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Abstract. Landfast ice is a common coastal feature in the Arctic Ocean and around the Antarctic continent. One contributing

and stabilizing mechanism is the grounding of sea ice ridges in shallow water. Recently, a grounding scheme representing this

effect on sea ice dynamics was developed in order to improve the simulation of landfast ice by continuum based sea ice models.

This parameterization assumes that the ridged keel thickness is proportional to the mean thickness. Results demonstrated that

this simple parameterization notably improves the simulation of landfast ice in many regions such as in the East Siberian Sea,5

the Laptev Sea and along the Alaskan coast. Nevertheless, a weakness of this approach is that it is based solely on the mean

properties of sea ice. Here, we extend the parameterization by taking into account subgrid scale ice thickness distribution and

bathymetry distribution, which are generally non-normal, and by computing the maximum seabed stress as a joint probability

interaction between the sea ice and the seabed. The probabilistic approach shows a reasonably good agreement with observa-

tions and with the previously proposed grounding scheme while potentially offering more physical insights in the formation of10

landfast ice.

1 Introduction

Landfast ice is sea ice that remains immobile despite external forces acting on it. It occurs because of two different processes.

One is when sea ice is constrained by the land boundaries, i.e. when it is thick and solid enough that it resists compressive,

tensile and shear stresses arising from integrated external forces. In narrow channels of the Canadian Arctic Archipelago15

(CAA), in fjords or in between nearby Islands, landfast ice occurs because the tensile strength of the ice everywhere in between

land masses, including at the wall boundaries, is sufficient to resist along-channel wind and current forces. This mechanism

has been identified as the main cause for landfast ice in the Kara Sea (Olason, 2016), Nares Strait between Greenland and

Canada (Dumont et al., 2009; Plante et al., 2020) or the CAA (Lemieux et al., 2016) using sea ice models having either a

viscous-plastic or elasto-brittle rheology. Note that this phenomenon can also be simulated using discrete element models with20

friction and cohesion in between particles (e.g. Garcimartín et al., 2010).
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The second distinctive process is in open coastal regions where sea ice is attached to the land on one side, but has a free edge

adjacent to the ocean. In order to maintain the stability of landfast ice covers extending over large distances from the coast,

the horizontal cohesive strength of sea ice is not sufficient. It must be grounded, i.e. some of the deformed and thicker sea ice

present in the ice cover must reach down to the seabed in order to provide the required additional resisting force. When sea25

ice ridges act as anchor points, the seaward landfast ice edge can reach the 20− 30 m isobath (Mahoney et al., 2007). In some

regions (e.g. East Antarctica), anchor points can also be provided by grounded icebergs. This can bring the seaward landfast

ice edge over deeper water with icebergs often grounded in 400-500 m depths (Van Achter et al., 2022).

More often than not, the two processes are intertwined, as once an anchor point through grounding is in place, some of the

internal horizontal stress is redirected there. The most striking examples of this are the extensive landfast ice that forms off30

the northern coast of Siberia, in the Laptev and East Siberian Seas (Yu et al., 2014), as well as along the Alaskan coast, in the

Beaufort Sea (Mahoney et al., 2007, 2014).

Various attempts at representing landfast ice in Arctic simulations have been conducted in the past with a mix of these

processes, starting from the crude zero velocity condition using an ice thickness-to-depth ratio of Lieser (2004), an increased

maximum viscosity in Olason (2016), an artificially large tensile strength in Itkin et al. (2015) or the seabed stress parameteri-35

zation of Lemieux et al. (2015, hereafter referred to as L15).

Focusing on the latter – and some adaptations in Lemieux et al. (2016) for the Arakawa B grid staggering – L15 have

developed a parameterization for estimating the seabed stress due to grounded ridges1. It estimates the thickness of the largest

ridges within a model grid cell as a linear function of the mean thickness, which will be referred in the following as the LKD

(linear keel depth) parameterization. When the mean thickness is greater than a critical value that is a function of the local40

water depth, the parameterization assumes that ridge keels that are deep enough to reach the sea floor exist. In such a case, a

non-zero seabed stress is added to the sea ice momentum equation. The maximum seabed stress that can be supported by the

grounded ridge is a function of the weight of the ridge in excess of hydrostatic balance. This parameterization has the practical

advantage of being simple and easy to add in single and multi-category sea ice models. Moreover, model simulations ran over

a pan-Arctic domain with that parameterization show that seabed-ice interactions lead to realistic landfast ice covers along the45

Alaskan and Siberian coasts (L15; Lemieux et al., 2016).

However, as recognized by L15, there are a few caveats to that model. The first one is that it assumes that ridges thicker than

the mean ice thickness exist, irrespective of the ice formation and deformation history. This is of course not physically adequate

as there are situations where the ice thickness mostly results from thermal growth and much less from mechanical deformation.

This is particularly true for landfast ice. For example, in a situation where newly formed ice becomes landfast as it consolidates50

in relatively shallow waters, the mean thickness will mainly increase due to freezing at the base, or snow conversion to ice

at the top. As sea ice remains immobile, no ridges are formed. However in this specific case, the parameterization assumes

that ridge keels always exist, which can lead to an overestimation of the seabed-ice interaction. Despite the fact that the LKD

1The expression used in L15 was basal stress, but we find it somewhat ambiguous as other processes happens at the base of the ice that are unrelated to

interactions with the seabed.
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parameterization can be tuned with observations of landfast ice in terms of extent and timing, the predictive capability of such

a model is thus questionable in a context of rapid climate changes that affect ice thickness, ice types and ice dynamics.55

The second caveat of the LKD parameterization is that the keel depth varies linearly with the mean ice thickness, with a

tunable proportionality constant approximately equal to 8. However, many observational studies show that the thickness of the

deepest keels depend nonlinearly on the mean thickness. For example, Melling and Riedel (1996) report observations of ice

draft in the Beaufort Sea that suggest a power-law dependence of the keel draft to the surrounding level ice thickness with

an exponent of 0.5. Using submarine sonar observations in Davis Strait, Wadhams et al. (1985) show that the ice thickness60

distribution of ice thicker than 3−4 m follows a negative exponential. More recently, Haas et al. (2010) presented results from

a 2400-km long pan-Arctic airborne survey over old ice in the Arctic Ocean, between Svalbard and Alaska, and confirmed that

the ice thickness distribution is generally skewed with an exponential tail for values larger than 3− 4 m. Positively skewed ice

thickness distributions means that extreme values are not proportional to the mean, but rather non-linearly correlated to it.

Most contemporary sea ice models use an ice thickness distribution (ITD) to parameterize thermal processes and to describe65

the subgrid scale thickness variability arising from deformations. Flato and Hibler III (1995) explored in detail how different

parameterizations of mechanical redistribution in a 28-category model influence the resulting ITD in various places of the

Arctic Ocean. The model confirmed that positive skewness of the ITD is ubiquitous. However, the ITD is not typically resolved

with such a large number of categories in climate models or short-term forecasting systems (5-10 categories are usually the

norm). Thus, the tail of the distribution is still poorly represented in models. Nonetheless, we can approximate analytically the70

form of the tail and provide a parameterization that represents more faithfully the thickest keels and their interactions with the

seabed.

The main objective of this paper is to layout a probabilistic representation of the seabed-ice interaction that takes advantage

of the evolutive ITD. It can also take advantage of the high-resolution bathymetric information that is typically lost when a

model bathymetry is processed and filtered for a particular configuration. The work of Adcroft (2013) is a good example where75

subgrid scale bathymetry information is used to better represent the flow over a nonuniform seabed. Parameterizations of

seabed-ice interactions that rely on good quality bathymetric data are in principle less dependent on empirical tuning compared

to parameterizations that ignore subgrid scale information.

The structure of the paper is as follows. Section 2 presents a derivation of the probabilistic seabed-ice stress, and Section 3

describes the numerical implementation and experiments. Results are presented in Section 4 and discussed in Section 5.80

2 The probabilistic approach

The sea ice thickness field is highly heterogeneous due to mechanical processes such as compressive ridging that thickens

the ice, and crack opening that creates ice-free areas in which new ice can form. Since the pioneering work of Thorndike

et al. (1975), these processes are explicitly represented in sea ice numerical models through the evolution of an ice thickness

distribution (ITD) usually called g(h), where h is the ice thickness. As noted by Thorndike et al. (1975), g(h) can be interpreted85

as a probability density function (PDF) that gives the likelihood that a point will have a thickness h. In this sense, the ice
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thickness is interpreted as a random variable x, which has a PDF g(x) that is supposed to be representative of the ice thickness

distribution over of certain area — corresponding to the grid cell area in the context of a numerical model. In the rest of the

paper, we will use the symbol h when we refer to statistical moments of the distribution. As we are interested to know if and

how sea ice interacts with the seabed, we will assume that the seabed depth in a given grid cell is also represented by a random90

variable y characterized by the probability density function b(y). Ice of thickness x touches the seabed if the draft of the ice,

which is function of ice thickness that we call D(x), is larger than the height of the water column y.

Generally, D(x) represents the hydrostatic equilibrium of the floating ice under snow loading. However in the following,

we will discard the snow contribution and consider the simpler relationship D(x) = ρix/ρw, where ρi and ρw are the ice and

water densities, respectively. This relationship is easily invertible and allows to simplify the equations.95

Assuming that both variables are independent, the probability that the ice is in contact with the seabed is noted as P(D(x)>

y) and is obtained by

P(D(x)> y) =

∞∫
0

y=D(x)∫
0

g(x)b(y) dydx (1)

If we assume that g(x) and b(y) represent respectively the ITD and the water column height distribution over a surface area

S, then SP(D(x)> y) represents the total area of ice that is in contact with the seabed and that can potentially exert friction100

inside the surface S. Now the maximum frictional stress of a flat block of ice of thickness x sitting on the ocean floor at a depth

y is equal to µsFN (x,y), where µs is a static friction coefficient and FN (x,y) is the normal force exerted by the excess weight

of the ice sitting on the ocean floor, normalized over a unit surface area of 1 m2. Neglecting once again the effect of snow, this

force is expressed as

FN (x,y) = ĝ (ρix− ρwy) , (2)105

where ĝ is the gravitational acceleration. Considering that x and y are fully characterized by their respective probability density

functions, the total maximum friction stress is obtained by integrating µsFN (x,y) over all water depth lower than D(x) and

over all thickness values, yielding

τmax
b = µsĝ

∞∫
0

y=D(x)∫
0

(ρix− ρwy) g(x) b(y) dy dx. (3)

This expression differs from the one proposed by L15 (their Eq. 21) in two ways. First, the LKD parameterization prescribes110

one keel depth for each mean thickness value, while in the probabilistic formulation, the solution is degenerated, which means

that there can be multiple keel depth values associated with different ITD that have the same mean thickness value. The second

difference is that the keel depth values depend non-linearly on the mean thickness, as opposed to LKD where the prescribed

dependence is linear. This will be further illustrated in Section 3.1 when discussing the ITD.
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To facilitate the numerical implementation, we follow L15 and the instantaneous horizontal seabed-ice stress vector τb is115

written as a function of the sea ice velocity u= ûı+ vĵ as

τb =−τmax
b

(
ûı+ vĵ
|u|+u0

)
e−αb(1−A). (4)

where αb is a constant controlling the dependence of the seabed stress on the ice concentration A and u0 is a small velocity

scale that assures a smooth transition between static and dynamic regimes. As in L15, it is also assumed that the kinetic friction

coefficient is equal to the static one (i.e., µs). The seabed stress vector is then included in the momentum equation as120

mi
Du

Dt
=−k×mifu+ τa+ τw + τb+∇ ·σi−miĝ∇η (5)

where τa is the wind stress, τw is the water stress, f is the Coriolis parameter, mi is the combined mass of ice and snow per

unit surface, σi the internal stress tensor of the ice (here due to the viscous-plastic rheology, following an elliptic yield curve)

and η is the sea surface elevation. In the next section, we describe how Eq. 3 is computed, and we emphasize these differences

by comparing the results using LKD as well as with observations.125

3 Probability density distributions and numerical implementation

Solving for the seabed stress using the probabilistic approach presented in the previous section requires that distributions

are known. In principle, these can have arbitrary shapes if the integral of Eq. 3 is computed numerically, which is done

here (see Subsection 3.2). The following subsections describe the ProbSI model and how it is implemented. We present how

distributions of ice thickness, or ice draft, and bathymetry are determined, how their parameters are optimized to represent130

seabed-ice interactions, and how sensitive the resulting seabed stress is to these parameters.

3.1 Ice thickness distribution

The number of thickness categories sea ice models typically use is a trade-off between the representativity of ice dynamics and

thermodynamics, and computational cost. Sea ice components of Earth climate modeling systems typically use five categories,

which is the default number of the Los Alamos Community Ice (CICE) model (Hunke et al., 2021). The Canadian Regional135

Ice-Ocean Prediction System (RIOPS, described in Dupont et al. (2015) and Smith et al. (2021)) uses 10 categories. In all cases,

thickness categories are chosen to represent the positively skewed distributions. However, their number is generally too low to

resolve the exponentially-decreasing tail of the distribution, and thus to make a precise assessment of the deepest keels that are

the most likely to interact with the seabed. Figure 1a shows an example of an ITD discretized as in RIOPS with 10 categories

with levels at 0, 0.1, 0.15, 0.3, 0.5, 0.7, 1.2, 2.0, 4.0 and 6.0 m. All categories are populated with ice. The last category includes140

ice thicker than 6.0 m and is in theory unbounded (note that the upper bound is arbitrarily set at 10 m in the plot). In CICE,

the mean thickness inside each category is in practical terms defined as the ratio between the partial ice volume divided by the

partial concentration of a particular populated category. This thickness varies between the bounds of the category following

thermodynamic processes, advection and mechanical ridging. However, ice properties can be redistributed in thickness space
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out of a given category to adjacent ones regardless of the relative position of this mean category thickness inside the bounds.145

The actual PDF of ice thickness inside each category is approximated by a delta function, a uniform distribution or a decreasing

exponential depending on the user’s input, and sometimes on the considered process (as shown below).

In order to represent the tail of the distribution and the depth of the largest keels, we proceed in two steps. The first step

consists in computing the mean and variance of the discretized (model) ITD and find a positively skewed PDF — let’s call

it f(x) — that has the same mean and variance. This ensures that the PDF conserves the same total concentration and mean150

ice thickness. The second step consists in identifying the percentile that best represents the thickness of the deepest keel for

this PDF, and then truncate the PDF to that value. This is necessary because PDFs are usually defined from 0 to infinity, and

because the contribution of small probabilities for extreme values are amplified by the term (ρix− ρwy) in Eq. 3, which may

result in an overestimation of the seabed stress. Note that the truncation to a certain percentile does not conserve the total

integrated concentration nor the volume. In the following, we will provide some estimation of this error.155

There is no general consensus on the functional form that the ITD should follow, and no model reproduces exactly observed

ITDs. Wadhams et al. (1985) suggested that ice thicker than 2 to 4 m can often be fitted by a negative exponential, while

Flato and Hibler III (1995) used a power law. Toppaladoddi and Wettlaufer (2015) assumed that ridged ice formation follows

a random process that is similar to the Brownian motion that obeys an advection-diffusion Fokker-Planck equation for which

the solution has a negative exponential. Roberts et al. (2019), using variational principles, macroporosity and a Mohr-Coulomb160

ridging rheology, show results that slowly converge to a negative exponential. However, despite the lack of consensus on the

functional form, the positive skewness is generally accepted as a property that a representative ITD should have.

The function we use here is the log-normal distribution that is both representative of observed ITDs with negative exponential

tails, and easily manipulable numerically. It is given by

fLN (x
′) =

1√
2πσx′

exp

(
(lnx′−µ)2

2σ2

)
(6)165

where µ and σ are determined from the mean m and variance v by the following expressions

µ= ln

(
m′√

1+ v′/m′2

)
(7)

σ =
√
ln(1+ v′/m′2). (8)

In this context, x′ is an adimensional quantity that is defined as x′ = x/λ, where x is the dimensional thickness (e.g. in meters)

and λ is the unit thickness (e.g. 1 m) that can be chosen arbitrarily. The same applies to m′ =m/λ and v′ = v/λ2 in Eqs. 7170

and 8, which are similarly adimensionalized. To ease the interpretation of the results in the remaining of the paper we use the

dimensional quantities in meters, i.e. with λ= 1 m. The dimensional percentile value xp = λx′p, corresponding to the value

below which a proportion p of thickness values fall, is given by

xp = λexp
[
µ+
√
2σ2 erf−1 (2p− 1)

]
. (9)

The value of xp should represent the thickness of the deepest keel one can find in an ice cover characterized by the correspond-175

ing ITD, and is a parameter to which the seabed stress parameterization is very sensitive. How this value is tuned is presented
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in Subsection 3.3.1. Once xp is determined, fLN (x) is truncated so that values x > xp do not contribute to the integral of Eq. 3.

Hence, the error introduced in truncating the integral using p= 0.997 is 0.3% in terms of concentration, which is by definition

equal to 1−p. The mean thickness of the the truncated ITD in Fig. 1c is equal to 2.13 m, which corresponds to a 2% difference

compared to the full distribution. These errors decrease of course with increasing values of p.180

Figure 1b shows a second example of an ITD where all categories are populated except the very last one, shown in yellow

in Fig. 1a. In this case, the redistribution scheme of the model did not produce ice thicker than 6 m (the maximum value of the

9th category). Consequently, the log-normal PDF associated to that ITD is truncated at 6 m (black triangle in Fig. 1b,f).

3.2 Bathymetry distribution

The bathymetry field of coupled ice-ocean numerical models is typically built from gridded datasets such as GEBCO (Becker185

et al., 2009) or ETOPO (Amante and Eakins, 2009), which are themselves aggregations of data acquired from many different

sources. In some places, the density of data points is much higher than the model grid resolution, while in some sparse areas,

data is absent and some level of interpolation is required. The method proposed here would allow for taking into account the

subgrid scale distribution of the bathymetric field. However, instead of creating these distributions at a particular resolution and

from a given database, we assume that the distribution is everywhere Gaussian, characterized by a mean value µb and a standard190

deviation σb. We then carry out a sensitivity analysis of the simulated landfast ice cover on the spread value and the impact

of truncating the distribution. This way, the model we propose here could be applicable in a variety of configurations where

the subgrid depth information is not necessarily available, given however that the spread value is optimized. As mentioned

above, the integration of Eq. 3 is done numerically, by sampling the two distributions over 100 points and integrating over the

appropriate bounds.195

3.3 Parameter optimization

As L15 showed in their sensitivity study, the occurrence of landfast ice does not depend to a first order on the magnitude of

the maximum seabed-ice stress, which scales with the friction coefficient µs, but rather on the keel thickness that determines

when the ice is touching the seabed (i.e. the probability of contact). In the probabilistic parameterization presented here, the

probability of contact in an oceanic cell, is mainly controlled by xp, which is the maximum value of g(x), and on the shallowest200

value of the bathymetry distribution b(y).

3.3.1 Deepest keel estimation

Using upward-looking sonar moored in the Beaufort Sea, Melling and Riedel (1996) measured the ice draft over 941 km of

drifting sea ice during winter 1991-1992. They related the draft of the keels hdk to the draft of surrounding level ice hdl. The

scatter plot relating these two quantities (Fig. 13 of Melling and Riedel, 1996) is a cloud of points for which the upper bound205

follows hdk = 16
√
hdl. Unsurprisingly, there is no unique relationship between the thickness of a keel with the thickness of the

surrounding level ice. Amundrud et al. (2004) used a similar methodology using another upward-looking sonar dataset, also
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Figure 1. Examples showing how the maximum seabed stress due to seabed-ice friction is calculated. Left panels (a,c,e) show an example

where all ice thickness categories are populated, including the last one (yellow bin) — note that for visualization purposes the last category

is bounded arbitrarily at 10 m. The corresponding thickest keel draft is the 99.7th percentile of the thickness PDF (black line), which is

x997 = 11.73 m (open triangle). Right panels (b,d,f) show an example where the partial concentration of the thickest ice category is zero.

The corresponding thickest keel draft is the maximum thickness of the last category (black triangle, x= 6 m), even though x997 = 9.96 m

(open triangle). The maximum basal stress τmax
b is here computed with a Gaussian bathymetric PDF with µb = 10.5 m and σb = 1.0 m2 and

truncated at 3 σb on both sides of the distribution (blue line). The PDFs are shown in linear (e,f) and logarithmic scales (c,d).
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in the Beaufort Sea, and found a similar relationship with an upper bound that follows hdk = 20
√
hdl (Fig. 13 of Amundrud

et al., 2004).

Ideally, a sea ice model that represents ridging dynamics (keel formation) should reproduce the broad characteristics of the210

observed relationship. The recent work of Roberts et al. (2019) represents a comprehensive effort to improve how Earth system

models reproduce ridge statistics. They do so by revisiting the energy-based method of Rothrock (1975) using variational

principles, and by taking into account sea ice macroporosity through a bivariate distribution. However, in order to be generally

applicable, the seabed stress formulation introduced here relies solely on the ITD. To retrieve the thickness of the deepest keels

in a PDF, here using a log-normal distribution, we assume that it corresponds to a percentile that would best fit the observations.215

Comparing model estimations of the thickest keels to direct field observations such as those presented by Melling and Riedel

(1996) and Amundrud et al. (2004), requires deriving a proxy for level ice thickness using only the available 10-category ITD

of the model. It is not possible to isolate individual ridges from the model ITD and associate their thickness with the thickness

of level ice flanking them, as it is done by Melling and Riedel (1996). Instead, if we assume that ice thicker than a certain

value hr was only formed through ridging, we can discriminate ridged ice and consider that the level ice thickness is the mean220

thickness of ice thinner than hr. Choosing hr = 4 m seems reasonable considering that values observed by Amundrud et al.

(2004) reach up to 3.5 m. We thus define hlevel as the mean thickness of the ice thinner than 4 m. Figure 2a shows that hlevel is

a scattered function of hmean, with values unsurprisingly lying below the 1:1 curve that saturate around 3.5 m. Figure 2c shows

that x997, i.e. the 99.7th percentile value of the log-normal fit of the ITD, is a good predictor of the largest keel depth when

compared to empirical relations of Amundrud et al. (2004) and Melling and Riedel (1996). The relation between x997 and hlevel225

bears a similar meaning as in Melling and Riedel (1996) especially in very compact conditions, where other mechanical and

thermal effects happening in marginal ice zones and in polynyas are avoided, a subset that is highlighted by the black dots. Note

there that model quantities are thicknesses, while observations are ice draft. Despite this discrepancy and the proxy definition

we use for level ice, it is quite stunning to see how the shape of the point cloud is similar to what is observed in the field.

This illustrates the major innovation of the probabilistic nonlinear approach compared to previous deterministic and linear230

approaches. The choice of the percentile value has been done so that most of the point cloud lies below the empirical curves,

but the definitive tuning procedure is done by comparing the simulated landfast ice area with observations (this is discussed in

section 4). In the following and otherwise noted, x997 will be used to truncate fLN (x).

3.3.2 Seabed stress sensitivity

Figures 1c and 1d show different fLN (x) based respectively on the ITD of Figures 1a and 1b, interacting with a truncated235

Gaussian PDF at ±3σb for the bathymetry. In Panel c, the thickness PDF is truncated at x997 = 11.73 m, which allows for

interactions with the bathymetry, and in Panel d x997 = 9.96 m but lies outside the PDF space, the maximum thickness being

limited to the last bounded and populated category of the ITD. This is an illustration of the sensitivity of the seabed stress on

the ITD, which is zero when no overlap exists between the two distributions.

The effect of the standard deviation and truncation of the bathymetric PDF on the seabed stress is further investigated and240

compared to the LKD method. A full Gaussian (FG), truncated Gaussian (at ±3σb; TG) and truncated uniform (covering the
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Figure 2. a) Relationships between level ice thickness hlevel, defined as the mean thickness of ice thinner than 4 m, and mean ice thickness

hmean. The full line indicates a 1:1 ratio. b) The largest keel thickness x997 as a function of the mean ice thickness hmean. The gray dash line

represents the LKD parameterization. c) x997 as a function of hlevel, with the solid and dash lines showing empirical relationship of Melling

and Riedel (1996) and Amundrud et al. (2004), respectively. Blue dots represent all grid points for 15 March 2010 while black dots show a

subset with A> 0.99999.

same span as the truncated Gaussian; TU) PDFs are tested with two different values of the standard deviation. Figure 3a shows

that, for σb=1.0 m and low values of the mean water depth µb, the new seabed stress magnitude is higher than that of LKD

and that this relation reverses at higher values of µb. Note that the figure uses a logarithmic scale and that differences are a few

orders of magnitude. As expected, TG yields a lower stress than that of FG when the ice is nearly touching the seabed, but both245

curves converge as the water depth decreases. The truncated uniform distribution (TU) yields stress values that are slightly

larger as the probability of shallow bathymetry intersecting ice is always higher. Increasing the standard deviation of the water

depth distribution (Fig. 3b) also increases the probability of shallow bathymetry intersecting ice, and therefore leads to a slight

increase in stress. For the same reason, the stress approaches zero at a greater mean water depth for all bathymetry PDFs.

Because of the two latter effects, the stress for the PDFs crosses over that of LKD at higher values of µb. The cutoff values for250

both truncated PDFs are the same and nearly equal to x997 +3σb, i.e. when there is no longer any contact. For σb = 1.0 m,

the cutoff happens at a value below 14.73 m, and for σb = 2.5 m, the cutoff happens at a value below 19.23 m. The cutoff for

LKD happens at µb = k1hmean = 16.36 m, which is qualitatively very close to that of the truncated PDFs for σb = 2.5 m. As it

was already noted that the actual value of the maximum seabed stress has less impact than the value of the deepest keels has,

the cutoff value is therefore an interesting evidence that, at σb = 2.5 m, LKD and TG formulations should yield similar results.255

On the other hand, FG cutoff would be too low at σb = 1.0 m and too large at 2.5 m with a slow sloping off. In this context,

we found the behaviour of TG more similar to that of LKD and therefore more appropriate for a numerical implementation.
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We show further down how the landfast area is impacted by the choice of the standard deviation in the bathymetry distribution

using TG.

3.4 Experimental setup260

A coupled ice-ocean model is used to perform the numerical experiments. The model grid covers the Arctic and part of the

North Atlantic oceans with a nominal 0.25◦ resolution. This grid represents a subdomain of the 0.25◦ global ORCA grid, which

has a grid spacing of ∼12 km in the central Arctic.

The sea ice model is the Community Ice Model CICE version 5.0 (Hunke et al., 2015) with some modifications: the UK

Met Office CICE-NEMO interface (Megann et al., 2014), the grounding parameterization of L15 and Lemieux et al. (2016)265

and the new seabed stress parameterization described in this paper. NEMO version 3.6 (Madec, 2008) is the ocean model. It

is applied in a variable volume and nonlinear free surface configuration with 75 vertical levels, which follows closely that of

Lemieux et al. (2016). The Turbulent Kinetic Energy scheme (TKE, a simple one equation closure) is used for ocean mixing.

Both sea ice and ocean models use an advective time step of 10 minutes (600 s). The EVP method with 480 subcycles is used

to solve the sea ice momentum equation. Ten (10) thickness categories (as defined above and used first in Smith et al. (2016))270

are employed for the CICE ice thickness distribution (ITD) model.

Vertical profiles of temperature, salinity and ocean currents are prescribed at the North Atlantic and North Pacific open

boundaries. These profiles come from GLORYS2 version 4 reanalysis (Garric et al., 2017) monthly-averaged fields. Atmo-

spheric forcing fields for the coupled ice-ocean simulations are the 33 km resolution reforecasts of Smith et al. (2014). This

atmospheric dataset covers the period 2001-2010. This is a relatively short period for conducting a spinup followed by an275

analysis of model results. As done in Lemieux et al. (2018) and explained below, this issue is mitigated by using a special

procedure for the spinup.

Average (September-October 2001) sea ice concentration from the National Snow and Ice Data Center (NSIDC, http://

nsidc.org/data/seaice_index/) and average (October-November 2003) sea ice thickness field derived from ICESat data (https:

//nsidc.org/data/icesat) were used to initialize the sea ice model. The sea ice starts at rest. For the ocean model, the initial280

temperature and salinity fields are September-October averages from WOA13_95A4 (Locarnini et al., 2013; Zweng et al.,

2013). The ocean also starts at rest; the currents and the sea surface height field are set to zero.

These fields were used to initialize the CICE-NEMO model for what we refer to as the pseudo-spinup. The pseudo-spinup

consists in a simulation running from 1 October 2001 to 30 September 2002 that is repeated three times. Following these three

years of simulation, the coupled model is restarted on 1 October 2001 and ran until 15 September 2004. These last three years285

of the simulation are considered as the final spinup. Note that the LKD parameterization was used for the complete spinup

procedure. September 2004 simulated fields are used to restart simulations for optimizing parameters (see section 4) and to

perform long-term experiments for model result analyses.

All the simulations for this paper use the ice strength parameterization of Hibler (1979) with P ∗ = 27.5 N m−2. The ellipse

aspect ratio is e= 1.4 and a small tensile strength value is added by setting kt = 0.05 (Lemieux et al., 2016). Following Chikhar290
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Figure 3. Maximum seabed stress τmax
b computed with Eq. 3 using the ice thickness distribution of Fig. 1a, fitted with a lognormal distribution

with mean m= 2.18 m and variance v = 3.03 m2, truncated at x997 = 11.73 m, as a function of the mean water depth µb with standard

deviation σb = 1.0 m (a) and σb = 2.5 m (b), on a logarithmic scale. The friction coefficient is set to µs = 0.7. The three bathymetry

probability density functions (PDF) are shown in (c): a full Gaussian distribution (FG, dashed blue), a truncated Gaussian distribution (TG,

blue) and a uniform distribution (TU, blue-green) both truncated at ±3σb. The LKD method with k1 = 7.5 and k2 = 15 N m−3 is represented

in black and, since it is independent of σb, its bathymetry distribution is a Dirac delta function (e.g., the vertical line in c).
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et al. (2019), the ice-atmosphere roughness and ice-ocean roughness are respectively set to 5.7× 10−4 m and 1.82× 10−2 m.

The other sea ice physical parameters are the default values of CICE version 5.0 (Hunke et al., 2015).

From the September 2004 simulated fields, two simulations are restarted and ran until 31 December 2010. In the first

simulation, the LKD is used while in the second simulation the new probabilistic seabed-ice stress approach is used (referred

to as ProbSI). Outputs from the numerical experiments are daily mean values defined at tracer points. The daily mean ice295

velocity ud = ud ı̂+ vd ĵ is used to calculate the ice speed (u2d+ v2d)
1/2 at each grid cell. As in L15 and Lemieux et al. (2016),

ice is assumed to be landfast if its two-week mean speed is lower than 5× 10−4 m s−1. A two-week window is used as a

shorter period could cause false assessments of landfast ice when the winds are weak. The landfast ice area for a given region

(the East Siberian, Laptev and Kara Seas, the three regions under consideration are displayed in Figure 4) is computed every

2 weeks by summing the area of landfast cells. Using the McGill sea ice model, L15 found an optimal value of k1 = 8 for300

the LKD method. A similar optimization procedure (results not shown) was repeated with our CICE-NEMO setup and led to

a close value of k1 = 7.5. Finally, in ProbSI, a maximum water depth is used for limiting the seabed-ice keel interaction to

waters shallower than 50 m.

3.5 Landfast ice dataset

In order to determine which model formulation is the most appropriate, we compare the landfast ice area to that derived305

from observations, here taken as analyzed ice charts. The National Ice Center (NIC) Arctic Sea Ice Charts and Clima-

tologies in Gridded Format dataset covers the period from 1972 through 2007 (Fetterer and Fowler, 2006, updated 2009).

The analysis of landfast ice is derived from the U.S. National Ice Center weekly/bi-weekly ice charts (Detrick et al., 2001)

(https://www.natice.noaa.gov/products/weekly_products.html). This product is analyzed by subject matter experts using near-

real time satellite data and various additional meteorological and oceanographic data resources, and provides observed sea310

ice concentration, stage of development, and partial concentration of sea ice types. Using the same approach, the landfast ice

dataset is extended to cover our period of interest. We refer to our extension of the NIC dataset as NICext. Landfast ice is

identified where the form of ice is coded as "08". Occasionally, landfast ice is reported with a total concentration of 10/10

without any information about partial concentration, stage of development or form of ice. The ice charts are composed of poly-

gons of various sizes and shapes. Within a polygon, it is assumed that the ice condition is homogeneous. To make use of the315

information, the ice charts are first rasterized on a 5-km grid. Then to compare with the model on the model grid, the nearest

grid point on the 5-km grid is taken. The difference between the two landfast ice datasets (NIC and NICext) is in general very

minor during the overlapping period as can be seen in Fig. 8.

4 Results

Fig. 5 shows a pan-Arctic view of the daily averaged mean thickness hmean, the keel depth given by x997 in ProSI and xk1 =320

k1 hmean in LKD, as well as the difference between the two on 15 April 2010. Clearly, LKD overestimates the keel depth

almost everywhere compared to x997. The largest difference occurs north of the CAA where the keel depth reaches values
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Figure 4. Computational domain shown in slanted black lines along with the three regions for which total landfast area is calculated (’A’ for

East Siberian Sea, ’B’ for Laptev Sea and ’C’ for Kara Sea. Taken from Fig. 2 of Lemieux et al. (2016), Crown copyrights.
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Figure 5. Ridge keel thickness estimated by the LKD parameterization xk1 = 7.5hmean (a) and by x997 (b), the mean ice thickness hmean (c)

and the difference between x997 and xk1 (d) on 15 April 2010.

larger than 35 m. Even though such keel depth values have been observed on certain occasions, they still remain extremely

rare and it is clearly unrealistic to have them covering such a large area (e.g. Wadhams and Davy, 1986). In the Lincoln Sea,

north of the Nares Strait that separates Canada and Greenland at 83◦N, the difference between xk1 and x997 is larger than325

20 m, owing to the fact that the ice there is thick (hmean ' 6 m) but relatively undeformed compared to ridging sea ice in nearby

ridging lines. This stems again from the linear dependence between xk1 and hmean, which overestimates the keel depth for

mean thickness over 4 m (Fig. 2). The only locations where xk1 is smaller than x997 are in marginal ice zones and leads, where

ice is generally thinner. Note that these differences between LKD and probSI do not have any impacts except in regions where

there is grounding. Over the Siberian shelves, where grounding is prevalent, xk1 is moderately larger than the probabilistic330

estimation.
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Figure 6a shows the weak sensitivity of running the model with the probabilistic approach and different values of the cutoff

percentile at σb = 0.5 m in terms of the area covered with landfast ice in Region B (Laptev Sea). There are even periods where

the order is not necessarily the expected one as the second lowest cutoff percentile can result in the largest area (e.g., beginning

of April 2005). The sensitivity to the variance of the water depth distribution is also explored in Fig. 6b with x997. The results335

closer to the observations for the maximum landfast ice cover are visually in between σb = 1.5 or 3.5 m. An in-between value

of 2.5 is therefore chosen hereafter when not specified. This also corroborates the initial findings of the sensitivity analyses

presented in Section 3.3.2.

In regions of recurrent landfast ice, as in the Laptev and East Siberian seas (Fig. 7), the seabed stress is compared for the

same date. The ProbSI and LKD stresses are non-zero in mostly the same spots. The ProbSI stress displays more low values340

in the deeper parts (the scale is logarithmic in the figure) which is the result of LKD having a flatter plateau followed by a

sharper cutoff with increasing water depth as illustrated previously in Fig. 3. Following the same reasoning but for decreasing

water depth, the hotpots values are larger in ProbSI. However, more importantly is that their locations — the landfast anchoring

points — are the same in both formulations, which ensures a similar representation of the landfast ice.

The interannual variability in landfast area is then investigated over the different Siberian seas in Figure 8. The simulated area345

in all seas is very similar using both methods and is in general very close to the one given by the proxy-observations. The two

methods are especially close in Kara Sea where we expect indeed less contribution from grounding to the landfast ice formation

(L15; Lemieux et al., 2016). The East Siberian Sea exhibits some bi-modal distribution of the extent of the landfast ice (the

larger mode is present in 2005, 2006 and 2010 while the smaller mode is visible in almost all years) that both methods capture.

Only in Kara Sea, both methods can overestimate the area and in one year in particular by almost a factor of 2. Interestingly,350

ProbSI exhibits breakup events in the middle of the season in Laptev Sea that would require further investigation, but otherwise

is close to LKD and the proxy. ProbSI is again able to reproduce the LKD results although we note that the onset of the landfast

period is always earlier in ProbSI. This means that strong modelled ridging events happen quite early in the sea ice season.

The ice chart information tends to show a slower onset, even relative to LKD. Later in the season and in the East Siberia and

Laptev Seas in particular, the opposite is visible, i.e. the landfast area is larger in LKD than in ProbSI. This indicates that,355

with overall thermodynamic growth, LKD responds with an associated deeper keel and larger regions of grounding whenever

possible. In contrast, in ProbSI the deepest keel is more dominated by (early) local deformation, and therefore less inclined

to increase during the season. The timings of the breakup of the landfast ice cover are similar for both parameterizations and

agree reasonably well with the observations. However, the decrease in the simulated area of landfast ice is not as sharp as in

the observations.360

As introduced by Laliberté et al. (2018), we also computed the mean number of months of landfast ice per year over the six

year period of the simulations (September 2004 to September 2010). Despite the earlier onset of the landfast regions in ProbSI,

the overall period of landfast cover is similar to that of LKD over the Siberian shelves (Fig. 9). However, ProbSI displays a

lower number of landfast months in the central Laptev Sea, where ProbSI is more prone to breakup events as seen already

in the high frequency fluctuations in 8c. Nonetheless, the difference in other parts of the Arctic Ocean are very small or not365

significant as in the CAA, where we expect landfast to be due mainly to the formation of ice arches (i.e., land-lock regions).

16



Figure 6. Area of landfast ice in Laptev Sea during winter 2004-2005 simulated with the ProbSI formulation and compared to NIC data. The

top panel shows results with σb = 0.5 m and different values of xp, while the bottom panel shows results with x997 and different values of

σb.
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Figure 7. Water depth (a) and basal stress due to seabed-ice interaction in the Laptev and East Siberian Sea on 15 April 2010 for the LKD

(b) and ProbSI parameterizations (c).
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Figure 8. Area of landfast ice in the East Siberian Sea (top), the Kara Sea (center), and the Laptev Sea (bottom) as a function of time.

The blue curves are for LKD while the red ones are for xkmax = x997 and σb = 2.5 m. In the three figures, the bold black curve is the area

calculated from the NIC data while the gray curve is extended database produced with the same method.
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Figure 9. A 6-year average of the number of months per year during which the ice is landfast a) obtained from the NIC charts and extensions,

b) with the LKD parameterization and c) the ProbSI model with σb = 2.5 m.

We note though that both parameterizations overestimate landfast ice in some parts of the CAA because tides are not included

in these simulations (Lemieux et al., 2018).

5 Discussion

A probabilistic approach to sea-ice grounding based on the ITD information and PDFs of the bathymetry is proposed and370

compared to the simpler LKD approach. We illustrate the need for tuning one important parameter, mainly the percentile

thickness at which the seabed stress calculation is truncated. Here, we selected the 99.7th percentile of the equivalent log-

normal distribution, x997, after a comparison with observations of deepest keel to level ice thickness relations by Melling and

Riedel (1996) and Amundrud et al. (2004), and a sensitivity analysis of the model compared with observed landfast ice cover

in the Arctic.375

The model simulations show a significant sensitivity to the standard deviation of the bathymetry distribution that we simply

represent here as a truncated Gaussian having a value of 2.5 m over the entire domain after comparison with ice charts.

The coupled ice-ocean model is then run over the Arctic over a longer period to illustrate the difference between LKD and

ProbSI methods over multiyear timescales. Results show that the onset of the landfast period happens more abruptly with

the probabilistic approach. However in general the results are very close, i.e. within the one-month error margin associated380

with the definition of the landfast ice cover. The stronger onset is likely due to early deformation events captured by the

model. This is however not well supported by ice chart information. Selyuzhenok et al. (2015) suggest another explanation,

namely that a stronger than observed resistance of the model to deformations can also contribute to the landfast ice formation.

Another hypothesis that Selyuzhenok et al. (2017) put forward is that the thin and loose ice can still be mobile despite the

presence of ridged features anchored to the bottom. In all cases, an in-depth analysis is required to investigate what is behind385

this discrepancy. By refitting the ITD to a log-normal distribution using the mean and variance, it is expected that the ProbSI

20



method may be less reliable when the ice is thin. For example, forming new thin ice might in some cases lower the variance

thereby lowering the keel depth and reducing the friction with the seabed. This is maybe what explains break-up events in

ProbSI that do not happen in LKD in the Laptev Sea (see in Fig.8).

Nonetheless, because this method uses a somewhat more realistic representation of maximum keel depths, discrepancies390

between results and observations are prone to highlight problems or caveats in other aspects of the model, such as sea ice

dynamics, ridging schemes, ITD resolution, or insufficient or bad bathymetry data in some areas. In particular, we stress the

importance of retaining subgrid scale bathymetry information in order to better constrain µb and σb.

Obtaining x997 as an estimation of the deepest keel depth was done by looking at relatively thick and highly deformed ice.

The discrepancies noted between LKD and ProbSI in marginal ice zones (e.g., Fig 5d) were not investigated, as it was not the395

focus of the paper, and should be interpreted with care. Sea ice dynamics and thickness redistribution are potentially influenced

by processes associated with surface ocean waves propagating into the ice cover such as fragmentation and rheology (Dumont

et al., 2011; Boutin et al., 2020) that are under study by other authors. Nonetheless, the fact that x997 is significantly different

than xk1 in Fram Strait, a region where highly deformed ice cohabits with new ice formed in leads and cracks, is consistent

with the fact that the maximum keel depth is a nonlinear function of the mean ice thickness, which is duly taken into account400

by ProbSI.

The probabilistic approach to estimate the deepest keel depths from a numerical sea ice models opens up a few interesting

perspectives for research and applications. For instance, a probability of finding very thick sea ice, which constitutes a hazard

for ice-going ships, can be easily diagnosed from the log-normal distribution. It also opens up the possibility to introduce

icebergs directly within the model ITD, instead of modifying the model land-ocean mask, as is done by Van Achter et al.405

(2022), to take into account their role in the stability, location and timing of landfast ice covers. Finally, a closer inspection of

landfast ice formation and rupture in the model in comparison with adequate observations is needed in order to further refine

the method and understand the local and non-local impacts of seabed-ice interactions on other aspects of sea ice dynamics.
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weekly/bi-weekly ice charts are available at https://www.natice.noaa.gov/products/weekly_products.html. The CICE-NEMO code and the410

atmospheric forcing used for the simulations are available upon request. The ProbSI method for computing the seabed-ice keel interaction is

implemented in CICE version 6.0 and is available at https://github.com/CICE-Consortium/CICE.
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