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Abstract. We report on results of an inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 17 

km grid resolution from satellite passive microwave (PMW) observations. For this we use SIC estimated from > 350 images 18 

acquired in the visible / near-infrared frequency range by joint the National Aeronautics and Space Administration 19 

(NASA)/United States Geological Survey (USGS) Landsat sensor during years 2003-2011 and 2013-2015. Conditions covered 20 

are late winter / early spring in the Northern Hemisphere and from late winter through fall freeze-up in the Southern 21 

Hemisphere. Among the products investigated are the four products of the European Organisation for the Exploitation of 22 

Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF) and European Space 23 

Agency (ESA) Climate Change Initiative (CCI) algorithms: SICCI-2 and OSI-450. We stress the importance to consider inter-24 

comparison results across the entire SIC range instead of focusing on overall mean differences, and to take in account known 25 

biases in PMW SIC products, e.g. for thin ice. We find superior linear agreement between PMW SIC and Landsat SIC for the 26 

25 km and the 50 km SICCI-2 products in both hemispheres. We discuss quantitatively various uncertainty sources of the 27 

evaluation carried out. First, depending on the number of mixed ocean-ice Landsat pixels classified erroneously as ice only, 28 

our Landsat SIC is found to be biased high. This applies to some of our Southern Hemisphere data, promotes an overly large 29 

fraction of Landsat SIC under-estimation by PMW SIC products, and renders PMW SIC products overestimating Landsat SIC 30 

particularly problematic. Secondly, our main results are based on SIC data truncated to the range 0 % to 100 %. We demonstrate 31 

using non-truncated SIC values, where possible, can considerably improve linear agreement between PMW and Landsat SIC. 32 

Thirdly, we investigate the impact of filters often used to clean up the final products from spurious SIC over open water due 33 

to weather effects and along coastlines due to land spillover. Benefiting from the possibility to switch on or off certain filters 34 

in the SICCI-2 and OSI-450 products we quantify the impact land spillover filtering can have on evaluation results as shown 35 

in this paper. 36 

1 Introduction 37 

 We carry on the evaluation of sea-ice concentration (SIC) products derived from satellite passive microwave (PMW) 38 

observations. In Kern et al. (2019), we presented an evaluation of ten PMW SIC products at 0 % and 100 % SIC, and with 39 

respect to sea-ice observations along ship tracks. Another study focused on Arctic summer conditions, investigating the bias 40 

between these PMW SIC products and independent SIC and net ice surface fraction estimates based on MODerate resolution 41 

Imaging Spectroradiometer (MODIS) observations (Kern et al., 2020). With this study, we shift our focus more towards 42 

intermediate SIC and utilize a much larger and, partly, more accurate reference dataset than in the two earlier studies. The 43 
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evaluation at 0 % SIC in Kern et al. (2019) utilized a few fixed open water locations only. The evaluation at 100 % SIC used 44 

near-100 % SIC estimates based on the analysis of freezing-season synthetic aperture radar (SAR) image pairs representing 45 

convergent ice motion coinciding with a complete ice coverage and therefore a high probability to encounter near-100 % SIC. 46 

Thus, we evaluated the PMW SIC products for one specific set of ice conditions only (winter and near-100 %). Kern et al. 47 

(2019) also presented results of an evaluation of PMW SIC against a multi-annual set of standardized manual visual ship-48 

based observations of the ice conditions. These observations are, however, of limited accuracy and of limited representativity 49 

because the average accuracy is between 5 % and 10 % and observations mostly represent sea-ice conditions where it is 50 

possible to navigate. In addition, to reduce noise, PMW and ship-based SIC were averaged over all observations along a ship-51 

track within one day, representing sea-ice conditions across spatial scales, that – in the worst case – vary by an order of 52 

magnitude. The averaging resulted in a reduction of the number of valid data pairs from approximately 15 000 to less than 53 

800, i.e. about 400 per hemisphere. 54 

 Another aspect is that the accuracy of the hemispheric but also the regional sea-ice area (SIA) computed from PMW 55 

SIC estimates strongly depends on their accuracy. PMW SIC values biased high yield an overestimation of the SIA whereas 56 

PMW SIC biased low results in an underestimation of the SIA. This seems not to be critical as long as the trend is correct (e.g. 57 

Ivanova et al., 2014) but limits the use of such SIA estimates for quantitative inter-comparisons of climate-model results 58 

against observations (e.g. Burgard et al., 2020). It is definitely important PMW SIC is 100 % where the actual SIC is 100 % 59 

to avoid artificially elevated ocean-atmosphere heat fluxes when used as a surface forcing. It is equally important PMW SIC 60 

is an accurate estimate of the open water fraction, hence providing 95 % where the actual SIC is 95 % due to leads and openings 61 

in the sea-ice cover. In addition, it is desirable to check the performance of PMW SIC products across the entire SIC range in 62 

order to have a reliable estimate of the actual ice cover in, for example, the marginal ice zone (MIZ). Here gradients in heat 63 

fluxes are often particularly large. A correct definition of and accurate SIC distribution within the MIZ are also crucial should 64 

SIC values be used to evaluate numerical models capable to simulate wave-sea ice interaction (e.g. Boutin et al., 2020; Nose 65 

et al., 2020). The ship-based SIC observations used in Kern et al. (2019) offer only limited potential to carry out this 66 

performance check because of the earlier-mentioned reasons, the small number of observations falling into the relevant SIC 67 

range of, e.g. 20 % to 80 %, and the larger observational error in this SIC range. 68 

 Therefore, in this paper we focus on the evaluation of PMW SIC products against a large number of high-resolution 69 

binary sea-ice cover maps estimated from satellite observations acquired in the visible frequency range by NASA/USGS 70 

Landsat-5, 7 and 8. Overall, we used over 350 such Landsat-based maps, corresponding to more than 10 000 25 km x 25 km 71 

resolution PMW SIC grid cells. We chose Landsat over MODIS because of the substantially finer spatial resolution of the 72 

visible channels of Landsat: 30 m compared to MODIS: 250 m. We note in this context that several studies used MODIS 73 

visible / near-infrared observations to either evaluate or complement PMW SIC products (e.g. Ludwig et al., 2020; Shi et al., 74 

2021). Another option would have been to use Sentinel-2 MultiSpectral Instrument (MSI) (Drusch et al., 2012). We discarded 75 

this option in light of the limited overlap between this satellite mission (Sentinel-2A was launched June 2015) and our PMW 76 

SIC data set but it will be very valuable in the future since it will allow extending the dataset to areas much further from land 77 

and will likely provide an even more accurate evaluation data set.   78 

Utilization of the high-resolution information provided by Landsat as a means for assessing satellite PMW SIC 79 

products dates back to the early 1980s when Comiso and Zwally (1982) compared Nimbus-7 Scanning Multichannel 80 

Microwave Radiometer (SMMR) SIC with Landsat imagery. Since then a number of studies used a small number of such 81 

images for SIC inter-comparison and/or evaluation (e.g. Steffen and Maslanik, 1988; Steffen and Schweiger, 1991; Comiso 82 

and Steffen, 2001; Cavalieri et al., 2006; Wiebe et al., 2009; Lu et al., 2018; Zhao et al., 2021). Landsat imagery has also 83 

recently been used for quality assessment of SIC estimates from Suomi/NPP VIIRS observations (e.g. Liu et al., 2016). 84 

Common to all these studies is they used a comparably small number of Landsat scenes, i.e. less than ten, an order of magnitude 85 

smaller than the 368 scenes used in this study (see above). 86 
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 Analysis of visible satellite imagery for SIC estimation is quite straightforward. A threshold based method 87 

discriminating between open water and ice is applied at the native spatial resolution (pixel size: 30 m x 30 m) of the Landsat 88 

channels in the visible frequency range, assuming that a pixel is covered by either ice or water. Co-locating this high-resolution 89 

information of the binary ice-water distribution with the coarse-resolution PMW SIC products and counting ice and water 90 

pixels within a PMW SIC product’s grid cell provides an adequate independent measure of the SIC. We refer to Section 2.2 91 

for more details.   92 

For evaluating the PMW SIC products across the SIC range, we prefer to use visible data instead of SAR data. The 93 

main advantages of SAR data would be the larger area covered by a single scene compared to Landsat (about 400 km to 500 94 

km in SAR wide-swath mode (WSM) vs. 180 km for Landsat) and their independence to daylight and cloud cover. In fact, 95 

many PMW SIC inter-comparison studies have already used SAR images (e.g., Comiso et al., 1991; Dokken et al., 2000; 96 

Belchansky and Douglas, 2002; Kwok, 2002; Heinrichs et al., 2006; Andersen et al., 2007; Wiebe et al., 2009; Han and Kim, 97 

2018). However, despite the past decade’s substantial progress in developing and testing methods to translate SAR images into 98 

high-resolution SIC maps (e.g.: Cooke and Scott, 2019; Karvonen, 2014, 2017; Komarov and Buehner, 2017, 2019; Leigh et 99 

al., 2014; Lohse et al., 2019; Ochilov and Clausi, 2012; Singha et al., 2018; Wang et al., 2016, 2017; Zakhvatkina et al., 2017, 100 

Boulze et al., 2020; Malmgren-Hansen et al., 2020; Wang and Li, 2020), some using machine learning approaches, the accuracy 101 

of the obtained SIC maps is not always satisfactory. Particularly at intermediate SIC – the main focus of this study – SAR 102 

signatures are often ambiguous, resulting in SAR SIC uncertainties too large for our purposes. Furthermore, applications of 103 

such methods to derive Southern Ocean SIC from SAR are comparably sparse. Therefore, we do not use SAR-based SIC maps.  104 

We note that also Ice charting services (FMI, DMI, MET Norway, CIS, NATICE, AARI) heavily depend on SAR 105 

imagery for production of their ice charts. They thus have a large demand to automate processes of classification and are 106 

potentially most advanced in testing automated SAR SIC retrieval (e.g. Cheng et al., 2020). However, ice charts provide SIC 107 

ranges within polygons that are highly variable and heterogeneous in size and shape. Several studies used such ice charts for 108 

various inter-comparison purposes (e.g. Shokr and Markus, 2006; Shokr and Agnew, 2013, Titchner and Rayner, 2014). Some 109 

centers providing operational sea-ice information also use such charts for routine quality checking of PMW SIC products. 110 

However, for our purpose evaluating PMW SIC CDRs and similar SIC products, the limitations of such charts in terms of 111 

precision and accuracy – particularly in the intermediate SIC range (e.g. Cheng et al., 2020), exclude their usage in this study. 112 

After this introduction, this paper provides information about the PMW SIC products, the Landsat data set used and 113 

the methods applied to derive SIC from the Landsat images (Sect. 2). We present our results in Sections 3 and 4, discuss some 114 

additional aspects in Section 5 and conclude the study in Section 6. 115 

2 Data & Methodologies 116 

2.1 Sea-ice concentration data sets 117 

The ten different PMW SIC products considered in our study are summarized briefly in Table 1. We refrain from 118 

repeating information about the algorithms themselves, tie point selection, application of weather filters, consideration of land 119 

spillover effects and so forth. All this information is provided in detail in Lavergne et al. (2019), Kern et al. (2019, Appendix 120 

7.1-7.6), and Kern et al., (2020). The same applies to the fact that four of the products (SICCI-12km, SICCI-25km, SICCI-121 

50km, and OSI-450) allow us to take into account the full SIC distribution at 0 % and 100 %. Such a distribution is the natural 122 

result of the SIC retrieval method used in all SIC products considered - except NT2-AMSR. This distribution contains negative 123 

as well as above-100 % SIC values that are typically truncated, i.e. set to the exactly 0 % and 100 %. We refer to Lavergne et 124 

al. (2019) and Kern et al. (2019) for more information in this regard.  125 

In order to extend the time-series of the Comiso Bootstrap (CBT) algorithm and the NASA-Team 2 (NT2) algorithm 126 

using Advanced Microwave Scanning Radiometer aboard Earth Observation Satellite (AMSR-E) data beyond AMSR-E’s 127 
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capabilities to provide daily maps of the polar regions (2011-10-03), we use the respective unified product based on data from 128 

the Advanced Microwave Scanning Radiometer aboard GCOM-W1: AMSR2 and of AMSR-E (Meier et al., 2018). With that 129 

we use five products based on AMSR-E and AMSR2 data and five products based on Special Sensor Microwave / Imager: 130 

SSM/I, and Special Sensor Microwave Imager and Sounder: SSMIS data, of the period 2002 through 2015. We do not use 131 

PMW SIC data from the period October 2011 through July 2012 because of the gap between AMSR-E and AMSR2. All PMW 132 

SIC data have daily temporal resolution. The grid type and grid resolution of all datasets is shown in Table 1. We estimate the 133 

Landsat SIC (see Section 2.2) at the grid resolution of the respective product. We chose the 25 km grid resolution version of 134 

the AMSR-E/2 products because this resolution is closer to the footprint sizes of the involved channels, and this is the resolution 135 

of the respective SSMI(S) versions of these products. We use version 3 of the NOAA/NSIDC SIC CDR (Peng et al., 2013; 136 

Meier et al., 2017) even though version 4 has been released (Meier et al., 2021) because we want to be consistent to the two 137 

previous papers (Kern et al., 2019; 2020). 138 

2.2 The Landsat data set 139 

We use Landsat data of the Thematic Mapper TM on Landsat-5, the Enhanced Thematic Mapper (ETM) on Landsat-140 

7, and the Operational Land Imager (OLI) on Landsat-8 obtained in Level 1c GeoTIFF format from 141 

https://earthexplorer.usgs.gov [last accessed: June 28, 2021] for years 2003-2011 (Landsat-5), 2003 (Landsat-7), and 2013-142 

2015 (Landsat-8). We downloaded only images with a cloud fraction < 30 % provided as a search criterion upfront. In the 143 

Northern Hemisphere, we use images of months March, April, May and September, i.e. from late winter to spring and at the 144 

onset of fall freeze-up; in the Southern Hemisphere we use images of months October through March, i.e. from late winter 145 

over summer to fall freeze-up. The total number of images acquired is 421; these split into 152, 12, and 227 for Landsat-5, 7 146 

and 8, respectively, and partition into 259 images for the Northern Hemisphere and 162 images for the Southern Hemisphere. 147 

 148 

2.2.1 Processing 149 

 We compute the top of atmosphere (TOA) reflectance for channels 2 to 4 (Landsat-5 and 7) or channels 3 to 5 150 

(Landsat-8) following Chander et al. (2007; 2009) and USGS (2015). Table 2 provides the wavelengths of these channels (e.g. 151 

Chander et al., 2009; Barsi et al., 2014). The solar zenith angle and other parameters required for this computation are either 152 

included in the Landsat data files or are taken from Chander et al. (2007, 2009) and the Landsat 8 data users handbook (USGS, 153 

2015). To convert the TOA reflectances to surface reflectances or surface albedo we follow the approaches of Koepke (1999) 154 

and Knap et al. (1999). They assume that the TOA reflectance (or planetary reflectance) equals the TOA albedo (or planetary 155 

albedo) and that the TOA albedo αTOA is related to the surface albedo αsurface via the simple linear relationship: 156 

���� = � + ��	
��
��   (1) 157 

The coefficients a and b are a function of the atmospheric conditions, the solar zenith angle, and the wavelength. We follow 158 

Koepke (1999) and take values for a and b from his figure 1 (KF1) and figure 2 (KF2). KF1 derived for the Advanced Very 159 

High Resolution Radiometer (AVHRR) channel 1 we use for Landsat channels in the wavelength range 500-700 nm. KF2 160 

derived for AVHRR channel 2 we use for Landsat channels in the wavelength range 700-900 nm. We choose those atmospheric 161 

conditions that are appropriate for a polar marine atmosphere. For aerosol optical depth we use 0.05, for ozone content we use 162 

0.24 cm[NTP] (NTP stands for normal temperature and pressure) corresponding to 240 Dobson Units, and for water vapor 163 

content we used 0.5 g/cm². Using Eq. (1) we convert TOA albedo into surface albedo values separately for the three channels 164 

of the respective Landsat instrument. Subsequently, we compute from these surface albedo values an estimate of the surface 165 

broadband shortwave albedo (e.g. Brandt et al., 2005) using the bandwidths of the channels as weights (see Table 2). 166 

For every broadband surface albedo map, we perform a supervised visual classification into open water, bare / thin 167 

ice and snow covered / thick ice. For that, we assume the respective surface class covers a Landsat pixel entirely. We assign 168 

all dark pixels (with an albedo of, on average, smaller than 0.06) to the open water class. We assign all bright pixels (with an 169 
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albedo of, on average, larger than 0.45) to the class snow covered / thick ice; all remaining pixels fall into the class bare / thin 170 

ice. We pay more attention separating open water from ice very accurately than to distinguish between bare / thin ice and 171 

snow-covered / thick ice. In every Landsat albedo map we search for leads or openings, zoom into these and perform histogram-172 

equalized slicing to visually identify – based on albedo values and spatial structures – whether the leads or openings selected 173 

contain open water. The threshold value chosen to separate open water from ice we take from Pegau and Paulsen (2001). The 174 

threshold value chosen to distinguish between bare / thin ice and snow covered / thick ice is based on Brandt et al. (2005) and 175 

Zatko and Warren (2015). They found an albedo of around 0.33 for bare thin ice less than 30 cm thick and of around 0.42 for 176 

snow covered thin ice (5 - 10 cm thick) with a thin (< 3 cm) snow cover. Note that the actual threshold values chosen for a 177 

particular Landsat image varies between 0.03 and 0.08 for the open water – ice discrimination and between 0.35 and 0.55 for 178 

the bare / thin ice – snow covered / thick ice discrimination. This variation results from the varying illumination conditions 179 

encountered – despite our limitation to Landsat scenes acquired at solar zenith angles < 65°.  180 

Usage of a three-class distribution is motivated by the fact that it has been shown that PMW SIC is often biased low 181 

over thin sea ice (e.g. Wensnahan et al., 1993; Cavalieri, 1994; Ivanova et al., 2015). Therefore, in addition to using the Landsat 182 

images just for a high-resolution ice-water discrimination we also use them to derive the fraction of thin ice with the aim to 183 

discuss differences between Landsat SIC and PMW SIC in the light of a potential impact by thin ice. However, we discarded 184 

this aim – but kept the classification results – because during analyses of the Landsat images we encountered ambiguities in 185 

surface albedos between snow-covered thin ice and bare thick ice. While there is little ambiguity between open water and ice, 186 

except for very thin dark nilas or ice rind (e.g. Zatko and Warren, 2015), resulting in high confidence of pixels classified as 187 

either open water or ice, the confidence of pixels classified as bare/thin or snow covered/thick ice is considerably worse. 188 

 189 

2.2.2 Co-location and comparison 190 

For the co-location, we first select a rectangular area within the PMW SIC grid, EASE-2 for the SICCI-2 and OSI-191 

450 products (EPSG: 6930 and 6931) and polar-stereographic true at 70 degrees northern or southern latitude (known as 192 

NSIDC grid, EPSG: 3411) for the other six products, which encloses the Landsat SIC map. For this we take the geographic 193 

corner coordinates of the Landsat SIC map (still at 30 m grid resolution), convert these into Cartesian Coordinates and find 194 

those PMW SIC grid cells which centers have minimum distance (in meters) to these corner coordinates. Beforehand, we also 195 

convert PMW SIC grid cell coordinates into Cartesian coordinates and rotate the grid for the Northern Hemisphere PMW SIC 196 

products on the NSIDC grid clockwise by 45 degrees; this is not required for the respective Southern Hemisphere PMW SIC 197 

products.  198 

Subsequently, we compute the Landsat SIC by summing over all 30 m pixels classified as ice that fall into the PMW 199 

SIC grid cells within the above-defined rectangular area. Because we do this is at the grid resolution of the PMW products, we 200 

obtain Landsat SIC maps at 12.5 km, 25.0 km, and 50.0 km grid resolution. We compare the resulting gridded Landsat SIC 201 

with the respective co-located PMW SIC by computing the mean difference PMW SIC minus Landsat SIC and its standard 202 

deviation, the median difference, and deriving a linear regression line and computing the linear correlation coefficient. 203 

Based on a visual quality check of the obtained Landsat SIC maps we discard ~50 of the processed Landsat scenes 204 

from further analysis – mainly because of cloud artifacts but also because a few scenes we obtained twice. Therefore, the 205 

resulting lower final number of Landsat SIC maps used is 368: 234 for the Arctic, partitioning into Landsat-5: 134, Landsat-206 

7: 12, and Landsat-8: 88, and 134 for the Antarctic. The spatial distribution of the Landsat scenes is illustrated in Fig. 1. Note 207 

that we focus on data of Landsat-5 and Landsat-8 in this paper. 208 

 209 

2.2.3 Sensitivity analysis 210 

In order to estimate how Landsat SIC depends on the choice of the albedo thresholds used to discriminate open water 211 

from ice and bare / thin ice from snow covered / thick ice, we repeat the classification into the three surface classes using 212 
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modified thresholds. We vary the albedo value for the open water – ice discrimination by ± 0.03, i.e. for an actual albedo value 213 

of 0.06 we employ additional threshold values of 0.03 and 0.09. We vary the albedo value for the bare / thin ice – snow covered 214 

/ thick ice discrimination by ± 0.1, i.e. for an actual albedo value of 0.45 we employ additional threshold values of 0.35 and 215 

0.55. The range of albedo threshold values we choose is motivated by our experience with the supervised classification of the 216 

many Landsat scenes under varying illumination conditions. We randomly select 12 Landsat 8 scenes for the Northern 217 

Hemisphere, and 15 scenes for the Southern Hemisphere. For every image we perform the classification into the three surface 218 

classes with the above-mentioned four additional albedo threshold value combinations, compute Landsat SIC on the 25 km 219 

and 50 km EASE grid and derive a Landsat scene mean SIC value (Tables 3 and 4). We find that changing the albedo value 220 

of the open water – ice discrimination by ± 0.03 changes the average Landsat SIC by between 0.7 % and 1.2 % in the Northern 221 

Hemisphere and by between 0.8 % and 1.5 % in the Southern Hemisphere. Thus, the sensitivity appears to be independent of 222 

the overall SIC which is close to 100 % for the Northern Hemisphere cases (Table 3) but 55 – 60 % for the Southern Hemisphere 223 

cases (Table 4). The difference in the sensitivity between grid resolutions of 25 km and 50 km is less than 0.2 %.  224 

As expected, changing the albedo value of the bare / thin ice – snow-covered / thick ice discrimination by ± 0.1 does not 225 

influence the Landsat SIC. However, it influences the Landsat SIC computed at the respective grid resolutions when using 226 

Landsat pixels classified as snow-covered / thick ice only (Tables S02 and S03 in the Supplementary Material). We find 227 

Landsat SIC of thick ice to vary by between 1.4 % and 2.4 % in the Northern Hemisphere and by between 2.1 % and 2.7 % in 228 

the Southern Hemisphere with little difference between the grid resolutions.  229 

 230 

2.2.4 Potential biases in Landsat SIC 231 

In our approach, we assume either ice or water to cover a Landsat pixel (30 m x 30 m) entirely, not taking into account 232 

that ice floes or leads / openings might be smaller than the pixel size, resulting in a mixed ocean-ice pixel. This can introduce 233 

a positive bias in the Landsat SIC computed at the grid resolution of the PMW SIC products. For instance, for a Landsat pixel 234 

covered just half by snow covered / thick sea ice, which exhibits a surface albedo of 0.8 under cold conditions, the resulting 235 

pixel average albedo would be 0.5 x 0.06 + 0.5 x 0.8 = 0.43. With that, such a pixel is classified as bare / thin ice and counts 236 

as a pixel with 100 % instead of 50 % sea-ice concentration. Depending on the albedo of the ice, an ice-cover fraction of 0.04 237 

in one Landsat pixel could be sufficient to increase the pixel average albedo above the upper open water – ice discrimination 238 

threshold value of 0.09 (see Tables 3, 4), causing the respective pixel to be classified as 100 % ice. 239 

In order to quantify this positive bias better, it is useful to distinguish between sea-ice conditions during summer and 240 

winter, between pack ice and the MIZ, and to take into account the dimensions of leads / openings and ice floes. Distributions 241 

of lead width and floe size both follow a power law. Leads / openings and ice floes with dimensions smaller than the Landsat 242 

pixel size are orders of magnitude more abundant than wide leads / openings (e.g. Tschudi et al., 2002; Marcq and Weiss, 243 

2012) and large ice floes (e.g. Steer et al., 2008; Toyota et al., 2011; Perovich and Jones, 2014).  244 

Based on airborne digital camera visible imagery captured along several thousands’ of kilometers long tracks of 245 

Operation Icebridge (OIB) flights in the Arctic in April 2010 and in the Antarctic in October 2009 analyzed by Onana et al. 246 

(2013) with respect to the lead and open water fraction, we find a SIC bias of less than 0.2 %. This value derived for an open 247 

water fraction of ~ 1 % falls into the uncertainty range of our approach (see Tables 3, 4) and represents winter conditions in 248 

the pack ice. Based on manual visual analysis of airborne visible imagery obtained in the MIZ in the Greenland Sea in March 249 

1997, we find a SIC bias of the order of 5 to 10 %. This value is clearly outside the uncertainty range of our approach. The 250 

images used here represent an ice cover of ~ 70 % SIC comprising closely packed but also broken bands of a few thicker ice 251 

floes, pancake ice, brash and grease ice with little or no new ice formation in the openings – a typical situation at an ice edge 252 

located in comparably warm water. 253 

Next, we again take the results of Onana et al. (2013) but assume that the thin ice identified in the OIB digital camera 254 

imagery adds to the open water fraction thereby simulating a summer situation. For an open water fraction of then ~ 5 %, we 255 
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estimate a SIC bias of less than 0.8 %, which is still within the uncertainty range of our approach. However, this low positive 256 

bias during summer would only apply to a situation where ice floes are still packed closely together, e.g. by herding of ice 257 

floes (e.g. Toyota et al., 2016), and where gaps between the ice floes from additional openings created by the melt process are 258 

filled by brash ice and/or slush. While this is a situation that might be encountered during summer (Steer et al., 2008; Lu et al., 259 

2008), it is not necessarily typical. In summer, it can be more common to encounter isolated floes. Depending on the size of 260 

the floes and their distribution across a 25 km grid cell with, e.g., 50 % SIC, we find the bias to range between less than 2 % 261 

to 50 % in the two most extreme cases. We refer to the Supplementary Material to this subsection, where we describe in more 262 

detail how we obtain estimates of the positive bias caused by the combination of the finite resolution of the Landsat sensor and 263 

our classification approach for both winter and summer conditions at the scale of a 25 km PMW SIC product grid. 264 

According to the high-resolution optical images used to infer the floe size distribution (Steer et al., 2008; Toyota et 265 

al., 2011; 2016) and similar studies (e.g. Paget et al., 2001; Lu et al., 2008; Zhang and Skjetne, 2015), the ice cover often 266 

comprises a large spectrum of floes. The larger and largest floes at the upper end of the floe-size distribution form the major 267 

fraction of the sea-ice area (in square kilometers) (e.g. Paget et al., 2001; Steer et al., 2008). A small number of large floes 268 

results in a smaller number of mixed ocean-ice Landsat pixels than a large number of smaller floes. Hence, where larger floes 269 

dominate, our Landsat SIC estimate is less biased than where small floes dominate. The effect of the ocean swell, the 270 

dominating force for fracturing ice floes according to, e.g., Toyota et al. (2016), is larger close to the ice edge than further 271 

inside the ice pack. Therefore, a larger number of smaller floes exists along the ice edge, suggesting a larger bias in our Landsat 272 

SIC near the ice edge than inside the ice pack. Without further independent information about the actual ice cover, we are not 273 

able to quantify this bias accurately. 274 

Thus, for high-concentration winter conditions and for those cases during summer where ice floes are closely packed 275 

and openings between the floes are covered with brash ice and slush, the bias in Landsat SIC derived at the spatial scale of the 276 

PMW SIC products falls within the retrieval uncertainty range of our approach (see Tables 3, 4). The bias could fall outside 277 

the uncertainty range near the ice edge during winter when sea ice drifts into comparably warm waters that inhibit ice formation 278 

in newly created openings; here biases as high as 10 % in a single PMW grid cell could occur. The bias could also fall outside 279 

the uncertainty range during summer; here biases between 5 % and 20 % in single PMW grid cells might occur depending on 280 

proximity to the ice edge and hence floe-size distribution and depending on conditions favoring / inhibiting herding of ice floes 281 

into bands. 282 

3 Results 283 

In the following, we present and discuss results obtained in the Northern and Southern Hemisphere. We preferred to 284 

not merge the results of Landsat-5 and Landsat-8 in the Northern Hemisphere because with that we have a relatively natural 285 

discrimination between cases dominated by first-year ice (Landsat-5) and cases dominated by mixed first-year / multiyear ice 286 

or multiyear ice (Landsat-8) (see Fig. 1). 287 

3.1 Northern Hemisphere 288 

Out of the ten products, SICCI-25km, SICCI-50km, ASI-SSMI, and SICCI-12km offer the best linear agreement with 289 

Landsat SIC for first-year ice dominated cases as expressed, e.g., by the location of mean and median PMW SIC (red symbols) 290 

in Fig. 2 and the values of slope, intercept and correlation coefficient listed in Table 5. The two CBT products, NOAA-CDR 291 

and NT2-AMSRE have the smallest overall mean difference and zero median (Table 5). These four products exhibit, however, 292 

a considerable tail of near-100 % PMW SIC values stretching across almost the entire Landsat SIC range, pointing towards 293 

over-estimation of Landsat SIC. ASI-SSMI and NT1-SSMI SIC exhibit the overall largest underestimation of Landsat SIC 294 

among the ten products (Table 5). 295 
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For cases with mixed first-year / multiyear or multiyear ice, SICCI-25km and SICCI-50km offer best linear agreement 296 

with Landsat SIC (Fig. 3). Most other products have a less convincing linear relationship. Like for first-year ice, the two CBT 297 

products, NOAA-CDR and NT2-AMSR have the smallest mean difference for mixed first-year / multiyear or multiyear ice 298 

(Fig. 3, Table 6). However, particularly at higher Landsat SIC these products show many data pairs above the identity line and 299 

the linear regressions through the mean and median PMW SIC (red dashed and solid lines) are also located above the identity 300 

line – in contrast to, e.g. SICCI-25km and SICCI-50km.  301 

The linear agreement between PMW SIC and Landsat SIC improves in general for all ten products for mixed first-302 

year / multiyear or multiyear ice cases (Fig. 3, Table 6) compared to first-year ice (Fig. 2, Table 5). This improvement is 303 

comparably large for OSI-450: slope increases by ~0.10 and NT2-AMSR: slope increases by ~0.15 but quite small for SICCI-304 

25km and SICCI-50km because slopes are close to unity already. Hence, despite the larger magnitude of overall mean and 305 

median SIC differences, of all ten products SICCI-25km and SICCI-50km provide SIC estimates for first-year ice that are 306 

almost as accurate as those for mixed first-year ice / multiyear ice or multiyear ice. This could be one consequence of the self-307 

optimizing hybrid SICCI-2 / OSI-450 algorithm (Lavergne et al., 2019) and of the way ice tie points are chosen in comparison 308 

to the other products (e.g., Kern et al. 2020).  309 

3.2 Southern Hemisphere 310 

In the Southern Hemisphere, slope and location of the linear regression lines as well as of the mean and median PMW 311 

SIC values (red symbols) is more similar between the ten products (Fig. 4, Table 7). The linear agreement is fairly good for 312 

SICCI-2 products, CBT-AMSR2 and ASI-SSMI. Like in the Northern Hemisphere, SICCI-25km and SICCI-50 km reveal the 313 

best linear agreement with Landsat SIC but SICCI-50km appears to be negatively biased. This bias is associated with a large 314 

number of PMW SIC values of 0 % at non-zero Landsat SIC which is also reflected by the mean and median PMW SIC 315 

(compare Fig. 4c) with Fig. 3c)). We discuss this issue and the observation that all products except CBT-SSMI, NOAA-CDR 316 

and CBT-AMSR2 exhibit SIC values below about 10-15 % while these three products lack values in the PMW SIC range 317 

between 0 % and ~15 % in Section 5.3. 318 

Like in the Northern Hemisphere (Table 6), the magnitude of the SIC difference is smallest for NT2-AMSR2, NOAA-319 

CDR and the two CBT products and largest for NT1-SSMI and ASI-SSMI. Of all ten products, NT2-AMSR2 (Fig. 4 j) offers 320 

the most asymmetric SIC distribution and a considerable overestimation of Landsat SIC in the range between ~40 % and ~90 321 

%, also expressed by median SIC > mean SIC for all Landsat SIC bins above 25 % (Fig. 4 j). NT2-AMSR2 is the only product 322 

with a substantial positive overall mean difference of 3.4 %, even the median difference is > 0 % (Table 7). 323 

3.3 Hemispheric Similarities and Differences 324 

Overall, agreement between PMW SIC and Landsat SIC differs between the two hemispheres. For all products, we find 325 

a substantially larger scatter of SIC values around the identity line in the Southern Hemisphere (section 3.2) than the Northern 326 

Hemisphere (section 3.1). One the one hand, this larger scatter in the Southern Hemisphere could be the result of a considerably 327 

larger number of Landsat scenes of cases with low SIC, naturally resulting in a larger spread of the SIC. In addition, the 328 

majority of the Landsat scenes in the Southern Hemisphere reflect late spring / summer conditions. During such conditions, 329 

snow metamorphism due to melt and melt-refreeze cycles substantially change the sea ice surface emissivity on daily time-330 

scales and sub grid-cell size spatial scales (e.g. Willmes et al., 2014) causing a larger scatter in SIC. Another factor impacting 331 

the sea ice emissivity is flooding at the snow-ice interface and subsequent snow-ice formation, causing considerable variations 332 

in basal snow layer wetness and salinity on similar spatiotemporal scales. On the other hand, we are dealing with an unknown 333 

amount of overestimation of the actual sea-ice concentration by our Landsat SIC during summer melt due to mixed ocean-ice 334 

Landsat pixels (Subsection 2.2.4). We refer to Sections 4.3, 5.1 and 5.2 for more discussion on this issue. 335 
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In general, we find the scatter is larger for products with finer grid resolution, e.g. SICCI-12km and ASI-SSMI, than 336 

for the coarser grid-resolution products. The larger number of valid SIC pairs of the high-resolution products result in more 337 

scatter due to the inherent retrieval noise – even though the capability to resolve smaller-scale SIC variations is better for the 338 

fine- than the coarser-resolution products (see section 5.1). In addition, a mismatch in the location of, for example, a 10km-339 

scale patch of ice  between a Landsat scene and a PMW SIC product has a substantially larger influence on the SIC difference 340 

at 12.5 km than at 25 or 50 km grid resolution. The fact that oversampling is much larger at 12.5 km than at 50 km plays a role 341 

here also. Even using simulated brightness temperatures one gets a large spread between a reference SIC and the PMW SIC 342 

due to resolution mismatch (see e.g. Tonboe et al., 2016). We discuss the effect of different footprint sizes and grid resolutions 343 

(see Table 1) in more detail in Section 5.1. 344 

SICCI-2 products and OSI-450 provide access to SIC values above 100 % and below 0 % that are naturally retrieved 345 

due to the brightness temperature distribution around ice and water tie points used. Kern et al. (2019) found that incorporation 346 

of these so-called off-range or non-truncated SIC values provides a more accurate estimate of accuracy, i.e. difference to the 347 

true SIC value, and precision, i.e. standard deviation of this difference. Table 8 reveals that independent of the ice type, the 348 

magnitude of the mean difference decreases while the slope of the linear regression increases, becoming closer to unity in most 349 

cases, in agreement with Kern et al. (2019). Of particular interest in this regard are high-concentration cases discussed in more 350 

detail in Section 4.2 but also the effect of the truncation at 0 % in the context of filters used to mitigate spurious SIC values 351 

(see Section 5.3). 352 

4 Case Studies 353 

In the previous section, we showed results independent of the ice regime (see below) – except for a general discussion 354 

of the observed differences between predominantly first-year ice (Landsat-5) and a mixture of first-year / multiyear or 355 

multiyear ice (Landsat-8). This section deals with our comparison between PMW SIC and Landsat SIC for the following ice 356 

regimes: “ice edge”, “leads and openings” = cases with leads and coastal polynyas or openings, “heterogeneous ice” = cases 357 

with irregularly shaped openings in the ice pack, “freeze-up”, “high-concentration ice”, and “melt conditions” (see Table S01 358 

in the supplementary material). We show in more detail results of the last three ice regimes. Freeze-up cases are characterized 359 

by a comparably large fraction of new and thin ice, an ice type for which some of the SIC products investigated here are already 360 

known to be negatively biased from preliminary work based on Soil Moisture and Ocean Salinity (SMOS) thin ice thickness 361 

observations (Ivanova et al., 2015). We elaborate on their findings using an alternative data set. Investigating high-362 

concentration cases in more detail aids in a better understanding of saturation effects near 100 % caused by truncating PMW 363 

SIC at 100 %, expanding on the work of Kern et al. (2019), refining our knowledge of SIC precision and accuracy for high-364 

concentration regions and hence application potential of the products for surface heat flux computations. Finally, melt 365 

conditions – even without melt ponds – represent a multitude of different snow and sea ice conditions causing enhanced 366 

variability of the sea ice microwave emissivity (e.g. Willmes et al., 2014), which in turn can result in biases in PMW SIC 367 

products of both signs in the Arctic (Kern et al., 2016; 2020). Here we have the opportunity to better quantify such biases 368 

especially for the Antarctic. For all remaining regimes, we show examples in Figs. S03 through S08 in the supplementary 369 

material and include their results of the statistical comparison into our summary figures (Fig. 11 and 12), but refrain from a 370 

detailed discussion. For regimes “ice edge” and “leads and openings” such a discussion would require a comprehensive 371 

investigation of open water and land spill-over filters (see Section 5.3) which is beyond the scope of this paper. For regime 372 



10 

 

“heterogeneous ice”, application of a more accurate evaluation SIC data set seems to be advisable given the identified 373 

shortcomings of the used one (see Section 2.2.4) before going into more detail.  374 

4.1 Freeze-Up 375 

These are cases where according to the date, geographic location and information in the Landsat scene freeze-up has 376 

commenced. We select Landsat scenes containing a considerable fraction of new and thin ice; these are acquired in September 377 

and February/March in the Northern and Southern Hemisphere, respectively. We have only few such cases in both hemispheres 378 

(see Table S01 in the supplementary material). We expect PMW SIC underestimates Landsat SIC (LSIC) – particularly for 379 

young and thin ice with a thickness < 0.2 m (e.g. Ivanova et al., 2015). Figure 5 illustrates the conditions for a Landsat-8 scene 380 

close to Greenland in the Fram Strait on September 15 2015. The classified Landsat-8 image (Fig. 5, top left) reveals a mix of 381 

large ice floes – presumably second-year or older ice – and meandering patches of smaller floes embedded into a matrix of 382 

mostly grey and a few dark pixels; the grey pixels are supposed to represent bare / thin sea ice, the dark pixels open water. All 383 

products agree well with Landsat SIC in the topmost part of the scene over high-concentration ice. PMW SIC maps of six of 384 

the ten products (SICCI-2 products, OSI-450, NT1-SSMI and ASI-SSMI) reveal an overall SIC distribution similar to Landsat 385 

SIC. For the remaining four products, the SIC difference maps show widespread overestimation of LSIC by PMW SIC 386 

expressed by positive (red) values. Contrary to expectations, we do not observe negative SIC differences for the entire greyish 387 

area of the Landsat-8 scene. 388 

The main reason for this observation is the actual ice condition. Very likely the greyish area represents a mixture of 389 

sub-pixel size, i.e. less than 30 m x 30 m, ice floes and brash ice formed from disintegrated thicker ice floes and young / new 390 

sea ice. On the one hand, the sub-pixel size floes and the brash ice are thicker than young / new sea ice. These forms of sea ice 391 

exhibit different surface properties and hence microwave emissivity than young / new thin sea ice. For such a mixture of ice 392 

types, it is particularly difficult to retrieve an accurate SIC with any of the algorithms used in the ten products. Ice tie points 393 

do not adequately represent these ice conditions. On the other hand, for the greyish area the Landsat SIC could likely be too 394 

high because of mixed ocean-ice Landsat pixels (see Subsection 2.2.4 and the respective supplementary material). What 395 

appears to be 100 % thin ice might be just 50 % thick ice. However, observations conducted at Henrik Krøyer Holme station 396 

(80°38’N 13°43’W, see star in Fig. 5, top left panel) on September 15 2015 and the preceding days indicate freezing conditions 397 

with air temperatures between -5°C and -13°C (https://www.dmk.dk/vejrarkiv, last access: June 29 2021). Therefore, it is quite 398 

likely, new / thin ice covers most open water patches and any over-estimation of Landsat SIC due to sub-pixel size open water 399 

patches is rather small. Thus, the complex sea-ice conditions encountered appear to be a valid explanation for the observed 400 

differences. Contributing factors also are the different footprint sizes and grid resolutions, that cause heterogeneous sub-grid 401 

surface conditions to be mixed differently (see the panels for the three SICCI products in Fig. 5), and unaccounted weather 402 

influence. An apparent underestimation of the SIC (see e.g. ASI-SSMI) could be caused by actual weather conditions being 403 

less severe, i.e. smaller atmospheric water vapor content, than are included inherently in the open tie point used (see also 404 

Kaleschke et al., 2001). 405 

Figure 6 illustrates a freeze-up case in Pine Island Bay, Amundsen Sea, Southern Ocean, on March 12, 2014. The 406 

classified Landsat-8 scene features a predominant coverage with new / young ice, some open water towards the coast and little 407 

thick / snow covered ice and icebergs in the open bay. Landsat SIC is mostly around 90 %; only few grid cells with low SIC 408 

exist close to the coast at 12.5 km and 25 km grid resolution. Nine of the ten PMW SIC products reveal considerably lower 409 

SIC values with SICCI-25km, OSI-450, NT1-SSMI and ASI-SSMI exhibiting particularly large widespread negative 410 

differences with magnitude > 40 %. An exception is NT2-AMSR2 exhibiting the highest PMW SIC of all ten products and 411 

overall the smallest differences. It is the only product, though, which also exhibits positive differences, i.e. an over-estimation 412 

of Landsat SIC by up to 20 %. 413 
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The widespread under-estimation of Landsat SIC by almost all products agrees very well with the findings of Ivanova 414 

et al. (2015), albeit a bit large in magnitude. The new ice encountered in our example comprises a comparably large fraction 415 

of frazil / grease / small pancake ice while compared to nilas and grey/grey-white ice in Ivanova et al. (2015). Because Pine 416 

Island Glacier Automatic Weather Station (see star in top left map of Fig. 6) reported air temperatures between -11°C and -417 

21°C on March 12, 2014 and the three preceding days (Mojica Moncada et al., 2019), the grey pixels in this Landsat scene 418 

very likely represent new/thin sea ice formed locally. However, we cannot fully exclude an over-estimation of Landsat SIC by 419 

sub-pixel size open water patches between streaks of new ice formed being classified as thin ice instead of open water (see 420 

Subsection 2.2.4 and respective supplementary material); for the conditions encountered this positive bias in Landsat SIC 421 

should be less than 5 %, maximum 10 %. The existence of such a positive bias combined with the different ice type encountered 422 

compared to Ivanova et al. (2015) could explain why the observed under-estimation of Landsat SIC for most of the PMW SIC 423 

products is larger in magnitude than expected. 424 

Table 9 summarizes our results of the freeze-up cases for which we expect, overall, an under-estimation of Landsat 425 

SIC, i.e. a negative bias, due to a notable fraction of new / thin ice (see Ivanova et al., 2015). In the Northern Hemisphere, 426 

performance of the products differs a lot. We find positive biases for the two CBT-products, NOAA-CDR and NT2-AMSR2, 427 

large negative biases for the remaining products. SICCI-25km offers the best linear agreement with Landsat SIC. In the 428 

Southern Hemisphere, a number of products have a regression line slope close to unity, a small intercept and a squared linear 429 

correlation coefficient > 0.8. Most importantly, however, all products – except NT2-AMSR2 – on average under-estimate 430 

Landsat SIC in agreement with Ivanova et al. (2015). 431 

4.2 High-concentration ice 432 

These are cases where the Landsat scene indicates either a closed ice cover without any leads or openings or an almost 433 

closed ice cover with few refrozen leads or openings, resulting in near-100 % Landsat SIC. In the ideal case, we expect PMW 434 

SIC is close to 100 %. Figure 7 illustrates such a case for April 4, 2015 in the Beaufort Sea, Arctic Ocean. Landsat SIC is 435 

100.0 %. All ten PMW SIC products exhibit quite high sea-ice concentrations – particularly SICCI-50km, NOAA-CDR and 436 

NT2-AMSR2. However, the difference maps clearly reveal a (very) small and negative bias for all PMW products. This bias 437 

is largest in magnitude for SICCI-12km and ASI-SSMI and smallest in magnitude for NT2-AMSR2.  438 

Table 10 summarizes the results obtained for, in total, 40 high-concentration cases in the Northern Hemisphere: 28 439 

first-year ice dominated scenes (Landsat-5) and 12 scenes of mixed first-year / multiyear or multiyear ice cases (Landsat-8). 440 

We find the largest biases for SICCI-12km and ASI-SSMI independent of ice type. Except for CBT-AMSR and NT2-AMSR, 441 

all products exhibit a larger bias for first-year ice cases than mixed first-year / multiyear or multiyear ice cases. We hypothesize 442 

that the different biases between PMW and Landsat SIC for these near-100 % cases are caused by the different capabilities of 443 

the respective algorithms to derive an accurate SIC independent of ice type – as stated already in Section 3.1. NT1-SSMI and 444 

ASI-SSMI appear to have the largest difficulties with the different ice types encountered because their biases vary most. We 445 

note the two CBT products and NOAA-CDR (and NT2-AMSR2) have a median difference of 0.0 % independent of ice type 446 

– similar to Tables 5 and 6. For SICCI-2 products and OSI-450, median differences are smaller in magnitude than for all ice 447 

and approach zero for the mixed first-year / multiyear or multiyear ice cases. 448 

Using non-truncated SIC of SICCI-2 products and OSI-450 (see also Table 8), reduces the magnitude of the bias by 449 

between 0.5 % for SICCI-50km and 2.1 % for SICCI-12km for the mixed first-year / multiyear or multiyear ice cases (LS8) 450 

and less than that for the first-year ice cases. As expected, the standard deviation of the bias increases using non-truncated SIC. 451 

The other six PMW products set SIC values > 100 % to 100 % or do not permit a simple retrieval of such SIC values (NT2-452 

AMSR2, but see Ivanova et al., 2015), and would therefore have a different bias and a larger standard deviation than shown in 453 

Table 10 (see Kern et al., 2019). Of the SICCI-2 / OSI-450 products, SICCI-50km provides the smallest bias and the smallest 454 
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standard deviation of this bias: -0.7 % ± 2.2 % in line with Kern et al. (2019) who reported a bias of -0.5 % ± 2.1 % for non-455 

truncated SICCI-50km SIC.  456 

Figure 8 illustrates a high-concentration case in the Weddell Sea, Southern Ocean, on March 12, 2015. Six of the ten 457 

PMW SIC products show almost 100 % sea-ice concentration and almost zero bias. We only find notable deviations from 100 458 

% concomitant with a small negative bias for ASI-SSMI, the two CBT-products and SICCI-12km. For our four high-459 

concentration cases in the Southern Ocean (Table 11), we find the largest overall bias for ASI-SSMI. Most products reveal a 460 

bias of magnitude 0.3 % or smaller.  461 

Using non-truncated SICCI-2 and OSI-450 SIC results in positive biases, ranging between 1.8 % for OSI-450 and 2.7 462 

% for SICCI-50km (Table 11, values to the right of the “/”). This amounts to an increase of the mean SICCI-2 / OSI-450 SIC 463 

for these cases by ~ 2.5 %. This increase is larger than in the Northern Hemisphere (compare Table 10). We explain this with 464 

a comparably large fraction of PMW SIC > 100 % for our small high-concentration cases data set of the Southern Hemisphere 465 

(four) compared to the Northern Hemisphere (40). Three of the four high-concentration cases identified in the Southern Ocean 466 

are from months November / December, a time of the year when melt onset and melt-refreeze cycles cause higher variability 467 

of the ice emissivity. One of the likely impacts is a notable fraction of PMW SIC > 100 % (see Fig. S01 in the supplementary 468 

material). The same applies in a different way to the case shown in Fig. 8, the only late fall / early winter case out of these four 469 

cases. The overall Landsat SIC of this scene is 99.9 %; that of an adjacent scene is 98.9 % (not shown). Sea ice and snow 470 

properties in late fall / early winter are often as well quite variable and can cause an elevated spread of the retrieved PMW SIC 471 

around 100 %, resulting in a substantial fraction of SIC values > 100 %. For instance, the overall SICCI-25km SIC is 101.9 % 472 

for the scene shown in Fig. 8 and 103.1 % for the adjacent scene (not shown).  473 

4.3 Melt conditions 474 

For melt-condition cases, we select Landsat scenes by means of the calendar date. In the Northern Hemisphere, we 475 

consider the time-period May 15 to May 31, in the Southern Hemisphere we use the time-period November 15 to February 28. 476 

We do not include Landsat scenes subject to melt ponding on sea ice, e.g. during months June through August; this topic is 477 

covered in Kern et al. (2020).  478 

In the Northern Hemisphere (Table 12), we find positive and comparably small biases for the two CBT products, 479 

NOAA-CDR and NT2-AMSR2, negative biases for all other products. We find the best quality of the linear agreement between 480 

PMW SIC and Landsat SIC for SICCI-25km, followed by SICCI-50km and SICCI-12km. According to Kern et al. (2020), the 481 

second half of May is characterized by an upswing of number and magnitude of SIC values > 100 % for SICCI-2 / OSI-450 482 

products (see Fig. S02 in the supplementary material). Using non-truncated SIC of these products reduces the mean bias by 483 

1.0 % for SICCI-12km, 0.5 % for SICCI-25km, and 0.3 % for OSI-450 and further improves the already good linear agreement. 484 

For SICCI-50km, results remain almost unchanged. We explain the difference in the response between SICCI-50km and 485 

SICCI-12km with the larger sensitivity of the higher frequency channels used by SICCI-12km to early stages of melt 486 

encountered at that time of the year. 487 

Figure 9 illustrates a typical case of late summer melt conditions in the Ross Sea, Southern Ocean. The classified 488 

Landsat-8 image shows a heterogeneous mixture of black, grey and white pixels. The grey pixels denote a mixture of open 489 

water and thicker ice, possibly brash ice, sea ice with a wet or even flooded snow cover, or bare relatively thick ice from which 490 

the snow has been washed off. New/young ice is unlikely according to 6-hourly forecasts of the Antarctic Mesoscale Prediction 491 

System (AMPS) revealing near-surface temperatures around -1°C on January 27 2014 and between -3°C and -5°C on January 492 

28 and 29 2014 (http://polarmet.osu.edu/AMPS/, last access June 29, 2021), indicating that freeze-up has not yet commenced. 493 

PMW SIC distributions match well with Landsat SIC, which is > 70 % for a considerable fraction of the map, but for 494 

most products PMW SIC is considerably smaller. Negative biases dominate and are widespread 30 % to 50 % in magnitude. 495 

Striking is the similarity between LSIC 12.5km and ASI-SSMI, and between LSIC 25 km and SICCI-25km as well as CBT-496 
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AMSR2. Striking also is the similarity between OSI-450, NT1-SSMI, CBT-SSMI and NOAA-CDR. These similarities indicate 497 

that different native spatial resolutions, TB sampling intervals and grid spacings of, SSMI(S) on the one hand and AMSR-E(2) 498 

on the other hand, can cause a substantial difference in the agreement with LSIC especially when ice conditions are as 499 

heterogeneous as in this example (see Section 5.1).  500 

Overall, we find negative biases for nine of the ten products in the Southern Hemisphere (Table 13). These are smallest 501 

in magnitude for CBT-SSMI and NOAA-CDR: < 1 %, and largest for NT1-SSMI, ASI-SSMI and SICCI-50km. NT2-AMSR2 502 

stands out as the only product with a positive bias of 5 % (see also Section 5.2). SICCI-25km and SICCI-50km again provide 503 

the best linear agreement with Landsat SIC (Table 13). Results for SICCI-2 products and OSI-450 improve when using non-504 

truncated SIC (see also Fig. S01 in the supplementary material). In contrast to the Northern Hemisphere (see Table 12, Fig. 505 

S02 in the supplementary material), also SICCI-50km reveals a reduction of the bias and increase in the linear regression line 506 

slope. We attribute this to the presence of advanced melt conditions and the different melt-induced snow and ice properties in 507 

the Southern Hemisphere comprising a larger fraction of coarse-grained snow due to pro-longed melt-freeze cycles and a 508 

generally drier snow surface, at least for the high-concentration parts of the sea-ice cover. 509 

On the one hand, the negative biases (Figure 9, Table 13) agree well with results of earlier comparisons between 510 

Southern Hemisphere summer PMW SIC estimates and ship-based observations of the sea-ice cover (e.g. Worby and Comiso, 511 

2004; Ozsoy-Cicek et al., 2009). These studies hypothesized that under-estimation of the actual sea-ice concentration in PMW 512 

SIC products is primarily caused by wet, flooded sea ice exhibiting a similar surface emissivity as open water and hence 513 

looking like open water in PMW imagery. On the other hand, an unknown fraction of these negative biases could be caused 514 

by our Landsat SIC estimates being biased high because of the reasons laid out in Subsection 2.2.4 and the respective 515 

supplementary material. 516 

5 Discussion 517 

5.1 A note on grid resolutions 518 

SICCI-25km and SICCI-50km SIC have a grid resolution close to the actual algorithm resolution largely determined 519 

by the native resolution of the lowest-frequency channel used (see field-of-view dimensions in Table 1). This is not the case 520 

for, e.g. CBT-SSMI or OSI-450. Actually, we find a relatively poor performance of OSI-450 in comparison to SICCI-25km 521 

(see Tables 5 to 7) – albeit the retrieval algorithm is exactly the same. We hypothesize that the coarser native resolution of the 522 

satellite data used for OSI-450 provides one of the main explanations for this observation. SICCI-25km uses AMSR-E/2 523 

brightness temperatures observed at spatial resolutions (footprint sizes) between 14 km x 8 km (AMSR2: 12 km x 7 km) and 524 

27 km x 16 km (AMSR2: 22 km x 14 km) (see Table 1). In contrast, OSI-450 uses SSM/I(S) brightness temperatures observed 525 

at footprint sizes between 37 km x 28 km and 69 km x 43 km. In addition, the relevant channels are sampled spatially every 526 

10 km for AMSR-E/2 and every 25 km for SSM/I(S).  Therefore, spatial brightness temperature variations caused, e.g., by 527 

variations in the open water fraction, can be identified at a finer spatial scale by AMSR-E/2 than by SSM/I(S) at the same 528 

frequency. The grid spacing at which OSI-450 and other SIC products relying on SSMI(S) 19 / 37 GHz channels are provided 529 

is not the actual resolution of the estimated SIC. Surface information is smeared in the SSM/I(S) data much more. A similar 530 

observation applies to CBT-SSMI and CBT-AMSR. The latter provides SIC at a grid resolution closer to the algorithm 531 

resolution than CBT-SSMI; consequently, CBT-AMSR SIC agree closer to Landsat SIC than CBT-SSMI SIC (see Tables 5, 532 

6, and 7 and compare panels e) and g) in Fig. 2, 3 and 4). We are confident that, besides the differences between the algorithms 533 

themselves, a substantial fraction of the observed difference in the agreement with Landsat SIC is caused by the spatial 534 

representation of the true sea-ice concentration, which differs due to the above-mentioned differences in satellite data used as 535 

input. 536 
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Our results confirm the stated impact of the native spatial resolution on potential biases between PMW SIC and 537 

Landsat SIC very well. For instance, out of the ten products, ASI-SSMI and SICCI-12km both incorporating high-frequency, 538 

fine spatial resolution imagery channels provide the 3rd and 4th best linear fits in the Northern Hemisphere (Tables 5, 6) and 539 

the 3rd and 5th best linear fits in the Southern Hemisphere. SICCI-12km actually performs best out of the four SICCI-2 / OSI-540 

450 products in the Southern Hemisphere (Table 7). Our Landsat data set of the Southern Hemisphere contains more cases of 541 

ice regimes (see Section 4) with variable open water fractions such as “heterogeneous ice”, “leads / openings”, “freeze-up”, 542 

and “ice edge” than the one of the Northern Hemisphere (see Table S01 in the supplementary material). Because a SIC product 543 

at finer spatial resolution is capable to depict such variable open water fractions better and to observe the full SIC range more 544 

adequately it seems reasonable to have a better linear agreement between Landsat SIC and, e.g., SICCI-12km SIC in the 545 

Southern than the Northern Hemisphere (compare Figs. 3 and 4 with respect to low SIC). 546 

However, ASI-SSMI, does not show better results in the Southern than the Northern Hemisphere when compared to, 547 

e.g. NT1-SSMI or SICCI-2 products. ASI-SSMI utilizes near-90 GHz brightness temperatures only while SICCI-12km 548 

combines near-90 GHz with 19 GHz brightness temperatures. Atmospheric effects known to cause biases in near-90 GHz 549 

PMW SIC products (Kern, 2004; Ivanova et al., 2015) therefore have less impact on SICCI-12km than ASI-SSMI SIC. In 550 

addition, all SICCI-2 products utilize atmospherically corrected brightness temperatures while ASI-SSMI utilizes uncorrected 551 

brightness temperatures. The fact that most of our Landsat scenes in the Southern Hemisphere represent atmospheric conditions 552 

during summer melt and hence at a comparably higher water vapor load than in the Northern Hemisphere fits into this picture. 553 

While atmospheric effects are efficiently mitigated for SICCI-12km in both hemispheres these are larger for ASI-SSMI in the 554 

Southern than the Northern Hemisphere. 555 

5.2 Hemispheric differences versus Landsat SIC bias 556 

At this point, we look at the difference between the PMW SIC minus Landsat SIC values obtained in the Northern 557 

Hemisphere and the Southern Hemisphere from a different perspective. Ice conditions represented by our Landsat SIC data 558 

set comprise more cases with melt conditions and at the ice edge in the Southern Hemisphere (see Table S01 in the 559 

supplementary material). These conditions are likely particularly subject to the positive bias in Landsat SIC due to mixed 560 

pixels described in Subsection 2.2.4 and the respective supplementary material. Therefore, we can expect that the positive SIC 561 

difference is, on average, larger in the Southern than the Northern Hemisphere. We compare the differences listed in Tables 5, 562 

6 and 7 and find the following. OSI-450, SICCI-12km, and SICCI-25km exhibit small changes in the SIC differences between 563 

+0.8 % and -0.8 %. NT2-AMSR reveals a positive change of +2.8 %. All other products show a negative change by between 564 

-2.2 % and -3.2 %. This change of ~ 3 % in the SIC difference between the Northern and the Southern Hemisphere is of the 565 

correct sign and of an order of magnitude we deem a realistic estimate of the difference in the mentioned positive Landsat SIC 566 

bias between the hemispheres. What does this mean? For example, for a PMW grid cell covered by an actual SIC of 95 %, due 567 

to the positive bias, Landsat SIC might be 97 % in the Northern Hemisphere and 100 % in the Southern Hemisphere. A PMW 568 

SIC algorithm tuned equally well for the ice conditions in the respective hemisphere would provide 95 % in both hemispheres. 569 

Compared to Landsat SIC this results in a negative difference of -2 % in the Northern Hemisphere and of -5 % in the Southern 570 

Hemisphere, i.e. the difference becomes more negative by ~ 3 %. In contrast, the difference NT2-AMSR SIC minus Landsat 571 

SIC becomes more positive, increasing from +0.6 % in the Northern Hemisphere to +3.4 % in the Southern Hemisphere. When 572 

only considering the melt-condition cases the overall difference increases from +1.7% to +5.1% (Tables 12, 13). Without 573 

further independent evaluation data to better assess the accuracy of our Landsat SIC data we cannot draw a quantitative 574 

conclusion here. However, the increase in the positive value of the difference PMW SIC minus Landsat SIC between the 575 

Northern and the Southern Hemisphere observed for NT2-AMSR is opposite to our well-motivated suggestion that Landsat 576 

SIC values are biased higher in the Southern than the Northern Hemisphere. 577 
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5.3 A note on the effect of filters 578 

In this subsection, we comment on the observation that in the scatterplots of the Northern Hemisphere (Figs. 2 and 3) 579 

particularly the SICCI-2 products but also OSI-450, CBT-AMSR and NT2-AMSR exhibit a relatively large number of cases 580 

with PMW SIC = 0 % and Landsat SIC > 0 %. In addition, we find an unexpected large number of comparably low PMW SIC 581 

values (< ~ 50 %) at Landsat SIC > ~ 70 %, especially for SICCI-50km (Fig. 2c, Fig. 3c). In the scatterplots of all products in 582 

the Southern Hemisphere (Fig. 4) we observe a large number of cases with PMW SIC = 0 % and Landsat SIC > 0 %.  583 

We hypothesize this observation is linked to the various filters applied. Examples of such filters are the weather or open 584 

water filter (OWF) and the land spill-over filter (LSO). The OWF reduces the number of erroneous SIC values resulting from 585 

unaccounted atmospheric influence, for example high cloud liquid water contents. OWF is effective along the ice edge and the 586 

adjacent open water. One common realization of the OWF is to set PMW SIC = 0 % once brightness temperature gradient 587 

ratios sensitive to the atmospheric influence exceed a certain threshold (e.g. Wensnahan et al., 1993; Spreen et al., 2008; 588 

Lavergne et al., 2019). Such filters might cut off true SIC values (Andersen et al., 2006). The SICCI-2 and OSI-450 algorithm 589 

employs a modified version of such an OWF (Lavergne et al., 2019; Kern et al., 2019). The LSO reduces the number of 590 

erroneous SIC values along coastlines resulting from unaccounted spillover of the (higher) land surface brightness temperature 591 

into the (lower) open water brightness temperature. The LSO is particular effective during summer. It has also an influence 592 

during the freezing season for situations where the coastline is only fringed by a quite narrow sea ice cover, for example, 593 

during fall freeze-up in the Hudson Bay and along the Siberian coast or during winter / spring along the coast of Greenland 594 

facing the Irminger Sea. One realization of the LSO is a statistical approach, where the SIC of grid cells adjacent to the coast 595 

is corrected, i.e. set to 0 % or interpolated to a more adequate value, based on SIC values within a certain neighborhood (e.g. 596 

Cavalieri et al., 1999). The SICCI-2 and OSI-450 algorithm employs a novel attempt. Here the method of Maass and Kaleschke 597 

(2010) is used to correct for the land spillover already at brightness temperature level; the “classical” LSO filtering of Cavalieri 598 

et al. (1999) is still included, though (Lavergne et al., 2019). Note: the OWF sets PMW SIC to zero; the LSO reduces the PMW 599 

SIC to lower values but not necessarily to zero.  600 

The SICCI-2 and OSI-450 products offer the full SIC distribution around 0 % and around 100 % SIC and the 601 

opportunity to reverse-engineer the effect of flags, i.e. switch the effect of certain flags on or off. Therefore, we are able to 602 

investigate the impact of the OWF and the LSO on our comparison results, an investigation not possible for the six other 603 

products. We choose ice regime “leads/openings” in the Southern Hemisphere in years 2013-2015 and look, as an example for 604 

such an investigation, at the impact of the two above-mentioned filters on SICCI-50km SIC (Fig. 10). We switch off these 605 

flags together with the near-100 % SIC flag to work with a more realistic SIC distribution at the high-concentration end. We 606 

do not find even one PMW SIC = 0 % case in the fully non-truncated, i.e. no filters applied, SIC scatterplot (Fig. 10b) – in 607 

contrast to the fully truncated SIC (Fig. 10a). Accordingly, the overall SIC difference reduces in magnitude from 7.5 % to 4.3 608 

% when going from fully truncated to fully non-truncated; the standard deviation of the difference reduces from 15.0 % to 609 

11.1 %. 610 

If we switch off the OWF, i.e. include the originally retrieved SIC values for those grid cells where the OWF is applied, 611 

we get a number of SIC data pairs concentrated between Landsat SIC: 0 – 20 % and SICCI-50km: 0 – 30 % that can be clearly 612 

associated with the OWF (compare Fig. 10 panel c) with panels a) and d). The magnitude of the difference decreases by only 613 

0.5 % while the standard deviation stays the same. There is still a comparably large number of cases with SICCI-50km SIC = 614 

0 % or at least relatively low: < 30 %, concomitant with Landsat SIC > 50 %. If we instead switch off the LSO, i.e. include 615 

the originally retrieved SIC values for those grid cells where the LSO is applied, we find that almost all of the above-mentioned 616 

cases of low or equal-to-0 % SICCI-50km SIC can be traced back to substantially higher SIC values (Fig. 10d). The magnitude 617 

of the difference changes considerably from 7.5 % (see above) to 4.9 % if keeping only the LSO filtered grid cells; the standard 618 

deviation of the difference reduces from 15.0 % (see above) to 11.2 %. This reduction in the spread of values around the 619 
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identity line is also evident very well in the respective scatterplots (Fig. 10): the standard deviation of the Landsat SIC 10 % 620 

bin average SICCI-50km SIC (red vertical bars) is much smaller in panel d) than panel a). 621 

We observe a similar tendency for all other ice regimes where the LSO is applied, e.g. “freeze-up” or “melt conditions”, 622 

in the Southern and in the Northern Hemisphere and for SICCI-25km and SICCI-12km as well (see Tables S04 and S05 in the 623 

supplementary material). However, we find far fewer SIC data pairs subject to LSO filtering for OSI-450; hence the effect of 624 

switching on or off the LSO is comparably small. We hypothesize that this could be explained with the different native 625 

resolution of the satellite data used, the different sampling, and the different grid cell size and spacing (see Section 5.1). 626 

However, testing this hypothesis is beyond the scope of this paper. For the SICCI-2 SIC products, we can confirm the 627 

hypothesis that the comparably large number of PMW SIC = 0 % or < ~30 % across basically the entire SIC range (see Figs. 628 

2, 3, and 4, panels a) to c) can be explained with the application of an LSO resulting in an elevated number of cases with PMW 629 

SIC < Landsat SIC. This provides a viable explanation for unexpectedly large SIC differences observed for SICCI-50km along 630 

coastlines, of particularly Greenland or the Eastern Antarctic, reported in Kern et al. (2019, their Fig. 8 c) and Fig. 11 c). 631 

Whether this is due to the land spillover correction at the brightness temperature level (Maass and Kaleschke, 2010) or the 632 

statistical filtering (Cavalieri et al., 1999) remains to be investigated. We clearly see it as an advantage to be able to switch off 633 

filters and in a reverse-engineering way investigate the impact of these filters for SICCI-2 and OSI-450 products.  Application 634 

of the LSO can produce an artificially large number of SIC values near or at 0 % that agree less well with the Landsat SIC than 635 

the originally retrieved SIC values – as we demonstrate for the SICCI-2 and OSI-450 products. As a consequence, results of 636 

an evaluation including a considerable number of near-coastal grid cells need to be interpreted carefully. The number of 637 

artificially low SIC values resulting from the LSO for the other six PMW SIC products is unknown as is their impact on the 638 

evaluation results shown in this paper.   639 

6 Summary and Conclusions 640 

In this paper, we present results of an evaluation of ten passive microwave (PMW) SIC products against SIC estimates 641 

derived from more than 350 clear-sky Landsat visible images acquired in the Northern Hemisphere during mostly late winter 642 

/ spring (March through May) and in the Southern Hemisphere during spring / summer / early fall (October through March). 643 

We estimate Landsat SIC at the grid resolution of the PMW SIC products using results of supervised classification of Landsat 644 

broadband albedo maps into ice and water at 30 m pixel resolution. The comparison between PMW and Landsat SIC is carried 645 

out based on all valid collocated SIC map pairs but also based on subsets of these pairs defining certain ice regimes. These ice 646 

regimes are “high concentration”, “freeze-up”, “ice edge”, “leads/openings”, “heterogeneous ice”, and “melt conditions”. Our 647 

comparison uses statistical parameters such as the mean difference between PMW and Landsat SIC and its standard deviation, 648 

the median difference, and parameters describing the linear agreement: slope and intercept of a linear regression and the linear 649 

regression coefficient. We summarize these parameters in Figures 11 and 12 and make the following conclusions. 650 

 It is important to take an integrated view of the statistical parameters because, for instance, a small overall bias is not 651 

necessarily associated with a good linear agreement across the entire SIC range and a perfect linear agreement with a slope 652 

close to unity and a high correlation could be associated with a large overall bias. 653 

 It is also important to take into account the expected influences of, e.g. melt conditions (section 4.3), fraction of new/thin 654 

ice (section 4.1) as well as sub-pixel size ocean-ice mixture (Section 2.2.4) on both PMW SIC and Landsat SIC. 655 

 SICCI-25km and SICCI-50km SIC offer overall the best linear agreement to Landsat SIC as demonstrated in Fig. 11 and 656 

Fig. 12, right column. This is illustrated as well by mean and median PMW SIC values computed for Landsat SIC bins 657 

aligned very well along the identity line (Figs. 2 to 4), with exceptions being explainable by filters applied in the products 658 

(see Section 5.3). The magnitude of the difference PMW SIC minus Landsat SIC is, however, larger than for the two 659 

CBT-products and NOAA-CDR, almost without exception (Fig. 12, left column). 660 
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 The two CBT products, NOAA-CDR and NT2-AMSR offer the smallest overall magnitude of the difference PMW SIC 661 

minus Landsat SIC (Fig. 12, left column). Except for CBT-AMSR2 in the Southern Hemisphere, mean and median PMW 662 

SIC values align less well along the identity line than for SICCI-25km and SICCI-50km in Figs 2 to 4. The linear 663 

agreement is considerably worse than for SICCI-25km and SICCI-50km (Fig. 11, Fig. 12, right column). 664 

 NT2-AMSR is the only product over-estimating Landsat SIC in the Southern Hemisphere – overall but also for almost all 665 

ice regimes. This is problematic in view of the potential positive bias of Landsat SIC for ice conditions with an elevated 666 

number of mixed ocean-ice Landsat pixels (see Subsection 2.2.4), e.g. ice regimes “melt conditions”, “ice edge” and 667 

“freeze-up”. 668 

 669 

All products provide SIC data truncated to the range 0 % to 100 % albeit all algorithms, except NT2-AMSR, use a SIC 670 

retrieval procedure which in principle provides a full SIC distribution around the end-members 0 % and 100 %. Only the 671 

SICCI-2 products and OSI-450 allow consideration of the full SIC distribution. While our main results are derived with the 672 

truncated SIC distribution, we demonstrate that, without exception, using the full SIC distribution reduces the mean difference 673 

and enhances the quality of the linear agreement between PMW SIC and Landsat SIC which is already superior for SICCI-674 

25km and SICCI-50km. It is important to consider this observation when comparing the results obtained with the ten products 675 

against each other in order to avoid misinterpretation. While we obtain smallest SIC differences for the two CBT products, 676 

NOAA-CDR and NT2-AMSRE/2, these are likely to change using the full SIC distribution. This applies in particular to ice 677 

regimes “high-concentration” (section 4.2) and “melt conditions”, but also to the full set of SIC data pairs (denoted “all” in 678 

Fig. 12). The impact this difference in the comprehensiveness of the SIC products has on our evaluation results prevents us 679 

from making a ranking between the SIC products. 680 

This paper is limited to clear-sky visible imagery. It is hence impossible to evaluate the performance of the SIC products 681 

under the full set of possible weather conditions influencing SIC retrieval, i.e. surface wind speed and atmospheric water vapor 682 

and cloud liquid water content. Our results likely cover a certain range of surface wind speeds and atmospheric water vapor 683 

contents which we, however, did not quantify, e.g. by means of atmospheric reanalysis data, to stay focused. Obviously, this 684 

would be an issue worth pursuing in a forthcoming study for which SIC estimates based on SAR data have to be used. These 685 

might allow us to assess PMW SIC quality also under higher loads of atmospheric water vapor content and, more importantly, 686 

clouds. Such a study could then focus in particular on an improved accuracy assessment of the PMW SIC in the marginal ice 687 

zone and along the ice edge. In such regions, our approach to derive Landsat SIC likely results in the highest positive biases – 688 

between a few to in the worst case 20 % for single PMW grid cells – due to mixed ocean-ice Landsat pixels classified as ice. 689 

Such a study would also be an excellent opportunity to evaluate the weather filters currently employed in the SIC products. In 690 

order to have a meaningful sample, such a study would require an equally extensive data set of SAR images interpreted into 691 

well-evaluated SIC estimates. This calls for continued development of reliable and consistent SIC estimates from SAR and, 692 

thorough evaluation of SAR SIC products in both hemispheres. 693 

Data availability. All sea-ice concentration products except SICCI-12km are publicly available from the sources provided in 694 

the reference list or in Kern et al. (2019). The SICCI-12km product is available upon request from T. Lavergne. The 695 

classified Landsat images are available from https://doi.org/10.25592/uhhfdm.9181 (last access: July 9 2021). 696 

Author contributions. SK wrote the manuscript. TL, LTP and RT contributed to the concept and work presented in the paper 697 

and also assisted in the writing. SK performed the data analysis together with LB, MM, and LZ. SK conducted the inter-698 

comparison with contributions in the interpretation of the results from TL, LTP and RT.  699 

Competing interests. The authors declare that they have no conflict of interest. 700 

 701 

Acknowledgements. The work presented here was funded by EUMETSAT (through the 3rd Continuous Developments and 702 

Operation Phase of OSI SAF) and ESA (through the Climate Change Initiative Sea_Ice_cci project), and the German Research 703 

Foundation (DFG) Excellence Initiative CLISAP under Grant EXC 177/2. The publication contributes to the Cluster of 704 



18 

 

Excellence ‘CLICCS – Climate, Climatic Change, and Society’ and to the Center for Earth System Research and Sustainability 705 

(CEN) of the University of Hamburg. 706 

7 References 707 

Andersen, S., Tonboe, R. T., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne 708 

passive microwave observations using Numerical Weather Prediction model fields: An intercomparison of nine algorithms. 709 

Rem. Sens. Environ., 104(4), 374-392, 2006. 710 

Andersen, S., Pedersen, L. T., Heygster, G., Tonboe, R. T., and Kaleschke, L.: Intercomparison of passive microwave sea ice 711 

concentration retrievals over the high concentration Arctic sea ice. J. Geophys. Res., 112, C08004, 712 

https://doi.org/10.1029/2006JC003543, 2007. 713 

Barsi, J. A., Kenton, L., Kvaran, G., Markham, B. L., and Pedelty, J. A.: The spectral response of the Landsat-8 operational 714 

land imager. Rem. Sens., 6(10), 10232-10251, https://doi.org/10.3390/rs61010232, 2014. 715 

Belchansky, G. I., and Douglas, D. C.: Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, 716 

and RADARSAT data. Rem. Sens. Environ., 81, 67-81, 2002.  717 

Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M., and Girard-Ardhuin, F.: Towards a coupled model 718 

to investigate wave-sea ice interactions in the Arctic marginal ice zone. The Cryosphere, 14(2), 709-735, 719 

https://doi.org/10.5194/tc-14-709-2020, 2020. 720 

Brandt, R. E., Warren, S. G., Worby, A. P., and Grenfell, T. C.: Surface Albedo of the Antarctic sea ice zone. J. Climate, 18, 721 

3606-3622, 2005. 722 

Burgard, C., Notz, D., Pedersen, L. T., and Tonboe, R. T.: The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – 723 

Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output. The Cryosphere, 14(7), 2369–724 

2386, https://doi.org/10.5194/tc-14-2369-2020, 2020. 725 

Cavalieri, D. J.: A microwave technique for mapping thin sea ice. J. Geophys. Res., 99(C6), 12561-12572, 1994. 726 

Cavalieri D. J., Gloersen, P., and Campbell, W. J.: Determination of Sea Ice Parameters with the NIMBUS 7 SMMR. J. 727 

Geophys. Res., 89(D4), 5355-5369, 1984. 728 

Cavalieri, D. J., Crawford, J., Drinkwater, M., Emery, W. J., Eppler, D. T., Farmer, L. D., Goodberlet, M., Jentz, R., Milman, 729 

A., Morris, C., Onstott, R., Schweiger, A., Shuchman, R., Steffen, K., Swift, C. T., Wackerman, C., and  Weaver, R. L.: NASA 730 

sea ice validation program for the DMSP SSM/I: final report. NASA Technical Memorandum 104559. National Aeronautics 731 

and Space Administration, Washington, D.C. 126 pages, 1992. 732 

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and Zwally, H. J.: Deriving long-term time series of sea ice 733 

cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104(C7), 15803–15814, 734 

http://doi.org/10.1029/1999JC900081, 1999.  735 

Cavalieri, D. J., Markus, T., Hall, D. K., Gasiewski, A. J., Klein, M., and Ivanoff, A.: Assessment of EOS Aqua AMSR-E 736 

Arctic sea ice concentrations using Landsat-7 and airborne microwave imagery. IEEE Trans. Geosci. Rem. Sens., 44(11), 737 

3057-3069, https://doi.org/10.1109/TGRS.2006.878445, 2006. 738 

Chander, G., Markham, B. L., and Barsi, J. A.: Revised Landsat-5 Thematic Mapper Radiometric Calibration. IEEE Geosci. 739 

Rem. Sens. Lett., 4(3), 490-494, 2007. 740 

Chander, G., Markham, B. L., and Helder, D. L.: Summary of current radiometric calibration coefficients for Landsat MSS, 741 

TM, ETM+, and EO-1 ALI sensors. Rem. Sens. Environ., 113, 893-903, 2009. 742 

Cheng, A., Casati, B., Tivy, A., Zagon, T., Lemieux, J.-F., and Tremblay, L. B.: Accuracy and inter-analyst agreement of 743 

visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2. The 744 

Cryosphere, 14(4), 1289-1310, https://doi.org/10.5194/tc-14-1289-2020, 2020. 745 



19 

 

Comiso J. C.: Characteristics of arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 746 

91(C1), 975-994, 1986. 747 

Comiso, J. C.: Enhanced sea ice concentrations and ice extents from AMSR-E data. J. Rem. Sens. Soc. Japan, 29(1), 199-215, 748 

2009. 749 

Comiso, J. C., and Zwally, H. J.: Antarctic sea ice concentrations inferred from Nimbus 5 ESMR and Landsat imagery. J. 750 

Geophys. Res., 87(C8), 5836-5844, https://doi.org/10.1029/JC087iC08p05836, 1982. 751 

Comiso, J. C., and Steffen, K.: Studies of Antarctic sea ice concentrations from satellite data and their applications. J. Geophys. 752 

Res., 106(C12), 31,361-31,385, 2001. 753 

Comiso, J. C., and Nishio, F.: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. 754 

Geophys. Res., 113, C02S07, http://doi.org/10.1029/2007JC004257, 2008. 755 

Comiso, J. C., Wadhams, P., Krabill, W. B., Swift, R. N., Crawford, J. P., and Tucker III, W. B.: Top/bottom multisensory 756 

remote sensing of Arctic sea ice. J. Geophys. Res., 96(C2), 2693-2709, https://doi.org/10.1029/90JC02466, 1991. 757 

Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave algorithms for sea ice concentration: A 758 

comparison of two techniques. Rem. Sens. Environ., 60(3), 357-384, 1997. 759 

Comiso, J. C., Cavalieri, D. J., and Markus, T.: Sea ice concentration, ice temperature, and snow depth, using AMSR-E data. 760 

IEEE Trans. Geosci. Rem. Sens., 41(2), 243-252, https://doi.org/10.1109/TGRS.2002.808317, 2003. 761 

Cooke, C. L. V., and Scott, K. A.: Estimating sea ice concentration from SAR: Training convolutional neural networks with 762 

passive microwave data. IEEE Trans. Geosci. Rem. Sens., 57(7), 4735-4747, https://doi.org/10.1109/TGRS.2019.2892723, 763 

2019. 764 

Dokken, S. T., Håkansson, B., and Askne, J.: Inter-comparison of Arctic sea ice concentration using RADARSAT, ERS, SSM/I 765 

and In-Situ Data. Can. J. Rem. Sens., 26(6), 521-536, https://doi.org/10.1080/07038992.2000.10874793, 2000. 766 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, 767 

P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA’s optical high-resolution mission for 768 

GMES operational services. Rem. Sens. Environ., 120, 25-36, https://doi.org/10.1016/j.res.2011.11.026, 2012. 769 

Ezraty, R., Girard-Ardhuin, F., Piollé, J.-F., Kaleschke, L., and Heygster, G.: Arctic and Antarctic sea ice concentration and 770 

Arctic sea ice drift estimated from special sensor microwave data – Users’s Manual, Version 2.1, IFREMER, Brest, France, 771 

February 2007. 772 

Han, H., and Kim, H.-C.: Evaluation of summer passive microwave sea ice concentrations in the Chukchi Sea based on 773 

KOMPSAT-5 SAR and numerical weather prediction data. Rem. Sens. Environ., 209, 343-362, 774 

https://doi.org/10.1016/j.rse.2018.02.058, 2018. 775 

Heinrichs, J. F., Cavalieri, D. J., and Markus, T.: Assessment of the AMSR-E sea ice concentration product at the ice edge 776 

using RADARSAT-1 and MODIS imagery. IEEE Trans. Geosci. Rem. Sens., 44(11), 3070-3080, 777 

https://doi.org/10.1109/TGRS.2006.880622, 2006. 778 

Ivanova, N., Johannessen, O. M., Pedersen, R. T., and Tonboe, R. T.: Retrieval of Arctic sea ice parameters by satellite passive 779 

microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens., 52(11), 7233-780 

7246, http://doi.org/10.1109/TGRS.2014.2310136, 2014. 781 

Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., 782 

Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges 783 

and optimal approach using passive microwave observations. The Cryosphere, 9(5), 1797-1817, http://doi.org/10.5194/tc-9-784 

1797-2015, 2015. 785 

Kaleschke, L., Lüpkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., and Heygster, G.: SSM/I sea ice remote 786 

sensing for mesoscale ocean-atmosphere interaction analysis. Can. J. Rem. Sens., 27(5), 526-537, 2001. 787 



20 

 

Karvonen, J.: A sea ice concentration estimation algorithm utilizing radiometer and SAR data. The Cryosphere, 8(5), 1639-788 

1650, https://doi.org/10.5194/tc-8-1639-2014, 2014. 789 

Karvonen, J.: Baltic sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data. IEEE 790 

Trans. Geosci. Rem. Sens., 55(5), 2871-2883, https://doi.org/10.1109/TGRS.2017.2655567, 2017. 791 

Kern, S.: A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor 792 

Microwave/Imager 85 GHz data. Int. J. Rem. Sens., 25(21), 4555-4582, 2004. 793 

Kern, S., Kaleschke, L., and Clausi, D. A.: A comparison of two 85-GHz SSM/I ice concentration algorithms with AVHRR 794 

and ERS-2 SAR imagery. IEEE Trans. Geosci. Rem. Sens., 41(10), 2294-2306, https://doi.org/10.1109/TGRS.2003.817181, 795 

2003. 796 

Kern, S., Kaleschke, L., Girard-Ardhuin, F., Spreen, G., and Beitsch, A.: Global daily gridded 5-day median-filtered, gap-797 

filled ASI Algorithm SSMI-SSMIS sea ice concentration data, Integrated Climate Date Center (ICDC), CEN, University of 798 

Hamburg, Germany, https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/seaiceconcentration-asi-ssmi.html [last access: 799 

December 9, 2021], 2020. 800 

Kern, S., Lavergne, T., Notz, D., Pedersen, L., Tonboe, R., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-801 

ice concentration data set intercomparison: closed ice and ship-based observations. The Cryosphere, 13(12), 3261-3307, 802 

http://doi.org/10.5194/tc-13-3261-2019, 2019. 803 

Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., and Tonboe, R.: Satellite passive microwave sea-ice concentration data set 804 

intercomparison for Arctic summer conditions. The Cryosphere, 14(7), 2469-2493, https://doi.org/10.5194/tc-14-2469-2020, 805 

2020. 806 

Knap, W. H., Brock, B. W., Oerlemans, J., and Willis, I. C.: Comparison of Landsat TM-derived and ground-based albedos of 807 

Haut Glacier d’Arolla, Switzerland. Int. J. Rem. Sens., 20(17), 3293-3310, 1999. 808 

Koepke, P.: Removal of Atmospheric Effects from AVHRR albedos. J. Appl. Meteorol., 28, 1341-1348, 1989. 809 

Komarov, A. S., and Buehner, M.: Automated detection of ice and open water from dual-polarization RADARSAT-2 images 810 

for data assimilation. IEEE Trans. Geosci. Rem. Sens., 55(10), 5755-5769, https://doi.org/10.1109/TGRS.2017.2713987, 811 

2017. 812 

Komarov, A. S., and Buehner, M.: Improved retrieval of ice and open water from sequential RADARSAT-2 images. IEEE 813 

Trans. Geosci. Rem. Sens., 57(6), 3694-3702, https://doi.org/10.1109/TGRS.2018.2886685, 2019. 814 

Kwok, R.: Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion. 815 

Geophys. Res. Lett., 29(9), 1311, https://doi.org/10.1029/2002GL014787, 2002. 816 

Lavergne, T., Macdonald Sørensen, A., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, Eastwood, S., Gabarro, 817 

C., Heygster, G., Killie, M., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L.: Version 2 of the 818 

EUMETSAT OSI SAF and ESA-CCI sea-ice concentration climate data records. The Cryosphere, 13(1), 49–78, 819 

http://doi.org/10.5194/tc-13-49-2019, 2019. 820 

Leigh, S., Wang, Z., and Clausi, D. A.: Automated ice-water classification using dual polarization SAR satellite imagery. IEEE 821 

Trans. Geosci. Rem. Sens., 52(9), 5529-5539, https://doi.org/10.1109/TGRS.2013.2290231, 2014. 822 

Liu, Y., Key, J., and Mahoney, R.: Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS 823 

satellites. Rem. Sens., 8(6), 523-542, https://doi.org/10.3390/rs8060523, 2016. 824 

Lohse, J., Doulgeris, A. P., and Dierking, W.: An optimal decision-tree design strategy and its application to sea ice 825 

classification from SAR imagery. Rem. Sens., 11(13), 1574-1588, https://doi.org/10.3390/rs11131574, 2019. 826 

Lu, J., Heygster, G., and Spreen, G.: Atmospheric correction of sea-ice concentration retrieval for 89GHz AMSR-E 827 

observations. IEEE J. Sel. Topics Appl. Earth. Obs. Rem. Sens., 11(5), 1442-1457, 828 

https://doi.org/10.1109/JSTARS.2018.2805193, 2018. 829 



21 

 

Lu, P., Li, Z. L., Zhang, Z. H., and Dong, X. L.: Aerial observations of floe size distributions in the marginal ice zone of 830 

summer Prydz Bay. J. Geophys. Res., 113, C02011, https://doi.org/10.1029/2006JC003965, 2008. 831 

Ludwig, V., Spreen, G., and Pedersen, L. T.: Evaluation of a new merged sea-ice concentration dataset at 1 km resolution from 832 

thermal infrared and passive microwave satellite data in the Arctic. Rem. Sens., 12(19), 3183-3210, 833 

https://doi.org/10.3390/rs12193183, 2020. 834 

Maass, N., and Kaleschke, L.: Improving passive microwave sea ice concentration algorithms for coastal areas: applications 835 

to the Baltic Sea. Tellus, 62A(4), 393-410, https://doi.org/10.1111/j.1600-0870.2010.00452.x, 2010. 836 

Malmgren-Hansen, D., Pedersen, L. T., Aasbjerg Nielsen, A., Brandt Kreiner, M., Saldo, R., Skriver, H., Lavelle, J., Buus-837 

Hinkler, J., and Harnvig Krane, K.: A convolutional neural network architecture for sentinel-1 and AMSR2 data fusion. IEEE 838 

Trans. Geosci. Rem. Sens., 59(3), 1890-1902, https://doi.org/10.1109/TGRS.2020.3004539, 2020.  839 

Marcq, S., and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the 840 

atmosphere. The Cryosphere, 6(1), 143-156, https://doi.org/10.5194/tc-6-143-2012, 2012. 841 

Markus, T., and Cavalieri, D. J.: An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Rem. Sens., 842 

38(3), 1387-1398, 2000. 843 

Markus, T., and Cavalieri, D. J.: The AMSR-E NT2 sea ice concentration algorithm: its basis and implementation. J. Rem. 844 

Sens. Soc. Japan, 29(1), 216-225, 2009. 845 

Markus, T., and Dokken, S. T.: Evaluation of late summer passive microwave Arctic sea ice retrievals. IEEE Trans. Geosci. 846 

Rem. Sens., 40(2), 348-356, 2002. 847 

Meier, W. N.: Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic 848 

peripheral seas. IEEE Trans. Geosci. Rem. Sens., 43(6), 1324-1337, http://doi.org/10.1109/TGRS.2005.846151, 2005. 849 

Meier, W. N., and Windnagel, A.: Sea ice concentration – climate algorithm theoretical basis document, NOAA Climate Data 850 

Record Program CDRP-ATBD-0107 Rev. 7 (03/06/2018), available at https://www.ncdc.noaa.gov/cdr/oceanic/sea-ice-851 

concentration, 2018. 852 

Meier, W. N., Markus, T., and Comiso, J. C.: AMSR-E/AMSR2 Unified L3 Daily 25.0 km Brightness Temperatures, Sea Ice 853 

Concentration, Motion & Snow Depth Polar Grids, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data 854 

Center Distributed Active Archive Center, 2018, https://doi.org/10.5067/TRUIAL3WPAUP, [last access: July 13, 2021], 2018. 855 

Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:  NOAA/NSIDC Climate Data Record of Passive 856 

Microwave Sea Ice Concentration, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 857 

http://doi.org/10.7265/N59P2ZTG, [last access: July 13, 2021], 2017. 858 

Meier, W. N., Fetterer, F., Windnagel, A. K., and Stewart, S.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea 859 

Ice Concentration, Version 4. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center 860 

https://doi.org/10.7265/efmz-2t65. [last access: December 9, 2021], 2021. 861 

Mojica Moncada, J. F., and Holland, D.: Automatic Weather Station Pine Island Glacier, U.S. Antarctic Program (USAP) Data 862 

Center. https://doi.org/10.15784/601216 [last access: June 29, 2021], 2019. 863 

Nose, T., Waseda, T., Kodaira, T., and Inoue, J.: Satellite-retrieved sea ice concentration uncertainty and its effect on modelling 864 

wave evolution in marginal ice zones. The Cryosphere, 14(6), 2029-2052, https://doi.org/10.5194/tc-14-2029-2020, 2020. 865 

Ochilov, S., and Clausi, D. A.: Operational SAR sea-ice image classification. IEEE Trans. Geosci. Rem. Sens., 50(11), 4397-866 

4408, https://doi.org/10.1109/TGRS.2012.2192278, 2012. 867 

Onana, V.-De-P., Kurtz, N. T., Farrell, S. L., Koenig, L. S., Studinger, M., and Harbeck, J. P.: A sea-ice lead detection 868 

algorithm for use with high-resolution airborne visible imagery. IEEE Trans. Geosci. Rem. Sens., 51(1), 38-56, 869 

https://doi.org/10.1109/TGRS.2012.2202666, 2013. 870 

OSI SAF: Global Sea Ice Concentration Climate Data Record v2.0 - Multimission, EUMETSAT SAF on Ocean and Sea Ice, 871 

http://dx.doi.org/10.15770/EUM_SAF_OSI_0008 [last access: December 9, 2021], 2017a.OSI SAF: Global sea ice 872 



22 

 

concentration interim climate data record 2016-onwards (v2.0, 2017), OSI-430-b, https://osi-saf.eumetsat.int/products/osi-873 

430-b-complementing-osi-450 [last access: September 17 2021], 2017b. 874 

Ozsoy-Cicek, B., Xie, H., Ackley, S. F., and Ye, K.: Antarctic summer sea ice concentration and extent: comparison of ODEN 875 

2006 ship observations, satellite passive microwave and NIC sea ice charts. The Cryosphere, 3, 1-9, https://doi.org/10.5194/tc-876 

3-1-2009, 2009. 877 

Paget, M. J., Worby, A. P., and Michael, K. J.: Determining the floe-size distribution of East Antarctic sea ice from digital 878 

aerial photographs. Ann. Glaciol., 33, 94-100, 2001. 879 

Pedersen, L. T.; Dybkjær, G.; Eastwood, S.; Heygster, G.; Ivanova, N.; Kern, S.; Lavergne, T.; Saldo, R.; Sandven, S.; 880 

Sørensen, A.; Tonboe, R. T.: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Sea Ice Concentration Climate Data Record 881 

from the AMSR-E and AMSR-2 instruments at 25km grid spacing, version 2.1. Centre for Environmental Data Analysis, 05 882 

October 2017. http://dx.doi.org/10.5285/f17f146a31b14dfd960cde0874236ee5 [last access: December 9, 2021], 2017. 883 

Pegau, W. S., and Paulson, C. A.: The albedo of Arctic leads in summer. Ann. Glaciol., 33, 221-224, 2001. 884 

Peng, G., and Meier, W. N.: Temporal and regional variability of Arctic sea-ice coverage from satellite data. Ann. Glaciol., 885 

59(76, part 2), 191-200, http://doi.org/10.1017/aog.2017.32, 2018. 886 

Peng, G., Meier, W. N., Scott, D., and Savoie, M.: A long-term and reproducible passive microwave sea ice concentration data 887 

record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318. http://doi.org/10.5194/essd-5-311-2013, 2013. 888 

Perovich, D. K., and Jones, K. F.: The seasonal evolution of sea ice floe size distribution. J. Geophys. Res.-Oceans, 119, 8767-889 

8777, https://doi.org/10.1002/2014JC010136, 2014. 890 

Singha, S., Johansson, M., Hughes, N., Hvidegaard, S. M., and Skourup, H.: Arctic sea ice characterization using spaceborne 891 

fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements. IEEE Trans. Geosci. Rem. Sens., 56(7), 892 

3715-3734, https://doi.org/10.1109/TGRS.2018.2809504, 2018. 893 

Shi, Q., Su, J., Heygster, G., Shi, J., Wang, L., Zhu, L., Lou, Q., and Ludwig, V.: Step-by-step validation of Antarctic ASI 894 

AMSR-E sea-ice concentrations by MODIS and an aerial image. IEEE Trans. Geosci. Rem. Sens., 59(1), 392-403, 895 

https://doi.org/10.1109/TGRS.2020.2989037, 2021. 896 

Shokr, M., and Markus, T.: Comparison of NASA Team2 and AES-York ice concentration algorithms against operational ice 897 

charts from the Canadian Ice Service. IEEE Trans. Geosci. Rem. Sens., 44(8), 2164-2175, 898 

https://doi.org/10.1109/TGRS.2006.872077, 2006. 899 

Shokr, M., and Agnew, T. A.: Validation and potential applications of Environment Canada Ice Concentration Extractor 900 

(ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations. Rem. Sens. Environ., 128, 315-332, 901 

https://doi.org/10.1016/j.rse.2012.10.016, 2013. 902 

Spreen, G., Kaleschke, L., and G. Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 903 

113, C02S03, https://doi.org/10.1029/2005JC003384, 2008. 904 

Steer, A., Worby, A. P., and Heil, P.: Observed changes in sea-ice floe size distribution during early summer in the western 905 

Weddell Sea. Deep-Sea Res. II, 55, 933-942, https://doi.org/10.1016/j.dsr2.2007.12.016, 2008. 906 

Steffen, K., and Maslanik, J. A.: Comparison of Nimbus 7 scanning multichannel microwave radiometer radiance and derived 907 

sea ice concentrations with Landsat imagery for the north water area of Baffin Bay. J. Geophys. Res., 93(C9), 10769-10781, 908 

https://doi.org/10.1029/JC093iC09p10769, 1988. 909 

Steffen, K. and Schweiger, A.: NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite 910 

Program special sensor microwave imager: comparison with Landsat satellite data. J. Geophys. Res., 96(C12), 21,971-21,987, 911 

1991. 912 

Titchner, H. A., and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. 913 

Sea Ice concentrations. J. Geophys. Res. Atmos., 119(6), 2864-2889, https://doi.org/10.1002/2013JD020316, 2014. 914 



23 

 

Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L., and 915 

Kern, S.: The EUMETSAT sea ice concentration climate data record. The Cryosphere, 10(5), 2275-2290, 916 

http://doi.org/10.5194/tc-10-2275-2016, 2016. 917 

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., 918 

Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., 919 

Huchler, M., and Rostan, F.: GMES Sentinel-1 mission. Rem. Sens. Environ., 120, 9-24, 920 

https://doi.org/10.1016/j.rse.2011.05.028, 2012. 921 

Toyota, T., Haas, C., and Tamura, T.: Size distribution and shape properties of relatively small sea-ice floes in the Antarctic 922 

marginal ice zone in late winter. Deep-Sea Res. II, 58, 1182-1193, https://doi.org/10.1016/j.dsr2.2010.10.034, 2011. 923 

Toyota, T., Kohout, A., and Fraser, A. D.: Formation processes of sea ice floe size distribution in the interior pack and its 924 

relationship to the marginal ice zone off East Antarctica. Deep-Sea Res., II, 131, 28-40, 925 

https://doi.org/10.1016/j.dsr2.2015.10.003, 2016. 926 

Tschudi, M. A., Curry, J. A., and Maslanik, J. A.: Characterization of springtime leads in the Beaufort/Chukchi Seas from 927 

airborne and satellite observations during FIRE/SHEBA. J. Geophys. Res., 107(C10), 8034, 928 

https://doi.org/10.1029/2000JC000541, 2002. 929 

Wang, L., Scott, K. A., Xu, L., and Clausi, D. A.: Sea ice concentration estimation during melt from dual-pol SAR scenes 930 

using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Rem. Sens., 54(8), 4524-4533, 931 

https://doi.org/10.1109/TGRS.2016.2543660, 2016. 932 

Wang, L., Scott, K. A., and Clausi, D. A.: Sea ice concentration estimation during freeze-up from SAR imagery using a 933 

convolutional neural network. Rem. Sens., 9(5), 408-427, https://doi.org/10.3390/rs9050408, 2017. 934 

Wang, Y.-R. and Li, X.-M.: Arctic sea ice cover data from spaceborne SAR by deep learning, Earth Syst. Sci. Data Discuss. 935 

[preprint], https://doi.org/10.5194/essd-2020-332, in review, 2020. 936 

Wensnahan, M., Maykut, G. A., Grenfell, T. C., and Winebrenner, D. P.: Passive microwave remote sensing of thin sea ice 937 

using principal component analysis. J. Geophys. Res., 98(C7), 12453-12468, https://doi.org/10.1029/93JC00939, 1993. 938 

Wiebe, H., Heygster, G., and Markus, T.: Comparison of the ASI ice concentration algorithm with Landsat-7 ETM+ and SAR 939 

imagery. IEEE Trans. Geosci. Rem. Sens., 47(9), 3008-3015, https://doi.org/10.1109/TGRS.2009.2026367, 2009. 940 

Willmes, S., Nicolaus, M., and Haas, C.: The microwave emissivity variability of snow covered first-year sea ice from late 941 

winter to early summer: a model study. The Cryosphere, 8(3), 891-904, https://doi.org/10.5194/tc-8-891-2014, 2014. 942 

Worby, A. P., and Comiso, J. C.: Studies of the Antarctic sea ice edge and ice extent from satellite and ship observations. Rem. 943 

Sens. Environ., 92(1), 98-111, https://doi.org/10.1016/j.rse.2004.05.007, 2004. 944 

Zakhvatkina, N., Korosov, A., Muckenhuber, S., Sandven, S., and Babiker, M.: Operational algorithm for ice-water 945 

classification on dual-polarized RADARSAT-2 images. The Cryosphere, 11(1), 33-46, https://doi.org/10.5194/tc-11-33-2017, 946 

2017. 947 

Zatko, M. C., and Warren, S. G.: East Antarctic sea ice in spring: spectral albedo of snow, nilas, frost flowers and slush, and 948 

light-absorbing impurities in snow. Ann. Glaciol., 56(69), 53-64, https://doi.org/10.3189/2015AoG69A574, 2015. 949 

Zhang, Q., and Skjetne, R.: Image processing for identification of sea-ice floes and the floe size distributions. IEEE Trans. 950 

Geosci. Rem. Sens., 53(5), 2913-2924, https://doi.org/10.1109/TGRS.2014.2366640, 2015. 951 

Zhao, X., Chen, Y., Kern, S., Qu, M., Ji, Q., Fan, P., and Liu, Y.: Sea ice concentration derived from FY-3D MWRI and its 952 

accuracy assessment. IEEE Trans. Geosci. Rem. Sens. (Early Access), 18 pp., https://doi.org/10.1109/TGRS.2021.3063272, 953 

2021. 954 

 955 

 956 

 957 



24 

 

8 Tables 958 

 959 

Table 1. Overview of the investigated PMW SIC products. Column “ID (Algorithm)” holds the identifier we use henceforth 960 

to refer to the data product, and which algorithm it uses. Note that for those algorithms where an AMSR sensor forms part of 961 

the name, we refer to AMSR-E or AMSR2, depending on the respective data used. Column “Input data” refers to the input 962 

satellite data for the data set, together with the frequencies and respective field-of-view dimensions.  963 

 964 

ID (algorithm) Input data; frequencies (field-of-views) Grid resolution & 

type 

Reference 

OSI-450 (SICCI2)  SSM/I, SSMIS; 19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

EASE2.0 

Tonboe et al., 2016; OSI-SAF, 

2017a; 2017b; Lavergne et al., 

2019 

SICCI-12km  

(SICCI2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 

km x 14 km), 89.0 GHz (6 km x 4 km/ 5 km x 3 

km) 

12.5 km x 12.5 km 

EASE2.0 

Pedersen et al., 2017; Lavergne 

et al., 2019 

SICCI-25km 

(SICCI2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 

km x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 

km) 

25 km x 25 km 

EASE2.0 

Pedersen et al., 2017; Lavergne 

et al., 2019 

SICCI-50km 

(SICCI2) 

AMSR-E/AMSR2 6.9 GHz (75 km x 43 km/ 62 

km x 35 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 

km) 

50 km x 50 km 

EASE2.0 

Pedersen et al., 2017; Lavergne 

et al., 2019 

CBT-SSMI 

(Comiso 

bootstrap) 

SSM/I, SSMIS; 19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Comiso, 1986; Comiso et al., 

1997; Comiso and Nishio, 

2008; Meier et al., 2017 

NOAA-CDR 

(NASA Team & 

Comiso bootstrap) 

SSM/I, SSMIS;19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Peng et al., 2013; Meier et al., 

2017; Meier and Windnagel, 

2018 

CBT-AMSR  

(Comiso 

bootstrap) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 

km x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 

km) 

25 km x 25 km 

PolarStereo 

Comiso et al., 2003; Comiso 

and Nishio, 2008; Comiso, 

2009; Meier et al., 2018 

ASI-SSMI (ASI) SSM/I, SSMIS; 85.5 GHz (15 km x 13 km) 12.5 km x 12.5 km 

PolarStereo 

Kaleschke et al., 2001; Ezraty 

et al., 2007; Kern et al., 2020 

NT1-SSMI  

(NASA-Team) 

SSM/I, SSMIS;19.35 GHz (69 km x 43 km), 37.0 

GHz (37 km x 28 km) 

25 km x 25 km 

PolarStereo 

Cavalieri et al, 1984; 1992; 

1999; Meier et al., 2017 

NT2-AMSR  

(NASA-Team-2) 

AMSR-E/AMSR2; 18.7 GHz (27 km x 16 km/ 22 

km x 14 km), 36.5 GHz (14 km x 8 km/ 12 km x 7 

km), 89.0 GHz (6 km x 4 km/ 5 km x 3 km) 

25 km x 25 km 

PolarStereo 

Markus and Cavalieri, 2000; 

2009; Meier et al., 2018 

 965 

Table 2. Overview about the wavelengths and bandwidths of the Landsat channels used. 966 

 967 

Wavelength [nm] of Landsat-5 Landsat-7 Landsat-8 

Channel 2  528-609 519-601 -- 

Channel 3 626-693 631-692 533-590 

Channel 4 776-904 772-898 636-673 

Channel 5 -- -- 851-879 
 968 
 969 

Table 3. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them 970 

(see text) averaged for 12 Landsat-8 scenes selected for the Northern Hemisphere (NH) at 25 km and 50 km grid resolution. 971 

The number to the right of the ± denotes one standard deviation. All SIC values are in percent. 972 

αthinice \  αopenwater -0.03 Actual value +0.03 NH, 25km 

-0.1 99.2 ± 2.1 -- 97.3 ± 3.7  

Actual value -- 98.0 ± 3.1 --  

+0.1 99.2 ± 2.1 -- 97.3 ± 3.7  

    NH, 50km 

-0.1 98.9 ± 3.2 -- 96.9 ± 4.5  

Actual value -- 97.7 ± 4.1 --  

+0.1 98.9 ± 3.2 -- 96.9 ± 4.5  
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 973 

Table 4. Landsat SIC derived using the actual pair of albedo threshold values (“Actual value”) and the four variations of them 974 

(see text) averaged for 15 Landsat-8 scenes selected for the Southern Hemisphere (SH) at 25 km and 50 km grid resolution. 975 

The number to the right of the ± denotes one standard deviation. All SIC values are in percent. 976 

αthinice \  αopenwater -0.03 Actual value +0.03 SH, 25km 

-0.1 63.0 ± 27.0 -- 60.5 ± 26.4  

Actual value -- 61.5 ± 26.6 --  

+0.1 63.0 ± 27.0 -- 60.5 ± 26.4  

    SH, 50km 

-0.1 54.5 ± 34.8 -- 52.3 ± 33.8  

Actual value -- 53.1 ± 34.1 --  

+0.1 54.5 ± 34.8 -- 52.3 ± 33.8  

 977 

Table 5. Summary of the statistical parameters displayed in Fig. 2. Diff, DiffSDEV, and Median (all in percent SIC) are the 978 

mean difference PMW SIC minus Landsat SIC, its standard deviation and the median difference; Slope and Intercept (in 979 

percent SIC) are the coefficients of the linear regression, and R² and N are the squared linear correlation coefficient and number 980 

of data pairs, respectively. Numbers in bold and bold italic font denote the respective “best” and “2nd best” value, respectively, 981 

e.g. largest and 2nd-largest values of R² and lowest and 2nd-lowest values of Diff, Intercept and difference unity minus slope. 982 

 983 

LS5, NH 

2003-11 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSRE 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSRE 

Diff -5.5 -5.4 -3.5 -4.9 0.6 0.7 -0.3 -8.4 -7.8 0.0 

DiffSDEV 9.2 8.3 9.1 8.7 8.2 8.2 7.7 11.7 10.5 7.5 

Median -3.2 -3.4 -1.7 -3.3 0.0 0.0 0.0 -5.7 -6.0 0.0 

Slope 0.833 0.963 0.967 0.675 0.515 0.524 0.730 0.665 0.846 0.675 

Intercept 10.6 -1.9 -0.3 26.4 47.4 46.6 25.9 23.9 7.0 31.5 

R² 0.57 0.64 0.57 0.50 0.49 0.49 0.54 0.32 0.51 0.55 

N 30549 8519 2748 8519 7557 7491 8384 7637 32855 8384 

 984 

Table 6. Summary of statistical parameters shown in Fig. 3. See Table 5 for an explanation of the parameters given. 985 

LS8, NH 

2013-15 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -6.2 -4.7 -3.6 -4.3 1.6 1.6 0.4 -4.8 -6.0 1.2 

DiffSDEV 11.0 8.2 9.0 9.8 9.9 9.8 8.0 11.4 12.2 8.1 

Median -2.8 -2.8 -2.0 -2.9 0.0 0.0 0.0 -1.5 -3.8 -1.5 

Slope 0.868 0.974 0.997 0.779 0.688 0.704 0.841 0.842 0.919 0.828 

Intercept 6.1 -2.4 -3.3 16.2 30.5 29.1 15.2 9.8 1.5 17.2 

R² 0.72 0.84 0.79 0.73 0.72 0.72 0.81 0.67 0.69 0.80 

N 23433 6484 2056 6576 5944 5945 5831 6008 22655 5831 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 
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Table 7. Summary of statistical parameters shown in Fig. 4. See Table 5 for an explanation of the parameters given. 994 

LS8, SH 

2013-15 

SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.1 -5.9 -6.8 -5.3 -1.5 -1.6 -3.0 -9.5 -9.1 3.4 

DiffSDEV 13.3 13.5 16.0 13.5 14.6 14.8 14.2 15.5 16.9 13.8 

Median -1.3 -2.1 -1.9 -2.8 0.0 0.0 -0.2 -7.3 -6.5 0.4 

Slope 0.915 0.969 1.033 0.827 0.826 0.843 0.915 0.834 0.898 0.821 

Intercept 2.1 -3.3 -9.6 9.5 13.4 11.8 4.2 4.7 -0.4 18.7 

R² 0.78 0.77 0.72 0.73 0.70 0.70 0.74 0.68 0.68 0.72 

N 34331 9796 3098 9796 9788 9788 10009 9883 34252 10009 

 995 

Table 8. Comparison of statistical parameters listed in Tables 5 to 7 in both hemispheres for SICCI-2 and OSI-450 products 996 

using truncated or non-truncated (near-100 % SIC) PMW SIC data. See Table 5 for an explanation of the parameters given. 997 

Top (LS5, NH 2003-11) is for first-year ice dominated cases, middle (LS8, NH 2013-15) is for mixed first-year / multiyear 998 

and multiyear ice cases, both Northern Hemisphere; bottom (LS8, SH 2013-15) is for the Southern Hemisphere. The overall 999 

median differences do not change and are not listed again. 1000 

 1001 

LS5, NH 2003-11 SICCI-12 
SICCI-12 

non-truncated 
SICCI-25 

SICCI-25 

non-truncated 
SICCI-50 

SICCI-50 

non-truncated 
OSI-450 

OSI-450 non-

truncated 

Diff -5.5 -4.6 -5.4 -5.0 -3.5 -3.0 -4.9 -4.5 

DiffSDEV 9.2 10.0 8.3 8.7 9.1 9.3 8.7 9.0 

Slope 0.833 0.852 0.963 0.974 0.967 0.979 0.675 0.684 

Intercept 10.6 9.6 -1.9 -2.5 -0.3 -1.0 26.4 26.0 

R² 0.57 0.54 0.64 0.63 0.57 0.56 0.50 0.48 

LS8, NH 2013-15         

Diff -6.2 -4.9 -4.7 -4.4 -3.6 -3.4 -4.3 -3.9 

DiffSDEV 11.0 12.1 8.2 8.5 9.0 9.1 9.8 9.9 

Slope 0.868 0.891 0.974 0.982 0.997 1.000 0.779 0.786 

Intercept 6.1 5.2 -2.4 -2.7 -3.3 -3.5 16.2 15.9 

R² 0.72 0.68 0.84 0.83 0.79 0.79 0.73 0.73 

LS8, SH 2013-15         

Diff -5.1 -4.3 -5.9 -5.6 -6.8 -6.5 -5.3 -5.1 

DiffSDEV 13.3 13.8 13.5 13.7 16.0 16.2 13.5 13.7 

Slope 0.915 0.931 0.969 0.976 1.033 1.040 0.827 0.832 

Intercept 2.1 1.6 -3.3 -3.5 -9.6 -9.9 9.5 9.3 

R² 0.78 0.77 0.77 0.77 0.72 0.71 0.73 0.73 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 

 1009 
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Table 9. Summary of statistical results obtained for three freeze-up cases in the Northern Hemisphere (NH) and for 11 freeze-1010 

up cases in the Southern Hemisphere (SH) using Landsat 8 data. See Table 5 for an explanation of the parameters given. 1011 

NH 
SICCI-

12 

SICCI-

25 

SICCI-

50 

OSI-

450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -8.2 -8.9 -10.5 -7.7 5.0 4.6 2.6 -14.1 -12.0 4.3 

Diff SDEV 13.5 10.8 17.8 13.9 18.5 18.4 12.9 20.8 21.9 13.8 

Slope 0.799 0.960 0.948 0.665 0.655 0.679 0.881 0.673 0.738 0.866 

Intercept 7.8 -5.7 -6.4 19.3 31.6 29.4 12.0 11.3 8.6 14.9 

R² 0.77 0.84 0.65 0.70 0.58 0.58 0.77 0.50 0.51 0.74 

N 751 208 64 210 191 191 186 196 702 186 

SH           

Diff -11.8 -12.1 -7.4 -12.1 -6.3 -6.1 -6.5 -10.9 -11.4 2.1 

Diff SDEV 18.1 15.9 16.1 15.1 12.1 12.1 11.8 15.3 18.1 10.6 

Slope 0.839 0.915 1.027 0.861 0.965 0.971 0.977 0.953 0.982 0.943 

Intercept 2.0 -4.8 -9.7 0.1 -3.3 -3.7 -4.5 -6.9 -9.8 7.0 

R² 0.66 0.72 0.75 0.73 0.83 0.84 0.84 0.75 0.72 0.86 

N 1843 531 169 531 536 536 547 540 1842 547 

 1012 

Table 10. Summary of statistical results obtained in the Northern Hemisphere for 28 cases with first-year ice (top, LS5, NH 1013 

2003-11) and for 12 cases with mixed first-year / multiyear or multiyear ice (bottom, LS8, NH 2013-15). See Table 5 for an 1014 

explanation of the parameters shown. For SICCI-2 and OSI-450 products, we include in all rows but “N” values based on non-1015 

truncated (near 100 %) SIC data to the right of the “/”. We omit slope and intercept because SIC data pairs cluster at 100 %. 1016 

LS5, NH 2003-11 SICCI-12 SICCI-25 SICCI-50 OSI-450 
CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR 

Diff -4.0 / -3.0 -3.7 / -3.4 -1.5 / -1.0 -3.5 / -3.2 -0.8 -0.7 -0.9 -5.8 -6.9 -0.6 

DiffSDEV 5.2 / 6.0 4.0 / 4.4 1.8 / 2.5 3.7 / 4.1 1.6 1.4 1.8 6.6 5.6 1.4 

Median -2.6 / -2.6 -2.5 / -2.5 -1.0 / -1.0 -2.4 / -2.4 0.0 0.0 0.0 -3.5 -6.0 0.0 

N 7028 1978 677 1978 1940 1940 2104 1940 7633 2104 

LS8, NH 2013-15           

Diff -2.9 / -0.8 -1.5 / -0.5 -0.9 / -0.4 -1.3 / -0.3 -0.5 -0.2 -1.0 -0.3 -2.6 -0.6 

DiffSDEV 4.1 / 6.2 2.2 / 3.1 1.2 / 1.7 1.9 / 3.0 1.4 0.9 3.0 0.9 2.6 2.5 

Median -0.2 / -0.2 -0.2 / -0.2 -0.3 / -0.3 -0.2 / -0.2 0.0 0.0 0.0 0.0 -2.1 -0.5 

N 2659 764 242 764 714 714 723 714 2571 723 

 1017 

Table 11. Summary of statistical results obtained for the four high concentration cases in the Southern Hemisphere. See Table 1018 

5 for an explanation of the parameters shown. For SICCI-2 and OSI-450 products, we include in rows “Diff”, “DiffSDEV”, 1019 

and “Median” values obtained using non-truncated SIC to the right of the “/”. 1020 

LS8, SH 2013-15 SICCI-12 SICCI-25 SICCI-50 OSI-450 
CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -0.1 / 2.5 0.0 / 2.4 0.0 / 2.7 -0.3 / 1.8 -0.7 0.1 -1.1 -0.9 -2.9 -0.1 

DiffSDEV 1.7 / 2.9 0.8 / 2.3 1.2 / 2.7 2.1 / 3.1 1.7 0.7 2.0 2.6 2.5 1.2 

Median  0.0 / 2.8 0.0 / 2.5 0.1 / 2.6 0.0 / 2.2 0.0 0.1 0.0 0.0 -2.4 0.0 

N 978 287 93 287 288 288 302 288 973 302 

 1021 

 1022 
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Table 12. Summary of statistical results obtained for 15 melt-condition cases (without melt-ponds) in the Northern 1023 

Hemisphere. See Table 5 for an explanation of the parameters shown. Numbers added to the right of the “/” for SICCI-2 and 1024 

OSI-450 products denote the results obtained using non-truncated SIC. 1025 

LS8, NH 

2013-15 
SICCI-12 SICCI-25 SICCI-50 OSI-450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.3 / -4.3 -5.1 / -4.6 -4.2 / -4.2 -4.6 / -4.3 2.2 2.4 0.2 -3.5 -4.7 1.7 

DiffSDEV 10.5 / 11.2 8.9 / 9.3 9.6 / 9.6 9.5 / 9.7 9.8 9.7 7.4 10.8 12.2 8.3 

Slope 0.829/0.852 0.930/0.943 0.898/0.899 0.617/0.626 0.418 0.416 0.727 0.637 0.740 0.564 

Intercept 10.5 / 9.4 1.4 / 0.6 5.3 / 5.2 30.9 / 30.4 56.9 57.3 26.1 30.6 19.5 43.0 

R² 0.67 / 0.65 0.72 / 0.71 0.61 / 0.61 0.61 / 0.60 0.54 0.54 0.66 0.48 0.55 0.56 

N 2926 817 266 817 817 817 795 823 3117 795 

 1026 

Table 13. Summary of statistical results obtained for 45 melt-conditions cases in the Southern Hemisphere. See caption of 1027 

Table 5 for an explanation of the parameters given. Numbers added to the right of the “/” for SICCI-2 products and OSI-450 1028 

denote results obtained using non-truncated SIC. 1029 

 1030 

LS8, SH 

2013-15 
SICCI-12 SICCI-25 SICCI-50 OSI-450 

CBT-

SSMI 

NOAA-

CDR 

CBT-

AMSR2 

NT1-

SSMI 

ASI-

SSMI 

NT2-

AMSR2 

Diff -5.0 / -4.3 -5.8 / -5.5 -8.1 / -7.8 -4.9 / -4.6 -0.4 -0.6 -2.8 -8.7 -7.8 5.1 

DiffSDEV 13.7 / 14.1 13.9 / 14.1 17.1 / 17.2 14.8 / 14.9 15.6 15.6 15.4 16.4 18.6 15.9 

Slope 0.888/0.903 0.951/0.958 0.983/0.991 0.750/0.754 0.772 0.794 0.895 0.791 0.859 0.824 

Intercept 4.0 / 3.5 -1.8 /   -2.1 -6.7 / -7.1 14.1 / 15.4 18.0 16.0 5.8 8.2 3.6 19.4 

R² 0.79 / 0.78 0.78 / 0.78 0.69 / 0.69 0.71 / 0.71 0.69 0.69 0.72 0.67 0.65 0.69 

N 10214 2915 916 2915 2899 2899 2955 2929 10129 2955 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 
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9 Figures 1051 

 1052 

 1053 

Figure 1. Location of the Landsat scenes used. Panels a) through c) Arctic; panel d) Antarctic. Note that scenes do overlap. 1054 

The total number of scenes shown is 134 (a), 12 (b), 88 (c), and 134 (d). 1055 

 1056 

 1057 

 1058 
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 1059 
 1060 

Figure 2. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for the first-year ice dominated 1061 

cases from 2003-2011 in the Northern Hemisphere (Landsat-5). Black dots are individual data pairs, the black solid line is the 1062 

linear regression, and the black dashed line is the identity line. Red triangles denote the mean PMW SIC computed for Landsat 1063 

SIC ranges 0%-5%, 5%-15%, 15%-25%, … , 85%-95%, 95%-100%, red bars one standard deviation of these mean values and  1064 

the red dashed line is the respective linear regression line. Red squares denote the median PMW SIC for the same Landsat SIC 1065 

ranges and the red solid line is the respective linear regression line. The overall mean and median difference PMW SIC minus 1066 

Landsat SIC, its standard deviation, and the equation of the linear regression through the individual data pairs is shown at the 1067 

top, the number N of data pairs and the squared linear correlation coefficient at the bottom of each panel. 1068 

 1069 

 1070 
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 1071 

Figure 3. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for mixed first-year / multiyear 1072 

or multiyear ice cases from 2013-2015 in the Northern Hemisphere (Landsat-8). See Fig. 2 for a description of symbols, lines 1073 

and text. 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 
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 1085 

Figure 4. Scatterplots of PMW SIC (y-axis) versus Landsat SIC (x-axis) for all ten products for 2013-2015 in the Southern 1086 

Hemisphere. See Fig. 2 for a description of symbols, lines and text. 1087 

 1088 
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 1089 

Figure 5. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC (LSIC) for all ten products for a freeze-1090 

up case in the Fram Strait on September 15, 2015. The Landsat surface class map at the top left shows white: thick / snow-1091 

covered ice; grey: bare / thin ice; black: open water). The red star marks the location of Henrik Krøyer Holme station (see 1092 

text). White and grey pixels are used to compute maps of gridded LSIC at 12.5 km, 25 km and 50 km, respectively (blue: 1093 

outside Landsat image). A subset of SICCI-12km SIC grid cells shown at the top right illustrates the array used for the 1094 

collocation. Panels in the remaining four rows show PMW SIC and PMW SIC minus LSIC for all ten products. Land is flagged 1095 

brown in the SIC panels and black in the SIC difference panels; it differs between the PMW products. The land masks in the 1096 

two bigger maps at the top come from the plotting routine used. LSIC maps use the land masks of the SICCI-2 products. 1097 

 1098 



34 

 

 1099 

Figure 6. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a scene near the 1100 

coast during freeze-up in Pine Island Bay, Amundsen Sea, Southern Ocean, on March 12, 2014. The red star in the top left 1101 

map marks the location of the Pine Island Glacier Automatic Weather Station (see text). Some of the white patches near the 1102 

coast in this map are actually glacier ice not adequately flagged by the land mask. See Fig. 5 for more details. 1103 

 1104 
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 1105 

Figure 7. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a high-1106 

concentration scene in the Beaufort Sea, Arctic Ocean, on April 4, 2015. See Fig. 5 for a description of the maps shown. 1107 

 1108 

 1109 
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 1110 

Figure 8. Landsat SIC, PMW SIC, and the difference PMW SIC minus Landsat SIC for all ten products for a high-1111 

concentration scene in the Weddell Sea, Southern Ocean, on March 12, 2015. See Fig. 5 for a description of the maps shown. 1112 
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 1114 

Figure 9. Landsat SIC, PMW SIC, and difference PMW SIC minus Landsat SIC for all ten products for a melt-condition case 1115 

in the Ross Sea, Southern Ocean, on January 29, 2014. See Fig. 5 for more description of the maps shown. 1116 

 1117 
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 1118 
Figure 10. Scatterplots of SICCI-50km SIC (y-axis) versus Landsat SIC (x-axis) for ice regime “leads/openings” in the 1119 

Southern Hemisphere in years 2013-2015. Black dots are individual data pairs, the black solid line is the linear regression, and 1120 

the black dashed line is the identity line. Red triangles denote the mean PMW SIC computed for Landsat SIC ranges 0%-5%, 1121 

5%-15%, 15%-25%, … , 85%-95%, 95%-100%, the red bars one standard deviation of these mean values; the red line is the 1122 

respective linear regression line. The overall difference PMW SIC minus Landsat SIC, its standard deviation, and the equation 1123 

for the linear regression using the individual data pairs is given at the top, the number N of data pairs and the squared linear 1124 

correlation coefficient at the bottom of each panel. Panel a) Fully truncated SIC, all filters applied; panel b) fully non-truncated 1125 

SIC, no filters applied; panel c) truncated / non-truncated SIC, GT100 and OWF applied; panel d) truncated / non-truncated 1126 

SIC, GT100 and LSO applied. Blue circles mark SICCI-50km SIC values set to 0 % by the OWF; orange circles mark SICCI-1127 

50km SIC values set changed by the LSO (solid circle: SIC set to 0 %, broken circle: SIC reduced). 1128 
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 1130 

Figure 11. Summary of all linear regression lines obtained for the comparison between Landsat SIC and PMW SIC for all ice 1131 

regimes – except high-concentration ice. Columns denote, from left to right, Landsat-5 Arctic (i.e. first-year ice), Landsat-8 1132 

Arctic (i.e. mixed first-year / multiyear ice and multiyear ice), and Landsat-8 Antarctic. Ice regimes are sorted per row from 1133 

top to bottom: “all” cases, “ice edge”, and “freeze-up”. Different colors and line styles denote different products as indicated. 1134 

The black solid line denotes the identity line. 1135 

 1136 
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 1138 

Figure 11. continued for ice regimes “leads and coastal openings”, “heterogeneous ice”, “melt-conditions”. 1139 
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 1141 

Figure 12. Illustration of the statistical parameters of the comparison between Landsat SIC and PMW SIC for all ice regimes. 1142 

Rows denote, from top to bottom, first-year ice Arctic (Landsat-5), mixed first-year / multiyear ice and multiyear ice Arctic 1143 

(Landsat-8), and all ice Antarctic (Landsat-8). Columns denote, from left to right, accuracy (difference PMW SIC minus 1144 

Landsat SIC), precision (standard deviation of the SIC difference), and squared linear correlation coefficient. The uni-colored 1145 

rows denote cases left out, either because these ice regimes are not populated (topmost row of panels) or because the retrieval 1146 

of parameters did not make sense (Squared linear correlation for ice regime “high concentration”). 1147 

 1148 


