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Abstract. The retrieval of continuous ice core records of more than 1 Myr is an important challenge in palaeo-climatology. 

For identifying suitable sites for drilling such ice, the knowledge of the subglacial topography and englacial layering is crucial. 

For this purpose, extensive ground-based ice radar surveys were done over Dome Fuji in the East Antarctic plateau during the 

2017–2018 and 2018–2019 austral summers by the Japanese Antarctic Research Expedition, on the basis of ground-based 20 

radar surveys conducted over the previous ~30 years. High-gain Yagi antennae were used to improve the antenna beam 

directivity and thus attain a significant decrease in hyperbolic features of unfocussed along-track diffraction hyperbolae in the 

echoes from mountainous ice-bedrock interfaces. We combined the new ice thickness data with the previous ground-based 

data, recorded since the 1980s, to generate an accurate high-spatial-resolution (up to 0.5 km between survey lines) ice thickness 

map. This map revealed a complex landscape composed of networks of subglacial valleys and highlands, which sets. Based 25 

on the new map, we examined the roughness of the ice-bed interface, bed surface slope, the driving stress of ice, and the 

subglacial hydrological condition. These new products and those analyses set substantial constraints for identifying possible 

locations for new drilling. In addition, our map was compared with a few bed maps compiled by earlier independent efforts 

based on airborne radar data to examine the difference in features between sets of the data. Recognizing the improvement in 

data quality and comparing existing topographic products, we suggest that widely available bed topography products should 30 

be validated with in-situ observations where it is possible. 
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1 Introduction 

Long climatic histories, from about 800 kakyr up to the present, have been studied using deep ice cores drilled at dome summits 

in the East Antarctic Ice Sheet (EAIS), such as Dome Fuji (Watanabe et al., 2003; Kawamura et al., 2017) and Dome C (EPICA 

Community Members, 2004). At Dome Fuji station (77°18′59″.317°S, 39°42′05″.703°E, 3810 m a.s.l.), two ice cores were 35 

retrieved by the Japanese Antarctic Research Expedition (JARE), extending to 340 and 720 kakyr, respectively. The second 

ice coring project reached a depth of 3035.22 m (Motoyama et al., 20202021); the temperature at the ice bottom was 

closereached to the melting point (Talalay et al., 2020). Detailed information on the basal topography and internal layer 

structure of the ice sheet is crucial for locating candidate sites for deep drilling. Ground-based ice sheet radar observations 

were carried out in the Dome Fuji region for prior site surveys from the late 1980s until 2013 (e.g., Maeno et al., 1994, 1995, 40 

1996, 1997; Fujita et al., 1999, 2002, 2003, 2006, 2011, 2012; Matsuoka et al., 2002, 2003). Analyses of JARE data identified 

subglacial mountains with a thickness of 2000–2400 m centred at approximately 55 km south of Dome Fuji. In addition, these 

ice thickness data were used in the compilation of the Antarctic ice sheet thickness for BEDMAP (Lythe et al., 2001), Bedmap2 

(Fretwell et al., 2013), AWI gridded data (Karlsson et al., 2018), and BedMachine Antarctica v1 (Morlighem et al., 2020). 

From the observingobserved features of radio echoes from the ice-bed interfaces, itthe bed is estimated to be frozen over the 45 

mountains with ice thickness less than ~2500 m (Fujita et al., 2012). 

Knowledge gained from ice core studies is crucial for understanding past and present climates and projecting future 

anthropogenic climate changes. Marine sediment records indicate that the dominant periodicity of the glacial cycles changed 

from 40 kyr to the current 100 kyr during the mid-Pleistocene transition (0.9–1.2 MaMyr) (Lisiecki and Raymo, 2005). 

However, the speed of the mid-Pleistocene transition and the driver of this change in periodicity, particularly the role of 50 

atmospheric CO2 and other greenhouse gases, are not well understood. Antarctic ice cores that exceed 1 Myr should contain 

essential information about past climate forcing and responses (e.g., Jouzel and Masson-Delmotte, 2010; Fischer et al., 2013).; 

Wolff et al., 2022). However, such continuous ice core records have not yet been retrievedidentified from polar ice sheets. 

Accordingly, the International Partnership for Ice Core Sciences (IPICS) has identified the retrieval of multiple ice cores that 

extend to 1.5 Ma (termedMyr (terms as oldest ice cores) as one of the most important challenges for ice core studies (Wolff et 55 

al., 2005). Numerical modelling studies have suggested that such old ice is likely to exist in the plateau area of the EAIS, where 

surface accumulation is low, horizontal flow velocities are small, ice is thinner than that at the currently oldest ice core drilling 

sites (EPICA Dome C and Dome Fuji), and basal geothermal heat flux is low, which avoids ice stratigraphic disturbance and 

bottom melting (e.g., Fischer et al., 2013; Van Liefferinge and Pattyn, 2013; Van Liefferinge et al., 2018). 

Ice radar observations have been conducted in the vicinity of the domes in the EAIS, such as Dome A (e.g., SunBo et al., 60 

2009; Bell et al., 2011), Dome C (e.g., Young et al., 2017; Lilien et al., 2021), and Titan Dome (Beem et al., 2021), which 

numerical modelling studies have identified as candidate areas for future deep drilling. In the Dome Fuji region, a candidate 

area for deep drilling, after ground-based radar surveys were conducted by the JARE from the late 1980s until 2013, an 

extensive airborne radar survey was carried out over a 20000 km2 area during the 2014–2015 and 2016–2017 austral summers 
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(Karlsson et al., 2018) (Fig. S1a). The bed topography map compiled by Karlsson et al. (2018) cannot identify the bedrock 65 

undulations of a horizontal scale less than approximately 10 km due to the spatially sparse (typical survey line spacing of 10 

km) observational data and using interpolation with solidintense smoothing to fill in blank areas of data. These authors 

suggested primary areas for potential drilling sites on the subglacial mountains based on the distinction of melted/frozen bottom 

by ice sheet modelling under the assumption of surface mass balance and geothermal heat flux. Detailed basal topography data 

with higher spatial resolution are essential to provide  70 

 
Figure 1. (a) The traverse route between Syowa Station and Dome Fuji in Dronning Maud Land, East Antarctica, with the coordinate system 

of a polar stereographic projection. The box indicates the area shown in (b). The inset shows the location of the region in Antarctica. The 

contours indicate surface elevation with intervals of 200 m (Helm et al., 2014). (b) Dome Fuji region showing the coverage of the JARE 

radar survey lines. Surface elevation contours have intervals of 20 m. The background is a RADARSAT-1 L1 image (©CSA, 1997). 75 
 

further constraints for modelling to improve the site predictions because actual bed topography has much finer -scale (i.e., 

<10 km) mountainous undulations (e.g., Fujita et al., 1999, 2012; Karlsson et al., 2018; Rodriguez-Morales et al., 2020). 

New ice-penetrating radar surveys with high spatial resolution and the compilation with existing data have been necessary 

to improve the ice thickness maps, which would facilitate the identification of candidate sites for the oldest ice drilling. 80 

However, many earlier radar sounding data showed unfocussed along-track diffraction hyperbolae at the ice-bedrock boundary, 

resulting in potential biases in the estimated ice thickness. The hyperbolic effects mask sharp peaks and steep valleys near such 

peaks, resulting in underestimation of ice thickness. Focused synthetic aperture radar (SAR) processing can be used to correct 

the errors (e.g., Young et al., 2017; Rodriguez-Morales et al., 2020). Another approach is to make the footprint of the radar 

beam smaller with conventionalreal aperture radar soundings. The present study uses conventionalreal aperture radar sounders 85 

with high-gain Yagi antennae, resulting in improved antenna beam directivity and thus a decrease in hyperbolic features in 

echoes from the mountainous ice-bedrock interfaces. 
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For identifying suitable sites for drilling very old ice, gaining knowledge of the subglacial topography and englacial layering 

is crucial. Here, we present an ice thickness dataset based on ground-based measurements with a high spatial resolution of up 

to 0.5 km in terms of survey line spacing for the Dome Fuji region. We combined the latest data from ground-based surveys 90 

during the 2017–2018 and 2018–2019 austral summers with earlier data obtained from ground-based surveys carried out by 

the JARE from the 1980s until 2013. We demonstrate how the selection of antennae affects ice thickness assessment in the 

southern region of Dome Fuji. We constructed new 0.5 km gridded ice thickness data with the same scale as the line spacing 

(up to 0.5 km) of measurements during the 2017–2018 and 2018–2019 austral summers. We compare our compilation with a 

few bed maps compiled by earlier independent efforts, which are mainly composed of airborne radar data, to examine the 95 

difference in features between the datasets. Understanding this difference will facilitate the merging of JARE ground-based 

data and other airborne data in the future. We use the new dataset to examine subglacial conditions to gain further knowledge 

for identifying the presence and distribution of old ice. Finally, we suggest that the candidate area for the deep coring of old 

ice is much more limited than previously estimated. 

2 Study area and methods 100 

2.1 Study area 

The JARE’s study area around Dome Fuji is situated on the East Antarctic plateau (Fig. 1a). The region shown in Fig. 1b,  

 
Figure 1. (a) An area of the traverse route between Syowa Station and Dome Fuji in Dronning Maud Land, East Antarctica, with a polar 

stereographic projection coordinate system. The box indicates the area shown in (b). The inset shows the location of the region in Antarctica. 105 
The contours indicate surface elevation with intervals of 200 m (Helm et al., 2014). (b) Dome Fuji region showing the coverage of the JARE 

radar survey lines. Surface elevation contours have intervals of 20 m. The background is a RADARSAT-1 L1 image (©CSA, 1997). 
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which covers the southern region of the highest dome summit, has about 12000 km2 and an elevation range of about 3700 to 

3810 m a.s.l. An annual mean air temperature of −54.4°C was observed at Dome Fuji station (Kameda et al., 2009). The annual 110 

accumulation rate ranges from about 24 mm w.e. a−1 to 10 % below this value (Fujita et al., 2011) (Fig. S2), as estimated from 

snow stakes and microwave radiometry. 

In the 2017–2018 austral summer, the JARE conducted ground-based radar surveys over a 12000 km2 area with a spacing 

of 5 km or less. The total length travelled was approximately 2950 km, covering the vicinity of Dome Fuji station and the 

southern subglacial mountains (Fig. 1b). Based on the results of these surveys, a more detailed radar survey was conducted on 115 

the south side of Dome Fuji in the 2018–2019 season as a collaborative research project by the University of Alabama, the 

University of Kansas, the National Institute of Polar Research (NIPR), and the Norwegian Polar Institute (NPI). Radar data 

for a total of 2700 km were acquired in a 1000 km2 area, covering the subglacial mountain range around NDF site 

(77°47′19″.789°S, 39°03′10″.053°E, 3763 m a.s.l.). The final spacing between the survey lines was in the range of 0.25–0.5 

km. In the present study, we focus on the performance of the conventionalincoherent JARE pulse-modulated radar. Ice 120 

thickness detected with the wideband radar sounder provided by the Center for Remote Sensing of Ice Sheets (CReSIS), the 

University of Kansas, is discussed elsewhere (Rodriguez-Morales et al., 2020). 

2.2 Ice radar systems 

The JARE uses conventionalincoherent pulse-modulated VHF radar sounders with a peak transmission power of 1 kW (Table 

S1). Radar systems with various centre frequencies (179, 60, 30 MHz and other values) have been used to investigate the 125 

mechanisms of radio wave reflection and the frequency dependence of birefringence in the ice sheet in addition to ice thickness 

measurements (e.g., Maeno et al., 1994, 1995, 1996, 1997; Fujita et al., 1999, 2002, 2003, 2006, 2011, 2012; Matsuoka et al., 

2002, 2003). A transmitter pulse width of 60, 250, 500, or 1000 ns was chosen depending on the scientific objectives 

(measurements of ice thickness or internal layers) and logistics limitations (i.e., antenna size). The JARE often chooses a wider 

pulse for ice thickness measurements to detect the target bed topography with higher energy electromagnetic waves. The radar 130 

systems were mounted on a snow-tracked vehicle (Ohara Co. SM100 S-type) (Fig. S3). The transmitting and receiving 

antennae were attached to either side of the vehicle. The polarization plane of the antennae was arranged either parallel or 

perpendicular to the vehicle movement direction. The JARE uses Yagi antennae and thus the radio waves are linearly polarized, 

with the polarization plane matching the antenna plane. In the field observations from 1992 to 2013, as shown in the radar 

survey lines in Figure S1b, the antennae consisted of one or two antenna stacks and three or eight antenna elements per stack 135 

(either for transmitting antennae (Tx) or receiving antennae (Rx)), resulting in a total antenna gain (Tx + Rx) that ranges from 

c.a. 15 to c.a. 33 dBi. For the two antenna stacks with eight antenna elements each, the half-power beamwidth was typically 

±20° and ±10° for the E- and H-planes, respectively. For the one antenna stack with three antenna elements, the half-power 

beamwidth was typically ±35° and ±45° for the E- and H-planes, respectively. The number of antenna stacks and elements 

determines the antenna gain and directivity. With radar, we need to detect significant echoes from the bed and thus higher 140 

antenna gain allows thicker ice sheets to be detected. In addition, higher directivity is necessary for resolving complex 
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subglacial topography, such as steep mountains, slopes, or valley basins. To meet these requirements, for the 2017–2018 and 

2018–2019 field campaigns, we increased the number of antenna stacks and/or elements of the Yagi antennae. In the surveys, 

the number of antenna stacks was 4, 2, or 1 either for Tx or Rx. The number of antenna elements was 8 to 16 per stack. These 

settings resulted in an antenna gain (Tx + Rx) of c.a. 35 to c.a. 27 dBi. The directivity of the radar beam was also improved by 145 

the increase in antenna gain; the half-power beamwidth was typically from ±15° to ±20° for the E-plane and from ±5° to ±22° 

for the H-plane. In addition, our radar platform was situated on the ice sheet surface. Thus, the geometry of the wave spreading 

effect is expected to be much smaller than that for airborne radar sounding, which typically has a radar height of a few hundred 

metres above the ice sheet surface. Therefore, the footprint of the radar beam for our ground-based radar platform after 2017 

is much narrower than that of our one antenna stack with three antenna elements used before 2014. Similarly, the footprint of 150 

the radar beam for our ground-based radar platform should be narrower than that of the airborne radar antenna with a total 

antenna gain (Tx + Rx) of about 28 dBi (Nixdorf et al., 1999). The data were recorded on a digital oscilloscope connected to a 

laptop PC situated inside the tracked vehicle. The three-dimensional coordinates of the radar-sampled points were measured 

by a global navigation satellite system (GNSS) device attached to the vehicle’s roof, which was almost at the same height as 

the radar antennae. 155 

2.3 Initial data processing 

The ice-bed interface was determined by extracting the peak power of echoes from the bottom of the radargram with semi-

automatic detection routines and manual modification. A horizontal smoothing filter was applied to the data using a moving 

average over 7 s, which corresponds to a horizontal distance of about 20 m at a vehicle speed of 10 km h−1, to increase the 

signal-to-noise ratio. The ice thickness at the time of observation was converted from the two-way travel time from the surface 160 

to the ice-bed interface under the assumption of a propagation velocity of 1.690 × 108 m s−1 determined based on an 

approximation using the relative permittivity of ice (e.g., Fujita et al., 2000; Saruya et al., 20212022). Here, we estimated this 

velocity using the relative permittivity value of ice (~3.147±0.010) considering depth-dependent variations of crystal 

orientation fabrics (Azuma et al., 2000; Saruya et al., 2021) and temperature within the ice sheet. (Motoyama, 2007). Timing 

errors of the initial trigger in the oscilloscope are possible sources of systematic errors. As an initial step, we calibrated the 165 

radar echoes based on a downhole radar target experiment at the Dome Fuji ice coring site. This calibration inherently included 

corrections for the thickness of both firn and bubbly ice. We estimated the systematic error of our ice thickness values to be 

within ±15 m at a thickness of ~3000 m. The vertical resolution depends on pulse widths; it was 5 and 21 m for our pulse 

widths of 60 and 250 ns, respectively (Table S1). The bed elevation was obtained from the difference between the GNSS-

derived surface elevation and the measured ice thickness. Radar systems used before 2014 had relatively low antenna gains, 170 

so the detected bed topography can contain more significant uncertainty than that in the data acquired after 2017. We used the 

data obtained after 2017 (JARE59 pol179, JARE59 vhf179, and JARE60) as a reference to calibrate the ice thickness obtained 

from radar measurements before 2014 (JARE33, JARE37, JARE40, JARE49 pol179, and JARE49 vhf60). We considered data 

within 50 m in horizontal distance from each other to be crossover points. We examined the difference in the ice thickness at 
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the nearest points within the area. A potential bias in the ice thickness was examined for JARE59 and JARE60 data through 175 

crossover analysis. For example, JARE59 pol179 data were examined using JARE59 vhf179 and JARE60 data. The ice 

thickness data showed biases ranging from −37 to 75 m. The ice thickness data acquired from each measurement were corrected 

for these biases. We subsequently combined the ice thickness point data from each observation into a single dataset. 

The combined ice thickness data were interpolated to a 0.5 km resolution grid using an ordinary kriging interpolation method 

in the open-source GIS software SAGA GIS (http://www.saga-gis.org, last access: 13 August 202130 March 2022). The 180 

method is based on the experimental variogram with a lag distance of 1 km. The experimental variogram is fitted to a linear 

model whose parameters are determined by minimizing the average squared difference between the observational variogram 

and the model. We set a search distance of 6 km and a maximum data number of 600, which were determined to be the 

minimum values required to generate weakly smoothed gridded data over the measured area without data gaps. 

2.4 Assessment of uncertainties in ice thickness 185 

We examined the uncertainties of our gridded ice thickness data. The uncertainties were assessed in terms of three error 

components, namely (1) the vertical resolution of the radar system, (2) the standard deviations of the ice thickness difference, 

and (3) the standard deviations derived from the kriging interpolation scheme used for generating the gridded data. We 

estimated the total measurement error at sampled points from components (1) and (2) using the quadratic sum and compiled 

them into a single dataset. Error component (3), which results from the smoothing of data into sampled points and areas without 190 

measurements, was estimated as relative standard deviations. Error component (3) evaluated at individual grids was then 

converted to absolute standard deviations (in metres) via multiplication by the total error of components (1) and (2). 
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Figure 2. Radargrams between Dome Fuji and NDF acquired by the radar systems used in (a) JARE54 (2012–2013) with 3-element Yagi 
antenna and (b) JARE59 (2017–2018) with 11-element Yagi antenna. The lines indicate bedrock topography traced from the radar data. Note 195 
that radargrams shown in (b) were merged two data at about 50 km from Dome Fuji acquired on 17 and 21 December 2017. The colour 
range in radargrams (a) and (b) is 1.25–1.80 dBi and 0–110 dBi, respectively. 

 
Figure 3. (a) Ice thickness on the grid (0.5 km horizontal resolution). (b) Uncertainty of the gridded ice thickness. 
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The uncertainties of the JARE data were also examined by comparing the gridded ice thickness map with measurement 200 

points from radar survey lines. The ice thicknesses of the gridded data were interpolated at measurement points using a linear 

interpolation scheme. The differences in ice thickness were then calculated by subtracting the measurement data from the 

gridded data. 

 
Figure 2. Radargrams between Dome Fuji and NDF acquired by the radar systems used in (a) JARE54 (2012–2013) with 3-element Yagi 205 
antenna and (b) JARE59 (2017–2018) with 11-element Yagi antenna. The lines indicate bedrock topography traced from the radar data. 
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Figure 3. (a) Ice thickness on the grid (500 m horizontal resolution). (b) Uncertainty of the gridded ice thickness. 

3 Results 210 

3.1 Improvement of ice radar antennae 

Figure 2 shows a comparison between radargrams from the radar systems used in JARE54 (2012–2013) and JARE59 (2017–

2018) along the route between Dome Fuji and NDF (Fig. 1b). The radargram acquired from the JARE54 radar has many 

hyperbolic shapes at the ice-bed interface (Fig. 2a). The electromagnetic waves that bounce offreflect the convex terrain mask 

the electromagnetic wave signals that bounce offreflect the valley terrain and slopes, yielding considerable uncertainty when 215 

capturing the convex terrain. The radargram acquired from the 11-element Yagi antenna used in JARE59 shows that the 

hyperbolic effects decreased dramatically (Fig. 2b) compared with those for JARE54. The concave-convex terrain is more 

distinct in the bedrock topography. In addition, the shapes of subglacial mountains are sharper. The pre-improved antenna with 

the hyperbolic effects underestimated the ice thickness. For example, in the range of 35–55 km of Dome Fuji, where the 

hyperbolic effect was observed at the ice-bed interface, the ice thickness in JARE54 was thinner than that of JARE59 with a 220 

maximum and an average of 263 and 21 m, respectively. 

The higher return power obtained with the improved antenna gain enhanced the visibility of the internal layer stratigraphy. 

For example, we detected several continuous horizontal layers near the ice bottom in the mountain range near the NDF site 

(Fig. 2b), where the ice thickness is approximately 2500 m. As imaged by the radargram, the internal ice stratigraphy provides 

valuable information on the integrity of ice layering and the undisturbed ice column, where coherent scattering appears as 225 
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layered reflections. The reflection of the layer stratigraphy near the bottom becomes weaker as the ice thickness increases. The 

continuous horizontal layer from NDF is obscured around Dome Fuji station, where the ice thickness exceeds 3000 m. 

3.2 Ice thickness and bed topography 

The gridded ice thickness constructed from the compiled JARE radar survey data (hereafter, referred to as JARE data) reveal 

the presence of a complex landscape around Dome Fuji, with ice thicknesses ranging from 1800 to 3400 m and an average 230 

thickness of ~2670±70 m for the investigated area (Fig. 3a). Because the surface topography in the study area is relatively flat 

(Fig. 1b), the ice thickness closely reflects the bedrock topography. In other words, areas with thick and shallow ice indicate 

valleys and mountain ranges underlying the ice sheet, respectively. A valley terrain with an ice thickness of 2700–3500 m 

extends from the north to the west of Dome Fuji, and a bedrock bump with the ice thickness of 2300–2700 m exists further to 

the northwest. The southern mountains of Dome Fuji consist of complex subglacial ridges and valleys with the ice thickness 235 

of 1800–2600 m. 

3.3 Uncertainties in ice thickness 

The total uncertainty of ice thickness on the interpolated map consists of three factors. Two of them are associated with 

individual measurements, and another one is associated with interpolation. The error components (1) the vertical resolution of 

the radar system and (2) the standard deviations of the ice thickness difference were estimated to be 5–85 m (Table S1) and 240 
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Figure 4. Histogram of the ice thickness difference between the point data from each radar survey and the JARE59 and JARE60 radar 

surveys. 

 245 
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Figure 5. (a) Histogram and (b) spatial distribution showing differences in ice thickness between point measurements and 500 m0.5 km 
gridded data. Red and blue arrows in (b) indicate the radar lines of JARE37 and JARE49. (c) Scatterplot showing the gridded ice thickness 
against the point measurement data. 250 

43–80 m (Fig.3.3 Uncertainties in ice thickness 

The total uncertainty of ice thickness on the interpolated map consists of three factors. Two of them are associated with 

individual measurements, and another one is associated with interpolation. The error components (1) the vertical resolution of 

the radar system and (2) the standard deviations of the ice thickness difference were estimated to be 5–85 m (Table S1) and 

43–80 m (Fig. 4), respectively. The error component (3), the standard deviations derived from the kriging interpolation, was 255 

estimated to be 1–34 % (relative standard deviations). Accordingly, the JARE data uncertainties are estimated to be from ±60 

to ±80 m with an average of ±71 m (Fig. 3b), which corresponds to within 4 % of the ice thickness in the study area. The 

uncertainty is typically small near the data points and increases with distance from the data points. 

For the 107138 data points along the radar lines, the mean difference between the interpolated and measured ice thicknesses 

is less than −1 m, with a standard deviation of 35 m (Fig. 5a). The absolute differences in ice thickness are < 50 m for 88 % of 260 

the points, and > 100 m for only < 2 % of the points. We do not find clear systematic bias in the gridded ice thickness along 

radar measurement lines (Fig. 5b). We also examined the overall errors in the ice thickness on gridedgridded data generated 

by kriging interpolation. A comparison of the gridded data with the measurement data showed an anomaly in ice thickness of 

< 1 % (Fig. 5c), suggesting that the effect of kriging interpolation is constant for all ranges of ice thickness. Note that there is 

a significant variation in the measurement data relative to the gridded data in the scatter plot because multiple measurement 265 

data are compared with the same gridded data in each cell. The gridded ice thickness is > 50 m thinner than the measurement 

data are situated along the radar lines of JARE37 and JARE49 that run from Dome Fuji to the east and west, respectively (Fig. 

5b). The bias along the JARE49 line can be attributable to the bias in the ice thickness in the JARE49 vhf60 measurement data 

with respect to the JARE59/60 data, with a mean positive anomaly of 75 m (Fig. 4) (note that the gridded data is corrected for 

the bias). For the JARE37 line, it is unclear why the gridded data are thinner than the measurement data, because there is no 270 

appreciable bias in the JARE37 ice thickness with respect to the JARE59/60 data (Fig. 4). 

4 Discussion 

4.1 Improvements in ice thickness estimates with high-gain and high-directivity antennae 

The use of high-gain and high-directivity antennae resulted in improved accuracy of bedrock topography detection. A 

crossover analysis of the ice thickness showed that the standard deviations of the ice thickness difference based on data 275 

acquired after 2017 (43–56 m) are smaller than those before 2013 (58–80 m) (Fig. 4). Our data suggest that high-gain and 

high-directivity antennae provide a significant improvement for ice thickness measurement in mountainous terrains. Our 11- 

and 16-element Yagi antennae had lengths of 5.0 and 5.4 m, respectively, for a frequency of 179 MHz. Even though such 

vertically long antennae would have difficulty in mounting on ground-based platforms, they provide an important opportunity 
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for improving conventionalincoherent radar systems. Modern coherent radar sounders with phase analysis and SAR processing 280 

(e.g., Rodriguez-Morales et al., 2020; Lilien et al., 2021) are able to remove hyperbolic effects. For improving the accuracy of 

bedrock topography measurements, we can apply radar with high-gain and high-directivity antennae, state-of-the-art modern 

radar with focused SAR processing, or both. 

4.2 Comparison with other ice thickness data 

We compare our gridded ice thickness with the point ice thickness data acquired with the JARE59 system to assess the extent 285 
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Figure 6. (a) Radargram based on data collected with the JARE59 radar between Dome Fuji and NDF. The lines indicate bedrock topography 
traced from the radar data and the JARE, Bedmap2, BedMachine Antarctica, and AWI gridded data. (b) Differences in ice thickness of the 
JARE, Bedmap2, BedMachine Antarctica v1, and AWI gridded data against the JARE radar measurement data. Note that radargrams shown 290 
in (a) were merged two data at about 50 km from Dome Fuji acquired on 17 and 21 December 2017. The colour range in radargrams (a) is 
0–110 dBi. 

 

bedrock topography measurements, we can apply radar with high-gain and high-directivity antennae, state-of-the-art modern 

radar with focused SAR processing, or both. 295 

4.2 Comparison with other ice thickness data 

We compare our gridded ice thickness with the point ice thickness data acquired with the JARE59 system to assess the extent 

to which it reveals the fine undulations of the bedrock topography. We also evaluated the JARE gridded ice thickness with 

Bedmap2, BedMachine Antarctica v1, and AWI ice thickness along with the survey route between Dome Fuji and NDF (Fig. 

1bS4). We used a 500 m0.5 km horizontal resolution of BedMachine and AWI data, and a 1 km resolution of Bedmap2 with 300 

resampled to a 500 m0.5 km grid. The ice thickness data acquired by JARE along the route was combined into respective ice 
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thickness maps to assess the impact of the smoothing effect in the interpolation scheme used for each ice thickness map. 

Bedmap2, BedMachine, 
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Figure 7. The differences in ice thickness between (a) Bedmap2, (b) BedMachine Antarctica v1, and (c) AWI ice thickness data and the 305 
gridded data generated in this study. The bold contours in all plots indicate an ice thickness of 2500 m. 
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and AWI gridded data have compiled point ice thickness data acquired in JARE33 and JARE37 along the survey route between 

Dome Fuji and NDF (Fig. S1b). This comparison demonstrates differences in ice thickness between gridded data that contain 

common point data and created by different data compilation, smoothing methods, and parameter settings. Figure 6a shows 

that our gridded ice thickness data accurately resolve the undulations in the basal topography with a horizontal scale of > 500 310 

m0.5 km. The absolute difference in ice thickness between the gridded and radar-sampled data along the survey line is ~158 

m, with an average value and a standard deviation of −6 and 44 m, respectively (Fig. 6b), indicating that our data slightly 

underestimate the ice thickness on this spatial scale. The most significant differences appear in the sharp peaks at basal 

topographic highs, where the horizontal scale is smaller than the grid size. The mean differences between the radar 

measurement points and ice thicknesses from Bedmap2, BedMachine Antarctica, and AWI gridded data are 1, −36, and −8 m, 315 

with standard deviations of 120, 108, and 148 m, respectively (Fig. 6b). These gridded data are smoother than the radar data 

and thus tend to overestimate  
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Figure 7. The differences in ice thickness between (a) Bedmap2, (b) BedMachine Antarctica v1, and (c) AWI ice thickness data and the 
gridded data generated in this study. 320 
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the ice thickness in convex areas of the subglacial terrain and underestimate it in concave areas. For example, BedMachine 

Antarctica resolves a convex terrain on a horizontal scale of about 5 km at a horizontal distance of 7 and 12 km from Dome 

Fuji, whereas Bedmap2 and AWI data show a flat terrain (Fig. 6a). BedMachine Antarctica shows a large discrepancy in the 

vicinity of Dome Fuji, implying that the effectiveness of mass conservation methods of bed interpolation is limited by low ice 

velocities near the ice divide. 325 

We also examined the differences in ice thickness between the JARE gridded data and the data from Bedmap2, BedMachine 

Antarctica, and AWI over the entire study area. Significant variance was found in all comparisons. The results of a statistical 

analysis of ice thickness differences are summarized in Table S2. For Bedmap2 and AWI gridded data, the most significant 

differences appear in the subglacial mountainous terrain south of Dome Fuji (Figs. 7a and 7b7c). A comparison revealed 

overestimation of the ice thickness in the area by ~510 m, resulted from the JARE60 surveys with a fine line spacing (~0.5 330 

km). The ice thickness is underestimated by ~810 m in an area further south of the subglacial mountains, where the subglacial 

valleys extend from west to east with an ice thickness of > 3000 m. The differences in ice thickness are smaller in the vicinity 

of the Dome Fuji station and further north because Bedmap2 includes JARE data for this area. Although the AWI data also 

include the JARE measurement data in this area, the ice thickness obtained from AWI data is > 200 m thinner northwest of 

the station. The JARE49 pol179 data acquired in this area show a negative bias in ice thickness, with an average value of −37 335 

m relative to the data from JARE59 and JARE60 (Fig. 4). Presumably, one reason is that the JARE49 data were included in 

the AWI data without correction of this bias, resulting in a thinner ice thickness. For BedMachine Antarctica data, the 

differences in ice thickness are smaller than those for the other two datasets (Fig. 7c7b). Small areas with thicker or thinner 

ice are distributed in a mosaic pattern. The differences in ice thickness from the three maps relative to the JARE data have 

small mean values and high standard deviations, suggesting that an interpolation scheme inevitably introduces a significant 340 

smoothing effect. Accordingly, our data better delineate the critical features of the subglacial mountain ranges south of Dome 

Fuji compared with the previously published bedrock topography. The high spatial resolution of the ice thickness data is 

attributed to the data interpolation smoothing effect being much smaller than that in previous data compilations, which is due 

to the JARE radar data having a horizontal spacing that is equivalent to the grid size. 

4.3 Subglacial conditions 345 

To gain further knowledge for identifying the optimum drill site, we examined subglacial topographical, glaciological and 

hydrological conditions with our ice thickness data. Here, we present the roughness of the ice-bed interface, bed surface slope, 

the stress state of the ice and the subglacial hydrological condition. 
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Figure 8. (a) Bed roughness superimposed on new bed elevation data (in grayscale) and (b) bed slope. Bed elevation contours in (a) have 350 
intervals of 100 m. (c) Driving stress using the new ice thickness data and the Cryosat-2 surface DEM (Helm et al., 2014). (d) Hydraulic 

potential using the new ice thickness and bed elevation data. The estimated drainage routes of the subglacial water are indicated with blue 

dots. The red contours in all plots indicate an ice thickness of 2500 m. 

4.3.1 Basal roughness and slope 

Bed surface roughness aids the ice to develop a complex deformation pattern in the lowermost part of the ice sheet. The 355 

complex deformation field could disturb the stratigraphic continuity of the ice core record. We calculated the bed surface 
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roughness along the ice radar surveyed route as the root mean square deviation (RMSD) in detrended bedrock elevation on an 

800 m baseline (Shepard et al., 2001; Young et al., 2011, 2017). 

The RMSDs at the 800-m length scale typically ranges from 0–80 m with an average of 26 m in the study area (Fig. 8a). 

The RMSD obtained in this study is larger than the results by Van Liefferinge et al. (2018), who used the AWI compilation 360 

ice thickness data (Karlsson et al., 2018), probably due to the spatially dense basal topography data. The RMSD is lower in 

the summit regions and surrounding subglacial basins of mountain ranges. For example, much of the mountain summits around 

the NDF, the subglacial basin at 20 km south of the NDF, and a midway region between Dome Fuji and NDF exhibit smoother 

basal topography. Significantly rougher bedrock surfaces are observed on the slopes, valleys and saddles surrounding the 

mountain range, where the basal topography is highly variable. Basal surface slope shows a similar spatial pattern with the 365 

basal roughness (Fig. 8b). Steep basal surfaces are distributed on the ridges and valleys of the mountain range south of Dome 

Fuji. Basal topography is relatively flat in the basal trough around the Dome Fuji station. The bed slope ranges from 0–14° 

with an average of 4° in the study area. 

Our results show that the basal roughness is generally high in the subglacial mountainous terrain and lower in the subglacial 

basins. These spatial patterns are consistent with previously reported in Dome Fuji, Dome A, Ridge B, and Dome C in the 370 

inland of the EAIS (Bingham and Siegert, 2009; Young et al., 2017; Van Liefferinge et al., 2018). Based on chemical analysis 

of lowermost part of the Dome C ice core, Tison et al. (2015) proposed that high basal roughness may change the vertical 

stress field, changing the thickness of the internal layer in the basal ice. However, the low basal roughness may also be an 

unfavourable condition for preserving old ice. Eisen et al. (2020) found that in areas in East Antarctica with low flow velocities, 

such as areas near the inland ice divide, there is a weak spatial relationship that the bedrock roughness is systematically smaller 375 

where the basal conditions are temperate. Indeed, a spatial correlation between smooth basal topography and subglacial lakes 

has been investigated in the basal temperate area around Dome Fuji (Van Liefferinge et al., 2018). In the Dome Fuji area, the 

bed is estimated to be temperate at ice thicknesses more than 2500 m (Fujita et al., 2012), and the presence of subglacial lakes 

has also been found in these locations (Popov and Masolov, 2007; Karlsson et al., 2018; Van Liefferinge et al., 2018). Even in 

areas less than 2500 m of ice thickness, where the bed was estimated to be frozen by Fujita et al. (2012), there is a complex 380 

distribution of smooth and undulating basal surfaces (see areas within red contours in Fig. 8a). Further discussion on basal 

roughness combined with discriminant analysis of basal thermal conditions based on new radar data will be required to narrow 

down the area where old ice may exist. 

4.3.2 Driving stress 

Basal ice disturbance is likely to occur when the ice is subjected to horizontal stress due to the surface slope. However, the 385 

reduction in horizontal stress may also be due to the basal melting, which would eliminate the old climatic record. To examine 

the influence of the ice stress field on the disturbance of old ice at the base of the ice sheet, we calculated the driving stresses 

from new gridded ice thickness data in conjunction with satellite-derived ice sheet surface elevations. The driving stress 𝜏! 

(kPa) is defined as 
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𝜏! = 𝜌"𝑔ℎ sin 𝛼,            (1) 390 

where 𝜌" is the density of ice (910 kg m−3), g is the gravitational acceleration rate (9.8 m s−2), h is the ice thickness, and 𝛼 is 

the slope of the ice sheet surface. Surface slopes were derived from the 1 km resolution Cryosat-2 surface DEM (Helm et al., 

2014). The surface slope was then interpolated to a 0.5 km resolution to combine with the gridded ice thickness data. 

Driving stresses spatially correlates with surface slope (Figs 1b and 8c). We observe that driving stresses are low around the 

Dome Fuji station and increased with distance. Basal topography around the Dome Fuji station is less undulating, resulting in 395 

less spatial variation in ice thickness. Elevated driving stresses were observed over the subglacial mountain ridge around NDF. 

These high driving stresses may disturb the basal ice in these locations. Suppose ice flows over beds with heterogeneous basal 

topography and resistance. In that case, it will cause undulations on the ice surface, affecting the spatial variation of the surface 

slope, which affects the local driving stresses (e.g., Gudmundsson, 2003; Sergienko et al, 2014). The relationship between 

undulating basal topography and locally elevated driving stresses can be confirmed by the spatial correlation between basal 400 

roughness, basal slope and driving stresses. Meanwhile, regions around the subglacial mountain with low driving stress 

correspond to local subglacial basins. It implies a condition of basal lubrication, and thus melting may have modified the basal 

ice. 

4.3.3 Hydrological conditions 

In the Dome Fuji region, the presence of subglacial water, including subglacial lakes and water-saturated sediments, has been 405 

identified based on reflected radio echoes from bedrock surface (e.g., Popov and Masolov, 2007; Fujita et al., 2012; Karlsson 

et al., 2018). Subglacial water flows from areas of high hydropotential to areas of low hydropotential following to the steepest 

gradient (Shreve, 1972). Hydraulic potential analysis reveals where subglacial water can migrate and provides essential 

insights into selecting old ice sites. In the Dome Fuji area, hydraulic potential and the potential subglacial drainage routes have 

been investigated using airborne radar measurement data (Karlsson et al., 2018). We calculated the hydraulic potential and the 410 

potential drainage routes of the subglacial meltwater using new ice thickness data. The hydraulic potential ϕ (m) is defined as	

ϕ = #!
#"
ℎ + 𝑧$,            (2) 

where 𝜌% is the density of water (1000 kg m−3) and 𝑧$ is the bedrock elevation. The potential water drainage routes were 

calculated by a multiple-flow-direction algorithm using the topographic analysis software package TopoToolbox developed in 

MATLAB (Schwanghart and Scherler, 2014). We set an upslope area threshold for defining the subglacial stream network to 415 

100 connected cells (50 km2). 

The spatial distribution of hydraulic potential is generally consistent with the basal topography (Fig. 8d). The water flow 

routing in the hydrological network initiates over the subglacial mountains. It flows along the valleys to the low subglacial 

basins, indicating that the geometry of the subglacial hydrological network is dendritic. In the study area, we identified four 

main drainage systems; flow from the subglacial mountain beneath NDF to the basins located southwest of Dome Fuji (easting 420 

of 868 km, northing of 1070 km), west of NDF (825 km, 1070 km), south of NDF (810 km, 1025 km), and east of NDF (860 
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Figure 9. The gridded ice thickness in (a) the study region and (b) the JARE60 observational area. The box in (a) indicates the area shown 

in (b). The bold contours indicate an ice thickness of 2500 m. The thin contours in (b) indicate ice thickness with intervals of 20 m. 

 425 

km, 1010 km). Two of the catchments, west and south of NDF, coincide with locations where subglacial lakes have been 

identified (Popov and Masolov, 2007; Fujita et al., 2012; Karlsson et al., 2018). Our subglacial hydraulic analysis confirms 

the features of the basal topography on which subglacial lakes exist, suggesting that subglacial lakes may be present at two 

other basins and other local topographic lows. Basal ice in the subglacial valleys is considered to be melted, as drainage streams 

flow even where the ice thickness is less than 2500 m. Subglacial hydraulic analysis using the new ice thickness data suggested 430 

the possible locations of old ice to the summits and ridges of subglacial mountains in the southern area of Dome Fuji. Further 

clarification of the thermal conditions of the ice-bed interface and identification of subglacial lakes is required in this area, 

using the reflective properties of radar radio signals or ice flow modellings. 

4.4 Prospects for finding oldest ice around Dome Fuji 

The subglacial mountain ranges that extend from the south to southeast of Dome Fuji, where we conducted dense radar 435 

measurements, are frozen at the ice-bed interfaces where the ice thickness is approximately < 2500 m (Fujita et al., 2012). We 

could delineate areas with an ice thickness of < 2500 m with the JARE data, indicating that a frozen ice-bottom area can be 

restricted above the ridges and summits of the subglacial mountain range (Fig. 8a9a). The subglacial terrain exhibits dense 

dendritic patterns of ridges and summits (Fig. 8b9b). These areas, where the ice-bed interface should be frozen, appear only 
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slightly eroded by ice sheet flow. On the other hand, selective linear erosion occurred in valleys with large ice thickness, 440 

suggesting the further erosion of troughs. Fluvial erosion on the East Antarctic continent before 34 MaMyr, when the ice sheet 

was formed, is also thought to be a factor in evolving basal troughs (e.g., Jamieson et al., 2005). Regarding the requirements 

for 

 
Figure 8. The gridded ice thickness in (a) the study region and (b) the JARE60 observational area. The box in (a) indicates the area shown 445 
in (b). The contours indicate ice thickness of 2500 m. 

 

Note that even in areas more than 2500 m of ice thickness, old ice may also exist where the ice-bed interface is frozen due to 

low basal geothermal heat flux, and the ice stratigraphy near the base is undisturbed due to low horizontal flow velocity. 

Regarding the requirements for potential oldest ice sites, smaller ice thickness is preferred to avoid the possibility of bottom 450 

ice melting due to an increase in the insulation effect. In addition to this general view for frozen/melt distinction, our map 

revealed the presence of complex and steep terrain in the area with reduced errors from hyperbolic effects and high spatial 

density. This new landscape suggests that finding a potentially suitable drilling site in this area may be more challenging than 

previously thought. 

Even if the bottom of the ice sheet is frozen, the ice sheet is either above bedrock ridges, summits, steep slopes, or troughs. 455 

Finding undisturbed ice layers just above the bed is a prerequisite for oldest ice drilling. We expect undisturbed ice layers just 

above the bed to be more likely located above ridges or summits than steep slopes or troughs because the ice over slopes are 

under high shear stress and that over troughs are subjected to the effects of complex ice flow and bottom melt.. Our analyses 

of driving stresses and hydraulic conditions suggested that the ice over slopes is under high shear stress, and that over troughs 

are subjected to the effects of complex ice flow and bottom melt. Horizontal flow velocity in our study area is < 1 m a-1 (see 460 

Fig. S7 of Karlsson et al., 2018), suggesting that basal ice rheology is dominated primarily by vertical normal stress and 
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horizontal shear stress is relatively small. Under the dominance of the vertical normal stress, horizontal shear appears mainly 

on subglacial slopes rather than ridges or troughs. Basal troughs are often influenced by basal melt or connected to deeper 

troughs of more basal melt. Then, troughs tend to be fast pathways for ice flow. Therefore, we suggest that subglacial ridges 

in our study area are under simple ice flow conditions, compared to slopes or troughs to preserve layered conditions. 465 

Low snow accumulation rates are one of the requirements for the presence of old ice in the ice sheet base, as they inhibit 

vertical ice advection and increase the time of existence of the inner layer. The large-scale spatial pattern of the accumulation 

rate in the Dome Fuji area decreases towards the inland ice sheet (Fig. S2). On the windward (low latitude) side of an ice 

divide around the Dome Fuji station, the wind releases precipitation as it upslopes over the ice sheet surface. Then it brings 

relatively dry air on the leeward (NDF) side due to the orographic effect. For the local scale, previous studies have indicated 470 

that the accumulation rate is negatively correlated with surface slope, and there is also a relationship between the surface and 

the basal slopes (e.g., Black and Budd, 1964; Furukawa et al., 1996; Fujita et al., 2002, 2011). For example, ground-based 

shallow ice radar measurements around NDF revealed that the accumulation rate is locally variable ~30 % and negatively 

correlated with surface slope at a length scale of ~2 km (Van Liefferinge et al., 2021). Further analysis between the detailed 

basal topography revealed by our observations and the accumulation rate will be required to provide new insights into the 475 

complex spatially varying surface mass balance distribution, contributing to selecting possible locations for old ice. 

Finding suitable locations for the very old ice drilling in mountainous areas requires a pinpointing assessment to avoid sites 

with irregular bed topography. This is the basis as to why we needed the data with a significant decrease in hyperbolic features 

in the echoes from mountainous ice-bedrock interfaces. After locating possible areas for deep drilling based on the present 0.5 

km resolution bed topography, further radar sounding with a higher spatial resolution (i.e., 0.1 km or less) is needed to find 480 

the best candidate points in the identified areas. 

5 Conclusions 

To better understand the detailed bedrock topography for finding potential sites that contain ice that extends to > 1 MaMyr, 

we conducted ground-based radar measurements with a high spatial resolution across the Dome Fuji region, East Antarctica, 

in the 2017–2018 and 2018–2019 austral summer seasons. The antenna performance of the VHF radar systems was greatly 485 

improved by high gain and high directivity. We constructed an ice thickness map from the improved radar data and previous 

data collected since the late 1980s. The differences in ice thicknesses of our gridded data and previously published gridded 

data were investigated in relation to the radar measurement data to assess the impact of the smoothing effect in the interpolation 

scheme on the bedrock topography. We also examined the spatial distribution of the ice thickness differences between our data 

and previous gridded data. 490 

The data acquired using the improved radar systems had a significant decrease in the hyperbolic features at the ice-bedrock 

interface and allowed basal topography to be identified with higher accuracy. The improved radar systems clearly resolved the 

internal layer stratigraphy at the lower part of the ice sheet. The new ice thickness data show the bedrock topography, 
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particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially higher detail than 

that in previously published data. The high spatial resolution of the ice thickness data is attributed to the data interpolation 495 

smoothing effect being much smaller than that in previous data, which is due to the JARE radar data having a horizontal 

spacing that is equivalent to the grid size. Our topographic analysis indicates that steep and rough bedrock surfaces extend at 

the slopes of the basal mountains, while relatively flat surfaces exist at the mountain summit and subglacial basins. Hydraulic 

analysis implies the presence of subglacial water flow networks and subglacial lakes in subglacial valleys and basins, where 

these were not explicitly detected before. The new ice thickness map setsand subglacial environments findings are set 500 

substantial constraints for identifying possible locations for oldest ice drilling areas. Finally, recognizing the improvement in 

data quality and comparing existing topographic products, we suggest that widely available bed topography products should 

be validated with in-situ observations where it is possible. 

 

Data availability.  The gridded ice thickness data will bewere published in Discover and access Arctic and Antarctic Data 505 
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