ in the amount of daily rainfall, and whether there is a 

substantial contribution of snowmelt to surface water input (SWI) or not. SWI is calculated with the energy balance snow 240 

model (Sect. 2.4) and is the water input available at the ground surface through either snowpack runoff, rain in case of snow-

free conditions, or a mixture of both in case of fractional snowcover. Snowmelt is defined here as SWI minus rainfall, i.e. the 

portion of surface water input that comes from the melting process. Note that criterion 1 in Table 2 is the same as that of 

Musselman et al. (2018). A "ROS day" can then be defined as a day with a contributing area exceeding a size threshold, which 

may depend on the application or the user. As ROS frequency we define a yearly exceedance probability as a function of the 245 

event size  (see Sect. 3.2.3). The intensity and contribution of snowmelt required to define a size of a ROS event (> 1/3 of the 

total area affected according to pixel-based criteria, see Sect. 3.2.5). 

 

Table 2. Four alternative pixel-based criteria for ROS events. 

Criterion SWE [mm] Rain [mm/d]  Snowmelt [%SWI] 

1 >10 >10 > 20 

2 >10 >10  - 

3 >10 >20 > 20 

4 >10 >20  - 

 250 

Regional climate models from the EURO-CORDEX archive (Jacob et al., 2014) were used to obtain the CH2018 climate 

scenarios (CH2018 Project Team, 2018), which was used in this study to calculate factors of change (FC) (Anandhi et al., 

2011) needed for the downscaling procedure (cp. Sect. 2.2). The FC consist of gridded values downscaled to 2-km resolution 

using quantile mapping (CH2018 Project Team, 2018). Only the 10 EURO-CORDEX model chains with the highest spatial 

resolution of 11 km were used (Table S1). The FC were calculated for two emission scenarios (i.e. RCP 4.5 and RCP 8.5) and 255 
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two time horizons (i.e. a mid-century period from 2030 to 2059 and an end-of-century period from 2070 to 2099). Finally, FC 

were linearly interpolated to our 100 m resolution. 

2.5 Quantification of climate change in relation to uncertainty sources 

For the sake of consistency, we compared only simulated values of current and future climates without analyzing climate-

related changes between the model and observed data. However, the model was verified against observed data under current 260 

climate conditions in Sect. 2.3.1. Climate period mean values of 50 and 500 (i.e. 50 realizations times ten climate models) of 

simulated current and future climate periods, respectively, were analyzed. The 5-95th percentile range of the 50 (500) climate 

period mean values was chosen to quantify natural climate variability (and climate model uncertainty for future climate 

conditions, respectively), consistent with other studies (e.g. Fatichi et al., 2016; Peleg et al., 2019). Note that this procedure 

does not quantify the natural interannual variability (e.g. a high snow year vs. a low snow year), but how different entire 265 

climate periods are (e.g. a high snow climate period vs. a low snow climate period). 

2.6 Uncertainty partitioning 

To obtain the relative contribution of the investigated sources of uncertainty (i.e. natural climate variability, climate model 

uncertainty, and emission scenario uncertainty) to the total uncertainty, the partitioning method presented by Fatichi et al. 

(2016) was applied. Separately for the two time horizons and the two emission scenarios, a climate change signal was computed 270 

for each variable (e.g. SWE or ROS frequency) as the difference between the mean of a future and a current climate period 

determined from the stochastic realizations. Note that the 50 realizations of the climate periods are completely random, 

meaning that, for example, the first current climate period and the first future climate period have no stochastic similarities. 

Climate model uncertainty was calculated using the median of 50 realizations of this climate change signal and then quantified 

using the 5-95th percentile range across the ten climate model chains (i.e. the minimum and maximum) for each emission 275 

scenario and for each period. The average range of both emission scenarios is then considered to be the total climate model 

uncertainty. For natural climate variability, the 5-95th percentile range of the 50 realizations of the median climate change 

signal from all climate model chain was calculated. Similarly to total climate uncertainty, the total natural climate variability 

is the average range of both emission scenarios. For the emission scenario uncertainty, the median was calculated for both 

emission scenarios over all of the 500 climate change signal values (10 climate model chains and 50 realizations of climate 280 

periods). The emission scenario uncertainty is then the difference between the two median values. Finally, the total uncertainty 

was calculated with the 5-95th percentile range over all of the 1000 change signals resulting from 10 climate models, 50 

realizations of climate periods, and two emission scenarios. natural climate variability 𝐼, climate model uncertainty 𝑀, and 

emission scenario uncertainty 𝑆) to the total uncertainty 𝑇, the partitioning method presented by Yip et al. (2011) was applied 

(see Appendix). 285 

For the fractional uncertainties, the sources of uncertainty were scaled by the total uncertainty. In the case of SWE, this value 

is available for each day and is then averaged into a weighted annual value: the daily total uncertainty values were used as 
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weights to avoid overweighting days with only low climate change signal uncertainty (e.g. at the beginning and end of the 

season).  

Note that individual sources of uncertainty do not have to sum to one, as they do for variances of uncorrelated random variables: 290 

here a range of percentiles were considered, not a variance (see further discussion in Fatichi et al., 2016). Possible correlations 

between sources of uncertainty were not examined here. 

2.71.1 Rain-on-snow definition 

Based on the high-resolution results, a "contributing area" of a ROS event can be defined. This procedure realistically describes 

the elevation-dependent effects on the phase of the precipitation in combination with the presence and condition of the 295 

snowpack. For a single ROS event, these parameters vary in space, i.e. they delineate an area of varying size that contributes 

significantly to a ROS event ("contributing area"). Four pixel-based criteria were applied for daily values to define a 

contributing area, which can be found in Table 2. The criteria differ in the amount of daily rainfall, and whether there is a 

substantial contribution of snowmelt to surface water input (SWI) or not. Snowmelt is defined here as SWI minus rainfall, i.e. 

the portion of surface water input that comes from the melting process. Note that criterion 1 in Table 2 is the same as that of 300 

Musselman et al. (2018).  

 

Table 2. Four alternative pixel-based criteria for ROS events. 

Criterion SWE [mm] Rain [mm/d]  Snowmelt [%SWI] 

1 >10 >10 > 20 

2 >10 >10  - 

3 >10 >20 > 20 

4 >10 >20  - 

 

3 Results and Discussion 305 

3.1 Verification 

3.1.1 Weather generator 

Peleg et al. (2017) showed for a nearby mountainous region that the weather generator can reproduce principle statistics of 

climate variables. For this study, aA similar verification to Peleg et al. (2017) was conducted. For annualAnnual precipitation, 

achieved a similarcomparable quality as the calibration that was achieved compareddone to a nearby Alpine catchment  (Peleg 310 

et al. (2017), as is expected since monthlyannual mean values are used for calibration (not shown). A comparison of daily 

precipitation intensities with a focus on extremes are shown in Fig. S2, which indicate that extremes are better captured than 

other intensities, which is considered important for an ROS study.  Figure 23 shows a comparison for air temperature (TA), 
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incoming shortwave radiation (ISWR), and incoming longwave radiation (ILWR) with measured data at two stations in the 

study area. Note that for Grimsel Hospiz (GRH), ISWR was indirectly used for calibration of the weather generator. 315 

Specifically, the data were used to calibrate the vapor pressure, but not for the variable itself. It should also be noted that the 

data availability for the stations spans only a few years and may not represent the long-term distribution well. Apart from these 

limitations, it can be seen that TA is slightly colder at the lower station OBW2 in AWE-GEN-2D (bias of -0.8 °C), while it is 

quite well represented at the higher station OBW1. ISWR is underestimated in winter months, while ILWR is overestimated 

in spring. However, it is our understanding that the quality of the output is sufficient to analyze deviations of simulated future 320 

climate conditions from current ones, i.e. no climate-related changes are compared between the model and observed data. Note 

that the range plotted is inter-year variability, in contrast to Sect. 3.2 and following, where inter-climate period variability is 

discussed. 

 

 325 

 

a) b)

d)c)
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Figure 23. Monthly mean values for (a) air temperature (TA) (a) at the stations OBW2 and (b), incoming shortwave radiation 

(ISWR) )  OBW1, (c),) incoming longwave radiation (ILWR) and (d) incoming shortwave radiation (ILWR) (d) at the stations 

Oberwald 1 and 2 (OBW1, 2), and Grimsel Hospiz (station GRH).. Plotted are 5, 50 and 95th percentiles of observations in blue of 330 
8 years (GRH) and 20 years (OBW1, 2), and modeledmodelled data in red of 1500 years. RMSE and Bias are calculated for 50th 

percentiles. 

3.1.2 Snow model 

Recent publications demonstrate the quality of point-based snow depth modeling (Winstral et al., 2019), of spatial modelling 

results as inputs to a hydrologic runoff model (Griessinger et al., 2019), or in comparison to LiDAR-derived snow depth (HS) 335 

data and satellite-derived snowpack fraction data (Helbig et al., 2021). Using only measured station data as meteorological 

forcing, Magnusson et al. (2015) have already quantified the quality of the original JIM models with lysimeter data. In addition 

to these results, it is shown here that the improved model can accurately reproduce snow depth at the GUE station near the 

study area (Fig. 3). This station is located at 2286 m a.s.l. at about 13 km from the study area (see Table 1) and provides all 

required meteorological input data for energy balance snow modeling without major gaps and in good quality during the last 340 

two years. Except for precipitation, all input data were used without any preprocessing. For precipitation, a method similar to 

that used to train the weather generator using optimal interpolation was chosen (Magnusson et al., 2014, see Sect. 2.2). Since 

optimal interpolation is not able to handle structural biases (i.e. site-specific undercatch in the background field), a correction 

factor of 1.3 was chosen to correct for local undercatch and achieve better HS comparison during accumulation phases. With 
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this meteorological input, the ablation and settling behavior of the snow model could be assessed and4). A good agreement 345 

was achieved in the two years studied, with aan RMSE of 20 cm and a positive bias of 13 cm, calculated for days when either 

the model or the observations show positive snow depth (Fig. 34). 

 

 

Figure 34. HS observed (obs) and modeled (JIM) with station input at station GUE. 350 

3.1.3 Combined verification  

To demonstrate that the combined model chain is capable of providing reasonable HS and SWE values, we compared these 

values at the grid cell where observed HS data and modeled SWE from the OBW 2 station are available (Fig. 4). Modeled 

SWE was determined using measured HS and a parametric model (HS2SWE) that accumulates, compacts, and melts snow 

layer by layer (Magnusson et al., 2014).  MeanFigure 5 shows mean values and spread of 1500 years simulated by the model 355 

chain and (pseudo) observations of HS and SWE of 20 years show. The good agreement. This indicates that the model chain 

is capable of reproducing both the interannual variability and mean properties. The comparison shows, however, a slight 

underrepresentation of years with early intense snowfall. Note that the range in the case of the observations is determined by 

minimum and maximum, compared to the 5-95th percentiles of the generated data. In addition, the model typically simulates 

an earlier onset of melting and subsequent slower melting is typically modeled, which compensates and finally results in a 360 

mean melt out that is consistent with observations. These small inconsistencies notwithstanding, the results show a level of 

performance that does not compromise the use of the model combination to study the effects of climate change based on 

simulated current and future climate periods. 
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  365 

Figure 45. Snow depth measured (left) and SWE (right) determinedderived by an HS2SWE model (blue) at station OBW 2. Plotted 

are the 5, 50 and 95 percentiles of 20 years of observations (blueobs) and 1500 years of weather-generator-snow-model data 

(redmod). RMSE and bias are calculated for 50 percentile values and for days when either the model or the observations show 

positive values. 

3.2 Climate change impact 370 

In this section, we first provide an overview of how natural climate variability and model uncertainty affect key inputs to 

snowpack modeling; second, we show projections of future seasonal SWE curves; third, we discuss changes in ROS properties; 

and finally, we provide a quantification of sources of uncertainty. 

3.2.1 Natural climate variability and climate model uncertainty  

Figure 56 shows the annual and spatial means of TA, precipitation, and SWE on April 1 for the current future climate 375 

conditions. Natural climate variability is shown with error bars, while climate model uncertainty can be interpreted with the 

differences between climate model chains. For TA, climate model uncertainty dominates, while for precipitation, natural 

climate variability dominates. This result is consistent with those presented in other studies (Hawkins and Sutton, 2009; 2011; 

Fatichi et al., 2016; Peleg et al., 2019). The total uncertainty range of SWE on April 1 is mainly generated by natural climate 

variability for the mid-century, while at the end of the century both sources of uncertainty contribute similarly. A more 380 

a) b)
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quantitative analysis of the specific uncertainty contributions can be found in Sect. 3.2.7. Note that all of the following figures 

show uncertainty ranges of climate period averages to illustrate how different equally likely realizations of a future climate 

period are. The inter-annual uncertainty range is much larger (not shown) and is not the subject of this paper. 

 

 385 

a)

b)

c)
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Figure 56. Natural variability and climate model uncertainty of annual and spatial mean (a) precipitation, (b) air temperature (TA) 

and (c) resulting spatial mean SWE at April 1. Plotted are the 5, 50, 95 percentiles from 50 realizations of climate period mean 

values. 

3.2.2 Change in seasonal SWE 390 

Figure 67 shows the seasonal evolution of areal mean SWE for different emission scenarios and periods. The uncertainty range 

for current climate (blue) is, by definition, only determined by natural variability, while for future climate (red) it is influenced 

by a composite of natural variability and climate model uncertainty. From May on, the changes in SWE for all emission 

scenarios and time horizons are larger than the uncertainty range (i.e. no overlap of uncertainty ranges). During the 

accumulation period, only the extreme emission scenario RCP 8.5 at the end of the century shows no overlap, while overlaps 395 

of up to 50% are achieved for the other cases. At the time of the SWE maximum in this region (May 1st), the overlap is already 

close to zero due to the onset of melting in the future scenarios. Similar to Verfaillie et al. (2018), the uncertainty in the 

emission scenarios is only relevant at the end of the century, as discussed in detail in Sect. 3.2.7.  

For all scenarios, the altitude effects are similar. At the lowest altitudes (1400 - 1950 m a.s.l.), the climate signal is large enough 

to emerge clearly from the uncertainty ranges, while the largest overlap is achieved at the highest altitudes (3050 - 3600 m 400 

a.s.l.) (Fig. S1). Only for the most extreme scenario, RCP 8.5 at the end of the century, no overlap is achieved even at the 
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highest altitude range. This is generally consistent with the results of Marty et al. (2017), who also found a weakening of the 

climate change signal at higher elevations. Furthermore, the results are mostly consistent with Willibald et al. (2020) who 

found a similar elevation effect in how natural climate variability can mask trends in mean and maximum snow depth, although, 

the role of natural climate variability seems to be larger in their study than in our results. While at a low altitude site only 15% 405 

of 50 realizations of future climate conditions under RCP 8.5 showed insignificant trends for time horizons until the mid of 

the century, at a high-altitude site (Weissfluhjoch, 2540 m) it was still 80%. For the latter station, they still found 20% of all 

realizations with insignificant trends until the end of the century. For our data for RCP 8.5 at the end of the century, no overlap 

is found for SWE for no time of the year and also not for the highest altitude range. Also, for low elevations at the mid of the 

century, hardly any overlap is exhibited (Fig. S1a).  410 

In summary, these results suggest that the climate change signal for the area-averaged SWE is generally larger than the 

associated uncertainty (including maximum SWE amounts) in the future. Only for elevations above 2000 m and for the months 

between January and April there are likely realizations of future climate with an equal amount of SWE as today. These 

exceptions can be characterized as situations where precipitation variability can strongly influence SWE amounts, i.e. when 

most of the precipitation falls as snow and melt is negligible. However, the later onset of SWE accumulation in future climate 415 

prevents natural variability from being able to fully mask the climate change signal in the accumulation season, as is the case 

with precipitation (Peleg et al., 2019) or runoff (Fatichi et al., 2014, Moraga et al., 2021). 
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  420 

Figure 67. Areal mean seasonal SWE development under current (bluecc) and future climate (redfc) for different emission scenarios 

and time horizons. Plotted are the 5, 50, 95 percentiles of climate period mean values stemming from 50 (current climate) and 500 

climate periods (future climate with 50 realizations of 10 climate models). The overlap indicates how much of the current climate 

natural variability is overlaid by the future climate uncertainty range.  

3.2.3 Frequency of rain-on-snow events  425 

Figure 8 presents the exceedance probability of contributioncontributing area sizes of ROS events for all different pixel-based 

criteria (see Table 2) for RCP 8.5 at the end of the century. For example, in Fig. 7a8a, using criterion 1, approximately nine 

ROS events per year (exceedance probability of 0.0247) are simulated with a contributing area greater than 20% of the total 

area for current and future climate conditions. For this most extreme scenario, there is a climate change signal toward more 

frequent events for most of the contributing area size thresholds. However, whether or not the climate signal emerges from 430 

uncertainty ranges depends on the pixel-based criterion to define a ROS event. For criterion 4 and partially for criterion 2 (see 

Table 2) the signal of change is apparent, while it is not the case for criteria that also require 20% of the SWI contribution from 

snowmelt (criteria 1 and 3). Increasing the rainfall threshold results in a clearer climate change signal, likely because rainfall 

in higher precipitation intensities is more frequent at the end of the century (Fig. S2S3) due to more total precipitation (Fig. 

56) and due to warmer air temperatures, which increase the liquid fraction. The reason why the increase in ROS frequency is 435 

masked when the additional melt demand is used to define a ROS event can be found in the change of seasonality of ROS 
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events and is discussed in Sect. 3.2.4.  For other emission scenarios and ROS definitions, the overlap is even more pronounced 

(Fig. S3S4).  
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Figure 78. Yearly exceedance probability of contributioncontributing area size (as a fraction of the total area) during ROS events 

for current climate (bluecc) and RCP 8.5 end of the century (redfc) for criteria 1 (c1) to 4 (c4). Plotted are the 5, 50, 95 percentiles 

of climate period mean values stemming from 50 (current climate) and 500 climate periods (future climate with 50 realizations of 10 

climate models). The overlap indicates how much of the current climate natural variability is overlaid by the future climate 445 
uncertainty range. 

It is also worth noting the altitude dependence of this analysis for RCP 8.5 at the end of the century. At high elevations typically 

above 2500 m a.s.l., the increase in ROS events is pronounced for criteria 2 (not shown) and 4 (Fig. S4S5). For all other criteria 

defining ROS events and all other emission scenarios and periods, an increase at high altitudes above 2500 m a.s.l. is also 

observed, but this is masked by the sources of uncertainty (e.g. Fig. S5S6 for criterion 1).  450 

In summary, natural climate variability and climate model uncertainty question the claim that ROS events will become more 

frequent in a future climate in this high elevation study area, except for the most extreme scenario RCP 8.5 at the end of the 

century at high elevations above 2500 m if the ROS definition does not include a snowmelt contribution. If a ROS event is 

defined such that there must be a substantial snowmelt contribution (>20%), then a future increase in ROS frequency is masked 

by the sources of uncertainty included in this study without any exceptions.  455 

Thus, our results confirm our initial hypothesis that ROS events are strongly influenced by natural climate variability because 

they are more driven by precipitation than by seasonal SWE curves. However, some studies do find an increase in ROS 
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frequency at higher elevations (e.g. Beniston and Stoffel, 2016; Musselman et al. 2018), and a discussion on this can be found 

in Sect. 3.2.6. 

3.2.4 Rain-on-snow seasonality  460 

In this section, we discuss why the climate change signal is more pronounced for frequencies of ROS events with only minor 

snowmelt contribution versus substantial contribution. Following the definition of criterion 2, each ROS event can spatially 

consist of pixels that will also satisfy criterion 1, i.e. with snowmelt contribution > 20% to SWI (see Fig. S6S7 for a spatial 

example). Figure 89 shows in a histogram the number of ROS events per month and their spatial characteristic computed as 

the ratio φ of pixels obeying criterion 1 over pixels obeying criterion 2. During current climate conditions (Fig. 8a9a), most 465 

ROS events occur from May to July, typically with large φ, i.e. a large spatial proportion of pixels with substantial snowmelt 

contribution. In January, for example, only a small number of ROS events occur, and most are characterized by a low φ, i.e. a 

small spatial proportion of pixels with substantial snowmelt contribution. This is consistent with the results of Würzer et al. 

(2016), who found that ROS events with a substantial snowmelt contribution typically occur in late spring and early summer, 

when the snowpack is wet and warm at the onset of the event. Conversely, a low snowmelt contribution is expected when the 470 

initial snowpack is drier and colder (Würzer et al., 2016). Similar to Würzer et al. (2016), conditions for a substantial 

contribution from snowmelt are typically found under initially wet and warm snowpack conditions (Figs. 9aS8a and b). This 

is indicated by the red arrow in Fig. 89, which points at large φ that is associated with typically wet and warm initial snowpack 

conditions.  

 475 

       

 

 

W
et

 a
n

d
 w

ar
m

 

a) b) c)



 

26 

 

         

Figure 89. Histogram showing the number of ROS events for (a) current climate (cc) (a) and (b) future climate (fc) (b, RCP 8.5 at 480 
the end of the century), and (c) the difference thereof (fc-cc) (c), split in different values of φ, i.e. the ratio of pixels obeying criterion 

1 over pixels obeying criterion 2 per event. The colour bar indicates the number of ROS events per year averaged over 1500 years 

for the current climate and 10 x 1500 years for future climate conditions. For the month with the lowest number of ROS events in 

the current climate, in February, there are approximately 100 ROS events available in the data set. 

For RCP 8.5 at the end of the century (Fig. 89), the peak of ROS events shifts to earlier in the season, with typically large φ. 485 

There is also a higher number of early and midwinter events, with typically small spatial ratios, and almost no ROS events 

from July through September due to nonexistent snowpack. 

The increase in ROS events in March and April with large φ values contrasts with a large decrease in June and July (Fig. 8c9c). 

This means that the ROS events with spatially a large number of pixels with substantial snowmelt are not largely changing in 

the future with regards to their frequency, but rather shifted to earlier in the season. Only the frequency of events with small φ 490 

will increase in the future. This may be seen as counterintuitive at first because warm and wet conditions are expected to occur 

more frequently in a future climate state. Indeed, this is generally the case at the onset of ROS events (Figs. 9cS8c and d). 

However, rain in early and midwinter will fall on snow that will – even in this extreme warming scenario – be typically too 

cold and too dry to allow a significant contribution from snowmelt. This result implies that warmer air temperatures due to a 

changing climate can change the phase of precipitation more often than they can change the state of the snowpack to 495 

substantially contribute to runoff. This fact explains the limited increase in early and midwinter ROS events frequency with a 

large spatial proportion of substantially snowmelt contribution. Towards summer, the drastically reduced snow cover summer 

in a future climate explains the much faster decrease in the number of ROS events in this time, when ROS events have typically 

large φ, compared to the current climate.  

In summary, the occurrence of rain falling on an initially warm and wet snowpack will likely not increase in the future. This 500 

explains that the climate change signal of ROS frequency shown in Figs. 7a8a and c isare masked by uncertainty sources, when 

a ROS event is defined by a substantial snowmelt contribution. However, a significant climate signal with varying signs is 

expected within individual months, e.g. March and June. These findings imply the need for a process-based snow model that 

can adequately model snowpack retention, as shown in this study. 
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Figure 9. Climate period mean values of liquid water content in % SWE (a) and surface temperature of the snowpack (b) at the start 

of ROS events spatially averaged over pixel with snowmelt contributing more or less than 20% to SWI for current climate (cc) and 

future climate conditions (fc, RCP 8.5 at the end of the century). A contribution area >1/3 of the total area was chosen to define a 

ROS event and pixel-based criterion 2. In (c) and (d) monthly climate period mean values are shown for contribution area averages 510 
and pixel-based criterion 2. Values stemming from 50 (current climate) and 500 climate periods (future climate with 50 realizations 

of 10 climate models). 

3.2.5 Rain-on-snow intensity and snowmelt contribution 

Since rain intensity is expected to increase significantly in a future climate for all scenarios studied, also during ROS conditions 

(Fig. S2S3), one can expect SWI to increase for rain-on-snow events as well. However, the conclusions are very similar to 515 

those for ROS frequency. An increase of high SWI intensities is observable but is masked by the sources of uncertainty 

quantified in this study for all emission scenarios and time horizons (see Fig. S7S9 for RCP 4.5 at the end of the century) 

except for the most extreme scenario (Fig. 10), i.e. RCP 8.5 at the end of the century, still depending, however, on the ROS 

definition criteria. If the ROS criterion implies a substantial contribution of snowmelt to SWI, again, the increase is masked 

by uncertainty, whereas without this condition this is not the case. The elevation dependence is also very similar to the ROS 520 

a) b)

d)c)
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frequency (not shown): at higher elevations, the increase is pronounced for criteria 2 and 4 for elevations above 3000 m and 

2500 m, respectively. For all other definitions of ROS events and all other emission scenarios and time horizons, this increase 

is also observed but is masked by sources of uncertainty.  

Since snow cover decreases massively at the end of the century in the most extreme climate scenario RCP 8.5 (cp. Fig. 6d7d), 

it can be expected that the contribution of snowmelt to SWI also decreases and the observed increase in ROS events is mainly 525 

driven by an increase in rain intensity. However, this depends on the pixel-based definition of whether a positive or negative 

climate signal can be observed. When substantial snowmelt contributions are required, the signal is largely masked by sources 

of uncertainty (Fig. S8S10). These results show that despite a dramatic decrease in snowpack by the end of the century in an 

RCP 8.5 scenario, the role of snow in contributing to runoff does not largely change for ROS events.  

 530 

 

  

Figure 10. Yearly exceedance probability of total area-averaged SWI of ROS events for current climate (bluecc) and RCP 8.5 at the 

end of the century (redfc) for (a) criteriacriterion 1 (c1) and (b) criterion 4 (c4) (b). A contributioncontributing area >1/3 of the total 

area was chosen to define a ROS event. Plotted are the 5, 50, 95 percentiles of climate period mean values stemming from 50 (current 535 
climate) and 500 climate periods (future climate with 50 realizations of 10 climate models).  

a) b)
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3.2.6 Comparison with other studies on ROS frequency 

The results obtained here are based on a more complex approach than those of existing studies on this topic (e.g. Beniston and 

Stoffel, 2016; Morán-Tejeda et al., 2016; Musselman et al., 2018; Ohba and Kawese, 2020; Sezen et al., 2020), as we have 

added two new dimensions, i.e. internal climate variability and the ROS definition. Beniston and Stoffel (2016) reported that 540 

in the Swiss Alps, an increase of nearly 50% in the number of ROS events occurred with 2-4 °C warmer temperatures than 

today at elevations of 2000 and 2500 m. For altitudes of 1500 m and below, a decrease in the number of ROS events was 

obtained. Except for two climate models, this temperature increase corresponds to the most extreme scenario RCP 8.5 at the 

end of the century (see Fig. 5a6a). Morán-Tejeda et al. (2016) came to very similar conclusions. Beniston and Stoffel (2016) 

and Morán-Tejeda et al. (2016) did use, however, empirical snow models without the capability that water retention can depend 545 

on the state of the snowpack. Ohba and Kawase (2020) did not use snowmelt in their definition of ROS events and Sezen et 

al. (2020) defined ROS events with a very small amount of snowmelt (0.1 mm d-1). Thus, reporting more ROS events at high 

elevations is consistent with our results using a criterion that does not imply a substantial snowmelt contribution. We claim, 

however, that the ROS definition must account for the runoff perspective and should not be based only on the occurrence of 

liquid precipitation on snowpack, because of the pronounced risk in flood potential due to excess runoff from snowmelt 550 

(Würzer et al., 2006). Thus, it is important to note that our results using ROS definitions, which require a substantial snowmelt 

contribution differ from existing studies, suggesting that more frequent rain on snow in the future does not result in a more 

frequent combination of rain and snowmelt, as highlighted in Section 3.2.4.  

Musselman et al. (2018) defined ROS events identically to the criterion 1 chosen here (i.e. >10 mm rain per day, >10 mm 

SWE, and >20% snowmelt contribution to SWI). They analyzed spatial energy balance model runs on a 4-km grid in western 555 

North America. Similar to the studies in Switzerland, they achieved a decrease in the number of ROS events at lower elevations 

and an increase at higher elevations for an RCP 8.5 emissions scenario by the end of the century, an increase of ROS intensity 

and a decrease in the contribution of snowmelt. These results can also be found in our study case, but they are largely obscured 

by sources of uncertainty (Figs. 10a and S8aS10a). When natural climate variability is artificially suppressed in our analysis 

by plotting only the first realization of a climate period (Fig. S9S11; note that the first realizations of the current and future 560 

climates are initialized with the same parameters in the weather generator), one can more clearly follow the conclusions of 

Musselman et al. (2018) of an increase in intensity and a decrease in snowmelt contribution.  

The following two studies found a decrease in ROS events also in high elevated catchments: Chegwidden et al. (2020) found 

that ROS events as a cause of annual runoff maxima will disappear at lower elevations and slightly decrease at higher elevations 

by the end of the century. They discussed their differences to Musselman et al. (2018), who modelled a similar domain, with 565 

having climate model differences and, mainly, analyzing only annual runoff maxima, while Musselman et al. (2018) analyzed 

all event magnitudes. In our study, we see an increase of ROS frequency independent of the event size for all except one ROS 

criterion (Fig. 8b-d). Cheggwidden et al. (2020) used energy balance-based hydrological models to investigate ROS events, 

thus encompassing as well the role of soil in changing high flows.  
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Sikorska-Senoner and Seibert (2020) analyzed historic observations and found a decreasing number of ROS events also in 570 

high elevated catchments in Switzerland using a degree-day snow model with a fixed degree day factor and threshold 

temperature. The difference in findings can also be found in the ROS definitions. Sikorska-Senoner and Seibert (2020), used 

for example a quite small snowmelt threshold of 1 mm d-1 which classifies alongside with other criteria a flood as a ROS event. 

Chegwidden et al. (2020), however, used the same ROS definition as Musselman et al. (2018), which is identical with 

criterion 1 in our study. 575 

In summary, similar conclusions compared to the cited literature would be drawn if our approach were simplified, i.e. (i) one 

does not distinguish between substantial and non-substantial snowmelt contribution based on snowpack conditions and/or (ii) 

natural climate variability was not accounted for. This study shows that the inclusion of both natural climate variability and a 

snow model capable of modeling liquid water retention based on physical process representations provides new insights, 

particularly that only ROS events with no significant snowmelt contribution will occur more frequently in the future, while 580 

ROS events with significant snowmelt contribution will mainly shift towards earlier in the year. 

3.2.7 Uncertainty partitioning 

Figure 11 shows the relative contribution of the different sources of climate uncertainties for the climate change signal of 

seasonal SWE (ΔSWE) for the mid- climate change signal and late-the partitioning of uncertainty into the individual sources 

for the middle and end of the century. The Note that the individual sources in Figs. 11a and b are shown symmetrically around 585 

the mean climate change signal for illustrative purposes only, and that the ratio is equal to the square root of the fractions 

shown in Figs. 11c and d. The climate change signal and also total uncertainty at mid-century is split into two almost equal 

parts, total climate model uncertainty and totalis the largest around May 1, which corresponds to the date when snow 

accumulation regularly ends under current climate conditions (cf. Fig. 7). In absolute terms (Fig. 11a and b), natural climate 

variability remains roughly the same between mid-century and the end of the century, which has also been noted by others 590 

(e.g. for air temperature projections by Yip et al., 2011).  

The relative contributions can be assessed with Figs. 11c and d. At mid-century, natural climate variability is the dominant 

source of uncertainty, accounting for more than 50% during the main winter season. Climate model uncertainty is the second-

largest source, while scenario uncertainty does not playand model-scenario interaction account for only a significant role.few 

percentage points. This picture changes for the end-of-century of the century, where emissions scenario uncertainty is the main 595 

source, accounting for 40% to 60% during the main winter season. Climate model uncertainty is the second-largest source with 

a contribution of about 30%, followed by natural climate variability, whose contribution steadily decreases to just over 10% 

in May. At the beginning and end of the snow season, natural climate variability has a larger relative contribution than is 

normally observed during the season, which means that natural climate variability is particularly important for studies focusing 

on the duration of the snowpack. The increasing role of emissions scenario uncertainty in SWE projections towards the end of 600 

the century means that efforts to reduce uncertainties in snow projections should focus on limiting uncertainties associated 
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with emissions scenarios, for which the total uncertainty splits into roughly three equal parts. similar to efforts to improve 

climate models.  

The larger role of scenario uncertainty at the end of the century was already visible in Fig. 67 and is mentioned by Verfaillie 

et al. (2018). Verfaillie et al. (2018) also quantified snow model uncertainty and concluded that physical snow modeling has a 605 

contribution of up to 20% of the simulated results after mid-century, which they considered secondary to climate model spread. 

It was mentioned that its influence on trends (or climate change signals) is likely much smaller but was not quantified more 

precisely. This impliesIn this study, we were not able to quantify this additional source of uncertainty, but comparing these 

two studies, we can assume that natural climate variability is of much greater importance than physicaland snow model 

uncertainty, as it is may be similar at the end of a comparable magnitude to climate model uncertaintythe century. This 610 

assumption needs to be proven by future studies that include all four types of uncertainty sources. 
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Figure 11. Uncertainty sources and their contribution to total uncertainty for seasonal climateClimate change signal of SWE (ΔSWE) 615 
between current and future climate scenarios for mid (a) monthly mean SWE and illustration of the sources of uncertainty in the 

SWE projections (90% quantile ranges) of (a) mid and (b) end of the century. 

Fractional uncertainties were calculated for the SWE climate change signal as a weighted seasonal mean, using total uncertainty 

values as weights (Fig. 12, SWE mean). Note that 5-95th percentile ranges are used here to quantify ranges of  The fractional 

uncertainty (see Sect. 2.6), implying that the sum of ranges for (independent) random variables cannot be expected to equal one. 620 
Mid-century natural climate variability has the largest contribution, accounting for more than 75% of the total uncertainty range. 

At the end of the century, all sources of uncertainty are about equal in magnitude, consistently with the visual evidence from Fig. 

11. At the beginning and end of the snow season, natural climate variability has a larger relative contribution than typically seen 

during the season (not shown), implying that for studies focusing on snow cover duration, natural climate variability is particularly 

important. The increasing role of emissions scenario uncertainty in SWE projections toward the end of the century implies that 625 
efforts to reduce uncertainties in snow forecasts should focus on constraining uncertainties related to emission scenarios in a similar 

manner as efforts to improve climate models.contribution of individual sources to the total uncertainty of (c) mid and (d) end of the 

century.   

Figure 12 shows the fractional contribution of uncertainty sources for the variables ‘contributing area’ and SWI determined 

with pixel-based criterion 3. Natural climate variability is the most dominant uncertainty source with increasing contributions 630 

for larger event sizes and larger runoff intensities with values larger than 70% of the total uncertainty range for event sizes 

larger than a third of the total area (Fig. 12b), or contributing-area averaged intensities larger than 20 mm/d (Fig. 12d), or of 

snow melt contributions larger than 30% (Fig. S12), even at the end of the century. These ratios depend on the pixel-based 

criterion, with the smallest contributions from natural climate variability obtained when using criterion 4, although still above 

50% (Fig. S13). The larger contribution from the other sources of uncertainty may be explained by a clearer climate change 635 

signal for this criterion (cp. Fig. 8).  

For the climate change signal of the ROS metrics studied here, natural climate variability is more important compared to 

ΔSWE, in agreement with our initial hypothesis, because the frequency of future ROS events depends more on precipitation 

and less on air temperature. Precipitation is more influenced by natural climate variability compared to air temperature at this 

spatial scale (Fatichi et al., 2016; Peleg et al., 2019). For all ROS metrics, except for the annual exceedance probability of ROS 640 

frequency using small spatial thresholds ("contribution area > 0.1"), natural climate variability dominates other sources of 

uncertainty, with values between 70% and 95% of the total uncertainty range, even at the end of the century. In fact, the relative 

contribution of the uncertainty sources of the ROS metrics studied here compares quite well on a local scale with the purely 

precipitation-based metrics in Fatichi et al. (2016). This is in contrast to the continental scale studied in Hawkins and Sutton 

(2011), where the role of natural climate variability in decadal mean precipitation diminishes and climate model uncertainty 645 

dominates toward the end of the century.  

In summary, the total uncertainty in projections of the studied variables is composed of natural climate variability, climate 

model uncertainty, and emission scenario uncertainty, in this order for SWE projections only up to mid-century, and for all 

other variables up to the end of the century. The large contribution of natural climate variability demonstrates the need to 

quantify this source of uncertainty to prevent avoidable biases by end-users and decision-makers. 650 
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Figure 12. Fractional uncertainties of total climate model uncertainty (red), total natural variability (yellow) and emission scenario 

uncertainty (purple) for the mid (a) and the end of the century (b). ‘SWE mean’ is a weighted seasonal average taking the total 

uncertainty as weights, ‘contrib area’  is the contribution area defined with criterion 2 for two thresholds (cp. Fig. 7), ‘SWI’ is the 655 
Surface Water Input (cp. Fig. 10) and ‘snowmelt contr’  is the snowmelt contribution in % of SWI (cp. Fig. S8).  

a)

b)
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Figure 12. Same as Fig. 11c and d for the exceedance probability of the variables ‘contributing area’ and contributing-area averaged 

SWI using criterion 3 (cp. Figs. 8 and 11).   

  660 
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3.3 Limitations and generalizations 

The weather generator AWE-GEN-2d is a hybrid approach that combines physical and statistical methods to derive climate 

variables, leading to intervariable dependence. Single Model Initial Condition Large Ensembles (SMILEs) (Maher et al., 2021) 

are alternatives to weather generators that quantify natural climate variability based solely on physical principles. However, 

for the use of studies similar to the one presented here, this method has significant disadvantages compared to weather 665 

generators. First, a SMILE depends on a single climate model with sometimes limited RCP availability (Lehner et al., 2020; 

Maher et al., 2021), which does not allow to study the combined effect of natural climate variability, climate model uncertainty 

and scenario uncertainty. To overcome this problem, Lehner et al. (2020) used seven SMILEs and combined them with the 

CMIP5 and CMIP6 archives of the Coupled Model Intercomparison Project, which include multiple climate models but not 

multiple initial conditions, to distribute climate projection uncertainty. Willibald et al. (2020) downscaled a single SMILE with 670 

a single RCM for their assessment of natural climate variability of snow cover in the Swiss Alps, and thus were not able to 

include the uncertainty of the emission scenarios and climate models as well. A third problem is the coarse spatial and temporal 

resolution; the resolution of the RCM SMILEs is in the order of 10 km (Maher et al. 2021). Willibald et al. (2020), for example, 

have downscaled, de-biased and disaggregated the RCM output to a sub-daily station scale using a univariate quantile mapping 

approach, which mitigates the initial advantage of benefiting from a purely physical variable interdependence in the climate 675 

model ensemble.  

Besides the limitations in the physical description of the intervariable dependencies in AWE-GEN-2d, the large amount of 

data needed to train the model can be problematic, especially in ungagued areas; an alternative to using observed data can be 

the use of climate reanalysis data, as was demonstrated by Peleg et al. (2020). In addition, not all parameters in AWE-GEN-

2d can be re-parameterized in the context of climate change. For example, we do not have the information of how to change 680 

the lapse rate of air temperature for future climate scenarios as the resolution of the physical climate models (e.g. RCMs) is 

too coarse in space, which is certainly a limiting factor. But also empirical downscaling and debiasing methods like the widely 

used quantile mapping approach suffer from similar limitations. Another limiting point is that typical temporal dependencies 

in the data, e.g. due to synoptic patterns in a region, cannot be mapped in AWE-GEN-2d. Heavy winter precipitation can be 

related to cold frontal passages in certain regions, which can lead to a correlation between low temperatures and high 685 

precipitation intensity. This can have a significant impact on the precipitation phase and the resulting snow cover. It is 

questionable whether relatively coarse scaled RCMs can model these dependencies in complex regions like the Alps. 

Moreover, if data are needed at a sub-daily and local scale, these dependencies may be lost with univariate downscaling 

routines. In summary, we think that a two-dimensional weather generator is a good alternative to using multiple SMILEs in 

combination with a downscaling routine when the complete chain of uncertainties is needed together with a very high (sub-690 

kilometer and sub-daily) resolution. 

The transferability of the results to other areas found in the limited extent of our study area is complex. ROS events depend on 

a non-trivial interaction of the spatial distribution of liquid precipitation and the existing snow cover and its condition. The 
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transferability to other regions is limited, as precipitation and temperature dependencies differ strongly from mountain region 

to mountain region. The different dependence between air temperature and short-wave radiation in mountain regions at other 695 

latitudes will also limit transferability. However, we assume that the dominance of natural climate variability to total 

uncertainty remains at this spatial scale also in other areas. We, therefore, believe that the well-described increase in ROS 

frequency due to a changing climate in high altitude areas from the western US to Europe and Japan is questioned with this 

study. This study motivates making such results more robust by quantifying natural climate variability. 

4 Conclusions 700 

The climate change signal of snow water resources and of ROS frequency and intensity was investigated with their climatic 

uncertainties. For the exemplary selected high-altitude study area in the Swiss Alps, the climate change signal towards fewer 

snow water resources during the ablation period was found to emerge clearly from the sources of uncertainty for all scenarios 

investigated. However, given significant uncertainties, there is some overlap during the accumulation period for all but the 

most extreme scenario (RCP 8.5, end of the century).  705 

For ROS events, previous studies have shown that they will become more frequent and intense at higher elevations due to a 

shift toward liquid precipitation and despite a decreasing snowpack. The additional inclusion of natural climate variability in 

the uncertainty assessment revealed that this source is responsible for 70-90% of the overall uncertainty, similar to purely 

precipitation-based metrics. As a result, for all scenarios, including RCP 8.5 at the end of the century, the climate change signal 

of ROS frequency and intensity is larger than the uncertainty range only for events with no significant contribution of snowmelt 710 

to runoff (<20%). For events with a significant contribution of snowmelt to runoff, the climate change signal is too small and 

could potentially only be explained by natural climate variability. These events regularly occur during conditions with an initial 

warm and wet snowpack. The very rapid decline in snowpack toward early summer in future climate, when conditions typically 

prevail for substantial contributions from snowmelt, will result in a large decrease in such ROS events that cannot be 

compensated for at other times of the year: in early and midwinter, when rain is expected to fall more often in a future climate, 715 

it will fall on snow that will be typically too cold and too dry to allow a significant contribution from snowmelt. Warmer air 

temperatures due to a changing climate are more likely to change the phase of precipitation than the condition of the snowpack 

to contribute significantly to runoff. This implies that ROS events with a significant contribution of snowmelt to runoff will 

occur earlier in the year, but not more frequent under future climate.  

These additional results were possible only with increased model complexity, first by using a snow model that represents water 720 

retention in snow- based on physical processes, and second by accounting for natural climate variability to quantify the signal-

to-noise ratio of climate at the local scale. Natural climate variability, climate model uncertainty, and emission scenario 

uncertainty, in this order, composed the total uncertainty for SWE projections up to mid-century, and for ROS projections up 

to the end of the century. Therefore, it is vital to quantify natural climate variability in snow projections in order to avoid bias 

among end-users and decision-makers. 725 
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5 Appendix 

To obtain the relative contribution of the investigated sources of uncertainty (i.e. natural climate variability 𝐼, climate model 

uncertainty 𝑀, and emission scenario uncertainty 𝑆) to the total uncertainty 𝑇, the partitioning method presented by Yip et al. 

(2011) was applied, following Eq. (1) – (5): 

 

𝑉(𝑡) =
1

𝑁𝑚𝑁𝑠𝑁𝑟
∑ ∑ ∑[𝑥(𝑚, 𝑠, 𝑟, 𝑡) − 𝑥(𝑚, 𝑠,∙, 𝑡)

𝑁𝑟

𝑟=1

𝑁𝑠

𝑠=1

𝑁𝑚

𝑚=1

]2 (1) 

 

𝑀(𝑡) =
1

𝑁𝑚
∑ [𝑥(𝑚,∙,∙, 𝑡) − 𝑥(∙,∙,∙, 𝑡)]2

𝑁𝑚

𝑚=1

 (2) 

 

𝑆(𝑡) =
1

𝑁𝑠
∑[𝑥(∙, 𝑠,∙, 𝑡) − 𝑥(∙,∙,∙, 𝑡)]2

𝑁𝑠

𝑠=1

 

(3) 

 

𝐼(𝑡) =
1

𝑁𝑚𝑁𝑠
∑ ∑[𝑥(𝑚, 𝑠,∙, 𝑡) + 𝑥(∙,∙,∙, 𝑡) − 𝑥(𝑚,∙,∙, 𝑡) − 𝑥(∙, 𝑠,∙, 𝑡)]2

𝑁𝑠

𝑠=1

𝑁𝑚

𝑚=1

 

(4) 

 

𝑇(𝑡) =
1

𝑁𝑚𝑁𝑠𝑁𝑟
∑ ∑ ∑[𝑥(𝑚, 𝑠, 𝑟, 𝑡) − 𝑥(∙,∙,∙, 𝑡)]2

𝑁𝑟

𝑟=1

𝑁𝑠

𝑠=1

𝑁𝑚

𝑚=1

 = 𝑉(𝑡) + 𝑀(𝑡) + 𝑆(𝑡) + 𝐼(𝑡) 

(5) 

where 𝑥(𝑚, 𝑠, 𝑟, 𝑡) is a climate period mean climate change signal for model 𝑚, scenario 𝑠, replication 𝑟 and time horizon 𝑡, 730 

𝑥(∙,∙,∙, 𝑡) the overall mean at time horizon 𝑡, 𝑥(𝑚, 𝑠,∙, 𝑡) is the mean over all replications, 𝑥(𝑚,∙,∙, 𝑡) and 𝑥(∙, 𝑠,∙, 𝑡) is the mean 

over the scenarios and replicates, and the mean over the models and replicates, respectively. Replications are the 𝑁𝑟 = 50 

realizations of a climate period, 𝑁𝑚 = 10 for the ten climate model chains, and 𝑁𝑠 = 2 for the two emission scenarios. The 

interaction term takes into account that climate model uncertainty and emission scenario uncertainty might be correlated, e.g. 

that the warmest model for RCP 4.5 does not need to be the warmest in RCP 8.5.  735 

Fractional uncertainties were calculated scaling each individual source with the total uncertainty. Additionally, we followed 

the method of Hawkins and Sutton (2011) and Lehner et al. (2020) to obtain 90% quantile ranges of uncertainty sources, 

assuming symmetry around the overall mean 𝑥(∙,∙,∙, 𝑡): 

 
𝑄𝑉(𝑡) = 𝑥(∙,∙,∙, 𝑡) ± 1.645

√𝑉

𝐹
,  (6) 

 
𝑄𝑉+𝑀(𝑡) = 𝑥(∙,∙,∙, 𝑡) ± 1.645

√𝑉 + √𝑀

𝐹
, (7) 

 
𝑄𝑉+𝑀+𝑆(𝑡) = 𝑥(∙,∙,∙, 𝑡) ± 1.645

√𝑉 + √𝑀 + √𝑆

𝐹
, (8) 

 
𝑄𝑉+𝑀+𝑆(𝑡) = 𝑥(∙,∙,∙, 𝑡) ± 1.645

√𝑉 + √𝑀 + √𝑆

𝐹
, (9) 
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𝑄𝑇(𝑡) = 𝑄𝑉+𝑀+𝑆+𝐼(𝑡) = 𝑥(∙,∙,∙, 𝑡) ± 1.645

√𝑉 + √𝑀 + √𝑆 + √𝐼

𝐹
, 𝑤ℎ𝑒𝑟𝑒 (10) 

 
𝐹 =  

√𝑉 + √𝑀 + √𝑆 + √𝐼

√𝑉 + 𝑀 + 𝑆 + 𝐼
. (11) 

Since the assumption of symmetry does not necessarily hold, the corresponding figures (Fig. 11a and b) are for illustrative 

purposes only. 740 
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Daily data of simulated current and future climate periods are available at (https://www.envidat.ch/#/metadata/multiple-
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DOI. 745 

67 Author contribution 

MS led the project, created and verified the modeled data set, analyzed the data, and wrote the manuscript. NP set up and 

trained the weather generator, verified the modeled data and discussed the results. AW worked on the snow model and 

discussed the results. TJ provided ideas for data analysis and discussed results. TJ, PB and NP contributed to the writing and 

editing of the manuscript. 750 

78 Competing interests 

The authors declare that they have no conflict of interest. 

89 Acknowledgments 

MS would like to thank Thomas Kramer for HPC computing support and Louis Queno and Nora Helbig for the continued 

development of the snow model. He would also like to thank Massimiliano Zappa for providing funding to complete the 755 

manuscript. MS and NP were partly funded by the Swiss Competence Center for Energy Research-Supply of Electricity 

(http://www.sccer-soe.ch).   



 

40 

 

910 References 

Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in 

the projected hydrological regimes of Swiss catchments. Water Resources Research, 50(10), 7541-7562, 760 

https://doi.org/10.1002/2014WR015549, 2014. 

Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., and Matonse, A. H.: Examination of 

change factor methodologies for climate change impact assessment, Water Resources Research, 47, W03501, 

doi:10.1029/2010WR009104, 2011. 

Beniston, M., and Stoffel, M.: Rain-on-snow events, floods and climate change in the Alps: Events may increase with 765 

warming up to 4 C and decrease thereafter. Science of the Total Environment, 571, 228-236, 

https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016. 

Chegwidden, O. S., Rupp, D. E., and Nijssen, B.: Climate change alters flood magnitudes and mechanisms in climatically-

diverse headwaters across the northwestern United States. Environmental Research Letters, 15(9), 094048, 

https://doi.org/10.1088/1748-9326/ab986f, 2020. 770 

CH2018 Project Team: CH2018 - Climate Scenarios for Switzerland. National Centre for Climate Services. 

doi:10.18751/Climate/Scenarios/CH2018/1.0, 2018. 

Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood, A. W., Fowler, H.J., Prudhomme, Ch., 

Arnold, J.R. and Brekke, L. D.: Characterizing uncertainty of the hydrologic impacts of climate change. Current 

Climate Change Reports, 2(2), 55-64, https://doi.org/10.1007/s40641-016-0034-x, 2016. 775 

Deser, C., Knutti, R., Solomon, S., and Phillips, A.S.: Communication of the role of natural variability in future North 

American climate. Nature Climate Change, 2, 775, https://doi.org/10.1038/nclimate1562, 2012a. 

Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal 

variability. Climate dynamics, 38(3), 527-546, https://doi.org/10.1007/s00382-010-0977-x, 2012b.  

Essery, R., Morin, S., Lejeune, Y., and Ménard, C. B.: A comparison of 1701 snow models using observations from an 780 

alpine site. Advances in water resources, 55, 131-148, https://doi.org/10.1002/2014WR016498, 2014. 

Fatichi, S., Rimkus, S., Burlando, P., and Bordoy, R.: Does internal climate variability overwhelm climate change signals in 

streamflow? The upper Po and Rhone basin case studies. Science of the Total Environment, 493, 1171-1182, 

https://doi.org/10.1016/j.scitotenv.2013.12.014, 2014. 

Fatichi, S., Ivanov, V.Y., Paschalis, A., Peleg, N., Molnar, P., Rimkus, S., Kim, J., Burlando, P. and Caporali, E.: 785 

Uncertainty partition challenges the predictability of vital details of climate change. Earth's Future, 4, 240-251, 

https://doi.org/10.1002/2015EF000336, 2016.  

Ghil, M.: Natural climate variability. Encyclopedia of global environmental change, 1, 544-549, 2002. 



 

41 

 

Griessinger, N., Schirmer, M., Helbig, N., Winstral, A., Michel, A., and Jonas, T.: Implications of observation-enhanced 

energy-balance snowmelt simulations for runoff modeling of Alpine catchments. Advances in Water Resources, 133, 790 

103410, https://doi.org/10.1016/j.advwatres.2019.103410, 2019. 

Grünewald, T. and Lehning, M.: Are flat-field snow depth measurements representative? A comparison of selected index 

sites with areal snow depth measurements at the small catchment scale, Hydrol. Process., 29, 1717–1728, 

https://doi.org/10.1002/hyp.10295, 2015. 

Hawkins, E., and Sutton, R.: The potential to narrow uncertainty in regional climate predictions. Bulletin of the American 795 

Meteorological Society, 90(8), 1095-1108, https://doi.org/10.1007/s00382-010-0810-6, 2009. 

Hawkins, E., and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change. Climate 

dynamics, 37(1), 407-418, https://doi.org/10.1175/2009BAMS2607.1, 2011. 

Helbig, N., Van Herwijnen, A., Magnusson, J., and Jonas, T.: Fractional snow-covered area parameterization over complex 

topography. Hydrology and Earth System Sciences, 19(3), 1339-1351, https://doi.org/10.5194/hess-19-1339-2015, 800 

2015. 

Helbig, N., Schirmer, M., Magnusson, J., Mäder, F., van Herwijnen, A., Quéno, L., Bühler, Y., Deems, J. S., and Gascoin, 

S.: A seasonal algorithm of the snow-covered area fraction for mountainous terrain, The Cryosphere Discuss. 

[preprint], https://doi.org/10.5194/tc-2020-377, accepted for final publication, 2021. 

Jacob, D., Petersen, J., Eggert, B. et al.: EURO-CORDEX: new high-resolution climate change projections for European 805 

impact research. Reg Environ Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. 

Lafaysse, M., Hingray, B., Mezghani, A., Gailhard, J., and Terray, L.: Internal variability and model uncertainty components 

in future hydrometeorological projections: The Alpine Durance basin. Water resources research, 50(4), 3317-3341, 

https://doi.org/10.1002/2013WR014897, 2014. 

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate 810 

projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, 

https://doi.org/10.5194/esd-11-491-2020, 2020. 

Magnusson, J., Gustafsson, D., Hüsler, F., and Jonas, T.: Assimilation of point SWE data into a distributed snow cover 

model comparing two contrasting methods. Water resources research, 50(10), 7816-7835, 

https://doi.org/10.1002/2014WR015302, 2014. 815 

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating snow models with varying process 

representations for hydrological applications. Water Resources Research, 51(4), 2707-2723, 

https://doi.org/10.1002/2014WR016498, 2015. 

Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future 

prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-820 

12-401-2021, 2021. 



 

42 

 

Marty, C., Schlögl, S., Bavay, M., and Lehning, M.: How much can we save? Impact of different emission scenarios on 

future snow cover in the Alps, The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, 2017. 

MeteoSwiss, https://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-

daten-niederschlag/doc/ProdDoc_RhiresD.pdf, 2019. 825 

Moraga, J.S., Peleg, N., Fatichi, S., Molnar, P., and Burlando, P.: Revealing the impacts of climate change on mountainous 

catchments through high-resolution modelling. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126806, 

2021. 

Morán-Tejeda, E., López-Moreno, J. I., Stoffel, M., and Beniston, M.: Rain-on-snow events in Switzerland: recent 

observations and projections for the 21st century. Climate Research, 71(2), 111-125, https://doi.org/10.3354/cr01435, 830 

2016. 

Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower snowmelt in a warmer world. Nature Climate 

Change, 7(3), 214-219, https://doi.org/10.1038/nclimate3225, 2017. 

Musselman, K.N., Lehner, F., Ikeda, K., Clark, M.P., Prein, A.F., Liu C., Barlage, M. and Rasmussen, R.: Projected 

increases and shifts in rain-on-snow flood risk over western North America. Nature Clim Change 8, 808–812, 835 

https://doi.org/10.1038/s41558-018-0236-4, 2018. 

Ohba, M., and Kawase, H.: Rain-on-Snow events in Japan as projected by a large ensemble of regional climate simulations. 

Clim Dyn 55, 2785–2800, https://doi.org/10.1007/s00382-020-05419-8, 2020.  

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.: An advanced stochastic weather generator for simulating 

2‐D high‐resolution climate variables. Journal of Advances in Modeling Earth Systems, 9(3), 1595-1627, 840 

https://doi.org/10.1002/2016MS000854, 2017. 

Peleg, N., Molnar, P., Burlando, P., and Fatichi, S.: Exploring stochastic climate uncertainty in space and time using a 

gridded hourly weather generator. Journal of Hydrology, 571, 627-641, https://doi.org/10.1016/j.jhydrol.2019.02.010, 

2019. 

Peleg, N, Sinclair, S, Fatichi, S, Burlando, P.: Downscaling climate projections over large and data sparse regions: 845 

Methodological application in the Zambezi River Basin. International Journal of Climatology, 40, 6242– 6264, 

https://doi.org/10.1002/joc.6578, 2020. 

Schwarb, M.: The Alpine precipitation climate: evaluation of a high-resolution analysis scheme using comprehensive rain-

gauge data (Doctoral dissertation, ETH Zurich), https://doi.org/10.3929/ethz-a-004121274, 2000. 

Sezen, C.;., Šraj, M.;., Medved, A.;., Bezak, N. Investigation of Rain-On-Snow Floods under Climate Change. Appl. Sci., 850 

10, 1242, https://doi.org/10.3390/app10041242, 2020.  

Sikorska-Senoner, A. E., and Seibert, J.: Flood-type trend analysis for alpine catchments. Hydrological Sciences Journal, 

65(8), 1281-1299, https://doi.org/10.1080/02626667.2020.1749761, 2020. 

Surfleet, C. G., & Tullos, D., 2013. Variability in effect of climate change on rain-on-snow peak flow events in a temperate 

climate. Journal of Hydrology, 479, 24-34, https://doi.org/10.1016/j.jhydrol.2012.11.021, 2013. 855 

Formatted: English (United States)

Formatted: French (France)

https://doi.org/10.1002/joc.6578


 

43 

 

Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S.: Multi-component ensembles of future 

meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French 

Alps, The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, 2018. 

Willibald, F., Kotlarski, S., Grêt-Regamey, A., and Ludwig, R.: Anthropogenic climate change versus internal climate 

variability: impacts on snow cover in the Swiss Alps, The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-860 

2909-2020, 2020. 

Winstral, A., Jonas, T., and Helbig, N.: Statistical downscaling of gridded wind speed data using local topography. Journal 

of Hydrometeorology, 18(2), 335-348, https://doi.org/10.1175/JHM-D-16-0054.1s, 2017. 

Winstral, A., Magnusson, J., Schirmer, M., and Jonas, T.: The bias‐detecting ensemble: A new and efficient technique for 

dynamically incorporating observations into physics‐based, multilayer snow models. Water Resources Research, 55(1), 865 

613-631, https://doi.org/10.1029/2018WR024521, 2019. 

Würzer, S., Jonas, T., Wever, N., and Lehning, M.: Influence of initial snowpack properties on runoff formation during rain-

on-snow events. Journal of hydrometeorology, 17(6), 1801-1815, https://doi.org/10.1175/JHM-D-15-0181.1, 2016. 

Yip, S., Ferro, C. A., Stephenson, D. B., and Hawkins, E.: A simple, coherent framework for partitioning uncertainty in 

climate predictions. Journal of climate, 24(17), 4634-4643, 2011. 870 


