
Melt probabilities and surface temperature trends on the Greenland
ice sheet using a Gaussian mixture model
Daniel Clarkson1, Emma Eastoe1, and Amber Leeson2

1Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom.
2Data Science Institute, Lancaster University, Lancaster, United Kingdom.

Correspondence: Daniel Clarkson (d.clarkson@lancaster.ac.uk)

Abstract. The Greenland ice sheet has experienced significant melt over the past six decades, with extreme melt events covering

large areas of the ice sheet. Melt events are typically analysed using summary statistics, but the nature and characteristics of

the events themselves are less frequently analysed. Our work examines melt events from a statistical perspective by modelling

19 years of Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface temperature data using a Gaussian mixture

model. We use a mixture model with separate model components for ice and meltwater temperatures at 1139 locations
::::
cells5

spaced across the ice sheet. By considering the uncertainty of the ice surface temperature measurements, we use the two

categories of model components to
::::::
define,

:::
for

::::
each

::::::::::
observation,

:
a probability of melt for a given observation rather than using

a
::::
which

::
is
:::::::::::

independent
::
of

::::
any

::::::::::
pre-defined fixed melt threshold. This probability can then be used to estimate the expected

number of melt events at a given location
:::
cell. Furthermore, the model can be used to estimate temperature quantiles at a given

location
:::
cell, and analyse temperature and melt trends over time by fitting the model to subsets of time. Fitting the model to data10

from 2001-2009 and 2010-2019 shows increases in melt probability
:::
and

:::::
yearly

::::::::
expected

::::::::
maximum

:::::::::::
temperatures

:
for significant

portions of the ice sheet, as well as the yearly expected maximum temperatures.

1 Introduction

The Greenland ice sheet has experienced significant melt over the past six decades (Fettweis et al., 2011) and has had an overall

accelerating contribution to sea-level rise from a combination of melt and dynamical discharge, in particular over the last 1815

years (Rignot et al., 2018). Wide regions of the ice sheet have lost mass over the last two decades resulting in an increasing

contribution to sea-level rise (Mouginot et al., 2019). Combined with melt from other ice bodies, e.g. the Antarctic ice sheet

and valley glaciers, groundwater depletion, and thermal expansion of the oceans, total sea-level rise has been far above the

historical rate of sea-level rise during this period (Chen et al., 2017). Understanding where, when, and how frequently melt

occurs on the Greenland ice sheet is a key part of understanding its role in sea-level rise and how we might expect it to change20

in the future.

Since air temperature is a strong control on ice melt (Vermeer and Rahmstorf, 2009), temperature data is often used as a

proxy for melting. Ice surface temperatures exceeding −1◦C can be interpreted as evidence of melt depending on the dataset

used and its accuracy and uncertainty (Nghiem et al., 2012)
::::::::::::::
(Hall et al., 2018). There are many ways to study the temperature of
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the ice sheet, including through observations from space (Zhengming and Dozier, 1989), Automatic Weather Stations (AWSs)25

(Tedesco et al., 2013), and using models e.g. Global Climate Models (GCMs) (Smith et al., 2007). In terms of observations,

data
:::::::
Regional

::
or

::::::
Global

:::::::
Climate

:::::
Model

::::::
output

::::::::::::::::
(Smith et al., 2007).

:::::
Data from these diverse sources are characterised by differ-

ing levels of accuracy and coverage. Whilst in-situ observations are often considered to provide the most accurate measurements

for a given location, and GCMs
:::
cell,

::::
and

:::::
GCM output allows consideration of temperatures under different climate scenarios,

satellite data has comparable accuracy to in-situ measurements (Hall et al., 2008)
::::
under

::::::::
clear-sky

:::::::::
conditions

:::::::::::::::
(Hall et al., 2008)30

:::
but with far higher spatial coverage,

::::
thus providing the most comprehensive overall view of the ice sheet.

In 2012, a record-breaking melt event was observed during mid-July, with 98.6% of the ice-sheet simultaneously experienc-

ing melt (Hanna et al., 2014). Extreme melt events
::::
such

::
as

:::
this

:
are likely to become more common as overall temperatures on

the Greenland ice sheet increase, contributing to increasing amounts of melt. Despite their role in the overall view
::::::::::
contribution

::
to

:::
our

::::::
overall

::::::::::::
understanding

:
of melt on the ice sheet, the magnitude, frequency, and melt contribution of these melt events35

and future events are not clearly defined. Because these events are rare, our understanding of them has necessarily been based

on observations of
::::
case

::::::
studies

::
of

::
a few isolated examples to date. Modelling these eventsallows us to

::
By

::::::::
applying

::::::::
statistical

::::::
models

::
to

:::::
these

::::::
events,

:::
we

:::
can

::::
both

:
deepen our understanding of their characteristics and drivers and to better quantify

:::
the

:::::::
physical

::::::::
properties

::
of

:::
the

::::
melt

::::::
events

:::
and

:::::::
improve

::::::::::::
quantification

::
of

:
melt on the ice sheet overall.

Here, we propose a novel statistical approach applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Ice Sur-40

face Temperature (IST) data to model the distribution of temperatures on the Greenland ice sheet at 1139 MODIS pixels
:::
cells,

with a particular interest in identifying and modelling melt temperatures. The approach is based on three key characteris-

tics of IST data: firstly, the presence of physical bounds on the range of ice and ice-melt temperatures; secondly, the multi-

modality of the distribution; and thirdly, ambiguity about whether measurements close to 0
◦
C represent melting of the ice

sheet surface. Our model is sufficiently generalise-able
::::
This

::::::
model

:::::
based

::::::::
approach

::::
has

::::::
several

::::::::::
advantages

::::
over

::
a
::::::
purely45

::::::::
empirical

:::::::
analysis,

::::::::
including

:::::::
allowing

::::
full

:::::::::::::
characterisation

::
of

:::
the

::::::::::
distribution

::
of

::
ist

:::
and

::::::::
resulting

::::::::
properties

::::
e.g.

::::
melt

::::::::
threshold

:::::::::
exceedance

:::::::::::
probabilities,

:::::::::
quantiles,

::::::
return

::::::
periods

::::
and

:::::
return

::::::
levels,

:::
as

::::
well

::
as

::::::::
allowing

:::
for

::::::::::::
out-of-sample

:::::::::
prediction

::::
and

:::::::::::
extrapolation.

:::::
Since

:::
the

::::::
sample

:::
of

::::
cells

::::
used

::
to
:::

fit
:::
the

::::::::
statistical

::::::
model

::
is

::::::::::
uniformally

:::::::::
distributed

::::
over

:::
the

:::
full

:::
ice

:::::
sheet,

::::
our

:::::
model

::
is

::::::::::
sufficiently

::::::::::::
general-isable as to be useful for pixels

:::
cells

:
not explicitly used to generate the model, regardless of

elevation, distance from the coast, or location, as demonstrated by the well-distributed range of pixels used for the modelling.50

::::::::::
geographical

::::::::
location.

::::::
Finally

::::
note

::::
that

:::
we

::::
limit

:::
our

:::::::
analysis

::
to
::::

the
::::::::
modelling

::
of
:::::::::

cloud-free
:::::
days.

::::
This

::
is
::::
due

::
to

:::
the

:::::::
absence

::
of

::::
data

::
on

:::::
days

::::
with

:::::
cloud

:::::
cover

:::
and

:::
the

::::
bias

::::
that

:::::
would

::::::
ensue

:
if
:::

we
:::::

were
::
to

:::::::
assume

:::
that

:::::::::::
temperatures

:::
on

::::
clear

:::::
days

:::::
could

::
be

::::
used

::
to

::::::::
represent

:::::
these

:::::::
missing

::::::
values.

::::
The

::::
data

:::
can

:::
not

:::
be

:::::::::
considered

::
as

:::::::
missing

::
at

:::::::
random,

:::
so

::::
there

::::::
would

::
be

::
a
::::
bias

::
in

::::::::::
temperatures

:::
on

::::::
cloudy

::::
days

:::::::::
compared

::
to

::::
clear

:::::
days.

:
We use this model to investigate time trends in the observation period

and to quantify both the frequency and magnitude of temperature events that are likely to result in ice melt.55
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2 Data and methods

2.1 MODIS IST data

We use MODIS IST data from MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 6 (MOD29) contained within a mul-

tilayer Greenland MODIS-based product (Hall and DiGirolamo, 2019)
::::::::::::::
(Hall et al., 2018). MODIS records surface reflectance

from 36 spectral bands of different wavelengths - including those used in IST -
::::
near daily for the entire Earth. The

::::
This dataset60

spans the period 01/03/2000 to 31/12/2019 and has a spatial resolution of .78 km × .78 km. Here we discard the first 10 months

of the data set, up to 01/01/2001, in order to work only with those years for which a full annual cycle is available. To reduce the

computational burden of our model, we also subsample the data taking 1 in every 50 points
::::
cells

:
in both x and y dimensions

for a total of 1139 points
::::
cells, roughly equally spaced across in latitude and longitude and thus covering a

:::
the

:::
full

:
range of

glaciological and climatological settings across the ice sheet.65

The IST measurements represent the temperature at the surface of the ice in cloud-free conditions. Clouds (specifically

water vapour) can interfere with the measurements, so a cloud mask is used in the MODIS product to remove measurements

made in cloudy conditions. This may induce a slight bias in the dataset since cloudy daysare on average warmer than clear

days (Koenig and Hall, 2010), and as a result, our analysis reflects clear conditions only
::
As

:
a
::::::::::::

consequence,
:::
our

:::::::
analysis

::::
and

:::::::::
predictions

:::
are

::::
valid

:::
for

::::
clear

:::::::::
conditions

::::
only.

::::
Due

::
to

:::
the

::::::::
generally

::::::
warmer

:::::::::::
temperatures

::::
seen

::
on

::::::
cloudy

:::::
days,

::::
were

:::
the

:::::::
analysis70

::
to

::
be

:::::::::
interpreted

::
as

::::::::::::
representative

::
of

::::
clear

:::::
days

::::
also,

::::
there

::::::
would

::
be

::
a

:::::
strong

:::::::::
likelihood

::
of

::::
over

:::::::::::::
over-estimating

:::
the

:::::::::
magnitude

:::
and

::::::::
frequency

:::
of

::::
melt

:::::
events

::::::::::::::::::::
(Koenig and Hall, 2010).

As a result of cloud masking, areas on the coast and in the north have a higher proportion of missing data than more central

areas (Figure 1). We also see that winter months have more missing data on average than summer months
::::::
because

:::
of

:::::
cloud

::::
cover, with a range of 65.1% of data available in December compared to 91.1% of data available in May. This is important to75

bear in mind when interpreting the predictions made from the statistical models, as the IST distributions will be more heavily

weighted towards warmer temperatures. This shouldn’t affect our inference with regards to melt, however, as melt temperatures

almost exclusively occur in the summer months which have a much lower proportion of missing data.

2.2 Modelling considerations

To create a statistical model that is parsimonious and applicable across sites with widely varying geophysical characteristics
::
at80

::
all

::::
cells

::::
over

::
a
::::
large

::::
and

::::::::::::::::::
geographically-varied

::::::
region, we model the IST data using statistical methods that allow us to treat

melting in a probabilistic manner. Exploratory data analysis shows that there is no clear point
::::::
quantile

:
in the temperature

distribution that can be attributed to
::
as the onset of melting (Figure 2). As a result, we model melting ice temperatures and

non-melting ice temperatures separately and estimate the probability of melt occurring over a range of temperatures. This

approach allows for some uncertainty in the observations from factors such as the precision of the dataset, which has a stated85

uncertainty of ±1◦C). We hereby refer to temperatures associated with melting ice as “melt" temperatures and temperatures

associated with non-melting ice as “ice" temperatures.

3



Figure 1. Proportion of non-missing
::::::
available

:
MODIS IST data (i.e not filtered by the cloud mask) at 1139 locations

:::
cells on the Greenland

ice sheet between 2001 and 2019 (a) and mean proportion of non-missing
:::::::
available MODIS IST data by month between 2001 to 2019 (b).

A key feature of the dataset and a core modelling consideration is the soft upper limit at 0◦C. The melting point of the ice

acts as a physical upper limit on ISTs, as once the ice exceeds this temperature it melts and may no longer form the surface of

the ice sheet. Some sites have measurements above this limit, which arise due to meltwater sitting on top of the ice. However,90

the ice under the water places a limit on these melt temperatures, hence the distribution of positive temperatures is truncated

close to 0◦C. This soft upper limit of ISTs causes a significant peak in the distribution centred at approximately −0.5◦C, as

any ISTs that would exceed 0◦C are truncated to small positive values close to 0◦C.

Furthermore, ISTs generally have a multi-modal distribution that does not follow a particular standard model e. g. Gaussian

or Weibull
:::
The

::::::::
simplest

::::::::
statistical

::::::
model

:::::
would

:::
be

::
to

::
fit

::
a
:::::
single

::::::::::
distribution

::
to
:::

the
::::

full
::::
data

:::
set,

::::::::::
potentially

::::
after

::
an

::::::
initial95

::::::::::::
transformation.

::::
This

:::::
raises

::::
two

::::::
issues.

::::::
Firstly,

:
a
:::::::
bimodal

::::::::::
distribution

::
is

::::
clear

::
at

:::
all

::::
cells

::::
with

::::
cells

::::
that

:::::::::
experience

::::
melt

::::::
having

::
the

:::::::
highest

:::::
mode

::::
close

::
to

::::
0◦C (Figure 2). The number of modes, and their characteristics, both vary significantly from location

to location, making it difficult to generalise in space using a single distribution. However, there are some consistencies in the

general shape of each of the modes at different locations and the position of the distribution relative to positive temperature

values. This gives
:::
For

::::::::
non-melt

:::::
cells,

:::
the

:::::::
location

::
of

:::
the

::::::
higher

:::::
mode

::
is
:::::
more

:::::::
variable.

:::::
This

::::
does

:::
not

::::::
appear

::
to
:::

be
:::::::
directly100

:::::::::
attributable

::
to

:::::::
seasonal

:::::::::
differences

::
in

::::::::::::
temperatures,

::
as

::
as

::
the

:::::
shape

::
of

::::::::
seasonal

::::::::::
temperature

::::::::::
distributions

::::
show

::
as

:::::
much

::::::::
inter-site

::::::::
variability

::
as

::::
they

:::
do

::::::::::
inter-season

:::::::::
variability.

:::
Fits

::
of

::::::::
unimodal

:::::::::::
distributions

::
are

::::::::::
particularly

::::
poor

::
at

:::
the

::::
tails

::
of

:::
the

:::::::::::
distributions,

:::::
which

::
is

:::::::::
particularly

::::::::::
problematic

:::::
since

:::
our

:::::::
interest

:::
lies

::
in

::::
melt

:::::
which

::
is
:::::::
directly

::::::::
connected

:::
to

::
the

::::::
upper

:::
tail

::
of

:::
the

::::::::::
temperature

::::::::::
distribution.

:::::
Given

:::
the

::::
focus

:::
on

::::
melt,

::
an

:::::::::
alternative

::::::
option

:::::
would

::
be

::
to

::::::::
undertake

:::
an

:::::::
extreme

::::
value

:::::::
analysis

::
of

::::
only

:::
the

::::::
highest

:::::::::::
temperatures105

:
at
:::::

each
::::
cell.

::::
This

:::::
would

:::::
allow

::::
the

:::::
model

::
to

:::::
focus

:::
on

:::
the

:::::::::::
temperatures

::
of

::::::
highest

:::::::
interest

::::
that

:::
are

:::
the

::::
most

:::::::
difficult

:::
for

:::::
more

:::::::
standard

::::::
models

::
to
:::::::

capture.
:::::

This
:::
also

::::::
proves

:::::::::::
problematic

::::::
though,

:::
as

::
in

:::::
order

::
to

::
fit

:::
the

::::::
model

:::
the

:::::::::::
temperatures

::::
must

::::
first

:::
be
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Figure 2. Frequency distribution of daily MODIS IST data from an example location
:::
cell (82.47, -37.50) on the Greenland ice sheet between

2001 and 2019. Solid lines show a mixture model fit to these data where black indicates the full model, blue indicates the
::::
three ’ice’

component and
:::::::::
components,

:
red indicates the ’melt’ component

:
,
:::
and

::::
black

:::::::
indicates

::
the

:::
full

:::::
model

::
as

:::
the

:::
sum

::
of

::
the

:::
ice

:::
and

:::
melt

:::::::::
components.

::::
Each

:::::::
individual

:::::::::
component

:
is
::
a

:::::::
truncated

:::::::
Gaussian

:::::::::
distribution,

:::
and

:::
the

:::
lines

:::::::
represent

:::
the

::::::::
probability

::::::
density

::::::
function

::
of

::::
these

:::
on

:
a
::::
scale

::
to

:::::::
matching

:::
that

::
of

::
the

:::::::::
histogram.

::::::::
identified

::
as

:::::::
extreme

:::::
using

::
an

:::::::
extreme

:::::
value

:::::::::
threshold,

::::
with

:::::::::::
temperatures

:::::
above

:::
the

::::::::
threshold

:::::
being

:::::::
classed

::
as

:::::::
extreme

::::
and

::::
those

:::::
below

:::::
being

:::::::
classed

::
as

:::::::::::
non-extreme.

:::
Due

::
to
:::
the

:::::
mode

::::::
around

::::
0◦C,

::::::
finding

::
a

::::::::
consistent

::::::::
threshold

:::::::
location

:::::
using

::::::::
quantiles,

:::::::
gradient

::::::
analysis

:::
or

:
a
:::::::
specific

::::::::::
temperature

::
all

:::::::::
encounter

:::::::
problems

::::
due

::
to

:::
the

::::
large

::::::
variety

::
of

:::
tail

::::::
shapes

::
at
::::::::
different

::::
cells.

:::::
Each110

::
of

:::
the

:::::
above

:::::::::
mentioned

::::::::
threshold

:::::
types

::
do

::::
not

::::
work

::::::::::
universally

:::::
across

:::
the

:::
ice

:::::
sheet,

::::
and

::
in

:::::
many

:::::
cases

::::::
provide

:::::
much

::::::
worse

::
fits

::::
than

::
a
:::::::::
distribution

:::::::
applied

::
to

:::
the

:::::
whole

:::::
range

::
of

::::::::::::
temperatures.

:
A
:::::::::
consistent

:::::
model

::::
that

:::
can

::
be

:::::::::::
automatically

:::::::
applied

::
at

::::
cells

:::::
across

:::
the

:::
ice

::::
sheet

::::::::
therefore

:::::::
requires

:
a
::::::::::
multi-modal

::::::::::
distribution

::
or

:
a
:::::::::
time-series

::::::
model

::
to

:::::::
capture

:::::::
seasonal

:::::::::
behaviour.

::::
The

:::::::::::
disadvantage

::
of

:::
the

:::::
latter

:
is
::::

that
::
it

::
is

:::
less

::::
able

::
to

:::::::
capture

:::
the

:::::
mode

::::::
around

:::
0◦C

::::
and

:::
the

::::::::
truncation

::
of

:::
the

:::::::::::
temperatures

:::::
which

::
is

:::::
where

::::
our

:::::::
research

::::::
interest

::::
lies.

::::
This

::::::
further

::::::::
motivates

:
a
:::::::::
modelling115

:::::::
approach

::::
that

:::::
more

:::::::
directly

::::::::
considers

:::
the

::::::::::
distribution

::
of

:::
the

:::::::
specific

::::
data

:::
set

:::
and

::::::
allows

:::
for

:::::::::::
multi-modal

:::::::::::
distributions.

::::
The

:::::
overall

::::::::::
distribution

:::::
shape

::
is
:::::::
broadly

::::::
similar

:::::::
between

:::::
sites

::::
with

:::
the

::::
main

:::::::::
difference

:::::
being

:::
the

:::::::::
proximity

::
of

:::
the

::::::::::
distribution

::
to

:::
0◦C

::::
and

::::::
thereby

:::
the

:::::::
amount

::
of

:::::::::
truncation

::
in

:::
the

::::
data.

::::
The

::::::::::::
considerations

:::::
above

::::::
around

:::
the

:::::::::::::
multi-modality

::
of

:::
the

::::
data

::
set

::::
and

::
of

:::
the

:::::
nature

::
of

:::::
melt

::::::::::
temperatures

:::::::
around

:::
0◦C

::::
give

:
us a basic set of assumptions to base our modelling around that allow the

model to retain the same underlying structure regardless of the absolute difference in ISTs between locations
::::
cells.120

5



2.3 Model description

In order to accommodate spatial variability in the temperature distribution, we model IST using a truncated Gaussian mixture

model in which components are assigned to model groups of temperatures that we assign to be either ice or melt. For nI ice

components and a single melt component, let ϕi be the weight associated with model component i such that for nc = nI +1

total components,
∑nc

i=1ϕi = 1. For each ice component i (and melt component M ) let fi(x) be the probability density function125

of the truncated normal distribution X ∼ TN(µi,σ
2
i ,ai, bi), where µi is the mean, σi is the standard deviation, ai (bi) is the

lower (upper) truncation point. Then the probability density function of ISTs x is:

p(x) =

nI∑
i=1

ϕifi(x)+ϕMfM (x).

We set the upper and lower truncation points for the ice and melt components at values that bound each measurement type

with relative certainty. For the ice components, a=−∞ as there is no hard lower limit on the temperature of ice (aside from130

absolute zero), and b= 0 as, theoretically, ice temperature can’t exceed 0◦C. This means that there is no limit on how low

ice temperatures can go, but they can’t exceed 0◦C. For the melt component, b=∞ and a=−1.65, so that temperatures in

the melt component can’t go below −1.65◦C but are not upper truncated. We take a bound lower than zero here to account

for uncertainty in the data and any potential impurities in the ice surface. −1.65◦C is the theoretical minimum temperature at

which saline ice can melt (Hall et al., 2004), and thus should be a conservative estimate for this lower bound. Temperatures135

between −1.65◦C and 0◦C can be modelled by either/both the ice and melt components as there is uncertainty as to whether

they are associated with melting or non-melting ice.

A mixture model was fitted using the Expectation-Maximisation (EM) algorithm for each sample location
:::
cell. The algo-

rithm alternates between two main steps: calculating the component probabilities that each observation xi comes from model

component k, and maximising the expectations of the model parameters using the component probabilities (for full details see140

Appendix A). We used this method to obtain estimates of µ, σ, and ϕ for each model component at each location
:::
cell.

We used Bayesian Information Criterion (BIC) to assess the most appropriate number of ice and melt components and found

that three ice components and one melt component fit the data best. These components may be broadly interpreted as winter,

autumn, spring, and the melt season for the three ice components and single melt component respectively.

When modelled with separate Gaussian components, the characteristics of the different modes of the data are much clearer145

(Figure 2). The melt component at each location
:::
cell generally has a much lower variance than the ice components due to

the soft upper limit of ISTs and the lower truncation point of the model, whereas the ice components have higher variances

and more overlap between components. For the sites that experience melt regularly, a substantial proportion of the overall

temperature distribution occurs in the overlap between true ice and true melt. A similar result is seen across sites located on

or near the coasts, which further validates the decision to use a fixed melt threshold as the melt temperatures - and thereby the150

melt process - appear to have consistent characteristics across locations
::::
cells.

6



2.4 Defining melt

Using this model, the probability of melt occurring, which we denote by ρ(x), can be quantified as the ratio of the densities of

the ice and melt components. For a given IST x, nI ice components melt component M , we have:

ρ(x) =
fM (x)

fM (x)+
∑nI

i=j fi(x)
.155

Consequences of this definition are that for ISTs below −1.65◦C, the probability of melt is 0, for ISTs above 0◦C the probability

of melt is 1, and between these values the melt probability depends on relative values of the melt and ice components’ densities.

For locations
::::
cells with very few or no ISTs above −1.65◦C, the weight of the melt component may be close to or equal to 0, in

which case the probability of melt occurring is effectively zero. Note that there are discontinuities in the model-based estimate

of this probability due to the censoring of the mixture components. These discontinuities occur at the edges of the range of160

interest (−1.65◦C and 0◦C) and are more or less severe depending on the degree of truncation of the ice and melt components.

Figure 3. Melt probability estimates of a range of ISTs using the fitted mixture model at a single location
::
cell

:
(75.37,-58.13) on the Greenland

ice sheet between 2001 and 2019. Because some locations
:::
cells

:
have very limited data above −1.65◦C, we use a location

:::
cell on the west

coast with a high proportion of data above −1.65◦C (22.55%), thus giving us an increased amount of information in the most pertinent

temperature range.
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3 Results

3.1 Melt extent comparison

Using our model, we calculate the expected number of melt days in each year at each sample location
:::
cell. Let Ny be the number165

of melt days in year y, then E[Ny] =
∑m

i=1 ρ(xi) where ρ(x) is the notation introduced earlier to denote Pr[melt|X = x] and

m is the number of observations in year y. The overall annual average is simply the average of the individual annual averages.

We then compare our modelled estimates to a simple threshold-based approach to defining melt, i.e. the average number of

days per year with temperatures exceeding
:::::
greater

::::
than

::
or

:::::
equal

::
to

:
−1◦C (Figure 4).

Figure 4. The mean annual number of ISTs above −1◦C per year (a), the mean annual expected melt days estimated from each location
:::
cell’s

mixture model (b), and the difference between the two variables (c).

The majority of the ice sheet - 90.7% of locations
:::
cells

:
from the expected melt from the model, 79.5% from a threshold of170

−1◦C on the data - experiences some degree of melt on average each year, except for sites in the dry snow zone in the centre

and north of the ice sheet
::::::::::::
(Benson, 1960). Of the locations

:::
cells

:
that experience melt, most (62.2% from the model, 57.3%

from the data) sites on average see less than 2 days of melt per year, which makes up the rest of the dry snow zone and most of

the percolation zone. The areas with the most melt are located around the coast and in the south and west as may be expected.

The main discrepancies between the two measures are at coastal locations
:::
cells, particularly on the west and north coasts. Here,175

the model estimates a larger amount of melt, with a maximum of 14 additional melt days at 1 specific location
:::
cell

:
on the edge

of the south east coast compared to the dataset. However, 89% of locations
::::
cells have an absolute difference of less than 2 melt

days, showing the broad agreement between the measures at central locations
::::
cells.

3.2 Temperature quantiles

We now use the model fit to calculate quantiles of the ISTs at each location
:::
cell (Figure 5). This gives context to the overall180

temperature trends observed in the dataset, before looking at melt in more detail. We calculate the 90% quantiles to examine
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the broader trends of high temperatures that aren’t necessarily melt temperatures, as well as the 10% quantiles for temperatures

that are as relatively low as the 90% quantiles are high. The estimated 10% and 90% quantiles broadly follow the same trends

as elevation on the ice sheet. The 10% quantiles have a range from −53.84◦C in the centre of the ice sheet to a maximum of

−15.75◦C at the south tip of the ice sheet. As would be expected, locations
::::
cells at higher elevations have a lower 10% and185

90% quantile. However, of more interest are the few (30/1139) locations
:::
cells

:
located on the west, east and southern coasts that

have a 90% quantile above 0◦C. At these locations
:::
cells, we would expect at least (in some cases more than) 10% of observed

temperatures to be above 0◦C and thereby melt temperatures.

We also calculate the 1-year return levels of each location
:::
cell. This is the IST that is on average only exceeded once per

year as estimated from each location
::
cell’s mixture model. The return levels range from a minimum of −7.08◦C in the centre190

to a maximum of 7.24◦C on the west coast. Although, as previously discussed, ISTs should not be seen higher than 0◦C,

these return levels reflect similar temperatures recorded by observations in the dataset and can be plausible temperatures when

considering the effect that meltwater on the surface of the ice sheet has on the observations. The rarity of melt in certain central

areas can be seen more clearly, as temperatures in many locations
:::
cells

:
(519/1139) on average reach −1.65◦C less than once a

year. The trends seen in the return levels also broadly agree with those seen in the quantiles, and are in reasonable agreement195

with the elevations and distance to the coast of each location, with locations
::::
cell,

::::
with

::::
cells at lower altitudes and closer to the

coast generally experiencing more melt.

Figure 5. 10% quantile (a), 90% quantile (b), and 1 year return level (c) estimates for MODIS IST data from 2001 to 2019 at 1139

locations
::::
cells. Estimates are calculated from fitted mixture models at each location

::
cell.

3.3 Decadal variability

To examine potential changes in melt over time, we fit mixture models at each location
:::
cell for two separate decades: 2001

to 2009 and 2010 to 2019. Averaging over a decade helps to smooth some of the annual variability and thus highlight any200
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potential differences as a result of climatic change. To assess any changes in melt and high ISTs between the decades, we

compare quantiles between the fitted models and the estimated melt probabilities at each location
:::
cell

:
in each decade.

3.3.1 Temperature quantiles

Because some central areas of the ice sheet do not have many historical melt observations, we examine the 95% quantiles and

yearly expected maximum temperatures, both of which give an indication of overall trends in high temperatures even if these205

do not reach the level required for melt at some locations
:::
cells. As previously, we take the estimated quantiles from each of the

fitted decadal models for each location
:::
cell.

For almost all locations
::::
cells (1100/1139), the 95% quantile increased between the two decades. Locations

::::
Cells

:
in the

south in particular have increased fairly consistently. The average change for all locations
::::
cells south of 73.41◦N was 0.73◦C,

with 99.3% of all locations
::::
cells further south than this seeing an increase. The largest increases were also concentrated in the210

southern areas of the ice sheet, with a maximum increase of 1.78◦C.

Figure 6. Comparison of the change in 95% quantiles (a) and 1 year return levels (b) of mixture models fit to MODIS IST data from 2001 to

2009 and 2010 to 2019.

The 1-year return levels also generally increased, albeit slightly less consistently than the 95% quantiles (849/1139 locations
::::
cells).

Areas in the east show the largest increases - with the largest increase being 2.66◦C - however on the south west coast and

particularly the north central area of the ice sheet there are also several locations
:::
cells

:
that show a slight decrease in contrast

to larger increases. More clearly than in the 95% quantiles, 1-year return levels at coastal locations
:::
cells

:
do not increase as215

much as in central locations
::::
cells between decades. However, it is important to note that the maxima at coastal locations

::::
cells
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are already close to or above 0◦C. Because of the soft upper limit of the IST data, values already close to this limit can be

partially constrained from further increases, so locations
::::
cells that had a 1-year return level above 0◦C are less likely to show

an increase than colder areas such as in the centre of the ice sheet. This makes the 1-year return level more informative for

central locations
:::
cells

:
than for coastal locations

::::
cells.220

3.3.2 Melt probability

We next compare the probability that each location
:::
cell

:
experiences melt on any given day for each decade. Using the fitted

models, we estimate the probability that each daily observation is a melt temperature, then take an average of all values within

our defined decades. For the purposes of interpretation, we limit our discussions to the summer months (May to September,

inclusive) when considering melt probabilities, due to the almost zero probability of observing melt outside of this period.225

The two decades show very similar trends in their daily melt probabilities, particularly around the coast. However, decade 2

has more locations
::::
cells with a non-zero probability of melt (1017) than decade 1 (853) - an increase of around 19.2% between

the two decades - and 68.5% of locations
:::
cells

:
saw an increased probability of melt between the decades. The location

:::
cell

with the single largest probability from either decade is from decade 2 (64.11,-49.93). This location
:::
cell

:
has a probability of a

melt temperature on any given summer day of 0.64 - equivalent to an expected 97.92 melt days per year.230

Most of central Greenland has experienced minimal change in the probability of melt between the two decades (Figure

7). This may be largely due to the probabilities being extremely small for these areas regardless of the time period chosen.

Coastal locations
::::
cells

:
show clearer and larger cross-decadal variation in melt probability. South east and south west areas of

the ice sheet were generally more likely to experience melt, in addition to some locations
:::
cells

:
in the north east and north west

areas that were less likely to experience melt, in the more recent decade. The largest increase is on the south east coast, where235

locations
:::
cells

:
show a maximum change of 0.0351, which equates to an expected increase of 15.42 melt days each year.

Figure 7. The average probability of a melt temperature on any given summer (May-September inclusive) day from 2001 to 2009 (a) and

2010 to 2019 (b), and the change in melt probability between 2001 to 2009 and 2010 to 2019 calculated from the fitted mixture models.
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4 Discussion

Increases in ice melt in Greenland are of major concern due to the impact that it will have on sea levels etc (van den Broeke et al.,

2016), however direct
::::::
in-situ observations of ice melt are sparse, discontinuous

:::::
spaced

:::::::::
irregularly, and of coarse resolution.

Here, we show that melting can be modelled statistically as a function of ISTs
::::::::
estimated

:::::
using

::
a

::::::::
relatively

::::::::::::::
low-dimensional240

:::
and

::::::
highly

::::::
flexible

::::::::
statistical

::::::
model

:::
for

::::
IST. This enables us to assemble a record of melting that is continuous in time and

space, and is sampled at high spatial (1km
::
.78

:::
km

:::
×

:::
.78

:::
km) and temporal (daily) resolution

::::::::::
(cloud-cover

::::::::::
permitting) using

the MODIS IST dataset
::::
data

:::
set. In addition to the greater availability of IST data, ISTs also have characteristics that make

them better suited to statistical modelling; in particular, temperatures measured
::
are

:
on a continuous scale , and that

:::
and vary

smoothly over time and space,
:::::::
making

::::
them

:::::
better

::::::
suited

::
to

::::::::
statistical

::::::::
modelling. This is of particular interest given that, from245

these data, we see that there is ambiguity about whether or not temperatures below 0◦C are in fact reflective of melting ice. In

this paper, we have addressed this uncertainty by incorporating it into the structure of the statistical model, and thus our record

of melting/not-melting is probabilistic rather than binary.

Our model gives comparable results to direct estimation
::::::::
empirical

::::::::
estimates of melt obtained using a fixed threshold, while

also allowing more detailed analyses of melt and the overall temperature distribution via quantile estimation, melt probabilities,250

and return levels. By modelling the entire temperature distribution, not only can we can gain insight into the frequency and

range of melt temperatures, but also broader trends such as higher temperatures in both the high and low quantiles.
:::::::::::
Furthermore,

::
the

::::::
model

:::::
allows

:::
for

::::::::::::
out-of-sample

:::::::::
predictions

:::
and

:::::::::::
extrapolation

:::::::
beyond

:::
the

::::
range

:::
of

:::::::::::
observations.

:::
This

::
is
::
of

::::::::
particular

:::::::
interest

::
for

::::
melt

::::::
which

::::::
occurs

::::
with

:::::::::::
temperatures

::
in

:::
the

:::::
upper

:::
tail

::
of

:::
the

::::
IST

:::::::::
distribution

::::::
where

::::
there

::::
can

::
in

:::::
some

::::
cells

::
be

::::::::::
insufficient

:::
data

::
to
::::::::::
confidently

:::::
make

::::::::
empirical

::::::::
estimates.

:
255

We observe that melt is much more likely at coastal locations
::::
cells and in the south of the ice sheet than in the centre,

and that there is a non-trivial probability of melt occurring below −1◦C. The spatial melt trends are in keeping with previous

work examining melt using surface mass balance data (van den Broeke et al., 2016) and satellite data (Mernild et al., 2011),

including MODIS data (Nghiem et al., 2012). The fitted models also show a clear link between elevation and high ISTs

similarly to previous studies linking temperature to elevation (Reeh, 1991), and the yearly expected maxima show the potential260

for even central areas of the ice sheet to experience melt (Nghiem et al., 2012). Trends previously observed in the south (Mote,

2007) also appeared to have continued, as all locations
::::
cells

:
examined south of 75.16◦N saw increases in high-temperature

quantiles in the most recent decade.

:::
One

:::
of

::
the

::::
key

::::::::::::
considerations

::
is

:::
the

::::::
impact

::
of

:::::
cloud

:::::
cover

::
on

::::::::::::
temperatures,

:::::
which

::::
will

:::
not

::
be

:::::::::
negligible.

::::
The

::::
data

:::
set

::::
used

:::
has

:
a
::::::::
complete

:::::::
absence

::
of

::::
data

::
on

::::::
cloudy

:::::
days.

::::
This

:::::
could

:::
be

::::::
handled

:::
in

::::
three

:::::
ways:

:::::::
analyse

::::
clear

::::
days

:::::
only,

::::::
impute

:::::::
missing265

::::::
values,

::
or

::::::
impute

::::::
cloudy

:::
day

::::
data

::::
from

::
a

::::::
second

:::
data

:::::::
source.

::::::
Cloudy

:::
day

::::
data

:::
are

:::
not

:::::::
missing

::
at

:::::::
random,

::::
since

:::
the

::::::::::
mechanism

:::::
which

::::::
causes

:::
the

::::::::::
missingness

::
is
::::::::::
intrinsically

:::::::
related

::
to

:::
the

:::::::
missing

::::::
values

::::::::::
themselves.

:::::::::::
Consequently

:::
the

:::::
usual

::::::::
methods

:::
for

:::::::::
imputation

:::::
using

:::
the

:::::::
observed

::::
data

:::
are

::::
not

:::::
valid.

::
In

:::::::::
particular,

:::
any

::::
such

::::::::::
imputation

::
of

::::::
cloudy

:::
day

::::::
values

:::::
using

:::
the

::::::::
available

::::
clear

:::
day

::::
data

::::::
would

::::
need

:::
to

:::
take

::::
into

:::::::
account

:::
the

:::::::::
systematic

::::::::::
differences

:::::::
between

::::
clear

::::
and

::::::
cloudy

::::
day

::::::::::
temperatures

::::::
since,

::
as

:::::
noted,

::::::
cloudy

::::
days

:::
are

:::
in

::::::
general

:::::::
warmer

::::
than

::::::::::
comparable

::::
clear

:::::
days.

:::::::
Because

:::::
there

::
is

:
a
::::::::
complete

:::::::
absence

::
of

::::::
cloudy

::::
day270
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::::
data,

:::::
there

::
is

::
no

::::
way

:::
for

::::
the

:::::
extent

:::
of

:::
this

::::
bias

::
to
:::

be
::::::::
estimated

:::::::::::
empirically.

::::::::::::
Consequently,

:::
we

:::::
would

:::::
need

::
to

::::
use

:::::::
external

::::::::::
information,

:::
e.g.

:::::
other

:::::::
sources

::
of

::::
data,

::
to

:::::::::
undertake

:::
the

:::::::::
imputation.

::::
This

::::::
would

::::
open

:::
up

::::::::
additional

::::::::
problems

::::::
around

::::::::
different

:::::
levels

::
of

:::::::::::
measurement

::::
and

::::::::
recording

:::::
error,

:::::::
different

:::::::::::::
spatio-temporal

::::::::::::
measurements

::::::
scales,

::::
and

::
so

:::::
forth,

::::::
which

:::
we

::::::
believe

::
is

::::::
beyond

:::
the

:::::
scope

::
of

:::
the

:::::::
project.

Although some of the expected annual maxima are just below the lower censoring point of our model’s melt component,275

melt may be possible in these areas over longer time periods. For some locations
::::
cells, the model fit suggests an extremely low

probability of melt. This may be because these locations
:::
cells

:
have few historical instances of possible melt in the data, i.e. no

ISTs above the lower censoring point of the melt component. In these instances, the information in the data is insufficient to

support a melt component, so only the ice components can be fit to the data, leading to an effective zero probability of melt.

:::
The

:::::
model

::::
also

:::::::
assumes

::::
that

::::::
surface

::::::::
conditions

::::::
remain

::::::
similar

::::
over

:::
the

::::::::
observed

:::
time

::::::
period.

:::::::::
Additional

:::::::::
impurities

::::::::
becoming280

::::::
present

::
in

:::
the

:::
ice

::
or

:::::
rocks

:::::::::
appearing

::::
after

::
a
::::::::::
particularly

:::::
warm

:::::::
summer

:::::
could

:::::
affect

:::
the

::::::::::
distribution

::
of

:::::::::::
temperatures

::
at
:::::

least

::
in

:::
the

::::
short

::::
term

::::
and

:::::::::
potentially

::
in

:::
the

::::
long

:::::
term,

:::::::
however

:::::
these

:::::::
changes

::::::
would

::
be

:::::::
difficult

::
to

:::::::::
accurately

:::::::
identify

:::::
using

::::
only

::::
ISTs

::::
data.

::
A

:::::::
separate

::::
data

:::
set

::::
with

::::::::
additional

::::::::::
information

:::::
about

::::::
surface

:::::::::
conditions

:::::
could

:::
be

::::
used

::
to

::::::
identify

:::::
these

::::::::
changes,

::
or

:::::::::
adaptations

::
to

:::
the

::::::
current

::::::
model

:::::::
structure

:::::
could

::
be

:::::
made

::
to

:::::
allow

:::
for

:::
the

::::::::
detection

::
of

::::::::
long-term

:::::::
changes

::
in

::::::
surface

::::::::::
conditions.

::::
This

:::::
could

:::
take

:::
the

:::::
form

:
a
:::::::::
regression

::
or

:::::::::::
mixed-effects

:::::
based

::::::
model,

::::::
which

::::
may

::::::::
represent

:::
the

::::::
surface

:::::::::
conditions

::
of

:::
the

:::
ice

:::
but285

:
at
:::
the

:::::::
expense

::
of
:::::
being

:::::
more

:::::::
difficult

::
to

::
fit

:::
and

:::::::::
potentially

::::::::
interpret

:::
due

::
to

:::
the

::::::::
increased

:::::::
number

::
of

::::::::::
parameters.

Given the assumptions and intuition behind some of the modelling choices, this dataset
:::
data

:::
set

:
could alternatively be

modelled using a Bayesian framework with prior distributions that reflect these assumptions. We would expect melt to have

similar distributions at different locations
:::
cells

:
even if there is less evidence of melt in some locations

::::
cells than others. If this

is the case, then a modelling framework could be established whereby the melt components of the model share information or290

parameters, while the ice components are independent between locations
:::
cells. This could be used to estimate melt probabilities

even in locations
:::
cells

:
where no melt temperatures have been observed, as melt components could still be estimated using

information from other locations
:::
cells

:
with more data resembling melt.

Fitting models to sub-decadal data sets would lead to insufficient data to fit the model; in particular, there would be many

locations
:::
cells

:
and time periods with an extremely low number of IST above −1.65◦C and 0◦C, making it difficult to fit the295

melt component with any degree of accuracy. By separately fitting the model to data from two decades (2001 to 2009 and 2010

to 2019), the overall temperature trends were examined. South west and south east areas of the ice sheet were found to have a

higher probability of melt in 2010 to 2019 compared to 2001 to 2009, and although 22.2% of locations
::::
cells

:
saw a decrease

in melt probability of some degree, 68.5% of locations
:::
cells

:
saw an increase in melt probability and the average increase was

more than double the average decrease (-0.0044 compared to 0.011). By contrast, the 95% quantiles increased at almost all300

locations
:::
cells

:
(1100/1139) and the 1-year return levels increased at most locations

:::
cells

:
(849/1139). The overall trends of the

model suggest that melt has become more frequent in the most recent decade, and temperatures more broadly are increasing in

areas across the ice sheet.
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Appendix A: EM algorithm

A1 Truncated normal distribution305

Let X ∼ TN(µ,σ2,a,b) where µ is the mean, σ is the standard deviation, and a (b) is the lower (upper) truncation point.

Furthermore, let α= a−µ
σ and β = b−µ

σ . Then X has probability density function:

fTN (x) =
fN (x−µ

σ )

σ(FN (β)−FN (α))
,

where fN and FN are the probability density function and the cumulative distribution function of a standard normal distribution

respectively.310

A2 Algorithm

Let (µk,σk,αk,βk) denote the parameters for the kth truncated normal distribution. To initialise the algorithm, randomly

sample without replacement three values of x ∈X and set them as µk for k = 1,2,3. We set µ4 = 0 to ensure that one of the

model components starts in the region of melt temperatures. Let σk be the sample variance and the component weights ϕk =

1/4 for k = 1,2,3,4. For simplicity we refer to the truncated normal probability density function and cumulative distribution315

function as f(x) and F (x) respectively. The EM algorithm consists of iterating between two stages, the expectation and

maximisation steps, until convergence is obtained. For the expectation step, we set:

γ̂ik =
ϕ̂kf (xi | µ̂k, σ̂k)∑4
j=1 ϕ̂jf (xi | µ̂j , σ̂j)

where γ̂ik is the estimated probability that observation i belongs to model component k.

For the maximisation step, let:320

ϕ̂k =

N∑
i=1

γ̂ik
N

µ̂k =

∑N
i=1 γ̂ikxi∑N
i=1 γ̂ik

+ σ̂k

(
f(αk)− f(βk)

F (βk)−F (αk)

)

σ̂2
k =

∑N
i=1 γ̂ik (xi − µ̂k)

2∑N
i=1 γ̂ik

[
1+

αkf(αk)−βkf(βk)

FN (β)−FN (α)
−
(

f(αk)− f(βk)

FN (β)−FN (α)

)2
]
.

We iterate between these two steps until the parameters converge to the final estimates (800 iterations was sufficient in this

case). The algorithm is considered to have converged if the difference between parameters in each iteration is sufficiently small.325

We found a difference of 10−5 between iterations to be sufficient indication of convergence for all parameters.

Author contributions. DC and EE devised the model framework and carried out the data analysis. DC, EE, and AL worked on the interpre-

tation of the model and results and wrote the manuscript.
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