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Abstract. The Greenland ice sheet has experienced significant melt over the past six decades, with extreme melt events covering
large areas of the ice sheet. Melt events are typically analysed using summary statistics, but the nature and characteristics of
the events themselves are less frequently analysed. Our work examines melt events from a statistical perspective by modelling
19 years of Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface temperature data using a Gaussian mixture
model. We use a mixture model with separate model components for ice and meltwater temperatures at 1139 locations—cells
spaced across the ice sheet. By considering the uncertainty of the ice surface temperature measurements, we use the two
categories of model components to define, for each observation, a probability of melt for-a-given-observationrather-than-using
a-which is independent of any pre-defined fixed melt threshold. This probability can then be used to estimate the expected
number of melt events at a given loeationcell. Furthermore, the model can be used to estimate temperature quantiles at a given
loeationcell, and analyse temperature and melt trends over time by fitting the model to subsets of time. Fitting the model to data

from 2001-2009 and 2010-2019 shows increases in melt probability and yearly expected maximum temperatures for significant
portions of the ice sheet;-as-well-as-the-yearly-expected-maximum-temperatures.

1 Introduction

The Greenland ice sheet has experienced significant melt over the past six decades (Fettweis et al., 2011) and has had an overall
accelerating contribution to sea-level rise from a combination of melt and dynamical discharge, in particular over the last 18
years (Rignot et al., 2018). Wide regions of the ice sheet have lost mass over the last two decades resulting in an increasing
contribution to sea-level rise (Mouginot et al., 2019). Combined with melt from other ice bodies, e.g. the Antarctic ice sheet
and valley glaciers, groundwater depletion, and thermal expansion of the oceans, total sea-level rise has been far above the
historical rate of sea-level rise during this period (Chen et al., 2017). Understanding where, when, and how frequently melt
occurs on the Greenland ice sheet is a key part of understanding its role in sea-level rise and how we might expect it to change
in the future.

Since air temperature is a strong control on ice melt (Vermeer and Rahmstorf, 2009), temperature data is often used as a
proxy for melting. Ice surface temperatures exceeding —1°C can be interpreted as evidence of melt depending on the dataset

used and its accuracy and uncertainty (Nghiem-et-al52042)(Hall et al., 2018). There are many ways to study the temperature of
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the ice sheet, including through observations from space (Zhengming and Dozier, 1989), Automatic Weather Stations (AWSs)
(Tedesco et al., 2013), and using

data-Regional or Global Climate Model output (Smlth et al., 2007). Data from these diverse sources are characterised by differ-

ing levels of accuracy and coverage. Whilst in-situ observations are often considered to provide the most accurate measurements

for a given leeation;-and-GEMs-cell, and GCM output allows consideration of temperatures under different climate scenarios,
satellite data has comparable accuracy to in-situ measurements (Hal-et-al5-2008)-under clear-sky conditions (Hall et al., 2008)
but with far higher spatial coverage, thus providing the most comprehensive overall view of the ice sheet.

In 2012, a record-breaking melt event was observed during mid-July, with 98.6% of the ice-sheet simultaneously experienc-
ing melt (Hanna et al., 2014). Extreme melt events such as this are likely to become more common as overall temperatures on
the Greenland ice sheet increase, contributing to increasing amounts of melt. Despite their role-in-the-overal-view-contribution
to our overall understanding of melt on the ice sheet, the magnitude, frequency, and melt contribution of these melt events

and-futare-events-are not clearly defined. Because these events are rare, our understanding of them has necessarily been based

on observations-of-case studies of a few isolated examples to date. Modelling-these-eventsallows-usto-By applying statistical
models to these events, we can both deepen our understanding of theircharacteristies-and-drivers-and-to-better-quantify-the
hysical properties of the melt events and improve quantification of melt on the ice sheet overall.

Here, we propose a novel statistical approach applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Ice Sur-
face Temperature (IST) data to model the distribution of temperatures on the Greenland ice sheet at 1139 MODIS pixelscells,
with a particular interest in identifying and modelling melt temperatures. The approach is based on three key characteris-
tics of IST data: firstly, the presence of physical bounds on the range of ice and ice-melt temperatures; secondly, the multi-

modality of the distribution; and thirdly, ambiguity about whether measurements close to 0’ C represent melting of the ice

sheet surface. Our-medel-is—sufficiently—generalise-able-This model based approach has several advantages over a purel
empirical analysis, including allowing full characterisation of the distribution of ist and resulting properties e.g. melt threshold
exceedance probabilities, quantiles, return periods and return levels, as well as allowing for out-of-sample prediction and

extrapolation. Since the sample of cells used to fit the statistical model is uniformally distributed over the full ice sheet, our
model is sufficiently general-isable as to be useful for pixels—cells not exphcltly used to generate the model, regardless of

elevation, distance from the coast, or

eographical location. Finally note that we limit our analysis to the modelling of cloud-free days. This is due to the absence
of data on days with cloud cover and the bias that would ensue if we were to assume that temperatures on clear days could

be used to represent these missing values. The data can not be considered as missing at random, so there would be a bias in
temperatures on cloudy days compared to clear days. We use this model to investigate time trends in the observation period

and to quantify both the frequency and magnitude of temperature events that are likely to result in ice melt.
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2 Data and methods
2.1 MODIS IST data

We use MODIS IST data from MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 6 (MOD29) contained within a mul-
tilayer Greenland MODIS-based product (Hal-and-DiGiretamo;20+9)(Hall et al., 2018). MODIS records surface reflectance
from 36 spectral bands of different wavelengths - including those used in IST - near daily for the entire Earth. The-This dataset
spans the period 01/03/2000 to 31/12/2019 and has a spatial resolution of .78 km x .78 km. Here we discard the first 10 months
of the data set, up to 01/01/2001, in order to work only with those years for which a full annual cycle is available. To reduce the
computational burden of our model, we also subsample the data taking 1 in every 50 points—cells in both = and y dimensions
for a total of 1139 peintscells, roughly equally spaced across in latitude and longitude and thus covering a-the full range of
glaciological and climatological settings across the ice sheet.

The IST measurements represent the temperature at the surface of the ice in cloud-free conditions. Clouds (specifically
water vapour) can interfere with the measurements, so a cloud mask is used in the MODIS product to remove measurements

made in cloudy conditions.

ahyAs a consequence, our analysis and
predictions are valid for clear conditions only. Due to the generally warmer temperatures seen on cloudy days, were the analysis
to be interpreted as representative of clear days also, there would be a strong likelihood of over over-estimating the magnitude
and frequency of melt events (Koenig and Hall, 2010).

As a result of cloud masking, areas on the coast and in the north have a higher proportion of missing data than more central
areas (Figure 1). We also see that winter months have more missing data on average than summer months because of cloud
cover, with a range of 65.1% of data available in December compared to 91.1% of data available in May. This is important to
bear in mind when interpreting the predictions made from the statistical models, as the IST distributions will be more heavily
weighted towards warmer temperatures. This shouldn’t affect our inference with regards to melt, however, as melt temperatures

almost exclusively occur in the summer months which have a much lower proportion of missing data.
2.2 Modelling considerations

To create a statistical model that is parsimonious and applicable ¢

all cells over a large and geographically-varied region, we model the IST data using statistical methods that allow us to treat
melting in a probabilistic manner. Exploratory data analysis shows that there is no clear peint-quantile in the temperature
distribution that can be attributed to-as the onset of melting (Figure 2). As a result, we model melting ice temperatures and
non-melting ice temperatures separately and estimate the probability of melt occurring over a range of temperatures. This
approach allows for some uncertainty in the observations from factors such as the precision of the dataset, which has a stated
uncertainty of £1°C). We hereby refer to temperatures associated with melting ice as “melt" temperatures and temperatures

associated with non-melting ice as “ice" temperatures.
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Figure 1. Proportion of non-missing-available MODIS IST data (i.e not filtered by the cloud mask) at 1139 leeations—cells on the Greenland
ice sheet between 2001 and 2019 (a) and mean proportion of nen-missirg-available MODIS IST data by month between 2001 to 2019 (b).

A key feature of the dataset and a core modelling consideration is the soft upper limit at 0°C. The melting point of the ice
acts as a physical upper limit on ISTs, as once the ice exceeds this temperature it melts and may no longer form the surface of
the ice sheet. Some sites have measurements above this limit, which arise due to meltwater sitting on top of the ice. However,
the ice under the water places a limit on these melt temperatures, hence the distribution of positive temperatures is truncated
close to 0°C. This soft upper limit of ISTs causes a significant peak in the distribution centred at approximately —0.5°C, as

any ISTs that would exceed 0°C are truncated to small positive values close to 0°C.

or—Weibul-The simplest statistical model would be to fit a single distribution to the full data set, potentially after an initial
transformation. This raises two issues. Firstly, a bimodal distribution is clear at all cells with cells that experience melt havin

vatues—This-gives-For non-melt cells, the location of the higher mode is more variable. This does not appear to be directly.
attributable to seasonal differences in temperatures, as as the shape of seasonal temperature distributions show as much inter-site
variability as they do inter-season variability. Fits of unimodal distributions are particularly poor at the tails of the distributions,
which is particularly problematic since our interest lies in melt which is directly connected to the upper tail of the temperature
distribution.

Given the focus on melt, an alternative option would be to undertake an extreme value analysis of only the highest temperatures
at each cell. This would allow the model to focus on the temperatures of highest interest that are the most difficult for more
standard models to capture. This also proves problematic though, as in order to fit the model the temperatures must first be
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Figure 2. Frequency distribution of daily MODIS IST data from an example toeation-cell (82.47, -37.50) on the Greenland ice sheet between
2001 and 2019. Solid lines show a mixture model fit to these data where black—indicates—thefull-model-blue indicates the three ’ice’
componentand-components, red indicates the “melt’ component, and black indicates the full model as the sum of the ice and melt components.
Each individual component is a truncated Gaussian distribution, and the lines represent the probability density function of these on a scale to

identified as extreme using an extreme value threshold, with temperatures above the threshold being classed as extreme and
those below being classed as non-extreme. Due to the mode around 0°C, finding a consistent threshold location using quantiles,
gradient analysis or a specific temperature all encounter problems due to the large variety of tail shapes at different cells. Each
of the above mentioned threshold types do not work universally across the ice sheet, and in many cases provide much worse
fits than a distribution applied to the whole range of temperatures.

A consistent model that can be automatically applied at cells across the ice sheet therefore requires a multi-modal distribution
or a time-series model to capture seasonal behaviour. The disadvantage of the latter is that it is less able to capture the mode
around 07C and the truncation of the temperatures which is where our research interest lies. This further motivates a modelling
approach that more directly considers the distribution of the specific data set and allows for multi-modal distributions. The
overall distribution shape is broadly similar between sites with the main difference being the proximity of the distribution to

0°C and thereby the amount of truncation in the data. The considerations above around the multi-modality of the data set and
of the nature of melt temperatures around 0°C give us a basic set of assumptions to base our modelling around that allow the

model to retain the same underlying structure regardless of the absolute difference in ISTs between loeationscells.



125

130

135

140

145

150

2.3 Model description

In order to accommodate spatial variability in the temperature distribution, we model IST using a truncated Gaussian mixture
model in which components are assigned to model groups of temperatures that we assign to be either ice or melt. For n; ice
components and a single melt component, let ¢; be the weight associated with model component ¢ such that for n, =n;+1
total components, y .-, ¢; = 1. For each ice component ¢ (and melt component M) let f;(x) be the probability density function
of the truncated normal distribution X ~ TN (p;, 0?, a;,b;), where p; is the mean, o; is the standard deviation, a; (b;) is the

lower (upper) truncation point. Then the probability density function of ISTs x is:
nr

px) = ¢ifi(z) + b fu().
i=1

We set the upper and lower truncation points for the ice and melt components at values that bound each measurement type
with relative certainty. For the ice components, a = —oo as there is no hard lower limit on the temperature of ice (aside from
absolute zero), and b =0 as, theoretically, ice temperature can’t exceed 0°C. This means that there is no limit on how low
ice temperatures can go, but they can’t exceed 0°C. For the melt component, b = oo and a = —1.65, so that temperatures in
the melt component can’t go below —1.65°C but are not upper truncated. We take a bound lower than zero here to account
for uncertainty in the data and any potential impurities in the ice surface. —1.65°C is the theoretical minimum temperature at
which saline ice can melt (Hall et al., 2004), and thus should be a conservative estimate for this lower bound. Temperatures
between —1.65°C and 0°C can be modelled by either/both the ice and melt components as there is uncertainty as to whether
they are associated with melting or non-melting ice.

A mixture model was fitted using the Expectation-Maximisation (EM) algorithm for each sample leeationcell. The algo-
rithm alternates between two main steps: calculating the component probabilities that each observation z; comes from model
component k, and maximising the expectations of the model parameters using the component probabilities (for full details see
Appendix A). We used this method to obtain estimates of y, o, and ¢ for each model component at each leeationcell.

We used Bayesian Information Criterion (BIC) to assess the most appropriate number of ice and melt components and found
that three ice components and one melt component fit the data best. These components may be broadly interpreted as winter,
autumn, spring, and the melt season for the three ice components and single melt component respectively.

When modelled with separate Gaussian components, the characteristics of the different modes of the data are much clearer
(Figure 2). The melt component at each loeation—cell generally has a much lower variance than the ice components due to
the soft upper limit of ISTs and the lower truncation point of the model, whereas the ice components have higher variances
and more overlap between components. For the sites that experience melt regularly, a substantial proportion of the overall
temperature distribution occurs in the overlap between true ice and true melt. A similar result is seen across sites located on
or near the coasts, which further validates the decision to use a fixed melt threshold as the melt temperatures - and thereby the

melt process - appear to have consistent characteristics across tecationscells.
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2.4 Defining melt

Using this model, the probability of melt occurring, which we denote by p(x), can be quantified as the ratio of the densities of

the ice and melt components. For a given IST x, n; ice components melt component M, we have:

_ fu(x)
(@) +370 i)

Consequences of this definition are that for ISTs below —1.65°C, the probability of melt is 0, for ISTs above 0°C the probability

p(x)

of melt is 1, and between these values the melt probability depends on relative values of the melt and ice components’ densities.
For leeations-cells with very few or no ISTs above —1.65°C, the weight of the melt component may be close to or equal to 0, in
which case the probability of melt occurring is effectively zero. Note that there are discontinuities in the model-based estimate
of this probability due to the censoring of the mixture components. These discontinuities occur at the edges of the range of

interest (—1.65°C and 0°C) and are more or less severe depending on the degree of truncation of the ice and melt components.
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Figure 3. Melt probability estimates of a range of IST's using the fitted mixture model at a single toeation-cell (75.37,-58.13) on the Greenland
ice sheet between 2001 and 2019. Because some loeations—cells have very limited data above —1.65°C, we use a lecation—cell on the west
coast with a high proportion of data above —1.65°C (22.55%), thus giving us an increased amount of information in the most pertinent

temperature range.
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3 Results
3.1 Melt extent comparison

Using our model, we calculate the expected number of melt days in each year at each sample leeationcell. Let N, be the number
of melt days in year y, then E[N,] = >""" | p(z;) where p(z) is the notation introduced earlier to denote Pr[melt|X = z] and
m is the number of observations in year y. The overall annual average is simply the average of the individual annual averages.

We then compare our modelled estimates to a simple threshold-based approach to defining melt, i.e. the average number of

days per year with temperatures exeeeding-greater than or equal to —1°C (Figure 4).
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Figure 4. The mean annual number of ISTs above —1°C per year (a), the mean annual expected melt days estimated from each loeationcell’s

mixture model (b), and the difference between the two variables (c).

The majority of the ice sheet - 90.7% of leeations-cells from the expected melt from the model, 79.5% from a threshold of
—1°C on the data - experiences some degree of melt on average each year, except for sites in the dry snow zone in the centre
and north of the ice sheet (Benson, 1960). Of the leeations—cells that experience melt, most (62.2% from the model, 57.3%
from the data) sites on average see less than 2 days of melt per year, which makes up the rest of the dry snow zone and most of
the percolation zone. The areas with the most melt are located around the coast and in the south and west as may be expected.
The main discrepancies between the two measures are at coastal tecationscells, particularly on the west and north coasts. Here,
the model estimates a larger amount of melt, with a maximum of 14 additional melt days at 1 specific leeatien-cell on the edge
of the south east coast compared to the dataset. However, 89% of loeations-cells have an absolute difference of less than 2 melt

days, showing the broad agreement between the measures at central toeationscells.

3.2 Temperature quantiles

We now use the model fit to calculate quantiles of the ISTs at each lecation-cell (Figure 5). This gives context to the overall

temperature trends observed in the dataset, before looking at melt in more detail. We calculate the 90% quantiles to examine
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the broader trends of high temperatures that aren’t necessarily melt temperatures, as well as the 10% quantiles for temperatures
that are as relatively low as the 90% quantiles are high. The estimated 10% and 90% quantiles broadly follow the same trends
as elevation on the ice sheet. The 10% quantiles have a range from —53.84°C in the centre of the ice sheet to a maximum of
—15.75°C at the south tip of the ice sheet. As would be expected, tecations—cells at higher elevations have a lower 10% and
90% quantile. However, of more interest are the few (30/1139) locations-cells located on the west, east and southern coasts that
have a 90% quantile above 0°C. At these leeationscells, we would expect at least (in some cases more than) 10% of observed
temperatures to be above 0°C and thereby melt temperatures.

We also calculate the 1-year return levels of each leeationcell. This is the IST that is on average only exceeded once per
year as estimated from each leeatiencell’s mixture model. The return levels range from a minimum of —7.08°C in the centre
to a maximum of 7.24°C on the west coast. Although, as previously discussed, ISTs should not be seen higher than 0°C,
these return levels reflect similar temperatures recorded by observations in the dataset and can be plausible temperatures when
considering the effect that meltwater on the surface of the ice sheet has on the observations. The rarity of melt in certain central
areas can be seen more clearly, as temperatures in many leeations-cells (519/1139) on average reach —1.65°C less than once a
year. The trends seen in the return levels also broadly agree with those seen in the quantiles, and are in reasonable agreement
with the elevations and distance to the coast of each loeation-with-toeations—cell, with cells at lower altitudes and closer to the

coast generally experiencing more melt.
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Figure 5. 10% quantile (a), 90% quantile (b), and 1 year return level (c) estimates for MODIS IST data from 2001 to 2019 at 1139
loeationscells. Estimates are calculated from fitted mixture models at each toeationcell.

3.3 Decadal variability

To examine potential changes in melt over time, we fit mixture models at each leeatien—cell for two separate decades: 2001

to 2009 and 2010 to 2019. Averaging over a decade helps to smooth some of the annual variability and thus highlight any



potential differences as a result of climatic change. To assess any changes in melt and high ISTs between the decades, we

compare quantiles between the fitted models and the estimated melt probabilities at each leeation-cell in each decade.

3.3.1 Temperature quantiles

Because some central areas of the ice sheet do not have many historical melt observations, we examine the 95% quantiles and
205 yearly expected maximum temperatures, both of which give an indication of overall trends in high temperatures even if these
do not reach the level required for melt at some loeationscells. As previously, we take the estimated quantiles from each of the

fitted decadal models for each locationcell.
For almost all lecations—cells (1100/1139), the 95% quantile increased between the two decades. Loeations-Cells in the
south in particular have increased fairly consistently. The average change for all lecations-cells south of 73.41°N was 0.73°C,
210  with 99.3% of all feeatiens—cells further south than this seeing an increase. The largest increases were also concentrated in the

southern areas of the ice sheet, with a maximum increase of 1.78°C.
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Figure 6. Comparison of the change in 95% quantiles (a) and 1 year return levels (b) of mixture models fit to MODIS IST data from 2001 to

2009 and 2010 to 2019.

The 1-year return levels also generally increased, albeit slightly less consistently than the 95% quantiles (849 /1139 leeatienscells).
Areas in the east show the largest increases - with the largest increase being 2.66°C - however on the south west coast and
particularly the north central area of the ice sheet there are also several teeations—cells that show a slight decrease in contrast
215 to larger increases. More clearly than in the 95% quantiles, 1-year return levels at coastal loeations—cells do not increase as

much as in central leeations-—cells between decades. However, it is important to note that the maxima at coastal lecations-cells

10
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are already close to or above 0°C. Because of the soft upper limit of the IST data, values already close to this limit can be
partially constrained from further increases, so leeations—cells that had a 1-year return level above 0°C are less likely to show
an increase than colder areas such as in the centre of the ice sheet. This makes the 1-year return level more informative for

central toeeations-cells than for coastal locationscells.
3.3.2 Melt probability

We next compare the probability that each leeation—cell experiences melt on any given day for each decade. Using the fitted
models, we estimate the probability that each daily observation is a melt temperature, then take an average of all values within
our defined decades. For the purposes of interpretation, we limit our discussions to the summer months (May to September,
inclusive) when considering melt probabilities, due to the almost zero probability of observing melt outside of this period.

The two decades show very similar trends in their daily melt probabilities, particularly around the coast. However, decade 2
has more loeations-cells with a non-zero probability of melt (1017) than decade 1 (853) - an increase of around 19.2% between
the two decades - and 68.5% of lecations—cells saw an increased probability of melt between the decades. The loeation—cell
with the single largest probability from either decade is from decade 2 (64.11,-49.93). This leeatien—cell has a probability of a
melt temperature on any given summer day of 0.64 - equivalent to an expected 97.92 melt days per year.

Most of central Greenland has experienced minimal change in the probability of melt between the two decades (Figure
7). This may be largely due to the probabilities being extremely small for these areas regardless of the time period chosen.
Coastal leeations—cells show clearer and larger cross-decadal variation in melt probability. South east and south west areas of
the ice sheet were generally more likely to experience melt, in addition to some loeations-cells in the north east and north west
areas that were less likely to experience melt, in the more recent decade. The largest increase is on the south east coast, where

loeations-cells show a maximum change of 0.0351, which equates to an expected increase of 15.42 melt days each year.
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Figure 7. The average probability of a melt temperature on any given summer (May-September inclusive) day from 2001 to 2009 (a) and

2010 to 2019 (b), and the change in melt probability between 2001 to 2009 and 2010 to 2019 calculated from the fitted mixture models.

11



240

245

250

255

260

265

270

4 Discussion

Increases in ice melt in Greenland are of major concern due to the impact that it will have on sea levels ete-(van den Broeke et al.,
2016), however direet-in-situ observations of ice melt are sparse, discontinuousspaced irregularly, and of coarse resolution.
Here, we show that melting can be modeHed-statisticalty-as-afunction-of ISTsestimated using a relatively low-dimensional
and highly flexible statistical model for IST. This enables us to assemble a record of melting that is continuous in time and
space, and is sampled at high spatial (+Hkm.78 km x .78 km) and temporal (daily) resolution (cloud-cover permitting) using
the MODIS IST datasetdata set. In addition to the greater availability of IST data, ISTs also-have-charaeteristies-that-make

hem-bettersuited-to-statistical-modelling:in-partieulartemperatures-measured-are on a continuous scale --and-that-and vary
smoothly over time and space, making them better suited to statistical modelling. This is of particular interest given that, from
these data, we see that there is ambiguity about whether or not temperatures below 0°C are in fact reflective of melting ice. In
this paper, we have addressed this uncertainty by incorporating it into the structure of the statistical model, and thus our record
of melting/not-melting is probabilistic rather than binary.
Our model gives comparable results to direet-estimation-empirical estimates of melt obtained using a fixed threshold, while
also allowing more detailed analyses of melt and the overall temperature distribution via quantile estimation, melt probabilities,
and return levels. By modelling the entire temperature distribution, not only can we can gain insight into the frequency and

range of melt temperatures, but also broader trends such as higher temperatures in both the high and low quantiles. Furthermore,

the model allows for out-of-sample predictions and extrapolation beyond the range of observations. This is of particular interest
for melt which occurs with temperatures in the upper tail of the IST distribution where there can in some cells be insufficient

data to confidently make empirical estimates.
We observe that melt is much more likely at coastal lecations—cells and in the south of the ice sheet than in the centre,

and that there is a non-trivial probability of melt occurring below —1°C. The spatial melt trends are in keeping with previous
work examining melt using surface mass balance data (van den Broeke et al., 2016) and satellite data (Mernild et al., 2011),
including MODIS data (Nghiem et al., 2012). The fitted models also show a clear link between elevation and high ISTs
similarly to previous studies linking temperature to elevation (Reeh, 1991), and the yearly expected maxima show the potential
for even central areas of the ice sheet to experience melt (Nghiem et al., 2012). Trends previously observed in the south (Mote,
2007) also appeared to have continued, as all lecations—cells examined south of 75.16°N saw increases in high-temperature

quantiles in the most recent decade.

One of the key considerations is the impact of cloud cover on temperatures, which will not be negligible. The data set used
has a complete absence of data on cloudy days. This could be handled in three ways: analyse clear days only, impute missing
values, or impute cloudy day data from a second data source. Cloudy day data are not missing at random, since the mechanism
which causes the missingness is intrinsically related to the missing values themselves. Consequently the usual methods for
imputation using the observed data are not valid. In particular, any such imputation of cloudy day values using the available
clear day data would need to take into account the systematic differences between clear and cloudy day temperatures since,
as noted, cloudy days are in general warmer than comparable clear days. Because there is a complete absence of cloudy day.
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data, there is no way for the extent of this bias to be estimated empirically. Consequently, we would need to use external
information, e.g. other sources of data, to undertake the imputation. This would open up additional problems around different
levels of measurement and recording error, different spatio-temporal measurements scales, and so forth, which we believe is

beyond the scope of the project.
Although some of the expected annual maxima are just below the lower censoring point of our model’s melt component,

melt may be possible in these areas over longer time periods. For some loeationscells, the model fit suggests an extremely low
probability of melt. This may be because these toeations-cells have few historical instances of possible melt in the data, i.e. no
ISTs above the lower censoring point of the melt component. In these instances, the information in the data is insufficient to

support a melt component, so only the ice components can be fit to the data, leading to an effective zero probability of melt.

The model also assumes that surface conditions remain similar over the observed time period. Additional impurities becoming
present in the ice or rocks appearing after a particularly warm summer could affect the distribution of temperatures at least
in the short term and potentially in the long term, however these changes would be difficult to accurately identify using only.
ISTs data, A separate data set with additional information about surface conditions could be used to identify these changes, or
adaptations to the current model structure could be made to allow for the detection of long-term changes in surface conditions.
This could take the form a regression or mixed-effects based model, which may represent the surface conditions of the ice but

at the expense of being more difficult to fit and potentially interpret due to the increased number of parameters.
Given the assumptions and intuition behind some of the modelling choices, this dataset-data set could alternatively be

modelled using a Bayesian framework with prior distributions that reflect these assumptions. We would expect melt to have
similar distributions at different toeations-cells even if there is less evidence of melt in some toeations-cells than others. If this
is the case, then a modelling framework could be established whereby the melt components of the model share information or
parameters, while the ice components are independent between locationscells. This could be used to estimate melt probabilities
even in leeations—cells where no melt temperatures have been observed, as melt components could still be estimated using
information from other toeations-cells with more data resembling melt.

Fitting models to sub-decadal data sets would lead to insufficient data to fit the model; in particular, there would be many
loeations—cells and time periods with an extremely low number of IST above —1.65°C and 0°C, making it difficult to fit the
melt component with any degree of accuracy. By separately fitting the model to data from two decades (2001 to 2009 and 2010
to 2019), the overall temperature trends were examined. South west and south east areas of the ice sheet were found to have a
higher probability of melt in 2010 to 2019 compared to 2001 to 2009, and although 22.2% of feeations—cells saw a decrease
in melt probability of some degree, 68.5% of leeations-cells saw an increase in melt probability and the average increase was
more than double the average decrease (-0.0044 compared to 0.011). By contrast, the 95% quantiles increased at almost all
loeations-cells (1100/1139) and the 1-year return levels increased at most loeations-cells (849/1139). The overall trends of the
model suggest that melt has become more frequent in the most recent decade, and temperatures more broadly are increasing in

areas across the ice sheet.

13



305

310

315

320

325

Appendix A: EM algorithm
Al Truncated normal distribution

Let X ~ TN (u,02,a,b) where p is the mean, o is the standard deviation, and a (b) is the lower (upper) truncation point.

Furthermore, let o = £

In(55)
o(Fn(B) — Fn(a))’

where f and F)y are the probability density function and the cumulative distribution function of a standard normal distribution

b;“. Then X has probability density function:

frn(z) =

respectively.
A2 Algorithm

Let (pg,0k,k, Br) denote the parameters for the kth truncated normal distribution. To initialise the algorithm, randomly
sample without replacement three values of z € X and set them as p;, for £ =1,2,3. We set pq = 0 to ensure that one of the
model components starts in the region of melt temperatures. Let o, be the sample variance and the component weights ¢y =
1/4 for k = 1,2, 3, 4. For simplicity we refer to the truncated normal probability density function and cumulative distribution
function as f(z) and F'(x) respectively. The EM algorithm consists of iterating between two stages, the expectation and

maximisation steps, until convergence is obtained. For the expectation step, we set:

N éka(xH,&kv[Tk)
S &5 f (@i | f1j,65)

where 4, is the estimated probability that observation ¢ belongs to model component k.

For the maximisation step, let:

o ik
:;W
S i < fon) = I (B) >

=S T\ FG) = Flaw)
52— i A (i —w)* [, o () - wk)_(f(ak)—fwk))?
§ SN Ak Fyn(B) — Fy(a) Fn(B) —Fn(a)) |

We iterate between these two steps until the parameters converge to the final estimates (800 iterations was sufficient in this
case). The algorithm is considered to have converged if the difference between parameters in each iteration is sufficiently small.

We found a difference of 10~° between iterations to be sufficient indication of convergence for all parameters.

Author contributions. DC and EE devised the model framework and carried out the data analysis. DC, EE, and AL worked on the interpre-

tation of the model and results and wrote the manuscript.
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