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Abstract. We report on results of an inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 17 

km grid resolution from satellite passive microwave (PMW) observations. For this we use SIC estimated from > 300 images 18 

acquired in the visible / near-infrared frequency range by joint the National Aeronautics and Space Administration 19 

(NASA)/United States Geological Survey (USGS) Landsat sensor during years 2003-2011 and 2013-2015. Conditions covered 20 

are late winter / early spring in the Northern Hemisphere and from late winter through fall freeze-up in the Southern 21 

Hemisphere. Among the products investigated are the four products of the European Organisation for the Exploitation of 22 

Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF) and European Space 23 

Agency (ESA) Climate Change Initiative (CCI) algorithms: SICCI-2 and OSI-450. We stress the importance to consider inter-24 

comparison results across the entire SIC range instead of focusing on overall mean differences, and to take in account known 25 

biases in PMW SIC products, e.g. for thin ice. We find superior linear agreement between PMW SIC and Landsat SIC for the 26 

25 km and the 50 km SICCI-2 products in both hemispheres. We discuss quantitatively various uncertainty sources of the 27 

evaluation carried out. First, depending on the number of mixed ocean-ice Landsat pixels classified erroneously as ice only, 28 

our Landsat SIC is found to be biased high. This applies to some of our Southern Hemisphere data, promotes an overly large 29 

fraction of Landsat SIC under-estimation by PMW SIC products, and renders PMW SIC products overestimating Landsat SIC 30 

particularly problematic. Secondly, our main results are based on SIC data truncated to the range 0 % to 100 %. We demonstrate 31 

using non-truncated SIC values, where possible, can considerably improve linear agreement between PMW and Landsat SIC. 32 

Thirdly, we investigate the impact of filters often used to clean up the final products from spurious SIC over open water due 33 

to weather effects and along coastlines due to land spillover. Benefiting from the possibility to switch on or off certain filters 34 

in the SICCI-2 and OSI-450 products we quantify the impact land spillover filtering can have on evaluation results as shown 35 

in this paper. 36 

1 Introduction 37 

 We carry on the evaluation of sea-ice concentration (SIC) products derived from satellite passive microwave (PMW) 38 

observations. In Kern et al. (2019), we presented an evaluation of ten PMW SIC products at 0 % and 100 % SIC, and with 39 

respect to sea-ice observations along ship tracks. Another study focused on Arctic summer conditions, investigating the bias 40 

between these PMW SIC products and independent SIC and net ice surface fraction estimates based on MODerate resolution 41 

Imaging Spectroradiometer (MODIS) observations (Kern et al., 2020). With this study, we shift our focus more towards 42 

intermediate SIC and utilize are much larger and, partly, more accurate reference dataset than in the two earlier studies. The 43 
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evaluation at 0 % SIC in Kern et al. (2019) used a few fixed open water locations only. The evaluation at 100 % SIC used 44 

near-100 % SIC estimates based on the analysis of freezing-season synthetic aperture radar (SAR) image pairs of convergent 45 

high-concentration ice situations. With that we evaluated the PMW SIC products for one specific set of ice conditions only 46 

(winter and near 100 %). Kern et al. (2019) also presented results of an evaluation of PMW SIC against a multi-annual set of 47 

standardized manual visual ship-based observations of the ice conditions. These observations are, however, of limited accuracy 48 

and of limited representativity because the average accuracy is between 5 % and 10 % and observations mostly represent sea-49 

ice conditions where it is possible to navigate. In addition, to reduce noise, PMW and ship-based SIC were averaged over all 50 

observations along a ship-track within one day, representing sea-ice conditions across spatial scales, that – in the worst case – 51 

vary by an order of magnitude. The averaging resulted in a reduction of the number of valid data pairs from about 15000 to 52 

less than 800, i.e. about 400 per hemisphere. 53 

 Another aspect is that the accuracy of the hemispheric but also the regional sea-ice area (SIA) computed from PMW 54 

SIC estimates strongly depends on their accuracy. PMW SIC values biased high yield an overestimation of the SIA whereas 55 

PMW SIC biased low results in an underestimation of the SIA. This seems not to be critical as long as the trend is correct (e.g. 56 

Ivanova et al., 2014) but limits the use of such SIA estimates for quantitative inter-comparisons of climate-model results 57 

against observations (e.g. Burgard et al., 2020). It is for sure important PMW SIC is 100 % where the actual SIC is 100 % to 58 

avoid artificially elevated ocean-atmosphere heat flux when used as a surface forcing. It is equally important PMW SIC is an 59 

accurate estimate of the open water fraction, hence providing 95 % where the actual SIC is 95 % due to leads and openings in 60 

the sea-ice cover. In addition, it is desirable to check the performance of PMW SIC products across the entire SIC range in 61 

order to have a reliable estimate of the actual ice cover in, for example, the marginal ice zone (MIZ). Here gradients in heat 62 

fluxes are particularly pronounced and small changes in the SIC can have a comparably large impact on ocean-atmosphere 63 

heat transfer. A correct definition of and accurate SIC distribution within the MIZ are also crucial should SIC values be used 64 

to evaluate numerical models capable to simulate wave-sea ice interaction (e.g. Boutin et al., 2020; Nose et al., 2020). The 65 

ship-based SIC observations used in Kern et al. (2019) offer only limited potential to carry out this performance check because 66 

of i) their accuracy and limitations in spatial representativity, ii) the small number of observations falling into the relevant SIC 67 

range of, e.g. 20 % to 80 %, and iii) the larger observational error in this SIC range. 68 

 Therefore, in this paper we focus on the evaluation of PMW SIC products against a large number of high-resolution 69 

binary sea-ice cover maps estimated from satellite observations acquired in the visible frequency range by NASA/USGS 70 

Landsat-5, 7 and 8. Overall, we used over 300 such Landsat-based maps, corresponding to more than 10 000 25 km x 25 km 71 

resolution PMW SIC grid cells. We chose Landsat over MODIS because of the substantially finer spatial resolution of the 72 

visible channels of Landsat: 30 m compared to MODIS: 250 m. Another option would have been to use Sentinel-2 73 

MultiSpectral Instrument (MSI) (Drusch et al., 2012). We discarded this option in light of the limited overlap between this 74 

satellite mission (Sentinel-2A was launched June 2015) and our PMW SIC data set but it will be very valuable in the future 75 

since it will allow extending the dataset to areas much further from land and will likely provide an even more accurate 76 

evaluation data set.   77 

Utilization of the high-resolution information provided by the Landsat satellites as a means for assessing satellite 78 

PMW SIC products dates back to the early 1980ties when Comiso and Zwally (1982) compared Nimbus-7 Scanning 79 

Multichannel Microwave Radiometer (SMMR) SIC with Landsat imagery. Since then a number of studies used a small number 80 

of such images for inter-comparison and/or evaluation studies of SIC retrievals (e.g. Steffen and Maslanik, 1988; Steffen and 81 

Schweiger, 1991; Comiso and Steffen, 2001; Cavalieri et al., 2006; Wiebe et al., 2009; Lu et al., 2018; Zhao et al., 2021). 82 

Landsat imagery has also recently been used for quality assessment of SIC estimates from Suomi/NPP VIIRS observations 83 

(e.g. Liu et al., 2016). Common to all these studies is they used a comparably small number of Landsat scenes, i.e. less than 84 

ten, an order of magnitude smaller than the number of scenes used in this study (see above). 85 
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 Analysis of visible satellite imagery for SIC estimation is quite straightforward. A threshold based method 86 

discriminating between open water and ice is applied at the native spatial resolution (pixel size: 30 m x 30 m) of the Landsat 87 

channels in the visible frequency range, assuming that a pixel is covered by either ice or water. Co-locating this high-resolution 88 

information of the binary ice-water distribution with the coarse-resolution PMW SIC products and counting ice and water 89 

pixels within a PMW SIC product’s grid cell provides an adequate independent measure of the SIC. We refer to Section 2.2 90 

for more details.   91 

For evaluating the PMW SIC products across the SIC range, we prefer to use visible data instead of SAR data. The 92 

main advantages of SAR data would be i) the larger area covered by a single scene compared to Landsat (about 400 km to 500 93 

km in SAR wide-swath mode (WSM) vs. 180 km for Landsat) and ii) their independence to daylight and cloud cover. In fact, 94 

many PMW SIC inter-comparison studies have already used SAR images (e.g., Comiso et al., 1991; Dokken et al., 2000; 95 

Belchansky and Douglas, 2002; Kwok, 2002; Heinrichs et al., 2006; Andersen et al., 2007; Wiebe et al., 2009; Han and Kim, 96 

2018). However, despite the past decade’s substantial progress in developing and testing methods to translate SAR images into 97 

high-resolution SIC maps (e.g.: Cooke and Scott, 2019; Karvonen, 2014, 2017; Komarov and Buehner, 2017, 2019; Leigh et 98 

al., 2014; Lohse et al., 2019; Ochilov and Clausi, 2012; Singha et al., 2018; Wang et al., 2016, 2017; Zakhvatkina et al., 2017, 99 

Boulze et al., 2020; Malmgren-Hansen et al., 2020; Wang and Li, 2020), some using machine learning approaches, the accuracy 100 

of the obtained SIC maps is not always satisfying. Particularly at intermediate SIC – the main focus of this study – SAR 101 

signatures are often ambiguous, resulting in SAR SIC uncertainties too large for our purposes. Furthermore, applications of 102 

such methods to derive Southern Ocean SIC from SAR are comparably sparse. Therefore, we do not use SAR-based SIC maps.  103 

We note that also Ice charting services (FMI, DMI, MET Norway, CIS, NATICE, AARI) heavily depend on SAR 104 

imagery for production of their ice charts. They thus have a large demand to automate processes of classification and are 105 

potentially most advanced in testing automated SAR SIC retrieval (e.g. Cheng et al., 2020). However, ice charts provide SIC 106 

ranges within polygons highly variable and heterogeneous in size and shape. Several studies used such ice charts for various 107 

inter-comparison purposes (e.g. Shokr and Markus, 2006; Shokr and Agnew, 2013, Titchner and Rayner, 2014). Some centers 108 

providing operational sea-ice information also use such charts for routine quality checking of PMW SIC products. However, 109 

for our purpose evaluating PMW SIC CDRs and similar SIC products, the limitations of such charts in terms of precision and 110 

accuracy – particularly in the intermediate SIC range (e.g. Cheng et al., 2020), exclude their usage in this study. 111 

After this introduction, this paper provides information about the PMW SIC products, the Landsat data set used and 112 

the methods applied to derive SIC from the Landsat images (Sect. 2). We present our results in Sections 3 and 4, discuss some 113 

additional aspects in Section 5 and conclude the study in Section 6. 114 

2 Data & Methodologies 115 

2.1 Sea-ice concentration data sets 116 

The ten different PMW SIC products considered in our study are summarized briefly in Table 1. We refrain from 117 

repeating information about the algorithms themselves, tie point selection, application of weather filters, consideration of land 118 

spillover effects and so forth. All this information is provided in detail in Lavergne et al. (2019), Kern et al. (2019, Appendix 119 

7.1-7.6), and Kern et al., (2020). The same applies to the fact that four of the products (SICCI-12km, SICCI-25km, SICCI-120 

50km, and OSI-450) allow to take into account the full SIC distribution at the two end-member sea-ice concentrations: 0 % 121 

and 100 % which naturally result from the SIC retrieval method used in all considered SIC products but the NT2-AMSR 122 

product. This distribution contains negative as well as above-100 % SIC values that are typically truncated, i.e. set to the 123 

exactly 0 % and 100 %. We refer to Lavergne et al. (2019) and Kern et al. (2019) for more information in this regard.  124 

In order to extend the time-series of the Comiso Bootstrap (CBT) algorithm and the NASA-Team 2 (NT2) algorithm 125 

using Advanced Microwave Scanning Radiometer aboard Earth Observation Satellite (AMSR-E) data beyond its lifetime 126 
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(2011-10-03), we use the respective unified product based on data of the Advanced Microwave Scanning Radiometer aboard 127 

GCOM-W1: AMSR2 and of AMSR-E (Meier et al., 2018). With that we use five products based on AMSR-E and AMSR2 128 

data and five products based on Special Sensor Microwave / Imager: SSM/I, and Special Sensor Microwave Imager and 129 

Sounder: SSMIS data, of the period 2002 through 2015. We do not use PMW SIC data of the period October 2011 through 130 

July 2012 because of the gap between AMSR-E and AMSR2. All PMW SIC data have daily temporal resolution. The grid 131 

type and grid resolution of all datasets are provided in Table 1. 132 

 133 

Table 1. Overview of the investigated PMW SIC products. Column “ID (Algorithm)” holds the identifier we use henceforth 134 

to refer to the data product, and which algorithm it uses. Note that for those algorithms where an AMSR sensor forms part of 135 

the name, we refer to AMSR-E or AMSR2, depending on which of the two sensors provides the data. Column “Input data” 136 

refers to the input satellite data for the data set, together with the frequencies and respective field-of-view dimensions.  137 

 138 

ID (algorithm) Input data; frequencies (field-of-views) Grid resolution & 

type 

Reference 

OSI-450 

(SICCI2)  

SSM/I, SSMIS; 19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

EASE2.0 

Tonboe et al., 2016; Lavergne 

et al., 2019 

SICCI-12km  

(SICCI2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 km 

x 14 km), 89.0 GHz (6 km x 4 km/ 5 km x 3 km) 

12.5 km x 12.5 km 

EASE2.0 

Lavergne et al., 2019 

SICCI-25km 

(SICCI2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 km 

x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 km) 

25 km x 25 km 

EASE2.0 

Lavergne et al., 2019 

SICCI-50km 

(SICCI2) 

AMSR-E/AMSR2 6.9 GHz (75 km x 43 km/ 62 km x 

35 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 km) 

50 km x 50 km 

EASE2.0 

Lavergne et al., 2019 

CBT-SSMI 

(Comiso 

bootstrap) 

SSM/I, SSMIS; 19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Comiso, 1986; Comiso et al., 

1997; Comiso and Nishio, 2008 

NOAA-CDR 

(NASA Team 

& Comiso 

bootstrap) 

SSM/I, SSMIS;19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Peng et al., 2013; Meier and 

Windnagel, 2018 

CBT-AMSR  

(Comiso 

bootstrap) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 km 

x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 km) 

25 km x 25 km 

PolarStereo 

Comiso et al., 2003; Comiso 

and Nishio, 2008; Comiso, 

2009 

ASI-SSMI 

(ASI) 

SSM/I, SSMIS; 85.5 GHz (15 km x 13 km) 12.5 km x 12.5 km 

PolarStereo 

Kaleschke et al., 2001; Ezraty 

et al., 2007 

NT1-SSMI  

(NASA-

Team) 

SSM/I, SSMIS;19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Cavalieri et al, 1984; 1992; 

1999 

NT2-AMSR  

(NASA-

Team-2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 km 

x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 km), 

89.0 GHz (6 km x 4 km/ 5 km x 3 km) 

25 km x 25 km 

PolarStereo 

Markus and Cavalieri, 2000; 

2009 

 139 

2.2 The Landsat data set 140 

Landsat data of the Thematic Mapper TM on Landsat-5, the Enhanced Thematic Mapper (ETM) on Landsat-7, and 141 

Operational Land Imager (OLI) on Landsat-8 were obtained in Level 1c GeoTIFF format from https://earthexplorer.usgs.gov 142 

[last accessed: June 28, 2021] for years 2003-2011 (Landsat-5), 2003 (Landsat-7), and 2013-2015 (Landsat-8). Only images 143 

with a cloud fraction < 30 % provided as a search criterion upfront, were selected and downloaded from the server. In the 144 

Northern Hemisphere, we use images of months March, April, May and September, i.e. from late winter to spring and at the 145 

onset of fall freeze-up; in the Southern Hemisphere we use images of months October through March, i.e. from late winter 146 

over summer to fall freeze-up. The total number of images acquired is 421; these split into 152, 12, and 227 for Landsat-5, 7 147 

and 8, respectively, and partition into 259 images for the Northern Hemisphere and 162 images for the Southern Hemisphere. 148 

 149 
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2.2.1 Processing 150 

 We compute the top of atmosphere (TOA) reflectance for channels 2 to 4 (Landsat-5 and 7) or channels 3 to 5 151 

(Landsat-8) following Chander et al. (2007; 2009) and USGS (2015). Table 2 provides the wavelengths of the channels used 152 

(e.g. Chander et al., 2009; Barsi et al., 2014). The solar zenith angle and other parameters required for this computation is 153 

either included in the Landsat data files or is taken from Chander et al. (2007, 2009) and the Landsat 8 data users handbook 154 

(USGS, 2015). To convert the TOA reflectances to surface reflectances or surface albedo we follow the approaches of Koepke 155 

(1999) and Knap et al. (1999) that assume that the TOA reflectance (or planetary reflectance) equals the TOA albedo (or 156 

planetary albedo) and that the TOA albedo αTOA is related to the surface albedo αsurface via the simple linear relationship: 157 

���� = � + ��	
����   (1) 158 

The coefficients a and b are a function of the atmospheric conditions, the solar zenith angle, and the wavelength. We follow 159 

Koepke (1999) and take values for a and b from his figure 1 (KF1) and figure 2 (KF2). KF1 derived for the Advanced Very 160 

High Resolution Radiometer (AVHRR) channel 1 we use for Landsat channels in the wavelength range 500-700 nm. KF2 161 

derived for AVHRR channel 2 we use for Landsat channels in the wavelength range 700-900 nm. We choose those atmospheric 162 

conditions that are appropriate for a polar marine atmosphere. For aerosol optical depth we use 0.05, for ozone content we use 163 

0.24 cm[NTP] (NTP stands for normal temperature and pressure) corresponding to 240 Dobson Units, and for water vapor 164 

content we used 0.5 g/cm². Using Eq. (1) we convert TOA albedo into surface albedo values separately for the three channels 165 

of the respective Landsat instrument. Subsequently, we compute from these surface albedo values an estimate of the surface 166 

broadband shortwave albedo (e.g. Brandt et al., 2005) using the bandwidths of the channels as weights. The change in 167 

bandwidths between the Landsat instruments is thus taken into account (see Table 2). 168 

 169 

Table 2. Overview about the wavelengths of the Landsat channels used. 170 

 171 

Wavelength [nm] of Landsat-5 Landsat-7 Landsat-8 

Channel 2  528-609 519-601 -- 

Channel 3 626-693 631-692 533-590 

Channel 4 776-904 772-898 636-673 

Channel 5 -- -- 851-879 
 172 

For every broadband surface albedo map, we perform a supervised visual classification into open water, bare / thin 173 

ice and snow covered / thick ice. For that, we assume the respective surface class covers a Landsat pixel entirely. We assign 174 

all dark pixels (with an albedo of, on average, smaller than 0.06) to the open water class. We assign all bright pixels (with an 175 

albedo of, on average, larger than 0.45) to the class snow covered / thick ice; all remaining pixels fall into the class bare / thin 176 

ice. We pay more attention separating open water from ice very accurately than to distinguish between bare / thin ice and 177 

snow-covered / thick ice. In every Landsat albedo map we search for leads or openings, zoom into these and perform histogram-178 

equalized slicing to visually identify – based on albedo values and spatial structures – whether the leads or openings selected 179 

contain open water. The threshold value chosen to separate open water from ice we take from Pegau and Paulsen (2001). The 180 

threshold value chosen to distinguish between bare / thin ice and snow covered / thick ice is based on Brandt et al. (2005) and 181 

Zatko and Warren (2015). They found an albedo of around 0.33 for bare thin ice less than 30 cm thick and of around 0.42 for 182 

snow covered thin ice (5 - 10 cm thick) with a thin (< 3 cm) snow cover. Note that the actual threshold values chosen for a 183 

particular Landsat image varies between 0.03 and 0.08 for the open water – ice discrimination and between 0.35 and 0.55 for 184 

the bare / thin ice – snow covered / thick ice discrimination. This variation results from the varying illumination conditions 185 

encountered – despite our limitation to Landsat scenes acquired at solar zenith angles < 65°.  186 

Usage of a three-class distribution is motivated by the fact that it has been shown that PMW SIC is often biased low 187 

over thin sea ice (e.g. Wensnahan et al., 1993; Cavalieri, 1994; Ivanova et al., 2015). Therefore, in addition to using the Landsat 188 

images just for a high-resolution ice-water discrimination we also use them to derive the fraction of thin ice with the aim to 189 

discuss differences between Landsat SIC and PMW SIC in the light of a potential impact by thin ice. However, we discarded 190 
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this aim – but kept the classification results – because during analyses of the Landsat images we encountered ambiguities in 191 

surface albedos between snow-covered thin ice and bare thick ice. While there is little ambiguity between open water and ice, 192 

except for very thin dark nilas or ice rind (e.g. Zatko and Warren, 2015), resulting in high confidence of pixels classified as 193 

either open water or ice, the confidence of pixels classified as bare/thin or snow covered/thick ice is considerably worse. 194 

 195 

2.2.2 Co-location and comparison 196 

For the co-location, we first select a rectangular area within the PMW SIC grid, EASE-2 for the SICCI-2 and OSI-197 

450 products and polar-stereographic true at 70 degrees northern or southern latitude (known as NSIDC grid) for the other six 198 

products, which encloses the Landsat SIC map. For this we take the geographic corner coordinates of the Landsat SIC map 199 

(still at 30 m grid resolution), convert these into Cartesian Coordinates and find those PMW SIC grid cells which centers have 200 

minimum distance (in meters) to these corner coordinates. Beforehand, we also convert PMW SIC grid cell coordinates into 201 

Cartesian coordinates and rotate the grid for the Northern Hemisphere PMW SIC products on the NSIDC grid clockwise by 202 

45 degrees; this is not required for the respective Southern Hemisphere PMW SIC products.  203 

 204 

 205 

Figure 1. Location of the Landsat scenes used. Panels a) through c) Arctic; panel d) Antarctic. Note that scenes do overlap. 206 

The total number of scenes shown is 134 (a), 12 (b), 88 (c), and 134 (d). 207 

 208 

Subsequently, we compute the Landsat SIC by summing over all 30 m pixels classified as ice that fall into the PMW 209 

SIC grid cells within the above-defined rectangular area. Because we do this is at the grid resolution of the PMW products, we 210 

obtain Landsat SIC maps at 12.5 km, 25.0 km, and 50.0 km grid resolution. We compare the resulting gridded Landsat SIC 211 

with the respective co-located PMW SIC by computing the mean difference PMW SIC minus Landsat SIC and its standard 212 

deviation, the median difference, and deriving a linear regression line and computing the linear correlation coefficient. 213 

Based on a visual quality check of the obtained Landsat SIC maps we discard quite a number of processed Landsat 214 

scenes from further analysis – mainly because of cloud artifacts but also because a few scenes we obtained twice. Therefore, 215 

the final number of Landsat SIC maps used is lower than indicated above: 234 for the Arctic, partitioning into Landsat-5: 134, 216 
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Landsat-7: 12, and Landsat-8: 88, and 134 for the Antarctic. The spatial distribution of the Landsat scenes is illustrated in Fig. 217 

1. Note that we focus on data of Landsat-5 and Landsat-8 in this paper. 218 

 219 

2.2.3 Sensitivity analysis 220 

In order to estimate how Landsat SIC depends on the choice of the albedo thresholds used to discriminate open water 221 

from ice and bare / thin ice from snow covered / thick ice, we repeat the classification into the three surface classes using 222 

modified thresholds. We vary the albedo value for the open water – ice discrimination by ± 0.03, i.e. for an actual albedo value 223 

of 0.06 we employ additional threshold values of 0.03 and 0.09. We vary the albedo value for the bare / thin ice – snow covered 224 

/ thick ice discrimination by ± 0.1, i.e. for an actual albedo value of 0.45 we employ additional threshold values of 0.35 and 225 

0.55. The range of albedo threshold values we choose is motivated by our experience with the supervised classification of the 226 

many Landsat scenes under varying illumination conditions. We arbitrarily select 12 Landsat 8 scenes for the Northern 227 

Hemisphere, and 15 scenes for the Southern Hemisphere. For every image we perform the classification into the three surface 228 

classes with the above-mentioned four additional albedo threshold value combinations, compute Landsat SIC on the 25 km 229 

and 50 km EASE grid and derive a Landsat scene mean SIC value (Tables 3 and 4). We find that changing the albedo value 230 

of the open water – ice discrimination by ± 0.03 changes the average Landsat SIC by between 0.7 % and 1.2 % in the Northern 231 

Hemisphere and by between 0.8 % and 1.5 % in the Southern Hemisphere. With that the sensitivity appears to be independent 232 

of the overall SIC which is close to 100 % for the Northern Hemisphere cases (Table 3) but 55 – 60 % for the Southern 233 

Hemisphere cases (Table 4). The difference in the sensitivity between grid resolutions of 25 km and 50 km is less than 0.2 %.  234 

 235 

Table 3. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them 236 

(see text) averaged for 12 Landsat-8 scenes selected for the Northern Hemisphere (NH) at 25 km and 50 km grid resolution. 237 

The number behind the ± denotes one standard deviation. All SIC values are in percent. 238 

αthinice \  αopenwater -0.03 Actual value +0.03 NH, 25km 

-0.1 99.2 ± 2.1 -- 97.3 ± 3.7  

Actual value -- 98.0 ± 3.1 --  

+0.1 99.2 ± 2.1 -- 97.3 ± 3.7  

    NH, 50km 

-0.1 98.9 ± 3.2 -- 96.9 ± 4.5  

Actual value -- 97.7 ± 4.1 --  

+0.1 98.9 ± 3.2 -- 96.9 ± 4.5  

 239 

Table 4. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them 240 

(see text) averaged for 15 Landsat-8 scenes selected for the Southern Hemisphere (SH) at 25 km and 50 km grid resolution. 241 

The number behind the ± denotes one standard deviation. All SIC values are in percent. 242 

αthinice \  αopenwater -0.03 Actual value +0.03 SH, 25km 

-0.1 63.0 ± 27.0 -- 60.5 ± 26.4  

Actual value -- 61.5 ± 26.6 --  

+0.1 63.0 ± 27.0 -- 60.5 ± 26.4  

    SH, 50km 

-0.1 54.5 ± 34.8 -- 52.3 ± 33.8  

Actual value -- 53.1 ± 34.1 --  

+0.1 54.5 ± 34.8 -- 52.3 ± 33.8  

 243 

As expected, changing the albedo value of the bare / thin ice – snow-covered / thick ice discrimination by ± 0.1 does not 244 

influence the Landsat SIC. However, it influences the Landsat SIC computed at the respective grid resolutions when using 245 

Landsat pixels classified as snow-covered / thick ice only (Tables S02 and S03 in the Supplementary Material). We find 246 

Landsat SIC of thick ice to vary by between 1.4 % and 2.4 % in the Northern Hemisphere and by between 2.1 % and 2.7 % in 247 

the Southern Hemisphere with little difference between the grid resolutions. For the Landsat scenes used in this sensitivity 248 
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study in the Northern Hemisphere, we find a difference of 4.8 % between the total SIC and the SIC of pixels classified as 249 

snow-covered / thick ice; hence the average bare / thin ice SIC is 4.8 %. In the Southern Hemisphere, the average bare / thin 250 

ice SIC is 8.8 % at 25 km grid resolution and 7.5 % at 50 km grid resolution (not shown). 251 

 252 

2.2.4 Potential biases in Landsat SIC 253 

In our approach, we assume either ice or water to cover a Landsat pixel (30 m x 30 m) entirely, not taking into account 254 

that ice floes or leads / openings might be smaller than the pixel size, resulting in a mixed ocean-ice pixel. This can introduce 255 

a positive bias in the Landsat SIC computed at the grid resolution of the PMW SIC products. For instance, for a Landsat pixel 256 

covered just half by snow covered / thick sea ice, which exhibits a surface albedo of 0.8 under cold conditions, the resulting 257 

pixel average albedo would be 0.5 x 0.06 + 0.5 x 0.8 = 0.43. With that, such a pixel is classified as bare / thin ice and counts 258 

as a pixel with 100 % instead of 50 % sea-ice concentration. Depending on the albedo of the ice, an ice-cover fraction of 0.04 259 

in one Landsat pixel could be sufficient to increase the pixel average albedo above the upper open water – ice discrimination 260 

threshold value of 0.09 (see Tables 3, 4), causing the respective pixel to be classified as 100 % ice. 261 

In order to quantify this positive bias better, it is useful to distinguish between sea-ice conditions during summer and 262 

winter, between pack ice and the MIZ, and to take into account the dimensions of leads / openings and ice floes. Distributions 263 

of lead width and floe size both follow a power law. Leads / openings and ice floes with dimensions smaller than the Landsat 264 

pixel size are orders of magnitude more abundant than wide leads / openings (e.g. Tschudi et al., 2002; Marcq and Weiss, 265 

2012) and large ice floes (e.g. Steer et al., 2008; Toyota et al., 2011; Perovich and Jones, 2014).  266 

Based on airborne digital camera visible imagery captured along several thousands’ of kilometers long tracks of 267 

Operation Icebridge (OIB) flights in the Arctic in April 2010 and in the Antarctic in October 2009 analyzed by Onana et al. 268 

(2013) with respect to the lead and open water fraction, we find a SIC bias of less than 0.2 %. This value derived for an open 269 

water fraction of ~ 1 % falls into the uncertainty range of our approach (see Tables 3, 4) and represents winter conditions in 270 

the pack ice. Based on manual visual analysis of airborne visible imagery obtained in the MIZ in the Greenland Sea in March 271 

1997, we find a SIC bias of the order of 5 to 10 %. This value is clearly outside the uncertainty range of our approach. The 272 

images used here represent an ice cover of ~ 70 % SIC comprising closely packed but also broken bands of a few thicker ice 273 

floes, pancake ice, brash and grease ice with little or no new ice formation in the openings – a typical situation at an ice edge 274 

located in comparably warm water. 275 

Next, we again take the results of Onana et al. (2013) but assume that the thin ice identified in the OIB digital camera 276 

imagery adds to the open water fraction thereby simulating a summer situation. For an open water fraction of then ~ 5 %, we 277 

estimate a SIC bias of less than 0.8 %, which is still within the uncertainty range of our approach. However, this low positive 278 

bias during summer would only apply to a situation where ice floes are still packed closely together, e.g. by herding of ice 279 

floes (e.g. Toyota et al., 2016), and where gaps between the ice floes from additional openings created by the melt process are 280 

filled by brash ice and/or slush. While this is a situation that might be encountered during summer (Steer et al., 2008; Lu et al., 281 

2008), it is not necessarily typical. In summer, it can be more common to encounter isolated floes. Depending on the size of 282 

the floes and their distribution across a 25 km grid cell with, e.g., 50 % SIC, we find the bias to range between less than 2 % 283 

to 50 % in the two most extreme cases. We refer to the Supplementary Material to this subsection, where we describe in more 284 

detail how we obtain estimates of the positive bias caused by the combination of i) the finite resolution of the Landsat sensor 285 

and ii) our classification approach for both winter and summer conditions at the scale of a 25 km PMW SIC product grid. 286 

According to the high-resolution optical images used to infer the floe size distribution (Steer et al., 2008; Toyota et 287 

al., 2011; 2016) and similar studies (e.g. Paget et al., 2001; Lu et al., 2008; Zhang and Skjetne, 2015), the ice cover often 288 

comprises a large spectrum of floes. The larger and largest floes at the upper end of the floe-size distribution form the major 289 

fraction of the sea-ice area (in square kilometers) (e.g. Paget et al., 2001; Steer et al., 2008). A small number of large floes 290 

results in a smaller number of mixed ocean-ice Landsat pixels than a large number of smaller floes. Hence, where larger floes 291 
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dominate our Landsat SIC estimate is less biased than where small floes dominate. The effect of the ocean swell, the 292 

dominating force for fracturing ice floes according to, e.g., Toyota et al. (2016), is larger close to the ice edge than further 293 

inside the ice pack. Therefore, a larger number of smaller floes exists along the ice edge, suggesting a larger bias in our Landsat 294 

SIC near the ice edge than inside the ice pack. Without further independent information about the actual ice cover, we are not 295 

able quantifying this bias accurately. 296 

In summary, we state: for high-concentration winter conditions and for those cases during summer where ice floes 297 

are closely packed and openings between the floes are covered with brash ice and slush, the bias in Landsat SIC derived at the 298 

spatial scale of the PMW SIC products falls within the retrieval uncertainty range of our approach (see Tables 3, 4). The bias 299 

could fall outside the uncertainty range near the ice edge during winter when sea ice drifts into comparably warm waters that 300 

inhibit ice formation in newly created openings; here biases as high as 10 % in a single PMW grid cell could occur. The bias 301 

could also fall outside the uncertainty range during summer; here biases between 5 % and 20 % in single PMW grid cells might 302 

occur depending on proximity to the ice edge and hence floe-size distribution and depending on conditions favoring / inhibiting 303 

herding of ice floes into bands. 304 

3 Results 305 

In the following, we present and discuss results obtained in the Northern and Southern Hemisphere. We preferred to 306 

not merge the results of Landsat-5 and Landsat-8 in the Northern Hemisphere because with that we have a relatively natural 307 

discrimination between cased dominated by first-year ice (Landsat-5) and cases dominated by mixed first-year / multiyear ice 308 

or multiyear ice (Landsat-8) (see Fig. 1). 309 

3.1 Northern Hemisphere 310 

Out of the ten products, SICCI-25km, SICCI-50km, ASI-SSMI, and SICCI-12km offer the best linear agreement with 311 

Landsat SIC for first-year ice dominated cases as expressed, e.g., by the location of mean and median PMW SIC (red symbols) 312 

in Fig. 2 and the values of slope, intercept and correlation coefficient listed in Table 5. The two CBT products, NOAA-CDR 313 

and NT2-AMSRE have the smallest overall mean difference and zero median (Table 5). These four products exhibit, however, 314 

a considerable tail of near-100 % PMW SIC values stretching across almost the entire Landsat SIC range, pointing towards 315 

over-estimation of Landsat SIC. ASI-SSMI and NT1-SSMI SIC spread towards comparably low values at high Landsat SIC, 316 

i.e. along the vertical dashed line denoting 100 % Landsat SIC (Fig. 2 h, i) contributing to the overall largest underestimation 317 

of Landsat SIC among the ten products (Table 5). 318 

For cases with mixed first-year / multiyear or multiyear ice, SICCI-25km and SICCI-50km offer best linear agreement 319 

with Landsat SIC in the Northern Hemisphere (Fig. 3). Most other products have a less convincing linear relationship with the 320 

majority of the data pairs being located either above (NT2-AMSR2) or below (ASI-SSMI) the identity line or within a point 321 

cloud across this line (SICCI-12km, OSI-450, NT1-SSMI). Like for first-year ice, the two CBT products, NOAA-CDR and 322 

NT2-AMSR have the smallest mean difference for mixed first-year / multiyear or multiyear ice (Fig. 3, Table 6). However, 323 

particularly at higher Landsat SIC these products show many data pairs above the identity line and the linear regressions 324 

through the mean and median PMW SIC (red dashed and solid lines) are also located above the identity line – in contrast to, 325 

e.g. SICCI-25km and SICCI-50km.  326 

 327 
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 328 
 329 

Figure 2. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for the first-year ice dominated 330 

cases from 2003-2011 in the Northern Hemisphere (Landsat-5). Black dots are individual data pairs, the black solid line is the 331 

linear regression, and the black dashed line is the identity line. Red triangles denote the mean PMW SIC computed for Landsat 332 

SIC ranges 0%-5%, 5%-15%, 15%-25%, … , 85%-95%, 95%-100%, red bars one standard deviation of these mean values and  333 

the red dashed line is the respective linear regression line. Red squares denote the median PMW SIC for the same Landsat SIC 334 

ranges and the red solid line is the respective linear regression line. The overall mean and median difference PMW SIC minus 335 

Landsat SIC, its standard deviation, and the equation of the linear regression through the individual data pairs is shown at the 336 

top, the number N of data pairs and the squared linear correlation coefficient at the bottom of each panel. 337 

 338 

 339 

https://doi.org/10.5194/tc-2021-258
Preprint. Discussion started: 9 September 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

 340 

Figure 3. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for mixed first-year / multiyear 341 

or multiyear ice cases from 2013-2015 in the Northern Hemisphere (Landsat-8). See Fig. 2 for a description of symbols, lines 342 

and text. 343 

 344 

The linear agreement between PMW SIC and Landsat SIC improves in general for all ten products for mixed first-345 

year / multiyear or multiyear ice cases (Fig. 3, Table 6) compared to first-year ice (Fig. 2, Table 5). This improvement is 346 

comparably large for OSI-450: slope increases by ~0.10 and NT2-AMSR: slope increases by ~0.15 but quite small for SICCI-347 

25km and SICCI-50km because slopes are close to unity already. Hence, despite the larger magnitude of overall mean and 348 

median SIC differences, of all ten products SICCI-25km and SICCI-50km provide the most stable linear agreement with 349 

Landsat SIC in the Northern Hemisphere. These two products provide SIC estimates for first-year ice which are almost as 350 

accurate as the SIC estimates for mixed first-year ice / multiyear ice or multiyear ice. This could be one consequence of the 351 

self-optimizing hybrid SICCI-2 / OSI-450 algorithm (Lavergne et al., 2019) and of the way ice tie points are chosen in 352 

comparison to the other products (e.g., Kern et al. 2020).  353 
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Table 5. Summary of the statistical parameters displayed in Fig. 2. Diff, DiffSDEV, and Median (all in percent SIC) are the 354 

mean difference PMW SIC minus Landsat SIC, its standard deviation and the median difference; Slope and Intercept (in 355 

percent SIC) are the coefficients of the linear regression, and R² and N are the squared linear correlation coefficient and number 356 

of data pairs, respectively. Numbers in bold and bold italic font denote the respective “best” and “2nd best” value, respectively, 357 

e.g. largest and 2nd-largest values of R² and lowest and 2nd-lowest values of Diff, Intercept and difference unity minus slope. 358 

 359 

LS5, NH 

2003-11 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSRE 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSRE 

Diff -5.5 -5.4 -3.5 -4.9 0.6 0.7 -0.3 -8.4 -7.8 0.0 

DiffSDEV 9.2 8.3 9.1 8.7 8.2 8.2 7.7 11.7 10.5 7.5 

Median -3.2 -3.4 -1.7 -3.3 0.0 0.0 0.0 -5.7 -6.0 0.0 

Slope 0.833 0.963 0.967 0.675 0.515 0.524 0.730 0.665 0.846 0.675 

Intercept 10.6 -1.9 -0.3 26.4 47.4 46.6 25.9 23.9 7.0 31.5 

R² 0.57 0.64 0.57 0.50 0.49 0.49 0.54 0.32 0.51 0.55 

N 30549 8519 2748 8519 7557 7491 8384 7637 32855 8384 

 360 

Table 6. Summary of statistical parameters shown in Fig. 3. See Table 5 for an explanation of the parameters given. 361 

LS8, NH 

2013-15 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -6.2 -4.7 -3.6 -4.3 1.6 1.6 0.4 -4.8 -6.0 1.2 

DiffSDEV 11.0 8.2 9.0 9.8 9.9 9.8 8.0 11.4 12.2 8.1 

Median -2.8 -2.8 -2.0 -2.9 0.0 0.0 0.0 -1.5 -3.8 -1.5 

Slope 0.868 0.974 0.997 0.779 0.688 0.704 0.841 0.842 0.919 0.828 

Intercept 6.1 -2.4 -3.3 16.2 30.5 29.1 15.2 9.8 1.5 17.2 

R² 0.72 0.84 0.79 0.73 0.72 0.72 0.81 0.67 0.69 0.80 

N 23433 6484 2056 6576 5944 5945 5831 6008 22655 5831 

 362 

3.2 Southern Hemisphere 363 

In the Southern Hemisphere, slope and location of the linear regression lines as well as of the mean and median PMW 364 

SIC values (red symbols) is more similar between the ten products (Fig. 4, Table 7). The linear agreement is fairly good for 365 

SICCI-2 products, CBT-AMSR2 and ASI-SSMI. Like in the Northern Hemisphere, SICCI-25km and SICCI-50 km reveal the 366 

best linear agreement with Landsat SIC but SICCI-50km appears to be negatively biased. This bias is associated with a large 367 

number of PMW SIC values of 0 % at non-zero Landsat SIC which is also reflected by the mean and median PMW SIC 368 

(compare Fig. 4c) with Fig. 3c)). We discuss this issue and the observation that all products except CBT-SSMI, NOAA-CDR 369 

and CBT-AMSR2 exhibit SIC values below about 10-15 % while these three products lack values in the PMW SIC range 370 

between 0 % and ~15 % in Section 5.4. 371 

Like in the Northern Hemisphere (Table 6), the magnitude of the SIC difference is smallest for NT2-AMSR2, NOAA-372 

CDR and the two CBT products and largest for NT1-SSMI and ASI-SSMI. Of all ten products, NT2-AMSR2 (Fig. 4 j) offers 373 

the most asymmetric SIC distribution and a considerable overestimation of Landsat SIC in the range between ~40 % and ~90 374 

%, also expressed by median SIC > mean SIC for all Landsat SIC bins above 25 % (Fig. 4 j). NT2-AMSR2 is the only product 375 

with a substantial positive overall mean difference of 3.4 %, even the median difference is > 0 % (Table 7). 376 
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 377 

Figure 4. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for 2013-2015 in the Southern 378 

Hemisphere. See Fig. 2 for a description of symbols, lines and text. 379 

 380 

Table 7. Summary of statistical parameters shown in Fig. 4. See Table 5 for an explanation of the parameters given. 381 

LS8, SH 

2013-15 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.1 -5.9 -6.8 -5.3 -1.5 -1.6 -3.0 -9.5 -9.1 3.4 

DiffSDEV 13.3 13.5 16.0 13.5 14.6 14.8 14.2 15.5 16.9 13.8 

Median -1.3 -2.1 -1.9 -2.8 0.0 0.0 -0.2 -7.3 -6.5 0.4 

Slope 0.915 0.969 1.033 0.827 0.826 0.843 0.915 0.834 0.898 0.821 

Intercept 2.1 -3.3 -9.6 9.5 13.4 11.8 4.2 4.7 -0.4 18.7 

R² 0.78 0.77 0.72 0.73 0.70 0.70 0.74 0.68 0.68 0.72 

N 34331 9796 3098 9796 9788 9788 10009 9883 34252 10009 

 382 
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3.3 Hemispheric Similarities and Differences 383 

Overall, agreement between PMW SIC and Landsat SIC differs between the two hemispheres. For all products, we find 384 

a substantially larger scatter of SIC values around the identity line in the Southern Hemisphere (section 3.2) than the Northern 385 

Hemisphere (section 3.1). One the one hand, this larger scatter in the Southern Hemisphere could be the result of a considerably 386 

larger number of Landsat scenes of cases with low SIC, naturally resulting in a larger spread of the SIC. In addition, the 387 

majority of the Landsat scenes in the Southern Hemisphere reflect late spring / summer conditions. During such conditions, 388 

snow metamorphism due to melt and melt-refreeze cycles substantially change the sea ice surface emissivity on daily time-389 

scales and sub grid-cell size spatial scales (e.g. Willmes et al., 2014) causing a larger scatter in SIC. On the other hand, we are 390 

dealing with an unknown amount of overestimation of the actual sea-ice concentration by our Landsat SIC during summer 391 

melt due to mixed ocean-ice Landsat pixels (Subsection 2.2.4). We refer to Sections 4.3, 5.1 and 5.2 for more discussion on 392 

this issue. 393 

In general, we find the scatter is larger for products offered at finer grid resolution, e.g. SICCI-12km and ASI-SSMI, 394 

than for the coarser grid-resolution products. The larger number of valid SIC pairs of the high-resolution products result in 395 

more scatter due to the inherent retrieval noise – even though the capability to resolve smaller-scale SIC variations is better 396 

for the fine- than the coarser-resolution products (see section 5.1). In addition, a mismatch in the location of a, for example, 397 

10km-scale ice tongue between a Landsat scene and a PMW SIC product has a substantially larger influence on the SIC 398 

difference at 12.5 km than at 25 or 50 km grid resolution. The fact that oversampling is much larger at 12.5 km than at 50 km 399 

plays a role here also. Even using simulated brightness temperatures one gets a large spread between a reference SIC and the 400 

PMW SIC due to resolution mismatch (see e.g. Tonboe et al., 2016). Note in this context that we estimate Landsat SIC at the 401 

grid resolution of the respective products, i.e. 12.5 km, 25.0 km or 50.0 km. 402 

 403 

Table 8. Comparison of statistical parameters listed in Tables 5 and 6 in the Northern Hemisphere for SICCI-2 and OSI-450 404 

products using truncated or non-truncated (near-100 % SIC) PMW SIC data. See Table 5 for an explanation of the parameters 405 

given. Top (LS5, NH 2003-11) is for first-year ice dominated cases, bottom (LS8, NH 2013-15) is for mixed first-year / 406 

multiyear and multiyear ice cases. The overall median differences do not change and are not listed again. 407 

 408 

LS5, NH 2003-11 SICCI-12 
SICCI-12 

non-truncated 
SICCI-25 

SICCI-25 

non-truncated 
SICCI-50 

SICCI-50 

non-truncated 
OSI-450 

OSI-450 non-

truncated 

Diff -5.5 -4.6 -5.4 -5.0 -3.5 -3.0 -4.9 -4.5 

DiffSDEV 9.2 10.0 8.3 8.7 9.1 9.3 8.7 9.0 

Slope 0.833 0.852 0.963 0.974 0.967 0.979 0.675 0.684 

Intercept 10.6 9.6 -1.9 -2.5 -0.3 -1.0 26.4 26.0 

R² 0.57 0.54 0.64 0.63 0.57 0.56 0.50 0.48 

LS8, NH 2013-15         

Diff -6.2 -4.9 -4.7 -4.4 -3.6 -3.4 -4.3 -3.9 

DiffSDEV 11.0 12.1 8.2 8.5 9.0 9.1 9.8 9.9 

Slope 0.868 0.891 0.974 0.982 0.997 1.000 0.779 0.786 

Intercept 6.1 5.2 -2.4 -2.7  -3.3 -3.5 16.2 15.9 

R² 0.72 0.68 0.84 0.83 0.79 0.79 0.73 0.73 

 409 

SICCI-2 products and OSI-450 provide access to SIC values above 100 % and below 0 % that are naturally retrieved 410 

due to the brightness temperature distribution around ice and water tie points used. Kern et al. (2019) found that incorporation 411 

of these so-called off-range or non-truncated SIC values provides a more accurate estimate of accuracy, i.e. difference to the 412 

true SIC value, and precision, i.e. standard deviation of this difference. Table 8 reveals that independent of the ice type, the 413 
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magnitude of the mean difference decreases while the slope of the linear regression increases, becoming closer to unity, in 414 

agreement to Kern et al. (2019). We observe the same in the Southern Hemisphere (Table S05 in the supplementary material). 415 

Of particular interest in this regard are high-concentration cases discussed in more detail in Section 4.2 but also the effect of 416 

the truncation at 0 % in the context of filters used to mitigate spurious SIC values (see Section 5.3). 417 

4 Case Studies 418 

In the previous section, we showed results independent of the ice regime (see below) – except for some general 419 

discussion about the observed differences between cases with predominantly first-year ice (Landsat-5) and cases with a mixture 420 

of first-year / multiyear or multiyear ice (Landsat-8). This section deals with our comparison between PMW SIC and Landsat 421 

SIC for the following ice regimes: “ice edge”, “leads and openings” = cases with leads and coastal polynyas or openings, 422 

“heterogeneous ice” = cases with irregularly shaped openings in the ice pack, “freeze-up”, “high-concentration ice”, and “melt 423 

conditions” (see Table S01 in the supplementary material). We show in more detail results of the last three ice regimes known 424 

to cause biases in PMW SIC products. For all remaining regimes we show examples in Figs. S04 through S09 in the 425 

supplementary material while the results of the statistical comparison for all regimes will be summarized in Figs 10 and 11.  426 

4.1 Freeze-Up 427 

These are cases where according to the date, geographic location and information in the Landsat scene freeze-up has 428 

commenced. We select Landsat scenes containing a considerable fraction of new and thin ice; these are acquired in September 429 

and February/March in the Northern and Southern Hemisphere, respectively. We have got only few such cases in both 430 

hemispheres (see Table S01 in the supplementary material). We expect PMW SIC underestimates Landsat SIC (LSIC) – 431 

particularly for young and thin ice with a thickness < 0.2 m (e.g. Ivanova et al., 2015). Figure 5 illustrates the conditions for a 432 

Landsat-8 scene close to Greenland in the Fram Strait on September 15 2015. The classified Landsat-8 image (Fig. 5, top left) 433 

reveals a mix of large ice floes – presumably second-year or older ice – and meandering patches of smaller floes embedded 434 

into a matrix of mostly grey and a few dark pixels; the grey pixels are supposed to represent bare / thin sea ice, the dark pixels 435 

open water. All products agree well with Landsat SIC in the topmost part of the scene over high-concentration ice. PMW SIC 436 

maps of six of the ten products (SICCI-2 products, OSI-450, NT1-SSMI and ASI-SSMI) reveal an overall SIC distribution 437 

similar to Landsat SIC. For the remaining four products, the SIC difference maps show widespread overestimation of LSIC by 438 

PMW SIC expressed by positive (red) values. Unlike expected, we do not observe negative SIC differences for the entire 439 

greyish area of the Landsat-8 scene. 440 

The main reason for this observation is the actual ice condition. Very likely the greyish area represents a mixture of 441 

sub-pixel size, i.e. less than 30 m x 30 m, ice floes and brash ice formed from disintegrated thicker ice floes and young / new 442 

sea ice. On the one hand, the sub-pixel size floes and the brash ice are thicker than young / new sea ice. These forms of sea ice 443 

exhibit different surface properties and hence microwave emissivity than young / new thin sea ice. For such a mixture of ice 444 

types, it is particularly difficult to retrieve an accurate SIC with any of the algorithms used in the ten products. Ice tie points 445 

do not adequately represent these ice conditions. On the other hand, for the greyish area the Landsat SIC could likely be too 446 

high because of mixed ocean-ice Landsat pixels (see Subsection 2.2.4 and the respective supplementary material). Hence, what 447 

appears to be 100 % thin ice might be just 50 % thick ice. However, observations conducted at Henrik Krøyer Holme station 448 

(80°38’N 13°43’W, see star in Fig. 5, top left panel) on September 15 2015 and the preceding days indicate freezing conditions 449 

with air temperatures between -5°C and -13°C (https://www.dmk.dk/vejrarkiv, last access: June 29 2021). Therefore, it is quite 450 

likely, new / thin ice covers most open water patches and any over-estimation of Landsat SIC due to sub-pixel size open water 451 

https://doi.org/10.5194/tc-2021-258
Preprint. Discussion started: 9 September 2021
c© Author(s) 2021. CC BY 4.0 License.



16 

 

patches is rather small. Therefore, to our opinion, the observed differences PMW SIC minus Landsat SIC are mainly caused 452 

by the above-mentioned difficulties of the PMW SIC algorithms to handle the complex sea-ice conditions encountered. 453 

 454 

 455 

Figure 5. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC (LSIC) for all ten products for a freeze-456 

up scene in the Fram Strait on September 15, 2015. The Landsat surface class map at the top left shows white: thick / snow-457 

covered ice; grey: bare / thin ice; black: open water). The red star marks the location of Henrik Krøyer Holme station (see 458 

text). White and grey pixels are used to compute maps of gridded LSIC at 12.5 km, 25 km and 50 km, respectively (blue: 459 

outside Landsat image). A subset of SICCI-12km SIC grid cells shown at the top right illustrates the array used for the 460 

collocation. Panels in the remaining four rows show PMW SIC and PMW SIC minus LSIC for all ten products. Land is flagged 461 

brown in the SIC panels and black in the SIC difference panels; it differs between the PMW products. The land masks in the 462 

two bigger maps at the top come from the plotting routine used. LSIC maps use the land masks of the SICCI-2 products. 463 

 464 

Figure 6 illustrates a freeze-up case in Pine Island Bay, Amundsen Sea, Southern Ocean, on March 12, 2014. The 465 

classified Landsat-8 scene features a predominant coverage with new / young ice, some open water towards the coast and little 466 

thick / snow covered ice and icebergs in the open bay. Landsat SIC is mostly around 90 %; only few grid cells with low SIC 467 

exist close to the coast at 12.5 km and 25 km grid resolution. Nine of the ten PMW SIC products reveal considerably lower 468 

SIC values with SICCI-25km, OSI-450, NT1-SSMI and ASI-SSMI exhibiting particularly large widespread negative 469 

differences with magnitude > 40 %. An exception is NT2-AMSR2 exhibiting the highest PMW SIC of all ten products and 470 
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overall the smallest differences. It is the only product, though, which also exhibits positive differences, i.e. an over-estimation 471 

of Landsat SIC by up to 20 %. 472 

The widespread under-estimation of Landsat SIC by almost all products is very well in line with the findings of 473 

Ivanova et al. (2015), albeit a bit large in magnitude. The new ice encountered in our example comprises a comparably large 474 

fraction of frazil / grease / small pancake ice while compared to nilas and grey/grey-white ice in Ivanova et al. (2015). Because 475 

Pine Island Glacier Automatic Weather Station (see star in top left map of Fig. 6) reported air temperatures between -11°C and 476 

-21°C on March 12, 2014 and the three preceding days (Mojica Moncada et al., 2019), the grey pixels in this Landsat scene 477 

very likely represent new/thin sea ice formed locally. However, we cannot fully exclude an over-estimation of Landsat SIC by 478 

sub-pixel size open water patches between streaks of new ice formed being classified as thin ice instead of open water (see 479 

Subsection 2.2.4 and respective supplementary material); for the conditions encountered this positive bias in Landsat SIC 480 

should be less than 5 %, maximum 10 %. The existence of such a positive bias combined with the different ice type encountered 481 

compared to Ivanova et al. (2015) explains why the observed under-estimation of Landsat SIC for most of the PMW SIC 482 

products is larger in magnitude than expected. 483 

 484 

 485 

Figure 6. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a scene near the 486 

coast during freeze-up in Pine Island Bay, Amundsen Sea, Southern Ocean, on March 12, 2014. The red star in the top left 487 

map marks the location of the Pine Island Glacier Automatic Weather Station (see text). Some of the white patches near the 488 

coast in this map are actually glacier ice not adequately flagged by the land mask. See Fig. 5 for more details. 489 

 490 
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Table 9 summarizes our results of the freeze-up cases for which we expected, overall, an under-estimation of Landsat 491 

SIC, i.e. a negative bias, due to a notable fraction of new / thin ice (see Ivanova et al., 2015). In the Northern Hemisphere, 492 

performance of the products differs a lot. We find positive biases for the two CBT-products, NOAA-CDR and NT2-AMSR2, 493 

large negative biases for the remaining products. SICCI-25km offers the best linear agreement with Landsat SIC. In the 494 

Southern Hemisphere, a number of products have a regression line slope close to unity, a small intercept and a squared linear 495 

correlation coefficient > 0.8. Most importantly, however, all products – except NT2-AMSR2 – on average under-estimate 496 

Landsat SIC in agreement with Ivanova et al. (2015). 497 

 498 

Table 9. Summary of statistical results obtained for three freeze-up cases in the Northern Hemisphere (NH) and for 11 freeze-499 

up cases in the Southern Hemisphere (SH) using Landsat 8 data. See Table 5 for an explanation of the parameters given. 500 

NH 
SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -8.2 -8.9 -10.5 -7.7 5.0 4.6 2.6 -14.1 -12.0 4.3 

Diff SDEV 13.5 10.8 17.8 13.9 18.5 18.4 12.9 20.8 21.9 13.8 

Slope 0.799 0.960 0.948 0.665 0.655 0.679 0.881 0.673 0.738 0.866 

Intercept 7.8 -5.7 -6.4 19.3 31.6 29.4 12.0 11.3 8.6 14.9 

R² 0.77 0.84 0.65 0.70 0.58 0.58 0.77 0.50 0.51 0.74 

N 751 208 64 210 191 191 186 196 702 186 

SH           

Diff -11.8 -12.1 -7.4 -12.1 -6.3 -6.1 -6.5 -10.9 -11.4 2.1 

Diff SDEV 18.1 15.9 16.1 15.1 12.1 12.1 11.8 15.3 18.1 10.6 

Slope 0.839 0.915 1.027 0.861 0.965 0.971 0.977 0.953 0.982 0.943 

Intercept 2.0 -4.8 -9.7 0.1 -3.3 -3.7 -4.5 -6.9 -9.8 7.0 

R² 0.66 0.72 0.75 0.73 0.83 0.84 0.84 0.75 0.72 0.86 

N 1843 531 169 531 536 536 547 540 1842 547 

4.2 High-concentration ice 501 

These are cases where the Landsat scene indicates either a closed ice cover without any leads or openings or an almost 502 

closed ice cover with few refrozen leads or openings, resulting in near-100 % Landsat SIC. In the ideal case, we expect PMW 503 

SIC is close to 100 %. Figure 7 illustrates such a case for April 4, 2015 in the Beaufort Sea, Arctic Ocean. Landsat SIC is 504 

100.0 %. All ten PMW SIC products exhibit quite high sea-ice concentrations – particularly SICCI-50km, NOAA-CDR and 505 

NT2-AMSR2. However, the difference maps clearly reveal a (very) small and negative bias for all PMW products. This bias 506 

is largest in magnitude for SICCI-12km and ASI-SSMI and smallest in magnitude for NT2-AMSR2.  507 

Table 10 summarizes the results obtained for, in total, 40 high-concentration cases in the Northern Hemisphere: 28 508 

first-year ice dominated scenes (Landsat-5) and 12 scenes of mixed first-year / multiyear or multiyear ice cases (Landsat-8). 509 

We find the largest biases for SICCI-12km and ASI-SSMI independent of ice type. Except for CBT-AMSR and NT2-AMSR, 510 

all products exhibit a larger bias for first-year ice cases than mixed first-year / multiyear or multiyear ice cases. We hypothesize 511 

that the different biases between PMW and Landsat SIC for these near-100 % cases are caused by the different capabilities of 512 

the respective algorithms to derive an accurate SIC independent of ice type – as stated already in Section 3.1. NT1-SSMI and 513 

ASI-SSMI appear to have the largest difficulties with the different ice types encountered because their biases vary most. We 514 

note the two CBT products and NOAA-CDR (and NT2-AMSR2) have a median difference of 0.0 % independent of ice type 515 

– similar to Tables 5 and 6. For SICCI-2 products and OSI-450, median differences are smaller in magnitude than for all ice 516 

and approach zero for the mixed first-year / multiyear or multiyear ice cases. 517 

 518 
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 519 

Figure 7. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a high-520 

concentration scene in the Beaufort Sea, Arctic Ocean, on April 4, 2015. See Fig. 5 for a description of the maps shown. 521 

 522 

Table 10. Summary of statistical results obtained in the Northern Hemisphere for 28 cases with first-year ice (top, LS5, NH 523 

2003-11) and for 12 cases with mixed first-year / multiyear or multiyear ice (bottom, LS8, NH 2013-15). See Table 5 for an 524 

explanation of the parameters shown. For SICCI-2 and OSI-450 products, we include in all rows but “N” behind the “/” values 525 

based on non-truncated (near 100 %) SIC data. We omit slope and intercept because SIC data pairs cluster at 100 % and do 526 

not allow a meaningful estimation of a linear regression line. 527 

LS5, NH 2003-11 SICCI-12 SICCI-25 SICCI-50 OSI-450 
CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR 

Diff -4.0 / -3.0 -3.7 / -3.4 -1.5 / -1.0 -3.5 / -3.2 -0.8 -0.7 -0.9 -5.8 -6.9 -0.6 

DiffSDEV 5.2 / 6.0 4.0 / 4.4 1.8 / 2.5 3.7 / 4.1 1.6 1.4 1.8 6.6 5.6 1.4 

Median -2.6 / -2.6 -2.5 / -2.5 -1.0 / -1.0 -2.4 / -2.4 0.0 0.0 0.0 -3.5 -6.0 0.0 

N 7028 1978 677 1978 1940 1940 2104 1940 7633 2104 

LS8, NH 2013-15           

Diff -2.9 / -0.8 -1.5 / -0.5 -0.9 / -0.4 -1.3 / -0.3 -0.5 -0.2 -1.0 -0.3 -2.6 -0.6 

DiffSDEV 4.1 / 6.2 2.2 / 3.1 1.2 / 1.7 1.9 / 3.0 1.4 0.9 3.0 0.9 2.6 2.5 

Median -0.2 / -0.2 -0.2 / -0.2 -0.3 / -0.3 -0.2 / -0.2 0.0 0.0 0.0 0.0 -2.1 -0.5 

N 2659 764 242 764 714 714 723 714 2571 723 

 528 
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Using non-truncated SIC of SICCI-2 products and OSI-450 (see also Table 8), reduces the magnitude of the bias by 529 

between 0.5 % for SICCI-50km and 2.1 % for SICCI-12km for the mixed first-year / multiyear or multiyear ice cases (LS8) 530 

and less than that for the first-year ice cases. As expected, the standard deviation of the bias increases using non-truncated SIC. 531 

The other six PMW products set SIC values > 100 % to 100 % or do not permit a simple retrieval of such SIC values (NT2-532 

AMSR2, but see Ivanova et al., 2015), and would therefore have a different bias and a larger standard deviation than shown in 533 

Table 10 (see Kern et al., 2019). Of the SICCI-2 / OSI-450 products, SICCI-50km provides the smallest bias and the smallest 534 

standard deviation of this bias: -0.7 % ± 2.2 % in line with Kern et al. (2019) who reported a bias of -0.5 % ± 2.1 % for non-535 

truncated SICCI-50km SIC. The median difference of SICCI-2 products and OSI-450 is quite similar to the mean difference 536 

using non-truncated SIC for mixed first-year / multiyear or multiyear ice cases. 537 

 538 

Figure 8. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a high-539 

concentration scene in the Weddell Sea, Southern Ocean, on March 12, 2015. See Fig. 5 for a description of the maps shown. 540 

 541 

Figure 8 illustrates a high-concentration case in the Weddell Sea, Southern Ocean, on March 12, 2015. Six of the ten 542 

PMW SIC products show almost 100 % sea-ice concentration and almost zero bias. We only find notable deviations from 100 543 

% concomitant with a small negative bias for ASI-SSMI, the two CBT-products and SICCI-12km. For our four high-544 

concentration cases in the Southern Ocean (Table 11), we find the largest overall bias for ASI-SSMI. Most products reveal a 545 

bias of magnitude 0.3 % or smaller.  546 
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Using non-truncated SICCI-2 and OSI-450 SIC results in positive biases, ranging between 1.8 % for OSI-450 and 2.7 547 

% for SICCI-50km (Table 11, values behind the “/”). This amounts to an increase of the mean SICCI-2 / OSI-450 SIC for 548 

these cases by ~ 2.5 %. This increase is larger than in the Northern Hemisphere (compare Table 10). We explain this with a 549 

comparably large fraction of PMW SIC > 100 % for our small high-concentration cases data set of the Southern Hemisphere 550 

(four) compared to the Northern Hemisphere (40 in total). This is confirmed by median differences increasing from near-0 % 551 

to about the value of the mean differences using non-truncated SIC (Table 11). 552 

Three of the four high-concentration cases identified in the Southern Ocean are from months November / December, 553 

a time of the year when melt onset and melt-refreeze cycles cause higher variability of the ice emissivity. One of the likely 554 

impacts is a notable fraction of PMW SIC > 100 % (see Fig. S01 in the supplementary material). The same applies in a different 555 

way to the case shown in Fig. 8, the only late fall / early winter case out of these four cases. The overall Landsat SIC of this 556 

scene is 99.9 %; that of an adjacent scene is 98.9 % (not shown). Sea ice and snow properties in late fall / early winter are often 557 

as well quite variable and can cause an elevated spread of the retrieved PMW SIC around 100 %, resulting in a substantial 558 

fraction of SIC values > 100 %. For instance, the overall SICCI-25km SIC is 101.9 % for the scene shown in Fig. 8 and 103.1 559 

% for the adjacent scene (not shown).  560 

 561 

Table 11. Summary of statistical results obtained for the four high concentration cases in the Southern Hemisphere. See Table 562 

5 for an explanation of the parameters shown. For SICCI-2 and OSI-450 products, we include in rows “Diff”, “DiffSDEV”, 563 

and “Median” behind the “/” values obtained using non-truncated SIC. 564 

LS8, SH 2013-15 SICCI-12 SICCI-25 SICCI-50 OSI-450 
CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -0.1 / 2.5 0.0 / 2.4 0.0 / 2.7 -0.3 / 1.8 -0.7 0.1 -1.1 -0.9 -2.9 -0.1 

DiffSDEV 1.7 / 2.9 0.8 / 2.3 1.2 / 2.7 2.1 / 3.1 1.7 0.7 2.0 2.6 2.5 1.2 

Median  0.0 / 2.8 0.0 / 2.5 0.1 / 2.6 0.0 / 2.2 0.0 0.1 0.0 0.0 -2.4 0.0 

N 978 287 93 287 288 288 302 288 973 302 

 565 

4.3 Melt conditions 566 

For melt-condition cases, we select Landsat scenes by means of the calendar date. In the Northern Hemisphere, we 567 

consider the time-period May 15 to May 31, in the Southern Hemisphere we used the time-period November 15 to February 568 

28. We did not include Landsat scenes subject to melt ponding on sea ice, e.g. during months June through August; this topic 569 

is covered in Kern et al. (2020).  570 

 571 

Table 12. Summary of statistical results obtained for 15 melt-condition cases (without melt-ponds) in the Northern 572 

Hemisphere. See Table 5 for an explanation of the parameters shown. Numbers added behind the “/” for SICCI-2 and OSI-573 

450 products denote the results obtained using non-truncated SIC. 574 

LS8, NH 

2013-15 
SICCI-12 SICCI-25 SICCI-50 OSI-450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.3 / -4.3 -5.1 / -4.6 -4.2 / -4.2 -4.6 / -4.3 2.2 2.4 0.2 -3.5 -4.7 1.7 

DiffSDEV 10.5 / 11.2 8.9 / 9.3 9.6 / 9.6 9.5 / 9.7 9.8 9.7 7.4 10.8 12.2 8.3 

Slope 0.829/0.852 0.930/0.943 0.898/0.899 0.617/0.626 0.418 0.416 0.727 0.637 0.740 0.564 

Intercept 10.5 / 9.4 1.4 / 0.6 5.3 / 5.2 30.9 / 30.4 56.9 57.3 26.1 30.6 19.5 43.0 

R² 0.67 / 0.65 0.72 / 0.71 0.61 / 0.61 0.61 / 0.60 0.54 0.54 0.66 0.48 0.55 0.56 

N 2926 817 266 817 817 817 795 823 3117 795 

 575 
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In the Northern Hemisphere (Table 12), we find positive and comparably small biases for the two CBT products, 576 

NOAA-CDR and NT2-AMSR2, negative biases for all other products. We find the best quality of the linear agreement between 577 

PMW SIC and Landsat SIC for SICCI-25km, followed by SICCI-50km and SICCI-12km. According to Kern et al. (2020), the 578 

second half of May is characterized by an upswing of number and magnitude of SIC values > 100 % for SICCI-2 / OSI-450 579 

products (see Fig. S02 in the supplementary material). Using non-truncated SIC of these products reduces the mean bias by 580 

1.0 % for SICCI-12km, 0.5 % for SICCI-25km, and 0.3 % for OSI-450 and further improves the already good linear agreement. 581 

For SICCI-50km, results remain almost unchanged. We explain the difference in the response between SICCI-50km and 582 

SICCI-12km with the larger sensitivity of the higher frequency channels used by SICCI-12km to early stages of melt 583 

encountered at that time of the year. 584 

Figure 9 illustrates a typical case of late summer melt conditions in the Ross Sea, Southern Ocean. The classified 585 

Landsat-8 image shows a heterogeneous mixture of black, grey and white pixels. The grey pixels denote a mixture of open 586 

water and thicker ice, possibly brash ice, sea ice with a wet or even flooded snow cover, or bare relatively thick ice from which 587 

the snow has been washed off. New/young ice is unlikely according to 6-hourly forecasts of the Antarctic Mesoscale Prediction 588 

System (AMPS) revealing near-surface temperatures around -1°C on January 27 2014 and between -3°C and -5°C on January 589 

28 and 29 2014 (http://polarmet.osu.edu/AMPS/, last access June 29, 2021), indicating that freeze-up has not yet commenced. 590 

 591 

 592 

Figure 9. Landsat SIC, PMW SIC, and difference PMW SIC minus Landsat SIC for all ten products for a melt-condition case 593 

in the Ross Sea, Southern Ocean, on January 29, 2014. See Fig. 5 for more description of the maps shown. 594 

 595 
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PMW SIC distributions match well with Landsat SIC, which is > 70 % for a considerable fraction of the map, but for 596 

most products PMW SIC is considerably smaller. Negative biases dominate and are widespread 30 % to 50 % in magnitude. 597 

Striking is the similarity between Landsat SIC 12.5km and ASI-SSMI, and between Landsat SIC 25 km and SICCI-25km as 598 

well as CBT-AMSR2. Striking is also the similarity between OSI-450, NT1-SSMI, CBT-SSMI and NOAA-CDR. These 599 

similarities indicate different native spatial resolutions, TB sampling intervals and grid spacings of, SSMI(S) on the one hand 600 

and AMSR-E(2) on the other hand, can cause a substantial difference in the agreement with independent SIC estimates such 601 

as from Landsat – especially when ice conditions are as heterogeneous as in this example (see Section 5.1). There is a notable 602 

fraction of positive biases, e.g. for ASI-SSMI – LSIC (see also Fig. S03 in the supplementary material) and NT2-AMSR – 603 

LSIC. NT2-AMSR – LSIC even tends to show more grid cells with positive than negative biases – not just in this case.  604 

Overall, we find negative biases for nine of the ten products in the Southern Hemisphere (Table 13). These are smallest 605 

in magnitude for CBT-SSMI and NOAA-CDR: < 1 %, and largest for NT1-SSMI, ASI-SSMI and SICCI-50km. NT2-AMSR2 606 

stands out as the only product with a positive bias of 5 % (see Section 5.2). SICCI-25km and SICCI-50km again provide the 607 

best linear agreement with Landsat SIC (Table 13). Results for SICCI-2 products and OSI-450 improve when using non-608 

truncated SIC (see also Fig. S01 in the supplementary material). In contrast to the Northern Hemisphere (see Table 12, Fig. 609 

S02 in the supplementary material), also SICCI-50km reveals a reduction of the bias and increase in the linear regression line 610 

slope. We attribute this to i) the presence of advanced melt conditions and ii) the different melt-induced snow and ice properties 611 

in the Southern Hemisphere comprising a larger fraction of coarse-grained snow due to pro-longed melt-freeze cycles and a 612 

generally drier snow surface, at least for the high-concentration parts of the sea-ice cover. 613 

On the one hand, the negative biases (Figure 9, Table 13) agree well with results of earlier comparisons between 614 

Southern Hemisphere summer PMW SIC estimates and ship-based observations of the sea-ice cover (e.g. Worby and Comiso, 615 

2004; Ozsoy-Cicek et al., 2009). These studies hypothesize that under-estimation of the actual sea-ice concentration in PMW 616 

SIC products is primarily caused by wet, flooded sea ice exhibiting a similar surface emissivity as open water and hence 617 

looking like open water in PMW imagery. On the other hand, an unknown fraction of these negative biases could be caused 618 

by our Landsat SIC estimates being biased high because of the reasons laid out in Subsection 2.2.4 and the respective 619 

supplementary material. 620 

 621 

Table 13. Summary of statistical results obtained for 45 melt-conditions cases in the Southern Hemisphere. See caption of 622 

Table 5 for an explanation of the parameters given. Numbers added behind the “/” for SICCI-2 products and OSI-450 denote 623 

results obtained using non-truncated SIC. 624 

 625 

LS8, SH 

2013-15 
SICCI-12 SICCI-25 SICCI-50 OSI-450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.0 / -4.3 -5.8 / -5.5 -8.1 / -7.8 -4.9 / -4.6 -0.4 -0.6 -2.8 -8.7 -7.8 5.1 

DiffSDEV 13.7 / 14.1 13.9 / 14.1 17.1 / 17.2 14.8 / 14.9 15.6 15.6 15.4 16.4 18.6 15.9 

Slope 0.888/0.903 0.951/0.958 0.983/0.991 0.750/0.754 0.772 0.794 0.895 0.791 0.859 0.824 

Intercept 4.0 / 3.5 -1.8 /   -2.1 -6.7 / -7.1 14.1 / 15.4 18.0 16.0 5.8 8.2 3.6 19.4 

R² 0.79 / 0.78 0.78 / 0.78 0.69 / 0.69 0.71 / 0.71 0.69 0.69 0.72 0.67 0.65 0.69 

N 10214 2915 916 2915 2899 2899 2955 2929 10129 2955 

 626 
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5 Discussion 627 

5.1 A note on grid resolutions 628 

SICCI-25km and SICCI-50km SIC have a grid resolution close to the actual algorithm resolution largely determined 629 

by the native resolution of the lowest-frequency channel used (see field-of-view dimensions in Table 1). This is not the case 630 

for, e.g. CBT-SSMI or OSI-450. Actually, we find a relatively poor performance of OSI-450 in comparison to SICCI-25km 631 

(see Tables 5 to 7) – albeit the retrieval algorithm is exactly the same. We hypothesize that the coarser native resolution of the 632 

satellite data used for OSI-450 provides one of the main explanations for this observation. SICCI-25km uses AMSR-E and 633 

AMSR2 brightness temperatures observed at spatial resolutions (footprint sizes) between 14 km x 8 km (AMSR2: 12 km x 7 634 

km) and 27 km x 16 km (AMSR2: 22 km x 14 km) (see Table 1). In contrast, OSI-450 uses SSM/I and SSMIS brightness 635 

temperatures observed at footprint sizes between 37 km x 28 km and 69 km x 43 km. In addition, the relevant channels are 636 

sampled spatially every 10 km for AMSR-E / AMSR2 and every 25 km for SSM/I / SSMIS.  Therefore, spatial brightness 637 

temperature variations caused, e.g., by variations in the open water fraction, can be identified at a finer spatial scale by AMSR-638 

E / AMSR2 than by SSM/I / SSMIS at the same frequency. The grid spacing at which OSI-450 and other SIC products relying 639 

on SSMI(S) 19 / 37 GHz channels are provided is not the actual resolution of the estimated SIC. Surface information is smeared 640 

in the SSMI(S) data much more. A similar observation applies to CBT-SSMI and CBT-AMSR. The latter provides SIC at a 641 

grid resolution, which is closer to the algorithm resolution than that of CBT-SSMI; consequently, CBT-AMSR SIC agree 642 

closer to Landsat SIC than CBT-SSMI SIC (see Tables 5, 6, and 7 and compare panels e) and g) in Fig. 2, 3 and 4). We are 643 

confident that, besides the differences between the algorithms themselves, a substantial fraction of the observed difference in 644 

the agreement with Landsat SIC is caused by the spatial representation of the true sea-ice concentration, which differs due to 645 

the above-mentioned differences in satellite data used as input. 646 

Our results confirm the stated impact of the native spatial resolution on potential biases between PMW SIC and 647 

Landsat SIC very well. For instance, out of the ten products, ASI-SSMI and SICCI-12km both incorporating high-frequency, 648 

fine spatial resolution imagery channels provide the 3rd and 4th best linear fits in the Northern Hemisphere (Tables 5, 6) and 649 

the 3rd and 5th best linear fits in the Southern Hemisphere. When compared to the other SICCI-2 products, SICCI-12km has 650 

considerably better results in the Southern than the Northern Hemisphere; SICCI-12km actually performs best out of the four 651 

SICCI-2 / OSI-450 products (Table 7, Table S04 in the supplementary material). Our Landsat data set of the Southern 652 

Hemisphere contains more cases of ice regimes (see Section 4) with variable open water fractions such as “heterogeneous ice”, 653 

“leads / openings”, “freeze-up”, and “ice edge” than the one of the Northern Hemisphere (see Table S01 in the supplementary 654 

material). Because a SIC product at finer spatial resolution is capable to depict such variable open water fractions better and 655 

to observe the full SIC range more adequately it seems reasonable to have a better linear agreement between Landsat SIC and, 656 

e.g., SICCI-12km SIC in the Southern than the Northern Hemisphere (compare Figs. 3 and 4 with respect to low SIC). 657 

However, the other PMW SIC product with 12.5 km grid resolution, ASI-SSMI, does not show better results in the 658 

Southern than the Northern Hemisphere when compared to, e.g. NT1-SSMI or SICCI-2 products. ASI-SSMI utilizes near-90 659 

GHz brightness temperatures only while SICCI-12km combines near-90 GHz with 19 GHz brightness temperatures. 660 

Atmospheric effects known to cause biases in near-90 GHz PMW SIC products (Kern, 2004; Ivanova et al., 2015) might 661 

therefore have less impact on SICCI-12km than ASI-SSMI SIC. In addition, all SICCI-2 products utilize brightness 662 

temperatures corrected for atmospheric effects using radiative transfer modelling while ASI-SSMI utilizes uncorrected 663 

brightness temperatures. The fact that most of our Landsat scenes in the Southern Hemisphere represent atmospheric conditions 664 

during summer melt and hence at a comparably higher water vapor load than in the Northern Hemisphere fits into this picture. 665 

While the atmospheric effects are efficiently mitigated for SICCI-12km in both hemispheres these are larger for ASI-SSMI in 666 

the Southern than the Northern Hemisphere. 667 
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5.2 Hemispheric differences versus Landsat SIC bias 668 

At this point, we look at the difference between the SIC differences obtained in the Northern Hemisphere and the 669 

Southern Hemisphere from a different perspective. Ice conditions represented by our Landsat SIC data set comprise more cases 670 

with melt conditions and at the ice edge in the Southern Hemisphere (see Table S01 in the supplementary material). These 671 

conditions are likely particularly subject to the positive bias in Landsat SIC due to mixed pixels described in Subsection 2.2.4 672 

(see also the respective supplementary material). Therefore, we can expect that the positive SIC difference is, on average, 673 

larger in the Southern than the Northern Hemisphere. We compare the differences listed in Tables 5, 6 and 7 and find the 674 

following. OSI-450, SICCI-12km, and SICCI-25km exhibit small changes in the difference PMW SIC minus Landsat SIC 675 

between +0.8 % and -0.8 %. NT2-AMSR reveals a positive change of +2.8 %. Both CBT products, NOAA-CDR, NT1-SSMI, 676 

ASI-SSMI, and SICCI-50km show a negative change by between -2.2 % and -3.2 %. This change of ~ 3 % in the SIC difference 677 

between the results of the Northern and the Southern Hemisphere is of the correct sign and of an order of magnitude we deem 678 

a realistic estimate of the difference in the mentioned positive Landsat SIC bias between the hemispheres. What does this 679 

mean? For example, for a PMW grid cell covered by an actual SIC of 95 %, due to the positive bias Landsat SIC might be 97 680 

% in the Northern Hemisphere and 100 % in the Southern Hemisphere. A PMW SIC algorithm tuned equally well for the ice 681 

conditions in the respective hemisphere would provide 95 % in both hemispheres. Compared to Landsat SIC this results in a 682 

negative difference of -2 % in the Northern Hemisphere and of -5 % in the Southern Hemisphere, i.e. the difference becomes 683 

even more negative. In contrast, the difference NT2-AMSR SIC minus Landsat SIC becomes even more positive, increasing 684 

from +0.6 % in the Northern Hemisphere to +3.4 % in the Southern Hemisphere. When only considering the melt-condition 685 

cases the overall difference increases from +1.7% to +5.1% (Tables 12, 13). Without further independent evaluation data to 686 

better assess the accuracy of our Landsat SIC data we cannot draw a quantitative conclusion here. However, the increase in 687 

the positive value of the difference PMW SIC minus Landsat SIC between the Northern and the Southern Hemisphere observed 688 

for NT2-AMSR is opposite to our well-motivated suggestion that Landsat SIC values are biased higher in the Southern than 689 

the Northern Hemisphere. 690 

5.3 A note on the effect of filters 691 

In this subsection, we comment on the observation that in the scatterplots of the Northern Hemisphere (Figs. 2 and 3) 692 

particularly the SICCI-2 products but also OSI-450, CBT-AMSR and NT2-AMSR exhibit a relatively large number of cases 693 

with PMW SIC = 0 % and Landsat SIC > 0 %. In addition, we find an unexpected high number of comparably low PMW SIC 694 

values (< ~ 50 %) at Landsat SIC > ~ 70 %, especially for SICCI-50km (Fig. 2c, Fig. 3c). In the scatterplots of all products in 695 

the Southern Hemisphere (Fig. 4) we observe a large number of cases with PMW SIC = 0 % and Landsat SIC > 0 %.  696 

We hypothesize this observation is linked to the various filters applied. Examples of such filters are the weather or open 697 

water filter (OWF) and the land spill-over filter (LSO). The OWF reduces the number of erroneous SIC values resulting from 698 

unaccounted atmospheric influence, for example high cloud liquid water contents. OWF is effective along the ice edge and the 699 

adjacent open water. One common realization of the OWF is to set PMW SIC values to 0 % SIC once brightness temperature 700 

gradient ratios sensitive to the atmospheric influence exceed a certain threshold (e.g. Wensnahan et al., 1993; Spreen et al., 701 

2008; Lavergne et al., 2019). Such filters might cut off true SIC values (Andersen et al., 2006). The SICCI-2 and OSI-450 702 

algorithm employs a modified version of such an OWF (Lavergne et al., 2019; Kern et al., 2019). The LSO reduces the number 703 

of erroneous SIC values along coastlines resulting from unaccounted spillover of the (higher) land surface brightness 704 

temperature into the (lower) open water brightness temperature. The LSO is particular effective during summer. It has also an 705 

influence during the freezing season for situations where the coastline is only fringed by a quite narrow sea ice cover, as is the 706 

case during fall freeze-up in the Hudson Bay or along the Siberian coast or during winter / spring along the coast of Greenland 707 

facing the Irminger Sea. One realization of the LSO is a statistical approach, where the SIC of grid cells adjacent to the coast 708 

is corrected, i.e. set to 0 % or interpolated to a more adequate value, based on SIC values within a certain neighborhood (e.g. 709 
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Cavalieri et al., 1999). The SICCI-2 and OSI-450 algorithm employs a novel attempt. Here the method of Maass and Kaleschke 710 

(2010) is used to correct for the land spillover already at the level of the brightness temperatures input to the SIC retrieval; the 711 

“classical” LSO filtering of Cavalieri et al. (1999) is still included, though (Lavergne et al., 2019). Note: the OWF sets PMW 712 

SIC to zero; the LSO reduces the PMW SIC to lower values but not necessarily to zero.  713 

 714 

 715 
Figure 10. Scatterplots of SICCI-50km SIC (y-axis) versus Landsat SIC (x-axis) for ice regime “leads/openings” in the 716 

Southern Hemisphere in years 2013-2015. Black dots are individual data pairs, the black solid line is the linear regression, and 717 

the black dashed line is the identity line. Red triangles denote the mean PMW SIC computed for Landsat SIC ranges 0%-5%, 718 

5%-15%, 15%-25%, … , 85%-95%, 95%-100%, the red bars one standard deviation of these mean values; the red line is the 719 

respective linear regression line. The overall difference PMW SIC minus Landsat SIC, its standard deviation, and the equation 720 

for the linear regression using the individual data pairs is given at the top, the number N of data pairs and the squared linear 721 

correlation coefficient at the bottom of each panel. Panel a) Fully truncated SIC, all filters applied; panel b) fully non-truncated 722 

SIC, no filters applied; panel c) truncated / non-truncated SIC, GT100 and OWF applied; panel d) truncated / non-truncated 723 

SIC, GT100 and LSO applied. Blue circles mark SICCI-50km SIC values set to 0 % by the OWF; orange circles mark SICCI-724 

50km SIC values set changed by the LSO (solid circle: SIC set to 0 %, broken circle: SIC reduced). 725 

 726 

The SICCI-2 and OSI-450 products offer the full SIC distribution around 0 % and around 100 % SIC and the 727 

opportunity to reverse-engineer the effect of flags, i.e. switch the effect of certain flags on or off. Therefore, we are able to 728 

investigate the impact of the OWF and the LSO on our comparison results, an investigation not possible for the six other 729 

products. We choose the ice regime “leads/openings” in the Southern Hemisphere in years 2013-2015 and look, as an example 730 

for such an investigation, at the impact of the two above-mentioned filters on SICCI-50km SIC in comparison to Landsat SIC 731 

(Fig. 10). Note that we switch off these flags together with the near-100 % SIC flag to work with a more realistic SIC 732 
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distribution at the high-concentration end. The first finding is that there is not even one PMW SIC = 0 % in the fully non-733 

truncated, i.e. no filters applied, SIC scatterplot (Fig. 10b) – in contrast to the fully truncated SIC (Fig. 10a). Accordingly, the 734 

statistical parameters differ considerably. For instance, the overall SIC difference reduces in magnitude from 7.5 % for the 735 

fully truncated version of SICCI-50km to 4.3 % for fully non-truncated version; the standard deviation of the difference reduces 736 

from 15.0 % to 11.1 %. 737 

If we switch off the OWF, i.e. include the originally retrieved SIC values for those grid cells where the OWF is applied, 738 

we get a number of SIC data pairs concentrated between Landsat SIC: 0 – 20 % and SICCI-50km: 0 – 30 % that can be clearly 739 

associated with the OWF (compare Fig. 10 panel c) with panels a) and d). Statistical parameters change little. For instance, the 740 

magnitude of the difference decreases by 0.5 % while the standard deviation stays the same. There is still a comparably large 741 

number of cases with SICCI-50km SIC = 0 % or at least relatively low: < 30 %, concomitant with Landsat SIC > 50 %. If we 742 

instead switch off the LSO, i.e. include the originally retrieved SIC values for those grid cells where the LSO is applied, we 743 

find that almost all of the above-mentioned cases of low or equal-to-0 % SICCI-50km SIC can be traced back to substantially 744 

higher SIC values (Fig. 10d). Statistical parameters change considerably. For instance, the magnitude of the difference changes 745 

from 7.5 % (see above) to 4.9 % if keeping only the LSO filtered grid cells; the standard deviation of the difference reduces 746 

from 15.0 % (see above) to 11.2 %. This reduction in the spread of values around the identity line is also evident very well in 747 

the respective scatterplots (Fig. 10): the standard deviation of the Landsat SIC 10 % bin average SICCI-50km SIC (red vertical 748 

bars) is much smaller in panel d) than panel a). 749 

We observe a similar tendency for all other ice regimes where the LSO is applied, e.g. “freeze-up” or “melt conditions”, 750 

in the Southern and in the Northern Hemisphere and for SICCI-25km and SICCI-12km as well (see Tables S04 and S05 in the 751 

supplementary material). We note, however, that there are far fewer SIC data pairs subject to LSO filtering for OSI-450; hence 752 

the effect of switching on or off the LSO is comparably small. We hypothesize that this could be explained with the different 753 

native resolution of the satellite data used, the different sampling, and the different grid cell size and spacing. However, testing 754 

this hypothesis is beyond the scope of this paper. For the SICCI-2 SIC products, we can confirm the hypothesis that the 755 

comparably large number of PMW SIC = 0 % or < ~30 % across basically the entire SIC range (see Figs. 2, 3, and 4, panels 756 

a) to c) can be explained with the application of an LSO resulting in an elevated number of cases with PMW SIC smaller than 757 

Landsat SIC. This provides a viable explanation for unexpectedly large SIC differences observed for SICCI-50km along 758 

coastlines, of particularly Greenland or the Eastern Antarctic, reported in Kern et al. (2019, their Fig. 8 c) and Fig. 11 c). 759 

Whether this is due to the land spillover correction at the brightness temperature level (Maass and Kaleschke, 2010) or the 760 

statistical filtering (Cavalieri et al., 1999) remains to be investigated. We clearly see it as an advantage that for SICC-2 and 761 

OSI-450 products we can switch off filters and in a reverse-engineering way investigate the impact these filters have on PMW 762 

SIC. This appears not to be possible for the remaining six PMW SIC products. Application of the LSO can produce an 763 

artificially large number of SIC values near or at 0 % that agree less well with the Landsat SIC than the originally retrieved 764 

SIC values – as we demonstrate for the SICCI-2 and OSI-450 products. As a consequence, results of an evaluation including 765 

a considerable number of near-coastal grid cells need to be interpreted carefully. The number of artificially low SIC values 766 

resulting from the LSO for the other six PMW SIC products is unknown as is their impact on the evaluation results shown in 767 

this paper.   768 

6 Summary and Conclusions 769 

In this paper, we present results of an evaluation of ten passive microwave (PMW) SIC products against SIC estimates 770 

derived from a total of more than 300 clear-sky Landsat visible images acquired in the Northern Hemisphere during mostly 771 

late winter / spring (March through May) and in the Southern Hemisphere during spring / summer / early fall (October through 772 

March). We estimate Landsat SIC at the grid resolution of the PMW SIC products using results of supervised classification of 773 
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Landsat broadband albedo maps into ice and water at 30 m pixel resolution. The comparison between PMW and Landsat SIC 774 

is carried out based on all valid collocated SIC map pairs but also based on subsets of these pairs defining certain ice regimes. 775 

These ice regimes are “high concentration”, “freeze-up”, “ice edge”, “leads/openings”, “heterogeneous ice”, and “melt 776 

conditions”. 777 

Our comparison uses parameters such as the mean difference between PMW and Landsat SIC and its standard deviation, 778 

the median difference, and parameters describing the linear agreement: slope and intercept of a linear regression and the linear 779 

regression coefficient. We summarize these parameters in Figures 11 and 12 and come up with the following conclusions. 780 

 781 

 782 

Figure 11. Summary of all linear regression lines obtained for the comparison between Landsat SIC and PMW SIC for all ice 783 

regimes – except high-concentration ice. Columns denote, from left to right, Landsat-5 Arctic (i.e. first-year ice), Landsat-8 784 

Arctic (i.e. mixed first-year / multiyear ice and multiyear ice), and Landsat-8 Antarctic. Ice regimes are sorted per row from 785 

top to bottom: “all” cases, “ice edge”, and “freeze-up”. Different colors and line styles denote different products as indicated. 786 

The black solid line denotes the identity line. 787 

 788 
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 789 

Figure 11. continued for ice regimes “leads and coastal openings”, “heterogeneous ice”, “melt-conditions”. 790 

 791 

 It is important to take an integrated view of these parameters because, for instance, a small overall bias is not necessarily 792 

associated with a good linear agreement across the entire SIC range and a perfect linear agreement with a slope close to 793 

unity and a high correlation could be associated with a large overall bias. 794 

 It is also important to take into account the expected influences of, e.g. melt conditions (section 4.3), fraction of new/thin 795 

ice (section 4.1) as well as sub-pixel size ocean-ice mixture (Section 2.2.4) on both PMW SIC and Landsat SIC. 796 

 SICCI-25km and SICCI-50km SIC offer overall the best linear agreement to Landsat SIC as demonstrated in Fig. 11 and 797 

Fig. 12, right column. This is illustrated as well by mean and median PMW SIC values computed for Landsat SIC bins 798 

aligned very well along the identity line (Figs. 2 to 4), with exceptions being explainable by filters applied in the products 799 

(see Section 5.3). The magnitude of the difference PMW SIC minus Landsat SIC is, however, larger than for the two 800 

CBT-products and NOAA-CDR, almost without exception (Fig. 12, left column). 801 

 The two CBT products, NOAA-CDR and NT2-AMSR offer the smallest overall magnitude of the difference PMW SIC 802 

minus Landsat SIC (Fig. 12, left column). Except for CBT-AMSR2 in the Southern Hemisphere, mean and median PMW 803 

SIC values align less well along the identity line than for SICCI-25km and SICCI-50km in Figs 2 to 4. The linear 804 

agreement is considerably worse than for SICCI-25km and SICCI-50km (Fig. 11, Fig. 12, right column). 805 

 NT2-AMSR is the only product over-estimating Landsat SIC in the Southern Hemisphere – overall but also for almost all 806 

ice regimes. This is problematic in view of the potential positive bias of Landsat SIC for ice conditions with an elevated 807 

number of mixed ocean-ice Landsat pixels (see Subsection 2.2.4), e.g. ice regimes “melt conditions”, “ice edge” and 808 

“freeze-up”. 809 
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  810 

 811 

Figure 12. Illustration of the statistical parameters of the comparison between Landsat SIC and PMW SIC for all ice regimes. 812 

Rows denote, from top to bottom, first-year ice Arctic (Landsat-5), mixed first-year / multiyear ice and multiyear ice Arctic 813 

(Landsat-8), and all ice Antarctic (Landsat-8). Columns denote, from left to right, accuracy (difference PMW SIC minus 814 

Landsat SIC), precision (standard deviation of the SIC difference), and squared linear correlation coefficient. The uni-colored 815 

rows denote cases left out, either because these ice regimes are not populated (topmost row of panels) or because the retrieval 816 

of parameters did not make sense (Squared linear correlation for ice regime “high concentration”). 817 

 818 

All products provide SIC data truncated to the range 0 % to 100 % albeit all algorithms but NT2-AMSR use a SIC 819 

retrieval procedure which in principle provides a full SIC distribution around the end-members 0 % and 100 %. Only the 820 

SICCI-2 products and OSI-450 allow consideration of the full SIC distribution. While our main results are derived with the 821 

truncated SIC distribution, we demonstrate that, without exception, using the full SIC distribution reduces the mean difference 822 

and enhances the quality of the linear agreement between PMW SIC and Landsat SIC which is already superior for SICCI-823 

25km and SICCI-50km. It is important to consider when comparing the results obtained with the ten products against each 824 

other in order to avoid misinterpretation. While we obtain smallest SIC differences for the two CBT products, NOAA-CDR 825 

and NT2-AMSRE/2, this is likely to change using the full SIC distribution. This applies in particular to ice regimes “high-826 

concentration” (section 4.2) and “melt conditions”, but also to the full set of SIC data pairs (denoted “all” in Fig. 12). The 827 

impact this difference in the comprehensiveness of the SIC products has on our evaluation results prevents us from making a 828 

ranking between the SIC products. 829 

This paper is limited to clear-sky visible imagery. It is hence impossible to evaluate the performance of the SIC products 830 

under the full set of possible weather conditions with an influence on the SIC retrieval, i.e. surface wind speed and atmospheric 831 

water vapor and cloud liquid water content. We note that our results likely cover a certain range of surface wind speeds and 832 
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atmospheric water vapor contents which we, however, did not quantify, e.g. by means of atmospheric reanalysis data, to stay 833 

focused. Obviously, this would be an issue worth pursuing in a forthcoming study for which SIC estimates based on SAR data 834 

have to be used. These might allow to assess PMW SIC quality also under higher loads of atmospheric water vapor content 835 

and, more importantly, clouds. Such a study could then focus in particular on an improved accuracy assessment of the PMW 836 

SIC in the marginal ice zone and along the ice edge. In such regions, our approach to derive Landsat SIC likely results in the 837 

highest positive biases – between a few to in the worst case 20 % for single PMW grid cells – due to mixed ocean-ice Landsat 838 

pixels classified as ice. Such a study would also be an excellent opportunity to evaluate the weather filters currently employed 839 

in the SIC products. In order to have a meaningful sample, such a study would require an equally large number of SAR images 840 

interpreted into well-evaluated SIC estimates for a number of years covering both hemispheres as is used in this paper. This 841 

calls for continued development of reliable and consistent SIC estimates from SAR and, thorough evaluation of SAR SIC 842 

products in both hemispheres. 843 
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