
Response to Reviewers’ Comments 

Dear Petty, 

We are grateful to receive your valuable and constructive comments in helping us 

improve this manuscript. According to your comments and suggestions, we have 

revised the manuscript seriously, including data, algorithm, discussion and conclusion. 

Please find the point-to-point responses as follows (Reviewer’s comments in black and 

responses in blue). Thank you very much! 

Reviewer: 2 

Review of ‘Estimating snow depth on Arctic sea ice based on reanalysis reconstruction 

and particle filter assimilation’ by Li et al.,  

Review by Alek Petty 

Summary 

This study presents estimates of snow depth on Arctic sea ice from an updated version 

of the NASA Eulerian Snow on Sea Ice Model (NESOSIM) and a particle filter data 

assimilation scheme to combine the model estimates with satellite-derived snow depth 

data (RA-5VLSTM). The results were compared primarily with snow depths collected 

by NASA’s Operation IceBridge and also some more limited Ice Mass Balance, and a 

MOSAiC snow depth buoys. The results were also compared with a Kilic et al., (2019) 

snow depth dataset produced from regression of IMBs to passive microwave data, and 

also the modified version of the Warren climatology.  

General comments 

In general, I think the approach of this study was good–use a new data assimilation 

approach to constrain NESOSIM output and potentially improve its ability to simulate 

snow depth on Arctic sea ice. However, I have a number of concerns about this study 

which I detail here: 

1. NESOSIM is an open-source model (https://github.com/akpetty/NESOSIM) so 

community development is actively encouraged - e.g., adding new parameterizations, 

data assimilation modules etc., into the official code base. The framing of an Improved 

NESOSIM was thus slightly odd, although obviously this could also be a 

language/communication issue. The ‘Improved’ nature of this model framework was 

also somewhat underwhelming. The atmosphere loss term included as 1 of only 2 

‘improvements’ in this version of NESOSIM has already been integrated into 

NESOSIM (v.1.1, https://github.com/akpetty/NESOSIM/releases/tag/v1.1). The 



authors made a note of this term being introduced already but made no link to the 

official code repo and still included it in your own ‘improved’ version. This means the 

only new parameterization introduced here (to generate the Improved NESOSIM 

framework) was the simple degree day temperature/melt parameterization. I think this 

parameter inclusion makes broad sense (we’ve considered something along these lines 

ourselves) but i) it was not actually clear that this specific parameterization helped 

improve the simulation of snow depth as most of the validation occurred in 

winter/spring and ii) this could have been communicated as a simple added parameter 

to NESOSIM. I think the atmosphere loss term was much more significant and we’ve 

found this to be a useful additional tuning factor, although one not well constrained by 

observations. Indeed most of what this study is doing is bias correcting towards the OIB 

quicklook data. On that note, I didn’t see any information about making the code 

available (e.g., the degree day melt model or the particle assimilation approach) which 

was surprising considering the authors utilized extensively an open-source model for 

much of this work.  

Response: Thank you for this thought-provoking suggestion. We are sorry for the 

misunderstanding caused by the description in the initial manuscript. We redescribe the method 

in this paper. The atmospheric loss term, proposed by Petty (2020), makes broad sense. 

However, the melting term is also an essential process. With global warming, the melting 

process will be more intense and its contribution to the change of snow depth will increase. The 

melting process we currently consider is relatively simple. In the future, we will consider more 

complex melting processes to continuously develop the model. 

(1) According to the suggestion, we rename the methods in this paper as NESOSIM v1.0 

(including four parameterization processes), NESOSIM_M (adding additional atmospheric 

loss term and melting term, M refers to melting process) and NESOSIM_M-PF (Data 

assimilation is included). 

(2) Then, we give the website of official code, https://github.com/akpetty/NESOSIM, 

indicating that the NESOSIM is an open-source model. The detailed revisions are as follows: 

Petty et al. (2018) developed a two-layer snow depth model (i.e., NESOSIM v1.0), 

and snow was divided into a new snow layer and an old layer. NESOSIM is an open-

source model (https://github.com/akpetty/NESOSIM) that offers public for 

contributing their efforts to further develop this model.  

(3) Finally, when describing the NESOSIM_M model, we point out that the atmospheric loss 

term was proposed by Petty (2020). On this basis, we propose that the melting term needs to be 

considered in this model. The detailed revisions are as follows: 

3.2.2 NESOSIM_M 

In addition to wind packing and blowing snow loss to leads, wind cause snow loss to the 

atmosphere, resulting in the redistribution in snow depth. In 2020, Petty (2020) updated the 



NESOSIM v1.0 and proposed that the snow lost to the atmosphere process should be considered. 

Similar to the blowing snow lost to leads and wind packing processes, snow is lost to the 

atmosphere when U exceeds 5 m s-1. The atmospheric loss term is determined by the blowing 

snow coefficient, atmospheric loss coefficient (γ), wind speed and depth of the new snow layer. 

The equation is as follows: 

∆hs
atm

(t)= -βγUThs(t, 0)                                                     (12) 

Besides adding the snow lost to the atmosphere term proposed by Petty (2020), we introduce 

a simple melting term to develop the NESOSIM_M. 

With the continuous warming of the Arctic, snow melting becomes increasingly dramatic. In 

this study, NESOSIM starts to run in mid-August and continues to run until the following mid-

May. The mid-August is selected because there is heavy snowfall in the central Arctic, and 

great snow melting events in June and July have been avoided (Petty et al., 2018). In mid-

August, sea ice is mainly distributed in the central Arctic, and snow melting events also mainly 

occur in the central Arctic. For the sea ice within the central Arctic, Stroeve et al. (2006) 

revealed that a threshold closer to 0 °C would agree more closely with passive microwave 

(PMW)-based melt onset (MO) dates. Therefore, we choose 0 °C as the threshold. When the 2-

m temperature (Tair) is higher than 0 ℃, we consider that there occurs a snow melting process 

on sea ice. 

∆hs
melt

(t)= -Tair(t)Tτρ
w

/ρ
s
n                                                    (13) 

where 𝜏 is the degree-day factor and 𝜌𝑤 is the water density. We set 𝜏 to 6.3×10-8 m ℃ -1 s-

1 (Kuchment and Gelfan, 1996), which is determined via the degree-day method. 

2. A big issue is that quick-look OIB snow depths are used as truth, with bias 

corrections/model calibration carried out to improve the fit to this dataset, essentially. 

However, deriving snow depths from Snow Radar data collected by OIB is challenging 

(Kwok et al., 2017,) and wide differences exist across the different products. We make 

a big point about this in the original NESOSIM paper (Petty et al., 2018, P2018). More 

recent research has shown that OIB QL is ~5 cm thinner than the consensus from the 

three ‘final’ products analyzed in P2018 (Petty et al., in prep), see preliminary figure 

below. These are (since 2013) quick-look data, supposed to provide a basic overview 

of sea ice conditions, not really a reliable dataset for validating models/retrievals.  

 



Figure 1: Comparison of the median snow depth from the three different OIB snow 

depth products used in Petty et al., (2018) and the quick-look (QL) OIB snow depth 

data. Data are gridded to a 100 km polar stereographic domain before the comparison. 

Response: Thank you for this thought-provoking suggestion. We agree that OIB quick look 

(OIBQL) product has relatively large errors compared with other ‘final’ products. We are sorry 

that we do not describe the error of OIBQL clearly. At present, there are three OIB products 

available to the public: (i) the IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick 

Look, Version 1 (hereafter referred to as OIBQL), covering the period 2012-2019; (ii) the 

IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 1 (IDCSI4, hereafter 

referred to as OIBIDCSI4), covering the period 2009-2013; and (iii) the Snow Depth on Arctic 

Sea Ice Data Set (Newman et al., 2014) which is provided by the NOAA (hereafter referred to 

as OIBNOAA), covering the periods 2009-2012 and 2014-2015. In the current situation of scarce 

in-site data, the OIBQL product provides more data than the other two OIB products and can 

provide us with an intuitive comparison result of snow depth as well. However, before using 

this data, the error of the product should be clarified. The OIBQL product underestimates the 

snow depth, and the mean bias is about -5 cm. According to the suggestion, when determining 

the model, we not only use the OIBQL product to determine the model parameters, but also add 

the accuracy evaluations based on the OIBIDCSI4 product to further determine the model 

parameters. 

In section 4.2, we added OIBNOAA and OIBIDCSI4 to evaluate snow depth estimates. The results 

show that after adding melting term and atmospheric loss term, the accuracy of NESOSIM_M 

snow depth decreased, but the accuracy of the NESOSIM_M-PF snow depth has been greatly 

improved compared to NESOSIM v1.0, NESOSIM_M and RA-5VLSTM. When using the 

MOSAiC product to evaluate snow depth estimates, NESOSIM_M snow depth accuracy is 

significantly better than NESOSIM v1.0 snow depth. The accuracy of NESOSIM_M-PF snow 

depth is better than that of satellite-derived snow depth and NESOSIM_M snow depth. In the 

future, more in-site data are needed to further evaluate the results, continuously optimize the 

model parameters and improve the snow depth estimates. 

The detailed revisions are as follows: 

(1) We have added two OIBIDCSI4 and OIBNOAA products and more OIBQL information in section 

2.6 as follows: 

The Operation IceBridge (OIB) mission is proposed for filling the data gap between ICESat 

and ICESat-2, providing snow depth on sea ice, sea ice thickness, and sea ice type information 

in the Arctic. These data are widely applied to evaluate satellite-derived or simulated snow 

depth values. In this study, three OIB products are used which are available to the public: (i) 

the IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look, Version 1 (hereafter 

referred to as OIBQL), covering the period 2012-2019; (ii) the IceBridge L4 Sea Ice Freeboard, 

Snow Depth, and Thickness, Version 1 (IDCSI4, hereafter referred to as OIBIDCSI4), covering 

the period 2009-2013; and (iii) the Snow Depth on Arctic Sea Ice Data Set (Newman et al., 



2014) which is provided by the NOAA (hereafter referred to as OIBNOAA), covering the periods 

2009-2012 and 2014-2015. OIBQL has a mean bias of about -5 cm, underestimating snow depth 

(Kwok et al., 2017). OIBIDCSI4 product tends to underestimate snow depth (mean bias is about -

1 cm) and OIBNOAA tends to overestimate snow depth (mean bias is about 2 cm). OIBQL data 

from 2014 to 2017 are considered to develop the snow depth model (Fig. 2(a)). OIBQL data 

from 2018 to 2019, OIB IDCSI4 in 2013 and OIBNOAA from 2014 to 2015 are employed to evaluate 

the established snow depth model (Fig. 2(b), 2(c) and 2(d)). 

 

Figure 2. Spatial distribution of (a) the OIBQL track for modeling from 2014 to 2017, (b) the 

OIBQL track for validation from 2018 to 2019, (c) the OIBIDCSI4 track for validation in 2013, (d) 

the OIBNOAA track for validation from 2014 to 2015, (e) the fifteen IMB tracks for modeling 

from 2012 to 2018, and (f) the MOSAiC snow buoy track for validation from 2019 to 2020. 

Note that the legends of (e) and (f) indicate the name of the buoy. 

Reference: 

Newman, T., Farrell, S. L., Richter-Menge, J., Elder, B., Connor, L., Kurtz, N., and McAdoo, 

D.: Assessment of radar-derived snow depth measurements over Arctic sea ice. J. Geophys. 

Res.: Oceans, 119, 8578-8602, https://doi.org/10.1002/2014JC010284, 2014. 

(2) We have added related contents based on the OIBIDCSI4 product for determining the optimal 

parameters of models in section 4.1.1 as follows: 



When we increase in β value, the peak value of the deviation between derived snow depth 

and OIBQL moves towards the value of 0, and the frequency of high deviation decreases (Fig. 

3). When the default value is applied, the mean bias between the simulated snow depth and 

OIBQL-measured snow depth is 10.8 cm (Fig. 3). When a value of 5.8×10-7 m-1 is applied, the 

deviation from the OIBQL data slightly decreases (Fig. 3). When a value of 11.6×10-7 m-1 is 

applied, the mean bias is reduced to 7.7 cm (Fig. 3). We finally choose a value of 11.6×10-7 m-

1 to obtain the most accurate snow depth estimates among the three simulated snow depth 

vectors. The NESOSIM v1.0 snow depth is generated. Then, we use OIBIDCSI4 snow depth to 

compare the default snow depth with the determined NESOSIM v1.0 snow depth. The 

NESOSIM v1.0 snow depth is more consistent with OIBIDCSI4 snow depth (Fig. 4). The RMSE 

decreases from 7.1 cm (default snow depth) to 6.0 cm (NESOSIM v1.0 snow depth), and bias 

decreases from 3.4 cm (default snow depth) to 1.2 cm (NESOSIM v1.0 snow depth). 

 

Figure 3. Distribution of deviations between OIBQL snow depth and modeled snow depths 

(considering different 𝛽 values) from 2014 to 2017. 



 

Figure 4. Comparison of the modeled snow depth and the OIBIDCSI4 snow depth data. (a) The 

modeled snow depth using default β value; (b) the modeled snow depth using β value of 

11.6×10-7 m-1. 

(3) We have redrawn Figure 5 (Figure 4 in the initial manuscript) and revised related contents 

in section 4.1.2 as follows: 

First, we incorporate a melting term into the four basic parameterization processes to verify 

whether the added melting term improves the model accuracy. Compared to NESOSIM v1.0, 

the mean bias decrease from 7.7 cm to 7.2 cm (based on OIBQL product) by adding the melting 

term. The peak value of the deviation moves further towards the value of 0 (Fig. 3 and Fig. 

5(a)). Under global warming, the effect of the snow melting process will become increasingly 

obvious. Therefore, considering the melting term is necessary and helpful to understand the 

snowpack evolution. 

Next, we add the atmospheric loss term. The amount of snow lost is determined by the 

atmospheric loss coefficient γ, and experiments are carried out to determine γ. Then, γ values 

of 0.0125, 0.015, 0.020 and 0.025 are tested. The results suggest that including the atmospheric 

loss term greatly reduces the bias between the simulated snow depth and OIBQL-measured snow 

depth; namely, with increasing coefficient, the bias decreases. When we set γ equal to 0.025, 

the bias is only 0.6 cm and deviations are evenly distributed on both sides of the 0 value (Fig. 

5(b)). According to the deviations between OIBQL snow depth and modeled snow depths, three 

options (0.015, 0.020 and 0.025) are chosen to determine the corresponding distribution as well 

as the OIBQL snow depth distribution (Fig. 5(c)). When γ is equal to 0.015, snow depths greater 

than 48 cm cannot be simulated by NESOSIM_M, but when γ is equal to 0.020, NESOSIM_M 

is ineffective at snow depths greater than 45 cm, whereas when γ  is equal to 0.025, 

NESOSIM_M is ineffective at snow depths greater than 43 cm. With increasing atmospheric 

loss coefficient, the retrieval ability of NESOSIM_M for thick snowpacks is weakened. 



 

Figure 5. (a) Distribution of deviations between OIBQL snow depth and modeled snow depths 

(NESOSIM with a melting process); (b) distribution of deviations between OIBQL snow depth 

and modeled snow depths considering various atmospheric loss coefficient values; (c) 

distribution of the OIBQL snow depth in black versus that of the simulated snow depth 

considering different γ values in red. The data cover the period from 2014 to 2017. 

(4) We have added accuracy evaluations based on additional two OIB products (OIBIDCSI4 and 

OIBNOAA) and revised related contents in section 4.2 as follows: 

To evaluate the accuracy of the assimilation results (NESOSIM_M-PF), we compare the 

obtained NESOSIM v1.0, NESOSIM_M, RA-5VLSTM, and NESOSIM_M-PF snow depth 

estimates to independent OIBQL measurements from 2018 to 2019, OIBIDCSI4 measurements 

in 2013, OIBNOAA measurements from 2014 to 2015 and MOSAiC measurements from 2019 

to 2020. According to the OIBQL data, NESOSIM_M greatly improves the simulated snow 

depth over NESOSIM v1.0. The RMSE decreases to 6.6 cm, the MAE decreases to 5.3 cm, 

and the previously positive bias develops into a negative bias (from 2.6 cm to -2.0 cm) (Table 

2). In regard to the RA-5VLSTM snow depth retrievals, the RMSE reaches 6.2 cm, and the 

correlation coefficient is 0.76, indicating that the accuracy is much higher than that of the 

NESOSIM v1.0 and NESOSIM_M snow depths. However, RA-5VLSTM snow depth has a 

less original effective matching number (N0) of 428, while others have N0 of 528. Compared 

to NESOSIM_M, the accuracy of the NESOSIM_M-PF snow depth has been greatly 

improved, namely, the RMSE decreases from 6.6 cm to 5.8 cm, the MAE decreases to 4.6 

cm, the bias changes from -2.0 cm to -1.4 cm, and the correlation coefficient increases from 

0.67 to 0.77 (Table 2). Compared to the RA-5VLSTM method, NESOSIM_M-PF generates 

a higher accurate snow depth (Table 2). 



  According to the OIBIDCSI4 and OIBNOAA products, the errors of NESOSIM_M snow depth 

are higher than that of NESOSIM v1.0 snow depth. RA-5VLSTM snow depth has low 

RMSEs of 4.7 and 6.9 cm for OIBIDCSI4 and OIBNOAA, respectively. The NESOSIM_M-PF 

snow depths are more accurate than snow depth estimates obtained by the other three methods. 

It has an RMSE of 4.1 cm based on OIBIDCSI4 and 6.5 cm based on OIBNOAA. Compared with 

the other three methods, the RA-5VLSTM has a less N0 (378 for OIBIDCSI4 and 535 for 

OIBNOAA, respectively). 

According to the MOSAiC snow buoys, the snow depth estimates obtained with the four 

methods are generally higher than the MOSAiC-measured snow depths. NESOSIM v1.0 attains 

the highest RMSE value of 14.1 cm among the four snow depth models (Table 2). Compared 

to the snow depth estimates retrieved from NESOSIM v1.0, the snow depth estimates obtained 

with NESOSIM_M-PF are greatly improved (RMSE: decreases by 4.4 cm; bias: decreases 

by 4.3 cm; MAE: decreases by 3.4 cm; r: increases by 0.05) (Table 2). Compared to RA-

5VLSTM, the accuracy of NESOSIM_M-PF is slightly higher (Table 2). 

Table 2. Accuracy evaluation of the NESOSIM v1.0, NESOSIM_M, RA-5VLSTM and 

NESOSIM_M-PF methods through the number of same matching points (Ns), RMSE (cm), 

bias (cm), MAE (cm) and r based on the OIBQL snow depth from 2018 to 2019, OIBIDCSI4 snow 

depth in 2013, OIBNOAA snow depth from 2014 to 2015 and the MOSAiC-measured snow depth 

from 2019 to 2020. N0 represents the original effective matching number. 

OIBQL 

 NESOSIM v1.0 NESOSIM_M RA-5VLSTM NESOSIM_M-PF 

N0 528 528 428 528 

Ns 428 428 428 428 

RMSE (cm) 7.25 6.57 6.24 5.80 

Bias (cm) 2.57 -1.96 -1.35 -1.37 

MAE (cm) 5.86 5.34 5.02 4.59 

r 0.68 0.67 0.76 0.77 

OIBIDCSI4 

N0 436 436 378 436 

Ns 378 378 378 378 

RMSE (cm) 5.51 5.88 4.67 4.61 

Bias (cm) 1.55 -2.46 -1.36 -1.12 

MAE (cm) 4.40 4.52 3.57 3.50 

r 0.83 0.83 0.88 0.89 

OIBNOAA 

N0 616 616 535 616 

Ns 535 535 535 535 

RMSE (cm) 7.28 7.61 6.89 6.50 

Bias (cm) 0.34 -4.44 -1.21 -1.66 

MAE (cm) 6.10 6.41 5.52 5.18 

r 0.71 0.72 0.70 0.70 

MOSAiC 

N0 74 74 67 74 



Ns 67 67 67 67 

RMSE (cm) 14.12 10.31 10.13 9.73 

Bias (cm) 11.94 7.60 8.11 7.67 

MAE (cm) 12.30 8.65 9.29 8.88 

r 0.29 0.29 0.29 0.34 

 

(5) In addition, we have revised related contents in section 6 as follows: 

To better understand variations in the snow depth and sea ice, we develop NESOSIM_M-PF 

based on reanalysis reconstruction and data assimilation methods. First, the coefficients of 

NESOSIM v1.0 are determined by considering the OIBQL and OIBIDCSI4 snow depth. Then, we 

include a snow melting term and snow lost to the atmosphere term to establish NESOSIM_M. 

The atmospheric loss coefficient of NESOSIM_M is determined based on OIBQL and IMB-

measured snow depth values. Next, the satellite-derived snow depth (RA-5VLSTM snow depth) 

is assimilated via a particle filter, and the final NESOSIM_M-PF model is established to yield 

snow depth estimates from August 16 to May 15, 2012–2020. This greatly solves the problem 

that W99 climatology does not suitably reflect the current changes in snow depth. 

Based on OIB-measured snow depth values (OIBQL, OIBIDCSI4 and OIBNOAA data), the 

NESOSIM_M-PF-estimated snow depth is improved over the NESOSIM v1.0 and 

NESOSIM_M-estimated snow depth, namely, the RMSE decreases by 1.5 cm and 0.8 cm, 

respectively, and the correlation coefficient increases by 0.1. Compared to the RA-5VLSTM 

snow depth employed for assimilation, the accuracy of the NESOSIM_M-PF-estimated snow 

depth slightly improves; the matching points of the NESOSIM_M-PF-estimated snow depth 

and OIB-measured snow depth increase, and the spatial coverage is highly improved. Based on 

MOSAiC-measured snow depth values, the NESOSIM_M-PF-estimated snow depth is more 

accurate than the RA-5VLSTM, NESOSIM v1.0 and NESOSIM_M snow depth estimates. The 

NESOSIM_M-PF-estimated snow depth is insensitive to the selection of the particle number 

when the particle number is larger than 250. The model is robust and it is less impacted by the 

import parameters. The average uncertainty due to the uncertainty of input variables is 0.7 cm. 

In the future, more in-site data are needed to further evaluate the results, continuously optimize 

the model parameters, and improve the snow depth estimates. 

The spatial distribution of the snow depth retrieved from the NESOSIM_M-PF, Kilic19, and 

modified W99 methods is consistent. Except for the snow depth difference between the 

NESOSIM_M-PF and modified W99 approaches in the nearshore area smaller than 10 cm, the 

snow depth difference is smaller than 5 cm in the other sea areas. The Kilic19 snow depth is 

larger than the NESOSIM_M-PF-estimated snow depth in MYI regions. The monthly and 

seasonal (referring to autumn and winter) changes in the Kilic19 and NESOSIM_M-PF snow 

depth estimates are consistent, and the monthly average NESOSIM_M-PF-estimated snow 

depth is close to the modified W99 climatology. Therefore, the NESOSIM_M-PF snow depth 

is reliable and can provide high-precision data for sea ice thickness estimation. 

There were also plenty of other parts of the study where data uncertainties are vaguely 

described and, in some cases, described with worrying levels of certainty (‘The 

satellite-derived snow depth contains an uncertainty of 1 cm,’). 



Response: Thank you for this thought-provoking suggestion. We are sorry for the 

misunderstanding caused by the lack of a clear description of snow depth uncertainty. The RA-

5VLSTM model is developed using deep learning, and the total uncertainty cannot be obtained 

quantitatively. The uncertainty caused by input parameters can be obtained according to the 

Monte Carlo method, but the uncertainty caused by model training cannot be determined. 

According to the comments of the reviewer, we added the relevant description of uncertainty. 

The detailed revisions are as follows: 

RA-5VLSTM model is developed based on deep learning. So, it is difficult to obtain its 

total uncertainty. The satellite-derived snow depth uncertainty is calculated based on the Monte 

Carlo method; the estimated uncertainty is 1 cm, and it refers to the uncertainty caused by the 

input parameters. 

3. I was hoping this paper would provide a much deeper explanation and insight into 

particle filter data assimilation, but the paper provided only really a minimal description 

of this. In no way is the approach reproducible. It also left me feeling unsure how much 

the authors understood about the approach and how best to implement this. The particle 

number sensitivity test did not feel satisfactory.  

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have added more details about particle filter methodology in section 3.3 and section 4.1.3. 

(1) In section 3.3, the revisions are as follows: 

3.3 Particle filter assimilation 

To obtain a set of snow depths that combines the advantages of simulated snow depth (the 

high spatial coverage) and satellite-derived snow depth (the high-precision), we will perform 

data assimilation. By using assimilation, the model-simulated snow depth can be constrained 

by observations (satellite-derived snow depth). In recent decades, the particle filter has become 

a popular data assimilation approach. The great advantage of the particle filter is that it can 

deal with all types of probability distributions and nonlinear models. Here, we provide a simple 

description of the particle filter, and more details are found in Arulampalam et al. (2002), 

Smyth et al. (2019) and Magnusson et al. (2017). The particle filter is derived from the 

sequential Bayesian estimation problem. A posteriori distribution, the conditional distribution 

of the current state given all observations, is the purpose of the sequence filtering problem. If 

the posterior distribution is applicable to the previous time step, the prior probability density 

(p(xk+1|z1: k)) of the current time step can be calculated. Then, the prior density can be updated 

using new observations. 

p(xk+1|z1: k)=∫ p(xk+1|𝑥𝑘) p(xk|z1: k)dxk                                        (14) 

p(xk+1|z1: k+1)=
p(z k+1|xk+1)p(xk+1|z1: k)

p(z k+1|z1: k)
                                            (15) 

where x and z are the state vector and measurement vector, respectively, p(xk+1|z1: k+1)  is 

posterior density. 



The above problem cannot be solved analytically for most models. So, Monte Carlo samples 

are introduced to calculate posterior filter density. The core of the particle filter is Monte Carlo 

simulation and importance resampling. The particle filter assimilation contains four steps: a 

prediction step, update step, resampling step and output step. 

1) Prediction step 

A. The initial state variable is set, i.e., xk. Random noise with an arbitrary distribution is 

provided to disturb 𝑥𝑘, and the n-dimensional initial state xk
i  is obtained at time step k. 

B. The weight of each particle is set to 1/N, and N is the number of particles 

C. State and measurement prediction: 

xk+1
i =f(xk

i ,θk
i
,uk)+vk                                                        (16) 

zk+1
i =h(xk+1

i )+nk+1                                                        (17) 

where 𝑓 and h are the state function and measurement function, respectively, 𝜃 is a model 

parameter, u is the model input, and v and n are the process noise and measurement noise, 

respectively. 

2) Update step 

A. The weight of each particle is calculated: 

wk+1
i =wk

i p(zk+1|xk+1
i )                                                       (18) 

p(zk+1|xk+1
i )=

1

√(2π)
N

|Cv|

e[-0.5(zk+1-xk+1
i )(zk+1-xk+1

i )/Cv]                                 (19) 

where p is the likelihood function and Cv is the measurement error covariance. 

B. The weights are normalized, namely, the sum of all weights equals 1. 

3) Resampling step 

According to the weight, any particles with a low weight are discarded, and the particles with 

a high weight are duplicated. After importance resampling, the total number of particles remains 

the same. Then, the weight is reset to 1/N. 

4) Output step 

The mean of the ensemble (Dong et al., 2015) is selected to define the best estimates of the 

state vector. Then, the best estimates are output.  

(2) In section 4.1.3, the added information is as follows: 

Since snow depth is a model output, no observation operator is required. The state function 

is determined by the NESOSIM_M. To simplify the state function, we use regression analysis 

to construct the linear equation before and after time step as follows: 

xk+1
i =0.9498 × xk

i +1.7205+vk                                                  (20) 

(3) There is a little difference between the snow depth when the number of particles is 250 (i.e., 

P250 snow depth) and the default snow depth (the number of particles is 1000). The snow depth 

value is not a good idea to show the snow change caused by particle selection, as shown in Fig. 

BB. To provide more information, we redrawn Figure 9 (Figure 8 in the original manuscript). 

Firstly, we show the change in default snow depth. Then we show the snow depth difference 

between snow depth with different particle numbers and default snow depth. 



 

Fig. BB. Variations in the daily average snow depth in the Arctic from 2012 to 2020 using 

different particle numbers. Note the value of 1000 is the default value. 

The detailed revisions are as follows: 

5.1 Particle number sensitivity 

The sensitivity of NESOSIM_M-PF to the number of particles in the Arctic from 2012–2020 

is examined. We show the results for different numbers of particles, i.e., 50, 250, 500, 750, 

1000 and 1250 (1000 is the default value). For convenience, the snow depths obtained with 

1000, 50, 250, 500, 750, and 1250 particles are defined as the default snow depth, P50 snow 

depth, P250 snow depth, P500 snow depth, P750 snow depth and P1250 snow depth, 

respectively.  

In the Arctic, the default snow depth begins to increase rapidly in mid-August, which 

continues until October (Fig. 9(a)). In October, the increase rate of the snow depth decreases, 

and the snow depth begins to decline in late October. This change can also be observed among 

the results of Petty et al. (2018) using the snowfall products of JAR-55 and MEDIAN-SF to run 

NESOSIM. However, this change is more notable in our results. Then, the snow depth slowly 

increases until May due to the continuous accumulation of snow and less snow melting during 

the cold season. The interannual variability in the snow depth from August to September is low, 

basically between -1 cm and 1 cm (Fig. 9(a)). The interannual variability in the snow depth 

from October to May ranges from -2.0 cm to 2.0 cm. The absolute differences between the 

monthly P50 snow depth and default snow depth are large from October to December, reaching 

a maximum value of 4.1 cm in November (Fig. 9(b)). The differences between the monthly 

snow depth estimates (P250, P500 and P750 snow depths) and default snow depth are larger 

than 0. The closer the number of applied particles is to the default value, the smaller the snow 



depth difference. The differences between the monthly P1250 snow depth and default snow 

depth are smaller than 0. The largest snow depth difference is smaller than 0.01 cm (Fig. 9(b)). 

All the absolute values of the five average monthly snow depth difference vectors increase 

rapidly in September, a maximum value is reached in November-January, and the value 

subsequently decreases (Fig. 9(b)). 

The Central Arctic is an area largely covered with thick snow. The default snow depth begins 

to increase rapidly in mid-August, which continues until November (Fig. 9(c)). Then, the 

default snow depth shows a slowly decreasing trend, which continues until May. Through the 

sensitivity analysis in this area, we can elucidate the influence of the particle number on the 

area with a large snow depth. When the particle number is small (i.e., 50), the choice of the 

particle number imposes a dramatic effect on the snow depth in thick-snow areas, with the 

largest deviation of 10.3 cm in November (Fig. 9(d)). When the particle number is larger than 

250, the choice of the particle number yields no effect on the snow depth in thick-snow areas, 

and the absolute difference between the four snow depth vectors and the default snow depth is 

smaller than 0.014 cm (Fig. 9(d)). After January, the absolute value of the five average monthly 

snow depth differences remains small (0.002 cm) (Fig. 9(d)).  

The Chukchi Sea is covered with thin FYI. The default snow depth increases slightly in 

September and October, decreases for a short period in November. From December, the 

increase rate of snow depth accelerates and continues until May, with an increase of nearly 10 

cm (Fig. 9(e)). The interannual variability in the snow depth from August to May is high, with 

a maximum value of more than 5 cm (Fig. 9(e)). The influence of the particle number on areas 

with small snow depths can be revealed by analyzing the Chukchi Sea. The absolute differences 

between the monthly P50 snow depth and default snow depth are the largest in October, with 

an absolute value of 1.2 cm (Fig. 9(f)). The snow depth difference based on the other four 

numbers of particles (250, 500, 750, and 1250) is smaller than 0.1 cm (Fig. 9(f)). This verifies 

that when the number of particles is large, the choice of the particle number imposes little effect 

on snow depth estimation. 



 

Figure 9. Variations in the daily average default snow depth in the (a) Arctic, (c) Central Arctic 

and (e) Chukchi Sea from 2012 to 2020, and the shaded areas represent the interannual 

variability using 1 standard deviation; variations in the monthly average snow depth difference 

(snow depth estimates based on the different particle numbers minus the default snow depth) 

in the (b) Arctic, (d) Central Arctic and (f) Chukchi Sea. Note that the secondary axes of (b), 

(d) and (f) indicate the difference between the P50 snow depth and the default snow depth. 

4. The RA-5VLSTM dataset was used as the only input to the data assimilation system 

but the citation linked to is just a data portal that I was unable to translate, so really 

there is no background to how this data was obtained and how well it agrees with other 

snow depth datasets that exist. My guess is that the INESOSIM-PF run tracks this 

observational dataset quite closely, but it’s unclear if that’s a good thing or not. 

Response: Thank you for this thought-provoking suggestion. We are sorry to use the wrong 

link when referencing the dataset. The correct link is 

http://data.tpdc.ac.cn/en/disallow/8b4b5f67-ee01-45ee-96a6-db8f712a2e0c. In the revised 

manuscript, we have changed the reference of the dataset to the reference of the paper. 

According to the suggestion, we have introduced the RA-5VLSTM model in section 2.4 as 

follows: 

Using the IMB data, Li et al. (2022) developed the snow depth model for MYI and FYI based 

on regression analysis (RA) and long short-term memory (LSTM: a deep learning method). 

Then, the RA-5VLSTM was proposed. For the FYI, the regression relationship between the 

GRh (37/7) and IMB-measured snow depth was determined: 



hFYI=11.01-352.17×
Tbice(37H)-Tbice(7H)

Tbice(37H)+Tbice(7H)
                                           (3) 

where hFYI is the snow depth atop FYI. 

For the MYI, the snow depth was calculated using LSTM by imputing five parameters (GRv 

(37/19), GRv (19/7), GRv (19/10), GRh (37/19) and GRv (37/7)). The RMSE of snow depth 

obtained by RA-5VLSTM is 7.16 cm based on the OIBQL product from 2015 to 2019, and 

RMSE is 11.27 cm based on the IMB data. 

We obtain snow depth estimates using the RA-5VLSTM model from 2012 to 2020, which is 

used for assimilation. We obtain modified W99 climatology (come from the NSIDC CryoSat-

2 Level-4 product) and Kilic19 snow depth estimates from 2012 to 2020 to compare the 

performance of different snow depth estimates. 

Reference: 

Li, H., Ke, C., Zhu, Q., Li, M., Shen, X.: A deep learning approach to retrieve cold-season snow 

depth over Arctic sea ice from AMSR2 measurements. Remote Sens. Environ., 269, 

112840, https://doi.org/10.1016/j.rse.2021.112840, 2022. 

Specific comments 

The statistics of RMSE and MAE include the bias – so really all the statistics presented 

are highly sensitive to the presence of a bias. Most of this study seemed to involve basic 

bias correction (which is somewhat understandable considering the large uncertainties 

in snow) but limits the impact of the results presented. Generally I think it is not a good 

idea to express RMSE/bias changes as percentages. Just stating the change in absolute 

terms is easier for the reader to assess.  

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have used absolute term to express RMSE/bias changes. 

L73-74: this particle filter methodology and motivation needs to be much better 

described.  

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have added more details about particle filter methodology and motivation in section 3.3 as 

follows: 

3.3 Particle filter assimilation 

To obtain a set of snow depths that combines the advantages of simulated snow depth (the 

high spatial coverage) and satellite-derived snow depth (the high-precision), we will perform 

data assimilation. By using assimilation, the model-simulated snow depth can be constrained 

by observations (satellite-derived snow depth). In recent decades, the particle filter has become 

a popular data assimilation approach. The great advantage of the particle filter is that it can 

deal with all types of probability distributions and nonlinear models. Here, we provide a simple 

description of the particle filter, and more details are found in Arulampalam et al. (2002), 



Smyth et al. (2019) and Magnusson et al. (2017). The particle filter is derived from the 

sequential Bayesian estimation problem. A posteriori distribution, the conditional distribution 

of the current state given all observations, is the purpose of the sequence filtering problem. If 

the posterior distribution is applicable to the previous time step, the prior probability density 

(p(xk+1|z1: k)) of the current time step can be calculated. Then, the prior density can be updated 

using new observations. 

p(xk+1|z1: k)=∫ p(xk+1|𝑥𝑘) p(xk|z1: k)dxk                                        (14) 

p(xk+1|z1: k+1)=
p(z k+1|xk+1)p(xk+1|z1: k)

p(z k+1|z1: k)
                                            (15) 

where x and z are the state vector and measurement vector, respectively, p(xk+1|z1: k+1)  is 

posterior density. 

The above problem cannot be solved analytically for most models. So, Monte Carlo samples 

are introduced to calculate posterior filter density. The core of the particle filter is Monte Carlo 

simulation and importance resampling. The particle filter assimilation contains four steps: a 

prediction step, update step, resampling step and output step. 

1) Prediction step 

A. The initial state variable is set, i.e., xk. Random noise with an arbitrary distribution is 

provided to disturb 𝑥𝑘, and the n-dimensional initial state xk
i  is obtained at time step k. 

B. The weight of each particle is set to 1/N, and N is the number of particles 

C. State and measurement prediction: 

xk+1
i =f(xk

i ,θk
i
,uk)+vk                                                        (16) 

zk+1
i =h(xk+1

i )+nk+1                                                        (17) 

where 𝑓 and h are the state function and measurement function, respectively, 𝜃 is a model 

parameter, u is the model input, and v and n are the process noise and measurement noise, 

respectively. 

2) Update step 

A. The weight of each particle is calculated: 

wk+1
i =wk

i p(zk+1|xk+1
i )                                                       (18) 

p(zk+1|xk+1
i )=

1

√(2π)
N

|Cv|

e[-0.5(zk+1-xk+1
i )(zk+1-xk+1

i )/Cv]                                 (19) 

where p is the likelihood function and Cv is the measurement error covariance. 

B. The weights are normalized, namely, the sum of all weights equals 1. 

3) Resampling step 

According to the weight, any particles with a low weight are discarded, and the particles with 

a high weight are duplicated. After importance resampling, the total number of particles remains 

the same. Then, the weight is reset to 1/N. 

4) Output step 

The mean of the ensemble (Dong et al., 2015) is selected to define the best estimates of the 

state vector. Then, the best estimates are output.  

‘Section 3.2 Two snow depth retrieval methods’ – why are these not in the data section? 

They are previous data not really created in this study - one ‘retrieval’ - the multi-linear 

regression to passive microwave data from Kilic et al., (2019) and then the Warren 1999 



(W99) quadratic fit to in-situ snow depths.  

Response: Thank you for this thought-provoking suggestion. According to the suggestion, we 

have placed these two retrieval methods in section 2.4 as follows: 

Based on the snow depth data measured at Soviet stations from 1954 to 1991, Warren et al. 

(1999) constructed a two-dimensional quadratic function as follows (hereinafter W99): 

hs(x,y)=h0+Ax+By+Cxy+Dx2+Ey2                                            (1) 

where h0 is the fitted snow depth at the North Pole and A, B, C, D, and E are coefficients of 

Eq. (1). The coefficients and h0 are different in the different months. All coefficient and h0 

values for all 12 months are obtained from Warren et al. (1999).  

We select CryoSat-2 Level-4 Sea Ice Elevation, Freeboard, and Thickness Version 1 data 

pertaining to the ten subregions, which are provided by the NSIDC. These data provide the 30-

day average snow depth on sea ice from 2010 to the present in a 25 km grid. A snow depth 

dataset is constructed based on a modified W99 climatology (Laxon et al., 2013), i.e., the snow 

depth estimates on FYI are equal to half the W99 climatology, and those on MYI are equal to 

the W99 climatology.  

Kilic et al. (2019) (hereinafter Kilic19) developed a multilinear regression approach for snow 

depth estimation based on four ice mass balance buoys (IMB), i.e., 2012G, 2012H, 2012J and 

2012L. The multilinear regression relationship between the vertically polarized brightness 

temperatures of AMSR2 (7, 19 and 37 GHz) and the IMB-measured snow depth was 

established, and Eq. (2) was determined: 

hs=177.01+1.75×Tb(7V)-2.80×Tb(19V)+0.41×Tb(37V)                           (2) 

where hs is the snow depth atop sea ice. 

Reference: 

Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., 

Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and 

Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. 

Lett., 40, 732-737, https://doi.org/10.1002/grl.50193, 2013. 

It is also confusing that you use the W99 with snow depths halved over FYI as well, 

and refer to this as an NSIDC product (taken from the CryoSat-2 implementation of 

this). This was also used in P2018 and is typically referred to as the modified Warren 

climatology. This was referenced in P2018 (and I think was first introduced by Laxon 

et al., 2013). I don’t think it should be referred to as an NSIDC product particularly. 

Response: Thank you for this thought-provoking suggestion. We are sorry for inappropriately 

referring to the modified W99 climatology as NSIDC snow depth. In the revised manuscript, 

we have changed “NSIDC snow depth” to “modified W99 climatology”. 

L201: ‘However, the updated algorithm has not been debugged’ is a bit of a strange way 

of framing this. The code is on GitHub (version 1.1) so you should ideally cite that 

more clearly, as it is exactly the same as the ‘improved’ atmosphere snow loss term 



used in this study. 

Response: We are sorry we do not cite clearly and there is an inappropriate description. In the 

revised manuscript, we have deleted the “However, the updated algorithm has not been 

debugged” and ideally cite “atmosphere snow loss term” more clearly. 

The detailed revisions in section 3.2.2 are as follows: 

In addition to wind packing and blowing snow loss to leads, wind cause snow loss to the 

atmosphere, resulting in the redistribution in snow depth. In 2020, Petty (2020) updated the 

NESOSIM v1.0 and proposed that the snow lost to the atmosphere process should be considered. 

Similar to the blowing snow lost to leads and wind packing processes, snow is lost to the 

atmosphere when U exceeds 5 m s-1. The atmospheric loss term is determined by the blowing 

snow coefficient, atmospheric loss coefficient (γ), wind speed and depth of the new snow layer. 

The equation is as follows: 

∆hs
atm

(t)= -βγUThs(t, 0)                                                     (12) 

Besides adding the snow lost to the atmosphere term proposed by Petty (2020), we introduce 

a simple melting term to develop the NESOSIM_M. 

L240 – ‘Therefore, the model was insensitive to β.’ – really, it’s just insensitive in the 

regions where we have observations (e.g. in the central Arctic). P2018 showed how in 

more marginal seas it has a bigger impact.  

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have corrected the related descriptions as follows: 

When the blowing snow coefficient was set to twice the default value (i.e., β was 5.8×10-7 

m-1), negligible effects were observed based on drifting station data. However, in more marginal 

seas, it had a bigger impact on the model. 

L243 – now a bit confused regarding the parameter you’re looking at here. I think it’s 

beta but why choose that if NESOSIM is less sensitive to this parameter? 

Response: When α and ω are set to default values, the difference between the snow depth 

(snow density) obtained by the model and snow depth (snow density) obtained by the drifting 

station is small. So, for the α and ω, we select the default value. For the β, we perform 

experiments to choose an appropriate value. 

Section 4.1.1. – the problem here is that you’re fitting to quick-look OIB now depths 

that are likely biased. To accommodate the product uncertainty in P2018 we looked at 

the different algorithms and noted the wide-spread made it hard to calibrate.  

Response: Thank you for this thought-provoking suggestion. According to the suggestion, we 

added the result of OIBIDCSI4 in section 4.1.1 to further prove that the error of snow depth 



obtained by using the parameters we selected is reduced. 

4.1.1 Determination of NESOSIM v1.0 

Petty et al. (2018) performed sensitivity analysis of three model parameters (α, β, and ω). 

The results indicated that NESOSIM v1.0 was sensitive to α. At an α value of 5.8×10-7 s-1, 

the simulated snow depth was the most consistent with the obtained data from Soviet drifting 

stations. When α equaled 11.6×10-7 s-1, the snow density was greatly influenced. When the 

blowing snow coefficient was set to twice the default value (i.e., β  was 5.8×10-7 m-1), 

negligible effects were observed based on drifting station data. However, in more marginal seas, 

it had a bigger impact on the model. When the wind threshold was 10 m s-1, the difference 

between the snow depth and drifting station data notably increased. When we run NESOSIM 

v1.0, α and ω are set to default values. Then, adopting OIBQL data from 2014 to 2017 and 

OIBIDCSI4 in 2013, we perform experiments to select an appropriate β value. 

When we increase in β value, the peak value of the deviation between derived snow depth 

and OIBQL moves towards the value of 0, and the frequency of high deviation decreases (Fig. 

3). When the default value is applied, the mean bias between the simulated snow depth and 

OIBQL-measured snow depth is 10.8 cm (Fig. 3). When a value of 5.8×10-7 m-1 is applied, the 

deviation from the OIBQL data slightly decreases (Fig. 3). When a value of 11.6×10-7 m-1 is 

applied, the mean bias is reduced to 7.7 cm (Fig. 3). We finally choose a value of 11.6×10-7 m-

1 to obtain the most accurate snow depth estimates among the three simulated snow depth 

vectors. The NESOSIM v1.0 snow depth is generated. Then, we use OIBIDCSI4 snow depth to 

compare the default snow depth with the determined NESOSIM v1.0 snow depth. The 

NESOSIM v1.0 snow depth is more consistent with OIBIDCSI4 snow depth (Fig. 4). The RMSE 

decreases from 7.1 cm (default snow depth) to 6.0 cm (NESOSIM v1.0 snow depth), and bias 

decreases from 3.4 cm (default snow depth) to 1.2 cm (NESOSIM v1.0 snow depth). 



 

Figure 3. Distribution of deviations between OIBQL snow depth and modeled snow depths 

(considering different 𝛽 values) from 2014 to 2017. 

 

Figure 4. Comparison of the modeled snow depth and the OIBIDCSI4 snow depth data. (a) The 

modeled snow depth using default β value; (b) the modeled snow depth using β value of 



11.6×10-7 m-1. 

Figure 3 – this is not really a great way of showing differences/biases between runs as 

the lines all look basically the same.  

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have redrawn Figure 3. 

 

Figure 3. Distribution of deviations between OIBQL snow depth and modeled snow depths (considering 

different 𝛽 values) from 2014 to 2017. 

Figure 4 - Bimodal NESOSIM output is interesting, what’s going on there? I think 

P2018 showed weak evidence of bimodality.  

Response: Thank you for this thought-provoking suggestion. Regardless of the value of γ, the 

estimated snow depth presents a bimodal distribution. We take γ=0.015 as an example. There 

may be two reasons for the bimodal distribution of snow depth estimates: (i) due to the 

difference in the distribution of snow depth estimates over FYI and MYI. The peak of the snow 

depth distribution outputted by the model is about 15 cm over FYI, and about 40 cm over MYI 



(Fig. S1(a) and (b)); (ii) there are two concentrated distribution intervals for the estimated snow 

depth over MYI, one range is 30-40 cm and the other is 15-25 cm (Fig. S1(b)). This may be 

due to regional differences caused by different regions. The mean snow depth is concentrated 

at 30 cm in the Central Arctic, concentrated at 20 cm in the Beaufort Sea and concentrated at 

10 cm in the Canadian Archipelago (Fig. S1(c)). 

 

Fig. S1. Distribution of the OIBQL snow depth over FYI (a) and MYI (b) in black versus that of 

the corresponding simulated snow depth (γ=0.015) in red. (c) Distribution of the simulated 

snow depth in the Central Arctic, Canadian Archipelago and the Beaufort Sea from March and 

April. The data cover the period from 2014 to 2017. 

L280-287 – but you don’t seem to use the F labelling in the figures/tables? 

Response: Thank you for this thought-provoking suggestion. In the revised manuscript, we 

have added F labelling in Table 1. 

Table 1. Accuracy of NESOSIM_M with different atmospheric loss coefficient values (γ) based 

on the IMB-measured snow depth (number of same matching points (Ns), RMSE (cm), bias 

(cm), MAE (cm) and r). 

γ 0.015 (F1) 0.020 (F2) 0.025 (F3) 

Ns 443 443 443 

RMSE (cm) 16.58 16.85 17.11 

Bias (cm) -6.67 -7.36 -7.97 

MAE (cm) 11.06 11.28 11.51 

r 0.12 0.12 0.11 

 

Section 4.2–these descriptions were generally quite unclear ’superiority of the 

assimilation results’ 

Response: Thank you for this thought-provoking suggestion. In section 4.2, the accuracy 

evaluations are implemented. There are no contents to show superiority of the assimilation 

results. Therefore, in the revised manuscript, we have deleted the “superiority of the 

assimilation results”. 



L353 – 355: ‘We obtain the error in the Kilic19 snow depth based on the OIB-measured 

snow depth from 2018 to 2019.’ This is a very bad idea! 

Response: Thank you for this thought-provoking suggestion. Indeed, it is inappropriate to use 

this expression. According to the suggestion, we have changed this sentence to “We evaluate 

the Kilic19 snow depths based on three OIB-measured snow depth records, i.e., OIBQL, 

OIBIDCSI4 and OIBNOAA”. Then, we added the result of OIBIDCSI4 and OIBNOAA. The added 

content is as follows: 

We evaluate the Kilic19 snow depths based on three OIB-measured snow depth records, i.e., 

OIBQL, OIBIDCSI4 and OIBNOAA. According to the OIBQL product, the RMSE of the Kilic19 snow 

depth is 10.8 cm, which is approximately 1.6 times that of the NESOSIM_M-PF snow depth 

(Tables 2 and 3, respectively). Based on the OIBIDCSI4 product, the NESOSIM_M-PF snow 

depth (RMSE: 4.6 cm; bias: -1.1 cm) has a lower error than the Kilic19 snow depth (RMSE: 

6.7 cm; bias: 1.9 cm). Using the OIBNOAA product as a true value, the Kilic19 snow depth has 

a high RMSE of 13.9 cm and a bias of 5.0 cm. According to the MOSAiC snow buoys, the 

Kilic19 model generates a slightly smaller RMSE and a lower correlation coefficient than does 

NESOSIM_M-PF (Table 3). The RMSE of the modified W99 model reaches 13.4 cm, and the 

correlation coefficient is the highest of 0.37 among all six methods (Tables 2 and 3, 

respectively). The above results indicate that the Kilic19 method performs well in snow buoy 

distribution areas, while the NESOSIM_M-PF method performs well in both snow buoy and 

OIB distribution areas (e.g., the Beaufort Sea and Chukchi Sea). 

Table 3. Accuracy evaluation of the Kilic19 and modified W99 methods through the number 

of same matching points (Ns), RMSE (cm), bias (cm), MAE (cm) and r based on the OIBQL 

snow depth from 2018 to 2019, OIBIDCSI4 snow depth in 2013, OIBNOAA snow depth from 2014 

to 2015, and the MOSAiC-measured snow depth from 2019 to 2020.  

 OIBQL OIBIDCSI4 

 Kilic19 modified W99 Kili19 modified W99 

Ns 428  378 / 

RMSE (cm) 10.78 / 6.66  

Bias (cm) 2.12 / 1.89 / 

MAE (cm) 9.07 / 4.50 / 

r 0.72 / 0.85 / 

 OIBNOAA MOSAiC 

 Kilic19 modified W99 Kili19 modified W99 

Ns 535 / 67 67 

RMSE (cm) 13.87 / 9.39 13.38 

Bias (cm) 5.01 / 6.50 11.19 

MAE (cm) 10.83 / 8.35 11.51 

r 0.62 / 0.01 0.37 

 

Section 4.3 seemed superfluous. You compared against one snow depth dataset and the 



modified Warren climatology but without much context to guide this.  

Response: Thank you for this thought-provoking suggestion. According to the suggestion, we 

have added some content to guide the comparisons against the Kilic19 snow depth and modified 

W99 climatology. 

The detailed revisions are as follows: 

The modified W99 climatology, a public product, is often used to calculate sea ice thickness, 

and it is widely recognized by the public. So, we compare the snow depth obtained in this study 

with modified W99 climatology. Kilic19 model is a relatively new snow depth model at present. 

The Kilic19 snow depth is calculated using the Kilic19 model. Therefore, we compare the three 

snow depth datasets obtained in this study with Kilic19 snow depth as well. 

Figure 8a - I think something odd is happening in Figure 8a for that big start of October 

jump in snow depth. This needs to be looked into.  

Response: Thank you for this thought-provoking suggestion. Except for August and September, 

the satellite-derived snow depth has been used for assimilation. There is no satellite-derived 

snow depth in August and September. Therefore, the estimated snow depth in August and 

September is the NESOSIM_M snow depth, resulting in the increased jump at the end of 

September. 

  We are sorry we ignored this increased jump earlier. To solve the increased jump at the end 

of September, we use the NESOSIM_M-PF snow depth and NESOSIM_M snow depth at the 

same time and location in October to establish the linear regression equation as follows:  

hNESOSIM_M-PF=1.2138×hNESOSIM_M+0.9214                                       (21) 

We use Eq. (21) to obtain NESOSIM_M-PF snow depths in August and September. The 

results show that the increased jump at the end of September disappears and variation in snow 

depth from September to May is more reasonable (Fig. AA). 



 

Figure AA. (a) Variations in the daily average Arctic default snow depth (no post-processing). 

(b) Variations in the daily average Arctic default snow depth (with post-processing). 

In the revised manuscript, we have added the additional processing for eliminating the increased 

jump at the end of September. The revisions are as follows: 

Except for August and September, the satellite-derived snow depth has been used for 

assimilation. There is no satellite-derived snow depth in August and September. Therefore, the 

estimated snow depth in August and September is the NESOSIM_M snow depth, resulting in 

the increased jump at the end of September. To solve this problem, we use the NESOSIM_M-

PF snow depth and NESOSIM_M snow depth at the same time and location in October to 

establish the linear regression equation as follows: 

hNESOSIM_M-PF=1.2138×hNESOSIM_M+0.9214                                       (21) 

We use Eq. (21) to obtain NESOSIM_M-PF snow depths in August and September. 

L444-445: ‘The satellite-derived snow depth contains an uncertainty of 1 cm, and the 

NESOSIM snow depth uncertainty 445 reaches 5 cm (Petty et al., 2020).’ Not sure 

where this is from. An uncertainty of 1 cm on what I assume are your snow depth 

measurements can’t be right.  

Response: Thank you for this thought-provoking suggestion. We are sorry that we do not 

clarify the uncertainty of RA-5VLSTM snow depth. The uncertainty of 1 cm only indicates the 

uncertainty caused by the uncertainty of input parameters. In the revised manuscript, we have 



explained the meaning of RA-5VLSTM snow depth uncertainty. 

The detailed revisions are as follows: 

We adopt the Monte Carlo method (Braakmann-Folgmann and Donlon, 2019) to determine 

the NESOSIM_M-PF snow depth uncertainty. RA-5VLSTM model is developed based on deep 

learning. So, it is difficult to obtain its total uncertainty. The satellite-derived snow depth 

uncertainty is calculated based on the Monte Carlo method; the estimated uncertainty is 1 cm, 

and it refers to the uncertainty caused by the input parameters. 
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