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Abstract.  It is well understood that the distribution and quantity of liquid water in snow is relevant for snow 

hydrology and avalanche forecasting, yet detecting and quantifying liquid water in snow remains a challenge from 

the micro- to the macro-scale. Using near-infrared (NIR) spectral reflectance measurements, previous case studies 10 

have demonstrated the capability to retrieve surface liquid water content (LWC) of wet snow by leveraging shifts in 

the complex refractive index between ice and water. However, different models to represent mixed-phase optical 

properties have been proposed, including (1) internally mixed ice and water spheres, (2) internally mixed water 

coated ice spheres, and (3) externally mixed interstitial ice and water spheres. Here, from within a controlled 

laboratory environment, we determine the optimal mixed-phase optical property model for simulating wet snow 15 

reflectance using a combination of NIR hyperspectral imaging, radiative transfer simulations (DISORT), and an 

independent dielectric LWC measurement (SLF Snow Sensor). Maps of LWC were produced by finding the least 

residual between measured reflectance and simulated reflectance in spectral libraries, generated for each model with 

varying LWC and grain size, and assessed against the in situ LWC sensor. Our results show that the externally 

mixed model performed the best, retrieving LWC with an uncertainty of ~1%, while the simultaneously retrieved 20 

grain size better represented wet snow relative to the established scaled band area method. Furthermore, the LWC 

retrieval method was demonstrated in the field, imaging a snowpit sidewall during melt conditions, mapping pooling 

water, flow features, and LWC distribution in unprecedented detail. 

1. Introduction 

The distribution and quantity of liquid water within a snowpack, introduced by rain and/or melt, is relevant for 25 

multiple snow related applications including snow hydrology, remote sensing, and avalanche forecasting. In terms of 

snow hydrology, water is an indicator of snow energy balance and snow melt timing as the change in phase from ice 

to water indicates that the cold content of the snowpack is depleted, and that energy balance inputs are contributing 

to melt (Dewalle and Rango, 2008). Rain-on-snow can accelerate this process by contributing large energy inputs 

into the snowpack over a short amount of time (Mazurkiewicz et al., 2008). Water at the surface will also lower 30 

snow albedo, initiating a positive feedback loop that increases absorbed solar radiation, the main driver of snowmelt 

(Gupta et al., 2005). For active and passive microwave remote sensing of snow, the presence of water alters 

microwave signatures because of the large difference in relative permittivity between liquid water and ice (i.e., dry 

snow). For active microwave sensors, wet snow causes characteristic changes in microwave backscatter and reduces 
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penetration depth (Shi and Dozier, 1992), while for passive sensors, the emissivity of the snow surface is increased 35 

(Walker and Goodison, 1993). For avalanche forecasting, the infiltration of liquid water into the snowpack impacts 

snow stability (Conway and Raymond, 1993). The strength of the snowpack can be increased at lower water content, 

where grains form well bonded clusters, but reduced at higher water content when water flow through pore space 

deteriorates a significant number of snow grain bonds resulting in relatively cohesionless particles (Colbeck, 1982). 

Although it is recognized as a critical snow property across the cryospheric sciences, liquid water content (LWC) 40 

measurements in a snowpack are notoriously difficult to accurately quantify due to the high spatial and temporal 

variability of liquid water distribution.  

Here, the utility of mapping LWC in situ using near-infrared hyperspectral imaging (NIR-HSI) and radiative 

transfer model inversion is assessed. This approach leverages the segments of the near-infrared (NIR) spectrum 

where the optical properties of liquid water, hereafter referred to as water, vary from those of ice. To date, wet snow 45 

has been modeled using effective spheres with a known radius, referred to as the effective grain radius (re), where 

the optical properties of ice and water are mixed either internally or externally. In wet snow, the arrangement of 

water relative to ice particles and pore space varies based on the level of saturation, which may be relevant for 

radiative transfer modeling. For example, water saturation below 7% (pendular regime), when water is contained in 

menisci held in between the ice particles (Colbeck, 1979), might be best represented using an internally mixed 50 

particle model where an ice sphere is coated in water. On the other hand, at saturation above 7% (funicular regime), 

when ice particles become surrounded by water as it fills the pore space, this might be best represented as an 

internally mixed-phase sphere or externally mixed media model using interstitial ice and water spheres.  

Although different mixing model representations have been proposed and demonstrated, no study has 

quantitively compared the different approaches, or compared LWC retrievals to established LWC measurement 55 

methods. Without intercomparing or validation, the best approach for retrieving LWC from NIR spectral reflectance 

has yet to be determined. Additionally, radiative transfer approaches to retrieving re are based on the optical 

properties of ice and implicitly assume dry snow, and such retrievals have not been assessed for wet snow. The main 

objectives of this study are threefold: (1) intercompare three wet snow reflectance models against measured LWC 

from a dielectric measurement instrument in a controlled laboratory environment, (2) simultaneously assess 60 

effective grain size retrieval methods and their suitability for use with wet snow, and (3) demonstrate the capability 

of a compact NIR hyperspectral imager to map LWC and snow grain size at the laboratory and field scales.  

2. Background 

2.1 Liquid water in snow 

Water movement through snow is a spatially and temporally complex process, controlled by water saturation level, 65 

snow microstructure, and snow topography. At low water saturation (<7%), capillary forces hold water in the pore 

space between grains, resulting in a relatively slow and semi-uniform horizontal infiltration front, referred to as 

matrix flow (Colbeck, 1973). On the other hand, at high saturation (>7%), water can flow through the snowpack 

preferentially, resulting in the formation of vertical “finger” flows at the centimeter scale or macropore flows at the 

meter scale (Schneebeli, 1995; Newman et al., 2004). Although gravitational forces primarily drive vertical 70 
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movement of water in snow, large amounts of water can be diverted horizontally due to stratigraphic layers in the 

snowpack, such as ice crusts or capillary barriers (i.e., fine grains over coarse grains) (Waldner et al., 2004; Webb et 

al., 2021). 

2.2 Measurement of liquid water in snow 

The complexity of water movement through snow makes observations and measurements challenging. Early 75 

observations of water flow patterns through snow were made using dye tracers (Seligman et al., 1936; Gerdel, 

1954), a method which is still used today.  Dye tracers provide a spatial visualization of water infiltration that has 

been used to study processes such as preferential flow (Schneebeli, 1995) and capillary barriers (Avanzi et al., 

2016).  Additionally, fluorescent dye tracers have been used to classify LWC regimes across a snowpit wall 

(Waldner et al., 2004), however, the method remains primarily a qualitative visualization technique.  80 

In situ measurements of LWC in snow have traditionally been measured by centrifugal separation (Kuroda, 

1954), melting calorimetry (Yosida, 1940), freezing calorimetry (Jones et al., 1983), and the dilution method (Davis 

et al., 1993). A more detailed summary of these methods can be found in Stein et al. (1997). Generally, these 

methods are difficult to perform, time consuming, and have only been occasionally used since their introduction. 

More commonly, LWC measurements are obtained using dielectric methods at frequencies ranging from 1 MHz to 1 85 

GHz by leveraging the large differences in the relative permittivity (εr) between water (εr ≈ 88), ice (εr ≈ 3.15), and 

air (εr ≈ 1) (Tiuri et al., 1984). This is done by time domain reflectometry (TDR) or with capacitance sensors which 

measure the relative permittivity of snow (Lundberg, 1997; Denoth et al., 1984). Although the measured relative 

permittivity is primarily a function of LWC, snow density also has some influence. Therefore, dielectric methods 

also require a separate density measurement. Examples of currently available dielectric instruments include the 90 

Snow Fork (Sihvola and Tiuri, 1986), Denoth Meter (Denoth, 1994), A2 Photonics WISe Sensor (A2 Photonic 

Sensors, 2019), and the SLF Snow Sensor (FPGA Company, 2018), which was used in this study. Although these 

instruments make measurements quicker relative to traditional methods, they often require destructive sampling, and 

only provide a discrete volume-averaged point measurement. Therefore, there is currently no in situ method to 

effectively quantify spatial variability of LWC at a high (sub-cm) spatial resolution. 95 

Previous non-destructive measurements of LWC in snow have been made using remote sensing techniques. 

Like dielectric sensors, active and passive microwave sensors leverage the difference in relative permittivity 

between water, ice, and air. At the ground-based scale, upward-looking ground penetrating radar (upGPR) has been 

used to measure the volumetric LWC directly above antennas buried below a snowpack (Schmid et al., 2014). At the 

spaceborne scale, active and passive microwave sensors have been used to make classification maps of wet or dry 100 

snow at spatial resolutions on the order of tens of meters (e.g., (Lund et al., 2020; Walker and Goodison, 1993)). 

Similarly, in the optical wavelengths, the shift in absorption patterns of ice and water across the NIR have been 

leveraged to map surface LWC (Green et al., 2002), which is the primary method of interest in this work.   

2.3 Modeling wet snow near-infrared reflectance 

Absorption in the optical wavelengths is described by the imaginary part of the complex refractive index. Although 105 

the absorption patterns across the NIR are similar between ice and water, there are shifts that distinguish the 
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different phases. The spectral complex refractive index for ice (Warren and Brandt, 2008) and water at 0 oC  (Rowe 

et al., 2020) across NIR wavelengths is shown in Figure 1. Compared to the difference in the relative dielectric 

properties across the radio and microwave wavelengths, the shifts in the imaginary part of the complex refractive 

index are relatively minor, and therefore require measured reflectance at multiple wavelengths and radiative transfer 110 

modeling to detect. Additionally, the penetration of light in the NIR wavelengths is relatively shallow, limiting 

detection of water to the snow surface (~2 cm). This has limited the use of optical methods to detecting surface 

water using either in situ spectrometer measurements, or airborne imaging spectrometer measurements (Green et al., 

2002; Hyvarinen and Lammasniemi, 1987).  

 Inversion of radiative transfer models is commonly used in remote sensing applications to retrieve physical 115 

snow properties from measured spectra and many modeling approaches have been proposed. Hyvarinen and 

Lammasniemi (1987) modeled the reflectance of wet snow using a collection of spheres with radius re, to 

simultaneously estimate LWC and grain size. To describe the optical properties of the effective spheres, an effective 

complex refractive index (keff) was calculated by volume-mixing the complex refractive index of ice and water. 

Using a forward modeling approach, LWC and re were retrieved using only three bands (1030, 1260 and 1370 nm), 120 

which were assessed using a dilatometer in a laboratory. Alternatively, Green et al. (2002) modeled wet snow using 

two approaches: 1) as a collection of water coated ice spheres and 2) water spheres interspersed in the interstitial 

space within an ice-sphere matrix. LWC and re were retrieved by matching the simulated spectra to measured 

spectra by finding the lowest residual. By visual inspection, Green et al. (2002) concluded that wet snow is best 

modeled as water coated ice spheres, though no quantitative retrieval assessment was performed. More recently, a 125 

three band ratio method to classify wet or dry snow was proposed by Shekhar et al. (2019), based on a correlation 

between field spectrometer measurements and Snow Fork LWC measurements, although effective grain radius was 

not considered. 

 

Figure 1: Complex refractive index of ice and liquid water at 0 oC across the near-infrared region ranging from 900 – 1700 
nm, which is the same range measured by the Resonon Pika NIR-320. Hyperspectral imager. 
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 To date, three radiative transfer approaches for simulating the reflectance of wet snow have been proposed: 

(1) mixed phase spheres, hereafter referred to as “keff spheres”, (2) water coated ice spheres, hereafter referred to as 130 

“coated spheres”, and (3) externally mixed interstitial ice and water spheres, hereafter referred to as “interstitial 

spheres”. A schematic of each model is presented in Figure 2. The keff and coated sphere models are referred to as 

internally mixed particles because the optical properties are mixed inside of a single particle having a single re. The 

interstitial sphere model is referred to as an external mixture because the components are assumed to be physically 

separate from one another.  135 

3. Methodology  

Three optical property mixing models were used to simulate the bidirectional reflectance of wet snow across a range 

of re and LWC using radiative transfer modeling. To determine the optimal mixing model for retrieving LWC from 

NIR reflectance, snow samples were prepared in a controlled laboratory environment with varying grain type, grain 

size, and density, and then subjected to warm air advection to induce melt. During melt, time series NIR-HSI 140 

measurements were taken and LWC was retrieved in each pixel by best matching the measured spectra to the 

simulated spectra from each of the three models. For comparison to the NIR-HSI LWC retrievals, time series LWC 

measurements were taken with the SLF Snow Sensor, a dielectric measurement instrument, and compared to the 

average LWC from pixels covering the same measurement area as the SLF Snow Sensor, such that the two 

measurements would be comparable on the same spatial scale. Time series measurements of re  were retrieved 145 

simultaneously with LWC and were compared against the established scaled band area method of Nolin and Dozier 

(2000), which has been previously applied to the same compact hyperspectral imager used in this study to map the re 

of dry snow (Donahue et al., 2021). Lastly, retrievals are demonstrated in the field across an image of a snowpit 

wall, visualizing water infiltration and quantifying vertical LWC and re distributions.  

3.1 Instruments 150 

3.1.1 Near-infrared hyperspectral imager 

Snow reflectance in the NIR was mapped with a Resonon Inc. Pika NIR-320 near-infrared hyperspectral imager. A 

brief description of the instrument follows, for a more detailed description see Donahue et al. (2021). The imager 

has a spectral resolution of 4.9 nm, measuring 164 bands across the NIR region from 900 -1700 nm. The imager 

constructs a 2-D image containing the full spectrum in each pixel by collecting the image line-by-line, known 155 

commonly as a “push-broom” or “line-” scanner. Thus, to collect an image, the camera needs to be moving 

 

Figure 2: Three ice and water optical mixing models used to simulate the reflectance of wet snow.  
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(translating or rotating) relative to the scene, or the scene needs to be moving relative to the imager. Here, both types 

of image acquisition techniques are used. In the laboratory, a linear scanning stage was used to move the sample 

beneath the sensor, while in the field, a rotational stage mounted on top of a tripod was used to scan the snow pit 

face.  160 

3.1.2 SLF Snow Sensor 

The SLF Snow Sensor (FPGA Company, 2018), hereafter referred to as the “SLF sensor”, is a capacitance sensor 

that is placed on the snow surface to measure the relative permittivity. This is used to determine snow density and 

LWC, in dry snow and wet snow conditions, respectively. The factory calibration for the LWC measurement is 

based on an empirical equation derived from reference measurements of snow with varying wetness and density 165 

using the dilution method (Davis et al., 1985) and weighted volumes. The sensor measures a snow surface area of 45 

x 95 mm and the penetration of the electric field into the snow is ~17 mm, such that the SLF sensor produces a 

spatially comparable measurement to the retrieved LWC from NIR-HSI method presented here because the 

penetration of NIR light into snow is similarly shallow. Additionally, time series LWC measurements over the same 

surface area can be made because the sensor is non-destructive to the snow surface. 170 

3.2 Experimental setup  

3.2.1 Laboratory 

The hyperspectral imager was mounted onto the Resonon Benchtop Linear Scanning Stage, which positions the 

imager on a stationary tower above a linear translating stage where samples are placed, shown in Figure 3A. The 

lens of the imager is surrounded by four halogen lamps and both are positioned for nadir viewing and illumination. 175 

This quasi-monostatic configuration, results in a bidirectional reflectance measurement in each pixel of the image 

when calibrated using a white reference panel. A large Spectrolon© 99% reflectance panel was placed at the same 

height as the surface of the snow samples and filled the imagers entire field of view, such that each snow sample 

could be calibrated from radiance to reflectance on a pixel-by-pixel basis. This method of calibration is ideal for 

hyperspectral imaging because it minimizes effects to illumination imperfections across the scene.      180 

 Snow samples were prepared in the laboratory using laboratory-made and collected natural snow to 

generate a dataset with a range of grain types including precipitation particles (PP), decomposing and fragmented 

precipitation particles (DF), rounded grains (RG), melt forms (MF), and faceted crystals (FC) (Fierz, 2009). The dry 

snow density, measured by weighing the sample container with a known volume and using the SLF sensor, ranged 

between 115 and 510 
𝑘𝑔

𝑚3. Detailed properties for each snow sample are given in Table 1. Snow samples were made 185 

by sieving snow into a rectangular wooden sample container having dimensions of 17.1 cm x 12.4 cm x 8.5 cm (H x 

W x D). The wooden sample container was subdivided into three regions of interest (ROI), each having dimensions 

slightly larger than the SLF sensor, such that LWC measurements would not be impacted by edge effects from the 

sample container. The surface of each snow sample was scraped with a crystal card to create a flat surface level with 

the top of the sample container and to minimize surface roughness. Snow samples were then kept in a cold room at -190 

10 oC for 24 hours to equilibrate and ensure the sample was completely dry (i.e., no water).   
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 For each snow sample, an initial image was taken while the cold room was at -10 oC to obtain the dry snow 

condition (i.e., LWC = 0%). The dry snow surface density in each ROI was measured using the SLF sensor and used 

as the input dry snow density to the SLF sensor for the subsequent LWC measurements. Following dry snow 

measurements, the cold room was turned off and the door was opened to ambient air, gradually increasing the air 195 

temperature in the cold room to room temperature (20 oC). The NIR-HSI images were taken every 1-3 minutes 

during the warming process and SLF sensor measurements, in each ROI, were taken in between images. For 

comparison between the two instruments, the mean LWC was calculated over the 10,717 pixels within each ROI, 

resulting in a 0.4 mm2 resolution, and was compared against the corresponding SLF sensor measurements at each 

time step, creating a densely populated comparison dataset spanning a wide range of LWC.  200 

 

Figure 3: Schematic of laboratory setup. (A) Front view of the Resonon Hyperspectral Imaging Benchtop System and 
wooden snow sample container. (B) Top view of the snow sample container showing the three regions of interests (ROI) 
measured by the SLF Snow Sensor, which is shown inside of ROI #1.   

 

Table 1: Laboratory Snow Samples 

Sample 

Number 
Description 

Sieve 

Size 

(mm) 

Dry 

Density 

(kg/m3) 

Warming 

Time 

(min) 

1 PP, Snowmaker Snow 2 115 111 

2 DF, Snowmaker Snow 2 212 161 

3 RG, Natural Snow 2 455 118 

4 MF, Natural Snow 5 440 103 

5 FC, Natural Snow 2.5 493 86 

6 MF, Sample 4 Melt/Refreeze 1x N/A 468 99 

7 MF, Sample 4 Melt/Refreeze 2x N/A 510 208 
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3.2.2 Field 

To demonstrate the applicability of the NIR-HSI method for retrieving LWC and re in the field, natural snow was 

imaged across the vertical wall of a snowpit. The snowpit was excavated to the ground within a protected study plot 

adjacent to the Alpine Weather Station, at Bridger Bowl Ski Area (Bozeman, MT; 45.82902 N, -110.92227 W) on 

03 April 2021. The total snow depth was 150 cm, the snowpit wall was 143 cm wide, and there was approximately 2 205 

meters of working room behind the snowpit face. The day was selected because the two days preceding were sunny 

and diurnal temperatures did not drop below freezing, making the likelihood of imaging wet snow high. Before 

imaging, standard snowpit observations were collected including a temperature profile, snow density profile using a 

1000 cm3 wedge cutter, and stratigraphy with grain types. 

Images of the wall were taken at 13:00, at which time there were few clouds, and the air temperature was 210 

10 oC. The imager was mounted on to the Resonon Outdoor Field System which includes a tripod mounted 

rotational stage. The snowpit wall was illuminated with two 500-watt halogen lamps mounted on a tripod, which 

was placed perpendicular to the wall, similar to the laboratory setup presented in Donahue et al. (2021). For 

controlled lighting conditions, sun light (direct and diffuse) was blocked by placing an opaque tarp over the top of 

the snowpit. A detailed schematic of the field setup is shown in Figure 4. For a pixel-by-pixel calibration of the 215 

NIR-HSI measurements from radiance to reflectance, a 36% spectrally flat reflectance calibration tarp was hung in 

front of the snow pit wall, completely covering the field of view of the imager and ROI of the snowpit. The entire 

vertical profile of the snowpit was not captured in a single image, therefore two images were taken and stitched 

together capturing only the upper 110 cm of the snowpit at a 6.5 mm2 pixel resolution. The bottom 40 cm of the 

snowpit was not captured because perpendicular illumination conditions could not be achieved with the minimum 220 

height of the lighting and imager tripods used.  

 Immediately following imaging, LWC measurements were made with the SLF sensor along a vertical 

profile at 5 cm increments. For optimal LWC measurements, the SLF sensor requires the dry snow density, 

 

Figure 4: Schematic of the near-infrared hyperspectral imaging setup in the field for measurement of liquid water content 
across a snowpit wall. The area at the bottom 40 cm of the snowpit was not imaged and is shown with hatched lines.  
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however, the snow was already wet and therefore the dry snow density could not be obtained. Instead, the density of 

the snow from the adjacent density cut measurement was used, which introduced a small error in the LWC 225 

measurement (FPGA Company, 2018) further discussed in Sect. 5.1.  

3.3 Radiative transfer modeling  

3.3.1 Single scattering 

To simulate the optical properties of snow, the single scattering optical properties of constituents (ice, air, water, and 

impurities), as well as their relative arrangement to one another must be represented. The scattering properties of a 230 

single particle are described using three dimensionless optical parameters: (1) the absorption efficiency 𝑄𝑎𝑏𝑠, (2) 

scattering efficiency 𝑄𝑠𝑐𝑎 , and (3) asymmetry factor 𝑔 (Bohren and Huffman, 2008). Dry snow particles are often 

assumed to scatter as a collection of spheres with radius re (e.g., Nolin and Dozier (2000)). With a known re and 

complex refractive index, Mie scattering theory (Bohren and Huffman, 2008) can be used to calculate the three 

dimensionless optical parameters. For clean dry snow, this modeling approach is straightforward because only the 235 

complex refractive index of ice is needed. For wet snow, on the other hand, the complex refractive index of ice and 

water is volume-mixed, and there are multiple approaches that can be used to define the arrangement of ice and 

water relative to each other. The three previously proposed mixing models used in this comparison, defined in Sect. 

2, are described here.  

 First, the keff sphere model uses a collection of spheres with re and keff, which was determined using 240 

volume-weighted portions of the complex refractive index of ice (kice) and water (kwater).  

keff = (1 − %LWC) ∗ kice + %LWC ∗ kwater (1) 

 

Second, the coated sphere model used the Coated-Mie scattering code of Mätzler (2002). The radius of the ice core 

(ri) and thickness of the water coating (tw) was determined by volume-weights of ice (𝑉𝑖) and water (𝑉𝑤).  

Vi =
4

3
πr𝑖

3 

 

(2) 
 

Vw =
%LWC ∗ Vice

1 − %LWC
 

 

(3) 
 

  

tw = [
3 ∗ Vwater

4π + r𝑖

]

1
3

− r𝑖  

 

(4) 
 

re = r𝑖 + tw (5) 
 

Lastly, the interstitial sphere model calculates the single scattering optical properties (i.e., 𝑄𝑎𝑏𝑠, 𝑄𝑠𝑐𝑎 , and 𝑔) of pure 245 

ice spheres and water spheres separately, each having the same re. Then, the optical properties were mixed using a 

volume-weighted average. This method is similar to the keff spheres model; however, the differences are a result of 

the non-linearity of Mie scattering theory. At shorter wavelengths, the differences in reflectance are small, but at 

larger wavelengths a notable divergence occurs, shown in Figure 5.  
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For each model, single scattering optical properties were calculated for re values ranging from 30-1500 μm 250 

in 10 μm intervals and 0 to 25% LWC in 1% intervals, resulting in 3,848 simulated spectra per model. Single 

scattering optical properties for each case were then used as inputs to solve for snow reflectance, the result of 

multiple scattering events.   

3.3.2 Multiple scattering 

To generate a spectral library to match to measured spectra, directional-hemispherical reflectance for each mixing 255 

model was simulated using a general-purpose 16-stream plane-parallel discrete ordinates radiative transfer model, 

DISORT (Stamnes et al., 1988). DISORT allows the user to define optical properties of multiple layers; here, a 

single optically thick layer was used since the penetration of NIR light into the snowpack is shallow. Optical 

property inputs for this layer included single scattering albedo, defined as the ratio of the scattering efficiency and 

extinction efficiency (
𝑄𝑠𝑐𝑎

𝑄𝑠𝑐𝑎+ 𝑄𝑎𝑏𝑠
), and 𝑔, which were computed from Mie scattering theory. Incoming light can be 260 

modeled at multiple user defined zenith angles; here, the zenith angle was set to 0o to represent nadir lighting.  

The output from DISORT was directional-hemispherical reflectance, whereas NIR-HSI measurements are 

bidirectional reflectance. This is a suitable approach because of the experimental setup: the NIR-HSI measurements 

were made at nadir illumination and viewing angles and calibrated using a Lambertian white reference target. Under 

these conditions, snow is nearly Lambertian, allowing for a direction comparison, which would not be the case for 265 

non-nadir viewing angles, given that snow heavily favors forward scattering (Dumont et al., 2010). 

 

Figure 5: Modeled bidirectional reflectance of snow using three optical mixing models: (1) keff spheres, (2) coated spheres, 
and (3) interstitial spheres. For comparison, each mixing model has an effective grain radius of 1000 μm and 20% liquid 
water content by volume.  
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3.3.3 Retrieving snow properties 

To simultaneously retrieve LWC and re, measured spectra in each pixel of the NIR-HSI image was compared to each 

spectrum in the spectral library to determine the best match by finding the minimum least square residual across 106 

bands, ranging from 961 nm to 1472 nm. Hereafter, this method for matching measured and simulated spectra is 270 

referred to as the “residual method”. An example of (1) measured spectrum from NIR-HSI, (2) retrieved simulated 

spectra using the interstitial sphere model, and (3) residuals across each band are shown in Figure 6. Once the 

measured spectrum is best matched to a modeled spectrum, the associated re and LWC are assigned to the pixel, 

producing separate maps of re and LWC for the imaged area. To reduce impact from sensor noise at the lower limit 

of the sensor (900 nm), 961 nm was chosen as the starting point for calculating the residuals while still capturing 275 

ample spectral data for the left side of the absorption feature centered at 1030 nm (Figure 6). At longer wavelengths, 

1472 nm was chosen as the endpoint for calculating residuals because both ice and water are highly absorptive 

beyond this point, resulting in a low signal to noise ratio.  

Additionally, re was mapped at each timestep using the scaled band area method following Donahue et al. 

(2021). Briefly, the scaled band area is the area underneath a continuum line spanning an absorption feature and is a 280 

shape-based method that is independent of absolute reflectance. Here, the scaled band area was calculated for 

measured spectra using a predefined start and end point for the continuum line across the absorption feature centered 

at 1030 nm. The pixel-by-pixel calibration performed here reduced noise at the lower limit of the sensor compared 

to Donahue et al. (2021), allowing for the defined continuum endpoints to be similar to bands suggested by Nolin 

and Dozier (2000) (i.e. 961 and 1087 nm). A look up table was populated with “dry snow” (all ice, no water) scaled 285 

band areas for simulated re ranging from 30-1500 μm. We note that we used the simulated spectra from the 

interstitial sphere model, but that the dry snow representations for all mixing models were identical, with variation in 

spectra introduced only when water was represented. This allowed us to (1) define the starting re for each of the 

 

Figure 6: Example of a NIR-HSI measured spectrum, retrieved simulated spectrum using the interstitial sphere model, and 
the residuals at each band.  
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prepared laboratory samples, (2) compare re retrieved from scaled band area to that from the residual method, and (3) 

assess the suitability of the scaled band area method for grain size retrievals over wet snow. 290 

4 Results 

4.1 Laboratory experiments  

4.1.1 Liquid water content retrieval  

The LWC retrieved from NIR-HSI was compared to 

the SLF sensor across 7 samples, spanning a wide 295 

range of initial dry snow grain sizes from 

approximately 100 to 900 μm, measured using the 

established scaled band area method. LWC measured 

with the SLF sensor ranged from 0 to 17% across 21 

ROIs and 40 timesteps, producing 690 datapoints for 300 

comparison. It was found that the interstitial sphere 

model consistently performed the best, whereas the 

coated sphere model performed the most poorly, 

relative to the in situ SLF sensor measurements.  

An example of the LWC maps produced as 305 

melt progressed in a single snow sample is presented 

in Figure 7. These examples are of the same ROI and 

show LWC retrieved using the interstitial sphere 

model. The initial image (7A) was taken at the start of 

the experiment when the snow was dry and 98% of 310 

pixels (10,450 pixels) retrieved 0% LWC. The other 

2% of pixels (267 pixels) retrieved 1% LWC, which 

was found to be due to sensor noise. The remaining 

images in Figure 7 capture melt progressing through 

5% (B), 10% (C), and 16% (D) mean LWC, 315 

respectively. Additionally, the distribution of values 

also broadens with increasing LWC, shown in the per-

pixel distribution of LWC for each image in Figure 

7E. The summary statistics show melt progression, as 

expected, but the maps allow visualization and 320 

quantification of melt initiation and LWC distribution. 

The melt features that begin to develop in early time 

steps can be tracked to later time steps (e.g., 7C to 

7D).  

 

Figure 7: (A-D) Time series liquid water content mapping 
over a single region of interest during a laboratory 
experiment. (E) Liquid water content distribution in images 
(A-D) shown in a histogram.  
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The full performance comparison across all datasets is summarized in Figure 8, which plots LWC from the 325 

SLF sensor against that from each mixing model applied across all samples. To help visualize the difference 

between experiments, the comparison points are symbolized by different colors as well as marker size that varies 

with the mean initial dry snow re retrieved using the scaled band area method. Close proximity to the 1:1 line would 

indicate the best match between NIR-HSI and the SLF sensor. The root mean square error (RMSE) and bias for each 

sample is summarized in Table 2.  330 

For the two samples with the smallest initial re (113 and 130 μm), precipitation particles and 

decomposed/fragmented particles, it was found that the LWC retrieval method did not perform well using any of the 

mixing models, with the highest RMSE and bias (Table 2). The retrieval is near 0% LWC in dry snow conditions, 

however the LWC retrievals increase rapidly as small amounts of water are introduced. In the coated spheres model, 

the retrievals reach the LWC limit of the spectral library (25%) when the measured LWC from the SLF sensor was 335 

~10% (Figure 8B). For keff and interstitial spheres, there is a similar pattern of LWC increasing too fast, although 

these models do not reach the upper limit of the spectral library. Because none of the models evaluated performed 

well for small grain sizes, these two samples (113 & 130 μm) were excluded from the calculation of best fit line (red 

line in Figure 8). This result is discussed further in Sect. 5; however, the exclusion of this data is reasonable because 

water is not commonly mixed with these types of particles (new snow) in natural environments and therefore not a 340 

primary focus for wet snow mapping applications.  

For the remaining samples, ranging from 176 – 898 μm, the mixing models retrieve LWC values that more 

closely match the SLF sensor measurements. Visually, both keff and interstitial spheres fall close to the 1:1 line. The 

keff spheres do have the lowest RMSE and bias for the smallest grains (samples 1-3), but for the remaining medium 

 

Figure 8: Comparison of LWC measured with the SLF Snow Sensor versus the mean LWC retrieved from NIR-HSI using the 
residual method. Three optical property mixing models are compared using the same datasets (A) keff spheres, (B) coated 
spheres, (C) interstitial spheres. The initial (dry) effective grain radius for each sample is shown in the legend and the R2 
value is for the best fit line, which excludes 113 and 130 μm datasets. 
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to large grain size samples, the retrieved LWC consistently has a negative bias and the RMSE is ~2%. Overall, the 345 

interstitial spheres have the lowest RMSE (~1%) and bias, which does not trend with grain size, with the best 

comparison for samples 4-7 and similar values to keff for sample 3. The uncertainty of the model was determined by 

taking the mean RMSE across samples 3-7, which is 1.4%. This is supported by the dry snow retrieval shown in 

Figure 7A, where no pixels retrieved greater than 1% LWC. The coated spheres model performed most poorly 

relative to measurements with a high RMSE and consistently had a positive bias across all samples, although like the 350 

other mixing models, the values do fall close to the 1:1 line at low LWC (< 7%). Overall, these experiments and 

model comparisons show that the interstitial spheres model performed exceptionally well for medium to large 

grains, and LWC ranges between 0% and 15%, which are the conditions most likely to be found in natural snow 

covers.   

4.1.2 Effective grain radius retrieval  355 

Using the residual method, all mixing models retrieved similar grain size values because the grain size retrievals are 

primarily dependent on the absolute reflectance driven by ice absorption. Here, we present results from the 

interstitial sphere model because it performed best in the LWC retrieval. For initial, dry snow, conditions the re 

retrieval using the scaled band area method (re, SBA) had a positive bias relative to the residual method (re, residual), and 

the bias becomes more positive with increasing grain size (Figure 9). For the remaining, wet snow comparisons, the 360 

re, SBA remains relatively constant or increases at low LWC followed by a decrease at high LWC. For Samples 1 and 

2, re, SBA remained flat with increasing LWC. For Samples 3-6, re, SBA increased initially with low LWC and then 

decreases at high LWC. For Sample 7, re, SBA slightly increases before significantly decreasing with increasing LWC. 

Whereas the  re, residual increases with increasing LWC for all samples, which is expected because the presence of 

water is known to accelerate snow grain growth (Marsh, 1987).  The comparison, further discussed in Sect. 5.2, 365 

shows that the scaled band area method is heavily impacted by the presence of water, such that the residual method 

may be better suited for wet snow.  

Table 2: Liquid water content retrieval results from the laboratory 

      RSME (% LWC) Bias (% LWC) 

 Sample 

Number 

Initial 

re (μm) 

 % LWC 

Range 

keff 

Spheres 

Coated 

Spheres 

Interstitial 

Spheres 

keff 

Spheres 

Coated 

Spheres 

Interstitial 

Spheres 

1 113 0 - 14.6 8.7 11.9 9.4 7.5 10.5 8.0 

2 130 0 - 15.9 7.7 11.5 8.6 7.1 10.8 7.9 

3 176 0 - 17.2 2.0 7.0 2.6 1.0 5.8 1.6 

4 398 0 - 13.4 1.8 4.0 0.9 -1.5 3.2 -0.5 

5 463 0 - 15.2 1.9 4.7 1.1 -1.5 4.0 -0.3 

6 699 0 - 8.8 1.6 2.8 1.0 -1.2 2.3 0.3 

7 898 0 - 10.4 2.2 3.3 1.4 -1.6 2.3 -0.1 
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4.2 Field experiment  

 Although a controlled laboratory environment is ideal for identifying the best suited mixing model, the 

primary applications for this method would be in situ field studies, motivating the field-based testing of the re and 370 

LWC retrieval. The maps of re and LWC generally reflect the profile measurements of LWC and stratigraphy, 

though at significantly higher detail (Figure 10). The snowpit was representative of a spring intermountain 

snowpack undergoing melt, with the density values ranging from ~300 to ~450 
𝑘𝑔

𝑚3, and LWC measurements ranging 

from ~5-15%. The temperature profile, not shown, was isothermal at 0 oC. The general stratigraphy was ice lenses 

and melt form grains in the upper layers, rounded grains in the central portion, and faceted grains (depth hoar) near 375 

the ground. Note that the full pit profile is shown for observations (Figure 10A and 10D), while the re and LWC 

retrievals extend across only the upper 110 cm (Figure 10B and 10C).  

The maps were processed using each of the mixing models introduced above, but based on the laboratory 

findings, only retrievals from the interstitial sphere model are presented here. The SLF sensor measurements were 

taken along the left side of the ruler (gray stripe or NaNs down the center of snowpit), represented as the dashed red 380 

box in Figure 10C. For comparison, LWC was depth averaged in pixels covering the area of the SLF sensor 

measurements (red line in Figure 10D), in addition to the depth average LWC across the entire width of the snowpit 

(gray line in Figure 10D). The mean LWC, standard deviation (σ) and number of measurements (n) for the SLF 

sensor, NIR-HSI along the same profile as the SLF sensor, and the depth average of the entire width of the snowpit 

are shown in Table 3. Generally, the LWC from the NIR-HSI retrieval had a positive bias compared to the SLF 385 

sensor, particularly notable at the top of the snowpack, although the patterns and peaks have similar trends. This 

discrepancy is attributed to not knowing the dry snow densities needed for the SLF sensor, which would create a 

 

Figure 9: Mean effective grain radius (re) retreival comparison between residual and scaled band area methods using the 
interstitial sphere model at each time step for Samples 1-7. Best fit line is drawn through the dry snow condition for each 
sample. 
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negative bias in the measured LWC. The difference between retrievals and measurements is discussed further in 

section 5.1.  

For comparison, when processed with the coated spheres model the LWC reached the model limit at 25% 390 

over much of the scene. The keff spheres model did have mean values slightly closer to the SLF sensor, however this 

was not unexpected given that the laboratory results were biased negative. The magnitude of values, with coated 

spheres retrieving higher values, and keff spheres retrieving lower values, relative to interstitial spheres mimics the 

bias present in laboratory results (Table 2).  

The high resolution of the maps shows how stratigraphy influences re and LWC distributions in higher 395 

detail than can be captured with standard field-based observations. At the top of the snowpit, it can be discerned that 

the snow was saturated with water and was pooling on top of the ice lens at 130 cm snow height. The SLF sensor 

 

Figure 10: Results from snowpit at Bridger Bowl Ski Area. (A) Density profile using 1000 cc wedge cutter and depth 
averaged effective grain radius. (B) Map of effective grain radius across snowpit wall. (C) Map of liquid water content 
across snowpit wall with the SLF sensor vertical profile area outlined in dashed red line (D) Liquid water content profiles 
from the SLF Snow Sensor, depth averaged across the entire width of the snowpit, and depth average of the SLF sensor 
area only.    

 

Table 3: Liquid water content retrieval results from the field 

  SLF 

Snow 

Sensor 

Keff Spheres Coated Spheres Interstitial Spheres 

  

Senor 

Area 

Full 

Profile 

Senor 

Area 

Full 

Profile 

Senor 

Area 

Full 

Profile 

Mean LWC [%] 12 15.6 15.1 23.5 23.2 16.3 15.7 

σ 2.5 3.2 2.7 1.8 1.1 3.4 3.2 

n 28 21,758 243,386 21,758 243,386 21,758 243,386 
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only captures the average LWC, particularly between 110 and 130 cm, where there is high variability in LWC 

between layered ice lenses. At the ice lenses (130, 122, and 110 cm) the grains are large while the LWC is low. 

Water pooling above ice lenses, rather than the ice lens itself having water content, is sensible because there is 400 

minimal pore space for water to reside or pass through. Below the ice lens, a few isolated preferential flow paths 

extend to lower layers, while other features show water concentrated (at ~90 cm, and at ~75 cm) but notably not 

flowing along the plane of the snowpit wall.  

5. Discussion 

5.1 Liquid water content retrieval 405 

The interstitial and keff spheres models performed similarly because the optical properties are volume mixed in both 

cases, albeit internally versus externally mixed. The external mixing of interstitial water spheres results in a notable 

shift in the reflectance spectrum at wavelengths ranging from 1300 – 1450 nm, when compared to keff spheres 

(Figure 5). Since the interstitial sphere model performed the best, this result indicates that the particle size of water 

in wet snow plays an important role in the simulated reflectance, whereas the particle size of water is not considered 410 

in the keff model. Before mixing the optical properties, the particle size of the water sphere was the same size as the 

ice sphere, which is a reasonable approximation. It would be possible to mix water and ice spheres of differing size, 

although this approach is computationally expensive, given that the number of possible simulated spectra 

combinations would approach infinity.  

The coated sphere model performed reasonably in the pendular regime, but then overestimated LWC in the 415 

funicular regime. The coated sphere model was chosen over the interstitial sphere model by Green et al. (2002), 

based on visual inspection, considering the bands in the ice absorption feature centered at 1030 cm, which 

encompasses only part of the distinct shifts between ice and water that are present in the complex refractive index 

across the NIR (Figure 1). This study used a greater number of NIR bands that span multiple distinguishable shifts 

between ice and water, which is a more robust approach. 420 

 For small snow grains of PP (Sample 1) and DF (Sample 2) crystal type, LWC retrievals did not perform 

well using any of the models. One potential reason being that PP and DF crystal types are complex shapes and 

reflectance may not be accurately represented using spheres of ice. Using a ray tracing model, Picard et al. (2009) 

showed that grain shape can influence reflectance. Although it is possible to have wet PP and DF crystal types (e.g., 

rain on snow), low density dendritic snow crystals are more commonly found at temperatures well below freezing 425 

(Judson and Doesken, 2000). It is far more common for wet snow to contain larger rounded grains primarily because 

the presence of water rapidly increases the rate of snow grain growth, especially through melt and refreeze cycles. 

Small RG (Sample 3) having only slightly larger re values than the PP and DF crystals, performed similarly to the 

medium and large sized grains, further suggesting that the complex shapes of PP and DF may be driving the poor 

performance. Based on the results at small grain sizes, the mixing models have potential to classify dry versus wet 430 

snow, but not quantitively retrieve LWC. 
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Interestingly, for the largest grains, samples 6 and 7, the highest LWC measurements from the SLF sensor 

are ~10% (Figure 8). These apparent maxima, seen in both measurements and retrievals, is attributed to the large 

grains having a reduced water holding capacity within the pore space (Yamaguchi et al., 2010). Although the snow 

sample could contain higher than 10% LWC by volume, water is able to drain below the near surface detection limit 435 

of the SLF sensor and NIR-HSI. 

5.2 Effective grain radius retrieval  

The scaled band area method assumes dry snow, but in remote sensing and field applications there is typically no a 

priori knowledge of snow wetness, thus comparing re, SBA to re, residual allows us to test the validity of this assumption 

for wet snow. To visualize the difference between the residual and scaled band area methods, an example measured 440 

spectrum from a dry and wet snow (12% LWC) sample are shown in Figure 11, along with the corresponding 

simulated spectrum retrieved using the two methods. For the dry snow spectrum, re, SBA is larger than re, residual, which 

is a consistent trend across all samples (Figure 9 best fit line). This is attributed to the scaled band area method using 

a fixed wavelength range spanning the area of the absorption feature centered at 1030 nm (961 to 1087 nm), which 

makes it sensitive to small changes in the shape of the measured absorption feature, and location of the continuum 445 

line shoulders (shown as gray lines in Figure 11B). Whereas the residual method finds the best fit spectrum over all 

NIR wavelengths ranging from 961 nm to 1472 nm. In the example shown (Figure 11B), the left shoulder of the 

matched simulated spectrum using the residual method is slightly below the measured spectrum, resulting in the 

scaled band area of the measured spectrum (2.92) being higher than that of the matched simulated spectra (2.46).   

In the wet snow case, the absorption features centered at 1030 nm shifts to shorter wavelengths and 450 

broadens. Similar to the comparison for dry snow, the fixed wavelength range and continuum line fails to fully 

capture the wet snow absorption feature, notably resulting in a reduction of the scaled band area. This result is 

shown in the spectral reflectance example (Figure 11C) and is responsible for the decreasing re, SBA at high LWC 

 

Figure 11: Effective grain radius (re) retrieval comparison between the residual and scaled band area methods using the 
interstitial sphere model. (A) An example measured spectra from a dry and wet snow sample and the corresponding 
retreived simulated spectra using the residual and scaled band area methods. (B) Dry snow spectra from (A) including the 
continuum lines, shown in gray, over the absorption feature. (C) Wet snow spectra from (A) including the continuum lines 
over the absorption feature, shown in gray. 
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seen for samples 3-7 (Figure 9). In this example, the shift to the left is highlighted with the arrow pointing to the 

flattening of the feature that is incorrectly included by the scaled band area fixed continuum line (shown as gray 455 

lines in Figure 11C), resulting in a smaller scaled band area. This example also shows the broadening of the feature, 

relative to the shape of ice absorption alone. The shape of the wet snow feature is better represented by the matched 

simulated spectrum using the residual method. It is possible that this has implications for previous studies that have 

applied the scaled band area method over potentially wet snow (e.g., Skiles and Painter (2017)).  

5.3 Uncertainties 460 

All the mixing models examined in this study are approximate representations of the relative arrangement of ice and 

water in wet snow. The spherical particle approximation used in this study to represent wet snow is a reasonable 

approach because ice grains in the presence of water tend to be rounded. The arrangement of ice and water, on the 

other hand, is dependent on the level of water saturation, therefore using a single mixing model to determine the 

LWC across a large range of water saturations results in inherent uncertainty. Since no a priori knowledge of snow 465 

wetness is known when taking NIR-HSI measurements, the goal of this research only aims to find the modeling 

approach that has the best retrieval of LWC across ranges commonly found in natural environments, when compared 

to an established dielectric method-based instrument. 

Dielectric instruments, including the SLF sensor used here, have their own uncertainties. These types of 

instruments rely on an independent snow density measurement to calculate LWC. In the case of the SLF sensor, the 470 

“dry snow” density, which describes the fraction of ice in a wet snow volume, is required to calculate a LWC value 

(FPGA Company, 2018). In the laboratory experiments, this was not an issue because all snow samples started dry, 

and the dry snow density was used for all subsequent LWC measurements during melt. Conversely, in the field 

experiment, the snow was already wet and there was no way of isolating a dry snow density. One solution offered by 

FPGA Company (2018) is to measure density in the morning if the snow has refrozen, but this was not possible. 475 

Although not quantifiable here, the error introduced is assumed to be small since the measured LWC is dominated 

by water content rather than snow density (FPGA Company, 2018). Nevertheless, this error could attribute to the 

discrepancy in LWC retrieved from NIR-HSI and the SLF sensor seen in Figure 10D. A dry snow density, if known, 

would be lower than the measured wet snow density, resulting in a slightly higher LWC measurement and closer 

match to the NIR-HSI retrievals. Although there is inherent uncertainty associated with the SLF sensor, it was found 480 

to be the most suitable LWC measurement instrument for comparison to LWC retrieved from NIR reflectance 

because it is non-destructive to the snow surface, measures a flat surface, and has minimal penetration into snow, 

similar to NIR light. 

Lastly, there is also uncertainty in the measurement of absolute spectral reflectance, the accuracy of which is 

important for using the residual method. To minimize this uncertainty in the laboratory, spectral measurements were 485 

taken with consistent lighting conditions and at close proximity, resulting in near perfect conditions, which was ideal 

for the comparison study. Additionally, the residual method benefits from the high signal-to-noise ratio (1885) and 

spectral resolution (4.9 nm) of the instrument used here. For application of this method at the airborne or satellite 

scales, spectral measurements contain more noise than those in the laboratory and require atmospheric and 
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topographic correction, introducing additional uncertainty into absolute reflectance values. Although not within the 490 

scope of this study, instruments at these scales also need to account for water vapor in the air which is discussed 

further in Green et al. (2006). Finally, due to the relatively minor shift in NIR reflectance, this approach is probably 

not suitable for mixed pixels (not pure snow), which become more common as spatial coverage and pixel sizes 

increase. 

6. Conclusions  495 

The results in this study show the externally mixed interstitial spheres model performs best when compared to a 

dielectric LWC measurement instrument, relative to the previously proposed keff spheres (Hyvarinen and 

Lammasniemi, 1987) and coated spheres model  (Green et al., 2002). It was also found that for the smallest grains 

(i.e., new and decomposing precipitation particles) none of the models investigated compared well to the SLF 

sensor. For low LWC (<~7%), all of retrievals compare well to measurements, but at higher LWC the keff and coated 500 

spheres were biased positive and negative, respectively. Overall, and across the widest range of initial grain types, re 

(162 – 859 μm) and LWC (0-17.2%), the interstitial sphere model performed the best, with ~1% uncertainty.   

For the re comparison, between the two optically based residual and scaled band area methods, it was found that 

the scaled band area retrieval had a positive bias compared to the residual method. This bias was lowest for small 

grains and increased with grain size. For wet snow, the scaled band area method was impacted by the presence of 505 

water due to the shift in the absorption feature to shorter wavelengths, resulting in decreasing re at high LWC. 

Because scaled band area implicitly assumes dry snow, it is based on ice absorption alone, caution is encouraged 

when applying this method without knowing that the snow is dry.  

The field application of the NIR-HSI method produced maps that reflect the general understanding of what a 

snapshot of a snowpit would look like during snowmelt progression, but mapped the stratigraphy of snow properties 510 

(i.e., LWC and grain size) at much higher detail relative to standard profile-based observations. The retrieved LWC 

was found to be slightly higher than that measured by the SLF sensor, which was attributed to both the inability to 

determine the dry snow density and the high level of detail in the maps that could not be captured by the volume 

averaged dielectric sensor.  

For future work and deployment of NIR-HSI, viewing re and LWC spatial distributions in such unprecedented 515 

detail has implications for better understanding water movement patterns through snow, how re and LWC relate to 

other snow properties and topographic characteristics, and for interpreting microwave remote sensing retrievals over 

wet snow. There is also broader relevance for the assessment and development of snow property retrievals from 

measured spectral reflectance with upcoming satellite imaging spectrometer missions. These include the Surface 

Biology and Geology (SBG) imaging spectrometer mission and the Copernicus Hyperspectral Imaging Mission 520 

(CHIME). Although algorithm suites have been developed to retrieve snow properties from airborne imaging 

spectroscopy (Painter et al., 2013), LWC is not a standard part of the retrieval, and has only been demonstrated in 

case studies (Green et al., 2002). 
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