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Abstract. Developing accurate sea-ice

:::::::::
Developing

::::::::
accurate

:::
sea

:::
ice drift forecasts is essential to support decision making of maritime end-users operating in the

Arctic. In this study, two calibration methods have been developed for improving 10-day sea-ice
:::
sea

::
ice

:
drift forecasts from

an operational sea-ice
::
sea

::::
ice prediction system (TOPAZ4). The methods are based on random forest algorithms

::::::
models

(supervised machine learningmodels) and have been trained using either )
::::::
which

::::
were

::::::
trained

:::::
using

:::::
target

:::::::
variables

:::::
either

:::::
from5

drifting buoy or synthetic-aperture radar observations for the target variables
:::::
(SAR)

:::::::::::
observations. Depending on the calibration

method, the mean absolute error is reduced, on average, between 5.9 % and 8.1
:::
3.3

::
%

:::
and

:::
8.0

:
% for the direction, and between

7.1 % and 9.6
::
2.5

:::
%

:::
and

:::
7.1

:
% for the speed of sea-ice

::
sea

:::
ice

:
drift. Overall, the algorithms trained with buoy observations

have the best performances when the forecasts are evaluated using drifting buoys as reference. However, there is a large spatial

variability in these results, and the algorithms
::::::
models

:
trained with buoy observations have particularly poor performances for10

predicting the speed of sea-ice drift in the Canadian Archipelago, along the east coast of Greenland , and north of Svalbard. In

these areas, the algorithms
:::
sea

::
ice

::::
drift

::::
near

:::
the

:::::::::
Greenland

::::
and

:::::::
Russian

::::::::
coastlines

:::::::::
compared

::
to

:::
the

::::::
models

:
trained with SAR

observationshave better performances for predicting the speed of sea-ice drift.

:
.

1 Introduction15

Due to increasing maritime traffic in the Arctic (Eriksen and Olsen, 2018; Berkman et al., 2020), there is a growing demand for

reliable sea-ice information. Nevertheless, sea ice conditions in the Arctic tend to change increasingly faster due to the ongoing

acceleration of sea-ice drift
::::::
Passive

:::::::::
microwave

::::::::::
observations

::
of

:::
sea

:::
ice

:::::::::::
concentration

::::
have

:::::
been

:::::::
available

:::
for

::::
more

::::
than

:::
40

:::::
years,

:::
and

::::
have

::::::
shown

:::::::
negative

:::::
trends

::
in

:::::
Arctic

:::
sea

:::
ice

:::::
extent

:::::
since

::
the

:::::::::
beginning

::
of

:::
the

::::::
satellite

:::
era

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Cavalieri and Parkinson, 2012; Comiso et al., 2017)

:
,
::::
with

::::::::::
particularly

:::::
strong

::::::
trends

::::::
during

:::
the

:::::::
summer

::::::::::::::::::::::
(e.g., Comiso et al., 2017)

:
.
:::::
There

:::::
have

::::
been

::::
less

:::::::
satellite

:::::::::::
observations20

::
of

:::
sea

:::
ice

:::::::::
thickness,

:::
and

:::::
these

::::::::
retrievals

:::::
have

::::::
mainly

::::
been

::::::::
restricted

:::
to

:::
the

::::::
winter

:::
due

:::
to

:::::
issues

::::::
related

::
to
:::::::

surface
:::::::
melting

:::::
during

:::
the

:::::::
summer

::::::::::::::::::::::::::::::::
(Ricker et al., 2017; Petty et al., 2020).

::::::::::::
Nevertheless,

::::::::
long-term

:::::::
negative

::::::
trends

::
in

:::
sea

:::
ice

::::::::
thickness

:::::
have

:::
also

:::::
been

:::::::
assessed

:::
by

:::::::::
comparing

::::::::
retrievals

:::::
from

:::::::
satellite

::::::::
altimeters

:::::::
(ICESat

::::
and

:::::::::
CryoSat-2)

:::::
with

:::::::::
submarine

::::::::::::
measurements

:::::
during

:::
the

::::::
period

::::
1958

:
-
:::::
2000

::::::::::::::::::::::::::::::::::
(Kwok and Rothrock, 2009; Kwok, 2018).

:::::::::::
Furthermore,

::
an

:::::::::::
acceleration

::
of

:::
sea

::
ice

::::
drift

:::
has

:::::
been

:::::::
observed

:::::
using

::::::
drifting

::::::
buoys

:::
and

:::::::
satellite

::::::::::
observations

:
(Rampal et al., 2009; Spreen et al., 2011; Tandon et al., 2018; Tschudi25

et al., 2020). Therefore, accurate sea-ice drift forecasts are essential for predicting future sea-ice conditions, and for ,
::::
and

:::
has
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::::
been

::::::::
suggested

:::
as

:::::
being

:
a
:::::::::::

consequence
:::
of

::::::::
decreases

::
in

:::
sea

:::
ice

::::::::
thickness

::::
and

::::::::::::
concentration

:::
due

::
to
:::::::

reduced
::::

sea
:::
ice

:::::::
strength

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rampal et al., 2009; Olason and Notz, 2014; Tandon et al., 2018).

:

::
As

::
a

:::::
result

::
of

::::
these

::::::::
changes,

:::
the

:::::
Arctic

:::::
ocean

::
is
:::::::::
becoming

::::
more

:::::::::
accessible

::
to

::::::
marine

:::::::::
operations,

::::
and

::::
there

::
is
:::
an

:::::::
increase

::
in

:::::::
maritime

:::::
traffic

::::::::::::::::::::::::::::::::::::::::
(Eriksen and Olsen, 2018; Berkman et al., 2020).

::
In

:::::
order

::
to

:::::
ensure

::::::::
maritime

::::::
safety,

:
it
::
is

:::::::
essential

::::
that

:::::::
accurate30

:::
sea

::
ice

::::::::::
information

::
is

::::::::
delivered

::
to

::::::
marine end-usersnavigating in ice-covered waters who need

:
.
:::::::
National

:::
ice

:::::::
services

::::::::
manually

::::::
produce

:::::::::::::
high-resolution

:::
sea

:::
ice

::::::
charts

:::::
using

:::::::
retrievals

:::::
from

::::::
various

::::::::
satellites

::::
such

::
as

:::::::
passive

:::::::::
microwave

:::::::::::
radiometers,

::::::
optical

::::::::::
instruments,

:::
and

::::::::
synthetic

:::::::
aperture

::::::
radars

::::::
(SAR).

::
In

:::::::
addition

::
to

:::
sea

:::
ice

::::::
charts,

:::::::::
short-term

:::
sea

:::
ice

::::::::
forecasts

:::
are

:::
also

:::::::::
necessary

::
for

::::::::
planning

::::::::
activities

::::
and

::::::::
providing

:
up-to-date information (Jeuring and Knol-Kauffman, 2019)

:
to

:::::::::
end-users.

:::::::::
However,

:::
the

:::::
spatial

:::::::::
resolution

::
of

::::::
current

:::
sea

:::
ice

::::::
models

::
is

:::::
often

:::
too

:::::
coarse

:::::::::
compared

::
to

::::
user

:::::
needs.35

Sea-ice
:::::::::
Short-term

:::
sea

:::
ice drift forecasts are operationally produced by numerical prediction systems, but are affected by bi-

ases despite the numerous efforts for improving the models (Hebert et al., 2015; Schweiger and Zhang, 2015; Rabatel et al., 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hebert et al., 2015; Schweiger and Zhang, 2015; Rabatel et al., 2018; Williams et al., 2019).

:::::::::::::::::
Hebert et al. (2015)

::::::::
evaluated

::
sea

::
ice

::::
drift

::::::
speed

:::::::
forecasts

:::::
from

:::
the

::::
U.S.

:::::::
Navy’s

:::::
Arctic

::::
Cap

:::::::::::::::
Nowcast/Forecast

:::::::
system.

::::
They

::::::
found

:::
that

::::
the

::::::::
predicted

:::
ice

::::
drift

:::::
speed

:::
was

::::::
slower

:::::
than

::::::
drifting

::::::
buoys

::
in

:::
the

:::::::
summer

:::::::
months,

::::
and

::::
that

:
a
::::::::::

persistence
:::::::
forecast

::::
was

::::::::
generally

:::::
better

:::::
than

:::
the40

:::::::
forecasts

:::::
from

:::
the

:::::::::
prediction

::::::
system

::::::
during

:::
the

:::::::
summer.

:::
In

:::::::
contrast,

:::
the

::::::::
forecasts

::::::::
produced

:::
by

:::
the

::::
U.S.

::::::
Navy’s

::::::
Arctic

::::
Cap

::::::::::::::
Nowcast/Forecast

::::::
system

:::::::::::
outperformed

::::::::::
persistence

:::::::
forecasts

::::::
during

:::
the

:::::
winter

:::::::
months.

::::::::::::::::::::::::
Schweiger and Zhang (2015)

::::::::
evaluated

:::::::
forecasts

::
of

::::
sea

:::
ice

::::
drift

:::::
speed

:::::
from

:::
the

::::::::
Marginal

:::
Ice

:::::
Zone

::::::::
Modeling

::::
and

::::::::::
Assimilation

:::::::
System

::::::::::
(MIZMAS)

::::
and

:::::
found

::::
root

::::
mean

::::::
square

::::::
errors

::::
from

::::
4.5

::
to

::
8
:::
km

:::
per

::::
day

:::
for

::::
lead

:::::
times

:::
of

::
1

:::
and

::
9
:::::
days,

:::::::::::
respectively.

:::::
These

::::::::
forecasts

::::::::::
outperform

::
a

:::::::::::
climatological

::::::::
reference

:::
for

::
all

::::
lead

:::::
times

:::
(up

::
to

:
9
:::::
days). Sea ice drift

:::::::
forecasts

::::
from

:::
the

::::::::::
neXtSIM-F

:::::
system

:::::
have

::::
been

::::::::
evaluated45

::
by

:::::::::::::::::
Rabatel et al. (2018)

:::
and

::::::::::::::::::
Williams et al. (2019)

:
,
:::
and

:::
root

:::::
mean

::::::
square

:::::
errors

::
of

:::::
about

:
3
::::
and

:
4
:::
km

:::
per

:::
day

::::
have

:::::
been

:::::::
reported

::
for

::::
lead

:::::
times

::
of

::
1

:::
and

::
4

::::
days,

::::::::::
respectively

:::::::::::::::::::
(Williams et al., 2019).

:

:::
Sea

:::
ice

::::
drift is influenced by various sea-ice

:::
sea

::
ice

:
characteristics such as concentration and thickness, as well as by near-

surface wind and ocean currents (Rampal et al., 2009; Spreen et al., 2011; Olason and Notz, 2014; Yu et al., 2020). The
::::::
Though

:::
sea

::
ice

::::
drift

::
is
:::::::
mainly

:::::
driven

:::
by

:::
the

::::
wind

::
in
:::::

areas
::::
with

::
a
:::
low

:::
sea

:::
ice

::::::::::::
concentration,

:::
the

:
relationships between these variables50

and sea ice drift are complex and not linear
:
in
:::::
most

::
of

:::
the

::::::::::
ice-covered

::::
areas

:
(Yu et al., 2020). In order to improve the accuracy

of sea-ice
:::
sea

:::
ice drift forecasts, we have developed two calibration methods using random forest algorithms (Breiman, 2001),

which is a supervised machine learning technique suitable for assessing nonlinear relationships between a set of predictor

variables
::::::::
predictors and a target variable.

While random forest methods have been widely used in sea-ice
:::
sea

:::
ice remote sensing (Miao et al., 2015; Han et al., 2016;55

Lee et al., 2016; Gegiuc et al., 2018; Park et al., 2020), as well as in weather forecasting (Gagne et al., 2014; Ahijevych et al.,

2016; Herman and Schumacher, 2018; Loken et al., 2019; Mao and Sorteberg, 2020), there has been less interest in using

random forests in sea-ice
:::
sea

:::
ice forecasting. Recently, Kim et al. (2020) developed sea-ice

::
and

:::::::::
compared

:::::::
1-month

:::
sea

:::
ice con-

centration forecasts based on random forests and convolutional neural networks, but they
:
.
::::
They obtained more accurate results

using convolutional neural networks . However
:::::::
probably

::::
due

::
to

:::
the

:::::
larger

:::::::
learning

::::::::
capacity

::
of

:::::::::::
convolutional

::::::
neural

::::::::
networks60

::::::::
compared

::
to

:::::::
random

::::::
forests,

::
in

::::::::
particular

::
to

::::::
extract

::::::
spatial

:::::::
features

::::
from

:::
the

:::::::::
predictors

:::::::::::::::
(Kim et al., 2020).

:::::::::::
Furthermore, other
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machine learning and statistical methods have been used for sea-ice
:::
sea

::
ice

:
forecasting, particularly for predicting the sea-ice

:::
sea

::
ice

:
concentration and extent(Wang et al., 2016; Chi and Kim, 2017; Comeau et al., 2019; Wang et al., 2019; Fritzner et al., 2020)

:
.
:::::::::::::::
Wang et al. (2019)

::::
used

:
a
:::::
vector

::::::::::::
autoregressive

::::::
model

:::
and

:
a
::::::
vector

::::::
Markov

::::::
model

::
to

:::::
predict

:::
sea

:::
ice

:::::::::::
concentration

::
at

::::::::::
subseasonal

::::
time

:::::
scales,

:::
and

::::::::
obtained

:::
the

:::
best

::::::
results

::::
using

:::
the

::::::
vector

::::::
Markov

::::::
model.

::::
The

:::::
vector

:::::::
Markov

:::::
model

::::
also

::::::::::
significantly

:::::::::::
outperformed65

::
the

::::::::
National

::::::
Centers

:::
for

:::::::::::::
Environmental

::::::::
Prediction

:::::::
(NCEP)

:::::::
Climate

:::::::
Forecast

:::::::
System,

:::::::
version

:
2
::::::
(NCEP

:::::::
CFSv2)

:::
for

::::
lead

:::::
times

:::::::
between

:
2
:::
and

::
6
::::::
weeks.

::::::::::::::::::
Comeau et al. (2019)

:::
used

::
a
::::::
method

:::::
based

:::
on

::::::
analog

:::::::::
forecasting

:::
for

::::::::
predicting

::::::
Arctic

:::
sea

:::
ice

:::
area

::::
and

::::::
volume

:::::::::
anomalies

::
at

:::::::
seasonal

::::
time

::::::
scales,

:::
and

::::::::
obtained

::::::::::::
improvements

::::::::
compared

::
to
:::::::
damped

::::::::::
persistence

::::::::
forecasts.

:::::::::
Moreover,

::::::
various

::::::
neural

::::::::
networks

::::
have

:::::
been

::::
used

:::
for

:::::::::
predicting

::::::
sea-ice

::::::::::::
concentration,

::::
and

:::::
found

:::
to

::
be

:::::::
skillful

:::
for

::
1

:::
and

:::
12

::::::
month

:::::::
forecasts

:::::::::::::::::::::::::::::::
(Chi and Kim, 2017; Kim et al., 2020)

:
,
:::
but

::::
only

:::::::
slightly

:::::
better

::::
than

::::::::::
persistence

::::::::
forecasts

:::
for

:::::::::
short-term

:::::::::
prediction70

:::::::::::::::::
(Fritzner et al., 2020)

:
.
:::::::::::
Nevertheless,

::::
there

:::
has

:::
not

::::
been

::::
any

::::::
attempt

::
to

:::::::
calibrate

:::::::::
short-term

:::
sea

:::
ice

::::
drift

:::::::
forecasts

:::::
using

::::::::
advanced

::::::::
statistical

:::::::
methods.

The algorithms
::::::
random

:::::
forest

::::::
models

:
developed in this study are based on predictor variables from sea-ice

::
sea

:::
ice

:
forecasts

produced by the Copernicus Marine Environment Monitoring Service’s (CMEMS) TOPAZ4 prediction system (Sakov et al.,

2012), wind forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), and sea-ice
::
sea

:::
ice

:
satellite75

observations from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF). While all the algorithms
:::::
models

:
use the

same predictor variables, two sets of algorithms have been
::::::
models

:::::
were developed using either drifting buoy displacements

or synthetic-aperture radar (SAR )
::::
SAR

:
observations for the target variables. Furthermore, the evaluation of the forecasts has

been performed using drifting buoy displacements for assessing the forecast errors, and using SAR observations for analyzing

the spatial variability of the forecast performances.80

The data and methods used in this study are presented in sections 2 and 3
:
, respectively. In section 4, the daily SAR ob-

servations used for analyzing the spatial variability of the forecast errors, as well as for training some of the random forest

algorithms, are evaluated using buoy observations. Then, the performances of the calibrated forecasts are evaluated and com-

pared to those from the TOPAZ4 forecasts in section 4. The discussion and conclusion of this study are presented in section

5.85

2 Data

2.1 Sea-ice
:::
Sea

:::
ice drift observations

Satellite sea-ice
::
In

:::
this

:::::
study,

::::::
satellite

:::
sea

:::
ice

:
drift observations from the CMEMS product named SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006

(MOSAIC version 2.0, hereafter referred as CMEMS SAR MOSAIC product) have been
::::
were used for training some random

forest algorithms
::::
(see

::::::
section

::
3), as well as for analyzing the spatial variability of the performances of sea-ice

:::
sea

:::
ice drift90

forecasts. This product provides sea-ice
:::
sea

::
ice

:
drift fields derived from SAR observations acquired by the Sentinel-1 satellites

with a spatial resolution of 10 km and a temporal resolution of 24 hours. Only a fraction of the Arctic is covered by this product

every day, and there is no observations north of 87.7◦N (figure 1). It is worth noting that this product is an average of drift

vectors derived from pairs of SAR images which are not necessarily acquired around midnight, and that the averaging process
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introduces uncertainties in the product. However, this product has the advantage of providing gridded sea-ice
::
sea

:::
ice drift fields95

with fixed time spans (from midnight to midnight the next day) which are necessary for training random forest algorithms.

Moreover, the fixed time spans ease the comparison between SAR observations and sea-ice
::
sea

:::
ice

:
drift forecasts with daily

time steps.

Data
::
In

::::::::
addition,

:::
data

:
from the International Arctic Buoy Programme (IAPB) have been

::::::
IABP)

::::
were

::::
also used for training

some random forest algorithms
:::
(see

:::::::
section

::
3), as well as for evaluating the SAR observations and the sea-ice

:::
sea

:::
ice drift100

forecasts. For consistent comparisons with the SAR observations and the sea-ice
:::
sea

:::
ice drift forecasts, the speed and direction

of sea-ice drift have been
:::
sea

::
ice

::::
drift

::::
were

:
calculated using the geographical coordinates of the buoys at midnight (UTC). While

all buoy observations located in an area with a sea-ice concentration higher than 10 % (in the OSI-SAF product described in the

next section) were used for training the random forest algorithms
:::
The

::::
drift

::::::
vectors

:::::
from

::::
buoy

::::::::::
observations

:::::
were

::::
then

::::::::
projected

::::
onto

:::
the

::::
polar

::::::::::::
stereographic

::::
grid

::::
used

::
in

:::
the

::::::::
TOPAZ4

:::::::
system.

:::::
When

::::::
several

::::::
buoys

::::
were

:::::::
located

::
in

:::
the

:::::
same

::::
grid

::::
cell,

::::
only105

::
the

:::::::
nearest

:::
one

::::
from

:::
the

::::
grid

:::::
point

::::
was

::::
taken

::::
into

:::::::
account.

::
In
:::::

order
::
to

:::::
avoid

:::::::::
inaccurate

:::
and

:::::::::
unrealistic

::::::
values, only the buoys

with a speed between 0.5
::
0.1

:
and 100 km per day, located in an area with a sea-ice

:::
sea

::
ice

:
concentration higher than 10 %, and

further than 50 km from the coastlines were used for verification. The drift vectors from buoy observations have been projected

onto the grid used in the TOPAZ4 system. When several buoys were located in the same grid cell, only the nearest one from

the grid point has been taken into account
:::::
While

::::
only

:::
the

:::::
buoys

::::
with

::
a
:::::
speed

:::::::
between

:::
0.1

::::
and

:::
100

::::
km

:::
per

:::
day

:::::
were

::::
used

:::
for110

::::::
training

:::
the

:::::::
random

:::::
forest

::::::
models

::::::::
predicting

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

::::
drift,

:::
all

:::
the

:::::
buoys

::::
with

:
a
:::::
speed

:::::
lower

::::
than

:::
100

:::
km

:::
per

::::
day

::::
were

::::
used

:::
for

:::::::
training

:::
the

::::::
models

:::::::::
predicting

:::
the

:::::
speed

::
of

::::
sea

:::
ice

::::
drift

::
in

:::::
order

::
to

:::::
make

::::
them

::::
able

::
to

::::::
predict

:::::
very

:::
low

::::::
speed.

::::::
During

:::
the

:::::
period

::::
from

:::::
June

::::
2013

::
to

::::
May

:::::
2020,

:::::
about

:::
4.5

::
%

:::
and

:::
0.1

::
%

:::
of

::
the

::::::
buoys

:::
had

:
a
:::::
speed

:::::
lower

::::
than

:::
0.1

:::
km

:::
per

:::
day

::::
and

:::::
higher

::::
than

::::
100

:::
km

:::
per

:::
day,

::::::::::
respectively. The number of buoy observations used for evaluating the forecasts during the period

from June 2020 to November 2020 varies between 9352 and 9575
::::
May

::::
2021

:::::
varies

::::::::
between

:::::
19276

::::
and

:::::
19576

:
depending on115

the lead time, and has been mapped in figure 1 b).

2.2 Data used for the predictor
::::::::
Predictor

:
variables

Passive microwave observations of sea-ice concentration
:::
The

:::
list

::
of

::::::::
predictor

::::::::
variables

:
is
:::
the

:::::
same

:::
for

::
all

:::
the

::::::
models

:::::::::
developed

::
in

:::
this

:::::
study,

:::
and

::::
can

::
be

::::::
divided

::::
into

::::
three

::::::::
different

:::::::::
categories.

::::
First,

:::::
some

:::::::::::
geographical

::::::::::
information

::
is

::::
used

::::
with

:::
the

::::::::
Cartesian

:::::::::
coordinates

::
of

:::
the

::::
grid

::::::
points

::
(x

:::
and

::
y
::
in

:::
the

:::::::::::
stereographic

:::::::::
projection

:::::
from

:::
the

:::::::
TOPAZ4

:::::::
system)

::::
and

:::
the

:::::::
distance

::
of

:::
the

::::
grid120

::::
point

::
to

:::
the

:::::::
nearest

::::::::
coastline

::
in

:::
the

::::::::
TOPAZ4

::::::
system.

::::::
Then,

:::
the

:::
sea

:::
ice

::::::::::::
concentration

::::
from

:::::::
passive

:::::::::
microwave

:::::::::::
observations

during the day preceding the forecast start date have been
:
is
::::
also

:
used as predictor variablein the random forest algorithms.

The .
::::

The
::::::::
variables

:::::
from

:::
sea

:::
ice

:::
and

:::::
wind

::::::::
forecasts

::::::
during

:::
the

::::::::
predicted

::::
lead

::::
time

::::
can

::
be

::::::::::
considered

::
as

:::
the

::::
last

::::::::
category.

:::::
These

:::::::
variables

:::
are

:::
the

:::::
wind

:::::::
direction

::::
and

:::::
speed

::::
from

::::::::
ECMWF

::::::::
forecasts,

::
as

::::
well

:::
as

:::
the

:::
sea

::
ice

::::::::::::
concentration,

:::::::::
thickness,

::::
drift

:::::
speed

:::
and

:::::::
direction

:::::
from

:::::::
TOPAZ4

:::::::::
forecasts.

:::::::::::
Furthermore,

::
the

:::
sea

:::
ice

::::
drift

:::
and

::::::::::::
concentration

:::::::::::
observations,

::
as

::::
well

::
as

::::::::
ECMWF125

::::
wind

::::::::
forecasts,

::::
were

::::::::
projected

::::
onto

:::
the

::::
grid

::::
used

::
in

:::
the

:::::::
TOPAZ4

:::::::::
prediction

::::::
system

:::::
using

::::::::::::::
nearest-neighbor

::::::::::
interpolation

::::::
before

:::::::::
developing

:::
the

::::::
random

:::::
forest

:::::::
models.

:
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:::
For

:::
the

:::
sea

:::
ice

::::::::::::
concentration

::::::::::
observations

::::::
during

:::
the

::::
day

::::::::
preceding

::::
the

:::::::
forecast

::::
start,

:::
the

:
version 2 of the global sea ice

concentration climate data record from OSI-SAF (Lavergne et al., 2019) has been
:::
was

:
used for training the algorithms. This

dataset has a spatial resolution of 25 km and is available with a latency of 16 days. Therefore, it cannot be used for pro-130

ducing operational forecasts. Since June 2020, calibrated forecasts have been produced daily, and near-real-time sea-ice
:::
sea

::
ice

:
concentration products at 25-km resolution processed at the Norwegian Meteorological Institute from AMSR2 and SS-

MIS DMSP-F16, F17, and F18 sensors based on the algorithms introduced in Lavergne et al. (2019) have been used. The

AMSR2 observations have been used when they were available, and have been replaced by SSMIS observations when they

were missing.135

Short-term sea ice forecasts from the TOPAZ4 prediction system (Sakov et al., 2012) have been used in the calibration

methods developed in this study. TOPAZ4 is a coupled ice-ocean model for the Arctic ocean
::::
North

:::::::
Atlantic

::::
and

:::
the

::::::
Arctic

which provides 10-day forecasts at a spatial resolution of 12.5 km, as well as a reanalysis
:::::::::::::::
(Sakov et al., 2012). It uses an

::
the

:::::::
version

:::
2.2

::
of
::::

the
::::::
Hybrid

:::::::::
Coordinate

::::::
Ocean

::::::
Model

::::::::::::::::::::::::::::::::::::::::
(HYCOM; Bleck, 2002; Chassignet et al., 2006)

::::::
coupled

:::::
with

:
a
::::
one

:::::::
thickness

::::::::
category

::::
sea

:::
ice

:::::
model

::::::
using

::
an

:::::::::::::::::::
elastic-viscous-plastic

::::::::
rheology

:::::::::::::::::::::::::
(Hunke and Dukowicz, 1997)

::::::
derived

::::
from

::::
the140

::::::
version

:::
4.1

:::
of

:::
the

::::::::::
Community

::::
Ice

:::::
CodE

:::::::
(CICE).

::::
The

::::::
model

::::::
native

::::
grid

::::::
created

::::::
using

:::::::::
conformal

:::::::
mapping

::::
has

::
a

::::::
spatial

::::::::
resolution

:::::::
between

:::
12

::::
and

:::
16

:::
km

::
in

::::
the

:::::
whole

:::::::
domain.

::::
An ensemble Kalman filter

::
is

::::
used

:
to assimilate satellite sea ice

and oceanic observations . However, while
::::
such

::
as

:::
sea

:::
ice

:::::::::::
concentration

::::
and

::::
drift,

::::::::::
along-track

:::::::
sea-level

:::::::::
anomalies,

::::::::::
sea-surface

::::::::::
temperature,

::
as

:::::
well

::
as

::::::
in-situ

::::::::::
temperature

::::
and

::::::
salinity

:::::::
profiles.

:::::::::
Moreover,

::::::::
TOPAZ4

::
is
::::::
forced

:::
by

::::::::
ECMWF

:::::::::::::
high-resolution

::::::
weather

::::::::
forecasts

::
at

:::
the

::::::
ocean

::::::
surface.

::::::
While

:
TOPAZ4 forecasts are produced daily,

::::
data

::::::::::
assimilation

::
is

::::
only

:::::::::
performed

:::
on145

:::::::::
Thursdays,

:::
and

:
only the forecasts starting on Thursdays are initialized using data assimilation and stored in the long-term

archive. Though the TOPAZ4 system provides forecasts with hourly time steps, the forecasts with daily outputs have been

::::
were used here due to the 24-hour span of SAR observations. Previous studies have reported that the speed of sea-ice

:::
sea

:::
ice

drift is overestimated in the TOPAZ4 system compared to buoy observations from the IAPB
:::::
IABP (Sakov et al., 2012; Xie

et al., 2017).150

In addition to the OSI-SAF observations and TOPAZ4 forecasts, 10-meter wind forecasts from ECMWF are also used

for the predictor variables in the random forest algorithms. These forecasts have lead times up to 10 days, and during the

studied period (2013 - 2020), the model’s spatial resolution has increased
::::::
changed

:
from about 16 km to 9 km

:
in
::::::
March

:::::
2016

(https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model).

3 Methods155

In this study, the speed of sea-ice drift was determined from the great-circle distance calculated using the Haversine formula

(equation 1)between the start and end locations during 24 hours. The initial bearing on the great-circle path between the start

and end locations was used for the direction
::::::::::
Development

:
of sea-ice drift, and was calculated using equation 2.
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In this study, the speed of sea-ice drift was determined from the great-circle distance calculated using the Haversine formula

(equation 1)between the start and end locations during 24 hours. The initial bearing on the great-circle path between the start

and end locations was used for the direction
::::::::::
Development

:
of sea-ice drift, and was calculated using equation 2.

D = 2Rarcsin


√

sin2

(
ϕend−ϕstart

2

)
+ cos(ϕstart)cos(ϕend)sin2

(
λend−λstart

2

)
::::::
random

:::::
forest

::::::
models165

θ = arctan2
(

sin(λend−λstart).cos(ϕend), cos(ϕstart).sin(ϕend)− sin(ϕstart).cos(ϕend).cos(λend−λstart)
)(180

π

)
:::::::
Random

:::::
forest

:::::::::
algorithms

::::::
consist

::
of

:::
an

::::::::
ensemble

::
of

:::::::
decision

::::
trees

::::
used

:::
for

:::::::::
regression

::
or

:::::::::::
classification

:::::
tasks

:::::::::::::
(Breiman, 2001)

:
.

::
In

::::
order

::
to

:::::
avoid

:::::::::
overfitting

::::::::
(meaning

:::
that

:::
the

::::::
models

:::::
learn

::::
from

:::::
noise

::
in

:::
the

:::::::
training

::::
data),

:::::::::::
independent

:::::::
decision

::::
trees

::::
must

:::
be

:::::::::
developed.

:::
The

::::::::::::
independence

::
of

:::::::
decision

::::
trees

::
is

:::::::
ensured

::
by

:::::
using

:::::::
different

::::::
subsets

:::
of

::
the

:::::::
training

::::
data

:::
set

::
for

::::::::::
developing

::::
each

:::::::
decision

::::
tree,

::
as

::::
well

::
as

::
by

::::::::
randomly

::::::::
selecting

:
a
:::::::
fraction

::
of

:::
the

::::::::
predictor

:::::::
variables

::
at

::::
each

:::::
node

:::
(the

::::
node

::
is
::::
then

::::
split

:::::
using

:::
the170

::::::
variable

::::::::::
maximizing

::
a
::::::::::
dissimilarity

::::::
metric

::::::
among

:::
the

:::::::
selected

:::::::::
predictors).

:::::
Each

:::::::
decision

::::
tree

:
is
::::::
trained

:::::
with

:
a
::::
data

::
set

:::::::
created

::::
using

:::
the

::::::::
bootstrap

:::::::
method,

::::::
which

::::::
consists

::
of
:::::::::
randomly

:::::::
selecting

:::::::
samples

::::
from

:::
the

:::::::
original

:::::::
training

::::
data

::::
with

::::::::::
replacement

:::
for

::::::
creating

::
a
::::
new

::::
data

::
set

:::
of

:::
the

::::
same

::::
size

::
as

:::
the

:::::::
original

::::
one.

::::
This

::::::
results

::
in

:::::
using

:::::
about

::
63

::
%

:::
of

:::
the

:::::::
samples

::::
from

:::
the

:::::::
original

:::
data

:::
set

:::
for

:::::::
training

::::
each

:::::::
decision

::::
tree.

In equations 1 and 2, R is the Earth’s radius, ϕ and λ represent the latitude and the longitude, and the subscripts "start" and175

"end" indicate the start and end locations. Furthermore, the wind speed and direction from ECMWF forecasts were calculated

using equations 3 and 4, respectively, from the mean daily u and v components (u
:
In

::::
this

:::::
study,

:::::::
random

:::::
forest

::::::
models

:::::
were

::::::::
developed

:::
for

:::::::::
regression

::::
using

:::
the

:::::::
Python

:::::
library

::::::::::::::::
Scikit-learn-0.23.2

:::::::::::::::::::
(Pedregosa et al., 2011)

:
,
:::
and

:::
the

:::::
mean

:::::::
squared

::::
error

::::
was

::::
used

::
to

:::::::
measure

:::
the

::::::
quality

::
of

:::
the

:::::
splits.

:::::::
Different

:::::::
models

::::
were

:::::::::
developed

::
for

:::::::::
predicting

:::
the

:::::::
direction

::::
and

:::::
speed

::
of

:::
sea

::
ice

:::::
drift,

::
as

::::
well

::
as

::
for

::::::::
different

:::
lead

:::::
times

::
(1

::
to

::
10

::::::
days).

::::::::
Moreover,

::::
two

:::
sets

::
of

::::::
models

:::::
were

::::::::
developed

:::::
using

:::::
target

:::::::
variables

:::::
either

:::::
from180

::::
buoy

::::::::::::
displacements

::
or

::::
from

:::::
SAR

:::::::::::
observations.

:::::::::
Therefore,

::
20

:::::::
different

:::::::
models

::::
were

:::::::::
developed

:::::
using

::::
buoy

::::::::::::
displacements,

:
and

v in equations 3 and 4). The computed wind direction is not the classic meteorological wind direction (direction from which

the wind is blowing), but the opposite (direction the wind is blowing to ) in order to be consistent with the direction of sea-ice

drift calculated using equation 2.
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WS =
√
u2 + v2185

WD = arctan2(u,v)
(180

π

)
::
20

:::::
other

::::::
models

::::
were

:::::::::
developed

::::
using

:::::
SAR

:::::::::::
observations.

::
In

::::
order

::
to
::::::::
optimize

::::
some

::::::::::
parameters

::
of

:::
the

:::::::::
algorithms,

:::::::::
sensitivity

::::
tests

::::
were

:::::::::
performed

:::::
using

::::
only

::::
data

:::::
from

:::
the

:::::::
training

::::::
periods

::::
(see

:::::::::::::
supplementary

::::::::
material).

:::
For

:::::
these

:::::::::
sensitivity

:::::
tests,

:::
the

::::::
random

:::::
forest

::::::
models

:::::
were

:::::
trained

:::::
using

::::
data

::::
from

:::::
about

::
80

:::
%

::
of

::
the

:::::::
forecast

::::
start

:::::
dates

::::::::
(randomly

::::::::
selected)

:::::
within

:::
the

:::::::
training

::::::
periods.

:
Then, the sea-ice drift speed and direction from SAR observations, the OSI-SAF sea-ice concentration observations,190

as well as the ECMWF wind forecasts have been projected onto the polar stereographic grid used in the TOPAZ4 system using

nearest-neighbor interpolation
::::
data

::::
from

:::
the

::::::::
remaining

:::::::
forecast

::::
start

:::::
dates

::::
were

::::
used

:::
for

:::::::::
evaluating

:::
the

:::::::
forecast

::::::::::::
performances.

::::
This

:::::::
selection

:::::::
prevents

:::::
using

::::::::::
neighboring

::::
grid

::::::
points

::::
with

::::
very

::::::
similar

:::::::::
conditions

::
in

:::
the

:::::::
training

:::
and

::::::::
validation

::::
data

::::
sets,

::::
and

:::
was

:::::::
repeated

:::
10

:::::
times

::
in

:::::
order

::
to

:::::
obtain

::::::
robust

::::::
results.

:::::::::::
Furthermore,

:::
the

::::::
random

::::::
forest

::::::
models

::::
were

::::::::
evaluated

:::::
using

:::
the

:::::
same

::::::
product

::
as

:::
the

::::
one

::::
used

:::
for

:::::::
training

:::
for

:::::
these

:::::::::
sensitivity

::::
tests

::::::::
(CMEMS

:::::
SAR

::::::::
MOSAIC

:::::::
product

:::
for

:::::
those

::::::
trained

::::
with

:::::
SAR195

:::::::::::
observations,

:::
and

:::::
IABP

::::::
buoys

::
for

:::::
those

::::::
trained

:::::
with

::::
buoy

::::::::::::
observations).

::::
This

:::::::
method

::::
was

:::
also

:::::
used

::
to

:::::::
evaluate

:::
the

:::::::
optimal

::::::
fraction

::
of

:::
the

::::
grid

:::::
points

:::::::
covered

:::
by

::::
SAR

::::::::::
observations

:::::
used

::
for

:::::::
training

:::::
some

::::::
random

:::::
forest

:::::::
models

:::
(see

:::::::
section

::::
3.2),

::
as

::::
well

::
as

::
to

:::::
assess

:::
the

::::::::::
importance

::
of

:::
the

::::::::
predictor

::::::::
variables

::::
(see

::::::
section

::::
3.5).

::::::
Based

::
on

:::
the

:::::::::
sensitivity

:::::
tests,

:::
we

:::::::
decided

::
to

:::::::
develop

::::::
random

:::::
forest

:::::::
models

::::
using

::::
200

:::::::
decision

::::
trees

::::::
(there

::::
were

:::
no

::::::::
significant

::::::::::::
improvements

:::::
when

:::::
using

:::::
more

:::::
trees),

::
to

:::::::::
maximize

::
the

:::::
depth

:::
of

::
the

::::::::
decision

::::
trees

:::::
(most

::
of

:::
the

:::::
leaves

:::::::
contain

::::
only

:::
one

::::::
sample

:::::
from

:::
the

::::::
training

::::
data

::::
set),

:::
and

::
to
:::
set

:::
the

:::::::
number

::
of200

:::::::
predictor

::::::::
variables

:::::::::
considered

:::
for

:::::::
splitting

:::
the

:::::
nodes

::
at

:::::
three.

:::::
These

::::::::::
parameters

::::
were

::::::
chosen

:::
for

::
all

:::
the

:::::::
models

::::::::
developed.

3.1 Development of statistical models

In order to predict independent variables, it has been chosen to forecast the direction
:::
The

:::::::::
prediction

::::
from

::
a

::::::
random

::::::
forest

:::::
model

::::
used

:::
for

:::::::::
regression

::
is

:::
the

:::::
mean

:::::
value

::
of

:::
the

:::::::::
predictions

:::::
from

::
all

::::::::
decision

:::::
trees.

:::
For

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

::::
drift,

:::::
each

:::::::
decision

:::
tree

:::::::
predicts

:
a
:::::
value

:::::::
between

:
0
:
and speed of sea-ice drift rather than

:::
360◦.

::::::
When

::::::::
averaging

::::::
several

:::::::::
predictions

:::::
close

::
to205

the eastward and northward components. In this study, two sets of algorithms have been developed using target variables either

from buoy displacements or from SAR observations. Moreover, different algorithms have been developed
:::::::::
northward

::::::::
direction,

:::
this

:::
can

:::
be

::
an

:::::
issue

:::::::
because

:::::
values

:::::::
slightly

:::::
higher

::::
than

::
0◦

:::
and

::::::
slightly

::::::
lower

::::
than

:::
360◦

:::
can

::
be

::::::::
averaged,

::::::::
possibly

::::::
leading

::
to

::
a

::::
mean

:::::
value

:::::
close

::
to

:::
the

:::::::::
southward

::::::::
direction.

:::
In

::::
order

:::
to

:::::
avoid

:::
this

:::::
issue,

:::
the

::::::::::
predictions

::::
from

:::
all

:::::::
decision

:::::
trees

::
(in

::::::::
degrees)

::::
were

::::::::
converted

::
to

::::::::
complex

:::::::
numbers

::::::
before

:::::::::
averaging.

:::::
Then,

:::
the

:::::::
average

::
of

:::::::
complex

::::::::
numbers

:::
was

:::::::::
converted

:::
into

:::
an

:::::
angle

::
in210

:::::::
degrees.

:::::::::::
Furthermore,

::::::
random

:::::
forest

::::::
models

::::
tend

::
to

::::::
predict

::::
less

::::::
extreme

::::::
values

::::
than

:::
the

:::::
target

:::::::
variable

::::::
because

:::
the

:::::
mean

:::::
value

::::
from

::
all

::::::::
decision

::::
trees

::
is

::::
used

:::
as

:::
the

:::::::::
prediction.

::::
This

::::::
should

:::
not

::
be

:::
an

::::
issue

:
for predicting the direction and speed

::
of

:::
sea

:::
ice

:::
drift

::::
due

::
to

:::
the

:::::::
circular

:::::
nature

::
of

:::::::::
directional

:::::
data,

:::
but

:::::::::
particularly

::::
low

:::
and

::::
high

:::
sea

:::
ice

::::
drift

:::::
speed

:::::
could

:::
be

:::::::
difficult

::
to

::::::
predict

::::
with

::::::
random

:::::
forest

:::::::
models.
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:::
The

::::::::
Canadian

::::::
Arctic

::::::::::
Archipelago

::
is
::::::::

excluded
:::::
from

:::
our

:::::
study

::::
due

::
to

:::
the

:::::::
different

:::::::::::::
characteristics of sea-ice drift , as well215

as for different lead times (1 to 10 days)
:
in
::::

this
::::::
region

:::::::
(largely

:::::::::
influenced

::
by

:::
the

::::::::
presence

::
of

:::::::
narrow

:::::::
channels

::::
and

:::::::
landfast

:::
ice)

::::::::
compared

::
to
:::
the

::::
rest

::
of

:::
the

:::::
Arctic. Therefore, 20 different models were developed using buoy displacements, and 20 other

modelswere developed using SAR observations.
::
no

::::
data

::::::
located

::
in

:::
the

::::::::
Canadian

:::::
Arctic

::::::::::
Archipelago

:::::
were

::::
used

:::
for

::::::
training

::::
and

::::::::
evaluating

:::
the

:::::::
random

:::::
forest

::::::
models.

:::::::::::
Furthermore,

:::
the

:::::::::
calibrated

:::::::
forecasts

::::
have

:::::
been

:::::::
produced

::::::
where

:::
the

:::
sea

::
ice

::::::::::::
concentration

:::::::
predicted

::
in
:::
the

::::::::
TOPAZ4

::::::::
forecasts

:::
was

:::::
larger

::::
than

:::
10

:::
%.220

3.1
:::::::
Training

::::
data

::::
sets

Only the TOPAZ4 forecasts starting on Thursdays are stored in the long-term archive, and the algorithms have therefore

been trained using weekly data. The period from January 2018 to May 2020 was used for training the algorithms with SAR

observations (the CMEMS SAR MOSAIC product has been available since January 2018). Due to the smaller number of

available observations, a longer period (June 2013 to May 2020) was used for training the algorithms with buoy observations.225

While using a longer period increases the size of the training data sets, it can also introduce inconsistencies in the training

data sets due to the constant development of the prediction systems (TOPAZ4 and ECMWF Integrated Forecasting System).

In order to optimize the performances of the algorithms trained with buoy observations, several training periods have been

tested (
::::::
Several

::::::
training

:::::::
periods

::::
were

:::::
tested

:
between June 2012 and May 2020), and the best results have been found using the

::::::
chosen period from June 2013 to May 2020.

::::
2020

:::::
seems

::
to

:::
be

::::::
optimal

:::
for

:::::::::
predicting

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

:::::
drift.

::::::::
However,230

::::
using

::
a
::::::
shorter

::::::
training

::::::
period

:::::
would

:::::
have

::::::::
improved

:::
the

:::::::
forecasts

:::
for

:::
the

:::::
speed

::
of

:::
sea

:::
ice

::::
drift

::::::
(figure

::
S2

:::
of

::
the

:::::::::::::
supplementary

::::::::
material).

::::
This

::
is

::::::::
probably

:::
due

::
to

:::
the

:::::::
smaller

::::
bias

::
of

::::::::
TOPAZ4

:::
sea

:::
ice

::::
drift

:::::
speed

::
in

:::
the

::::::
recent

:::::
years,

:::::
which

::::::
results

:::::
from

:::
the

:::::::
negative

::::
trend

::
of

:::
the

::::::
sea-ice

::::
drift

:::::
speed

::
in

::::::::
TOPAZ4

::
(in

:::::::
contrast

::::
with

:::::
IABP

:::::::::::
observations

:::::
which

:::::
show

::
an

:::::::::::
acceleration,

:::
see

:::::
figure

::
S6

::
of

::::
the

::::::::::::
supplementary

::::::::
material).

::::::::::::
Nevertheless,

:::
we

:::::::
decided

::
to

:::
use

::::
the

::::
same

:::::::
training

::::::
period

:::
for

:::
the

:::::::
random

:::::
forest

:::::::
models

::::::::
predicting

:::
the

::::::::
direction

:::
and

:::::
speed

::
of

:::
sea

:::
ice

::::
drift

:::
for

::::::::::
consistency.

:
235

For the algorithms trained with buoy observations, the data from all the grid points where buoy observations were available

within the TOPAZ4 domain have been used as independent data sets in order to create a large database, which results in about

1.7
:::
1.5 x 104 training data sets

::::
data

:::::
points

:
for each model

:::::
during

:::
the

:::::::
training

::::::
period. However, a different approach has been

:::
was

:
used for the algorithms trained with SAR observations. Taking into account all the grid points where SAR observations

were available in the TOPAZ4 domain would result in using many highly correlated points for training the algorithms, which240

increases the probability of overfitting(meaning that the models learn from noise in the training data). In order to minimize this

issue, but also taking into account a sufficient number of grid points, sensitivity tests were performed. For each forecast of the

training period (January 2018 - May 2020), a random selection without replacement of the grid points has been performed, and

the selected grid points were added to the training data set (similar approaches were used by Gagne et al. (2014) and Loken et al.

(2019) for calibrating precipitation forecasts). Random selections between 0.1 % and 100 % of the available grid points were245

tested, and the differences in mean absolute errors between the algorithms trained using all the available data and the algorithms

trained using only a fraction of the available data were evaluated using buoy observations as reference during the period from

June 2020 to November 2020 (figure ??). Overall, the best results were found by selecting
:::::
(figure

:::
S1

::
of

:::
the

:::::::::::::
supplementary

8



::::::::
material).

::::
Due

::
to

:::
the

::::
good

:::::::::::
performances

:::
of

::
the

:::::::
models

::::::
trained

:::::
using 2 % of the grid points with SAR observations. Therefore,

:::::::
available

::::
grid

::::::
points,

:::
we

::::::
decided

:::
to

::::
keep 2 % of the available grid points were used for the algorithms trained

::
for

:::::::
training

:::
the250

::::::
models with SAR observationsin this study, which results in about 5.7

:
.
::::
This

:::::
results

::
in
:::::
using

::::
data

::::
from

:::::
about

:::
5.5

:
x 104 training

data sets
::::
data

:::::
points

:
on average (between 5.5

::
5.2

:
x 104 and 6.0

:::
5.7 x 104 data sets

::::
points

:
depending on lead time). Moreover,

decreasing the size of the training data sets reduces the computational cost of the algorithms. Furthermore, it is worth noting

that the Arctic is not uniformly covered by SAR and buoy observations (figure 1), and that different regions have therefore

different weights in the development of the algorithms.255

The list of predictor variables is the same for the models predicting the direction and speed

3.2
::::::::::::

Pre-processing
::
of

:::
the

:::::
data

::
In

:::::
order

::
to

:::::
avoid

:::::::::
overfitting,

::
it
::
is

:::::
better

::
to
::::

use
::::::::
predictor

::::::::
variables

:::
that

:::
are

::::
not

:::::
highly

::::::::::
correlated.

::::
This

::
is

::::
why

:::
the

:::::
speed

::::
and

:::::::
direction

:
of sea-ice drift. The predictor variables can be divided into three different categories. First, some geographical

information has been used with the geographical coordinates of the grid points (x and y in the stereographic projection from260

the TOPAZ4 system) , and the distance of the grid point to the nearest coastline in the TOPAZ4 system. Then, the sea-ice

concentration from passive microwave observations during the day preceding the forecast startdate has also been used as

predictor variable. The variables from sea-ice and wind forecasts can be considered as the last category. These variables are

the wind direction and speed
:
,
::
as

::::
well

::
as

:::
the

:::::
wind

:::::
speed

::::
and

::::::::
direction,

::::
have

:::::
been

::::
used

::
as

::::::::
predictor

::::::::
variables

::::::
instead

:::
of

:::
the

:::::::
eastward

:::
and

:::::::::
northward

:::::::::::
components.

:::
The

:::::
speed

:::
of

:::
sea

::
ice

::::
drift

::::
was

:::::::::
determined

:::::
from

:::
the

:::::::::
great-circle

:::::::
distance

:::::::::
calculated

:::::
using265

::
the

:::::::::
Haversine

:::::::
formula

::::::::
(equation

::
1)

::::::::
between

:::
the

::::
start

:::
and

::::
end

:::::::
locations

::::::
during

:::
24

:::::
hours.

::::
The

:::::
initial

::::::::::
great-circle

::::::
course

:::::
angle

:::
was

::::
used

:::
for

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

::::
drift,

::::
and

:::
was

:::::::::
calculated

:::::
using

:::::::
equation

::
2:

:

D = 2Rarcsin


√

sin2

(
ϕend−ϕstart

2

)
+ cos(ϕstart)cos(ϕend)sin2

(
λend−λstart

2

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

θ = arctan2
(

sin(λend−λstart).cos(ϕend), cos(ϕstart).sin(ϕend)− sin(ϕstart).cos(ϕend).cos(λend−λstart)
)(180

π

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

:::::::
arctan2

:::::::::
represents

:::
the

:::::::::
4-quadrant

::::::
inverse

::::::
tangent

::::::::
function,

:
R
::
is
:::
the

::::::
Earth’s

::::::
radius,

::
ϕ

:::
and

::
λ

:::::::
represent

:::
the

:::::::
latitude

:::
and

:::
the270

::::::::
longitude,

:::
and

:::
the

:::::::::
subscripts

::::::
"start"

:::
and

:::::
"end"

:::::::
indicate

:::
the

::::
start

:::
and

::::
end

::::::::
locations.

:::::::::::
Furthermore,

:::
the

:::::
wind

:::::
speed

:::
and

::::::::
direction

from ECMWF forecasts , as well as the sea-ice concentration, thickness, drift speed and direction from TOPAZ4 forecasts.

Random forest algorithms consist of an ensemble of decision trees used for regression or classification tasks (Breiman, 2001)

. The algorithms developed here are used for regression, and are based on 100 decision trees because there were no significant

improvements when using more trees. The prediction from a random forest model used for regression is the mean value of the275
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results from all decision trees. For the direction of sea-ice drift, each decision tree predicts a value between 0
::::
were

:::::::::
calculated

::::
using

::::::::
equations

::
3
:::
and

::
4,

:::::::::::
respectively,

::::
from

:::
the

::::
mean

:::::
daily

::
u

:::
and

:
v
::::::::::
components

:::
(u and 360. When averaging several predictions

close to the northward direction , this can be an issue because values slightly higher than 0and slightly lower than 360can be

averaged, possibly leading toa mean value close to
:
v
::
in
:::::::::

equations
:
3
::::

and
:::
4).

:::
The

:::::::::
computed

:::::
wind

:::::::
direction

::
is
::::

not
:::
the

::::::
classic

::::::::::::
meteorological

:::::
wind

:::::::
direction

::::::::
(direction

:::::
from

:::::
which

:::
the

:::::
wind

::
is

::::::::
blowing),

:::
but

:::
the

:::::::
opposite

:::::::::
(direction

:::
the

::::
wind

::
is

:::::::
blowing

:::
to)280

::
in

::::
order

::
to

:::
be

::::::::
consistent

::::
with

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

::::
drift

::::::::
calculated

:::::
using

::::::::
equation

::
2.

WS =
√
u2 + v2

::::::::::::::
(3)

WD = arctan2(u,v)
(180

π

)
:::::::::::::::::::::::

(4)

:::
We

:::
also

::::::
tested

::::::
random

:::::
forest

::::::
models

:::::::::
predicting

:::
the

:::
sea

:::
ice

::::
drift

:::::
along

:::
the

:
x
::::
and

:
y
::::
axes

::
of

:
the southward direction . In order

to avoid this issue, the predictions from all decision trees were converted to complex numbers before averaging. Then, the285

average of complex numbers was converted into an angle in degrees. Furthermore, the calibrated forecasts have been produced

where the sea-ice concentration predicted in the
:::::::
TOPAZ4

::::
grid

:::::
using

:
a
::::::::
different

:::
set

::
of

::::::::
predictor

::::::::
variables

::::::
(figure

:::
S12

:::
of

:::
the

::::::::::::
supplementary

::::::::
material).

:::
For

:::::
these

:::::::
models,

::
the

:::::::::
northward

::::
and

:::::::
eastward

::::::::::
components

::
of

:::
the

::::::::
ECMWF

:::::
wind

:::::::
forecasts

:::::
were

::::
used

::
as

::::::::
predictors

::::::
instead

::
of

:::
the

:::::
wind

:::::
speed

:::
and

::::::::
direction,

::
as

::::
well

::
as

:::
the

:::
sea

:::
ice

::::
drift

:::::
along

:::
the

:
x
::::
and

:
y
::::
axes

::::
from

:
TOPAZ4 forecasts

was larger than 10 %.290

Sensitivity tests were performed in order to optimize some parameters of the random forest algorithms. The best results

(lowest mean absolute errors) were obtained by maximizing the depth of the decision trees, and by setting the number

of predictor variables considered for splitting the nodes at three. These parameters have been chosen for all the models

developed
::::::
(which

:::
are

:::::::
provided

:::
by

::::::::
TOPAZ4

:::::::
outputs)

::::::
instead

:::
of

:::
the

:::
sea

:::
ice

::::
drift

:::::
speed

:::
and

:::::::::
direction.

:::
The

::::::::
direction

::::
and

:::::
speed

::
of

:::
sea

:::
ice

::::
drift

::::
were

::::
then

:::::::::
calculated

:::::
using

:::
the

::::
start

:::
and

:::
end

::::::::
locations

::
of

:::
the

:::
sea

:::
ice

:::
for

:::::::::
comparing

:::::
those

::::::
models

:::::
with

:::
the

::::
ones295

::::::
directly

:::::::::
predicting

:::
the

::::::::
direction

:::
and

::::::
speed

::
of

:::
sea

:::
ice

:::::
drift.

:::::::::
Relatively

::::::
similar

::::::::::::
performances

::::
were

::::::::
achieved

::
by

:::::
these

:::::::
models

::
for

:::::::::
predicting

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

::::
drift,

:::
but

:::::
these

::::::
models

::::
had

::::::::::
significantly

:::::
worse

::::::::::::
performances

:::
for

::::::::
predicting

:::
the

::::::
speed

::
of

:::
sea

::
ice

:::::
drift

:::::
(larger

:::::
mean

::::::::
absolute

:::::
errors

::
of

:::::
about

::::
12.2

::
%

::::
and

::::
13.7

::
%

:::
on

:::::::
average

:::
for

:::
the

::::::
models

::::::
trained

::::
with

:::::
buoy

:::
and

:::::
SAR

:::::::::::
observations,

::::::::::
respectively).

3.3 Evaluation of sea-ice
::
the

:::
sea

:::
ice

:
drift direction

:::::::
forecasts300

While comparing the speed of sea-ice
:::
sea

:::
ice drift in two data sets is straightforward, caution is needed when comparing the

direction of sea-ice
:::
sea

:::
ice drift in different data sets due to the circular nature of directional data. The direction errors were

calculated using equation 5, whereDx andDy are the two directions compared in degrees (between 0◦and 360◦). Furthermore,

the correlation between different data sets has been assessed using the Pearson correlation coefficient for the speed, and using

the circular correlation coefficient (equation 6) introduced by Fisher and Lee (1983) for the direction. In equation 6, x̄ and ȳ305
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are the means of the variables x and y respectively. Similarly to the Pearson correlation coefficient, the value of the circular

correlation coefficient varies between -1 and 1 (a null value indicating no correlation, 1 meaning a perfect correlation, and -1

showing a perfect anti-correlation).

∆D =Dx−Dy⇒ Error =


∆D− 360, if ∆D > 180

∆D+ 360, if ∆D <−180

∆D, otherwise

(5)

Rc =

n∑
i=1

sin(xi− x̄)sin(yi− ȳ)√
n∑

i=1

sin2 (xi− x̄)
n∑

i=1

sin2 (yi− ȳ)

(6)310

::
In

:::
this

::::::
study,

:::
we

::::
used

:::
the

:::::::::
Wilcoxon

::::::::::
signed-rank

:::
test

:::
to

:::::
assess

::::
the

::::::::
statistical

::::::::::
significance

::
of

::::
the

:::::::::
differences

::::::::
between

:::
the

:::::::
absolute

:::::
errors

::::
due

::
to

:::
its

:::::::::
suitability

:::
for

:::::::::::::
non-parametric

::::
data

::::
(the

:::::::
absolute

::::::
errors

:::
are

:::
not

::::::::
normally

::::::::::
distributed)

::::
and

::::::
paired

::::::::::
observations

::::
(the

::::
same

::::
data

:::
set

:::
was

:::::
used

::
for

:::::::::
evaluating

:::
the

::::::::
different

:::::::
models).

:::
We

:::::::::
performed

:::
this

:::::::
analysis

:::::
using

:::
the

:::::::::
two-tailed

:::::::::
hypothesis

:::
test

:::
and

:::
the

::::::::::
significance

:::::
level

::
of

::::
0.05.

:

3.4
:::::::::

Evaluation
::
of

:::
the

::::::::::
importance

:::
of

::::::::
predictor

::::::::
variables315

::
In

:::
this

::::::
study,

:::
the

:::::::::
importance

::
of
::::

the
:::::::
predictor

::::::::
variables

::::
was

::::::::
estimated

:::::
using

::::
two

:::::::
different

::::::::
methods.

:::::
First,

:::
the

:::::::::::::
impurity-based

::::::
feature

:::::::::
importance

::::
was

::::::::
assessed.

::::
This

:::::::
method

::
is

:::::
based

::
on

:::
the

::::::::
measure

::
of

::::::::
impurity

::::::::
decreases

::::
(the

:::::
mean

::::::
squared

:::::
error

:::::
here)

:
at
:::

all
:::::
nodes

::
in
::::

the
::::::
random

:::::
forest

:::::::::
algorithm

::::
(the

:::::::
variables

::::
that

:::::
often

::::
split

:::::
nodes

::::
with

:::::
large

:::::::
impurity

::::::::
decreases

:::
are

::::::::::
considered

:::::::::
important).

::
It

:::::::
provides

:::
an

:::::::::
assessment

:::
of

:::
the

::::::
relative

::::::::::
importance

::
of

:::
the

::::::::
predictor

::::::::
variables,

:::
but

::
is
::::::
known

:::
for

::::::::::::::
underestimating

::
the

::::::::::
importance

::
of

:::::::::::::
non-continuous

:::::::::
predictors

::::::::::::::::
(Strobl et al., 2007).

:
320

::
In

:::::::
addition,

::::
the

:::::::
random

:::::
forest

::::::
models

:::::
using

:::
all

::::::::
predictor

::::::::
variables

:::::
have

::::
been

:::::::::
compared

::
to

:::::::
models

::
in

:::::
which

::::
one

:::
of

:::
the

::::::::
predictors

::::
was

:::::::
removed.

::::
This

::::::::::
experiment

:::
was

:::::::::
performed

:::::
using

:::
the

::::
same

:::::::
method

::
as

::
the

::::
one

::::
used

:::
for

::::::::::
determining

:::
the

:::::::::
parameters

::
of

:::
the

::::::
random

::::::
forest

:::::::::
algorithms,

::::::
which

:::::::
consists

::
of

:::::::
training

:::
the

::::::
models

::::
with

::::
data

:::::
from

:::::
about

::
80

:::
%

::
of

:::
the

:::::::
forecast

::::
start

:::::
dates

::::
from

:::
the

:::::::
training

:::::::
periods,

:::
and

:::::
using

:::
the

:::::::::
remaining

:::
data

:::
for

:::::::::
evaluating

:::
the

::::::::
forecasts

:::
(see

:::::::
section

::::
3.1).

:::
By

:::::::::
comparing

:::
the

:::::
mean

:::::::
absolute

:::::
errors

::
of

:::
the

:::::::
different

:::::::
models,

:::
this

:::::::
method

:::::
allows

::
to

:::::::::
determine

:
if
:::
the

::::::::
predictor

::::::::
variables

::::
tend

::
to

:::::::
improve

::
or

:::::::::
deteriorate325

::
the

:::::::::
forecasts.

:::::::::::
Furthermore,

::
it
::
is

:::::
worth

::::::
noting

::::
that

::::
this

::::::
method

:::::
tends

:::
to

::::::::::::
underestimate

:::
the

::::::::::
importance

::
of

::::::
highly

:::::::::
correlated

::::::::
predictors

:::::
since

::::::
similar

::::::::::
information

:
is
::::::::
provided

::
to

:::
the

::::::::
algorithm

:::::
when

::::
one

::
of

:::
the

::::::::
correlated

:::::::::
predictors

:
is
::::::::
removed.

:

4 Results

4.1 Evaluation of daily SAR observations
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The CMEMS SAR MOSAIC product provides daily averages of drift vectors derived from pairs of SAR observations. Nevertheless,330

the averaging process introduces uncertainties in the product because the observations are not necessarily acquired around

midnight. In figure 2, this
:::
The

::::::::
CMEMS

::::
SAR

:::::::::
MOSAIC product has been compared to buoy observations during the period

from January 2018 to November 2020.
::::::::
December

::::
2020

:::
in

:::::
figure

::
2.

:
The Pearson correlation coefficient is 0.78

::::
0.80 for the

speed, and the circular correlation coefficient is 0.84 for the direction. The SAR observations have relatively low biases (the

mean error is 3.0
:::
2.8 degrees for the direction and -170 meters

::::
-0.14

:::
km

:
/ day for the speed). Furthermore, the mean absolute335

error is 21.6
:::
22.0

:
degrees for the direction and 2171 meters

::
2.1

::::
km / day for the speed (the mean speeds are 7624 and 7795

meters
::::
7.46

:::
and

::::
7.60

::::
km / day for the SAR and buoy observations

:
, respectively). The root mean square error is 36.0

::::
36.8

degrees for the drift direction and 3677 meters
:::
3.6

:::
km / day for the drift speed. While these errors are considerable, the large

number of SAR observations compared to buoy observations makes this product potentially suitable for machine learning ap-

plications. However, we consider these errors too large for evaluating the performances of the sea-ice
:::
sea

:::
ice

:
drift forecasts340

using only these observations. Therefore, the performances of sea-ice
:::
sea

:::
ice drift forecasts have been evaluated using buoy

observations, and the SAR observations have been used to study the spatial variability of the forecast performances.

4.2 Evaluation of the random forest algorithms
:::::::::
calibrated

::::::::
forecasts

The performances of the calibrated forecasts have been evaluated and compared to those from
::
the TOPAZ4 forecasts

::::::::
prediction

::::::
system during the period from June 2020 to November 2020

::::
May

::::
2021

:
using buoy observations (figures 3and ??). The two345

versions of the calibrated forecasts outperform the TOPAZ4 forecasts for both the direction and speed of sea-ice drift, and for

all lead times.
:
). For predicting the direction of sea-ice

:::
sea

::
ice

:
drift, the random forest models trained using buoy observations

have the best performances
::::::
models

::::::
trained

::::
with

:::::
buoy

::::::::::
observations

:::::::::::
significantly

::::::::::
outperform

:::
the

::::::::
TOPAZ4

::::::::
prediction

:::::::
system

:::
and

:::
the

::::::
models

::::::
trained

::::
with

::::
SAR

:::::::::::
observations for all lead times, except 10 days. On average,

:::
the

::::::::
calibrated

::::::::
forecasts

::::::::
produced

::
by

:
these models have a mean absolute error about 8.1

::
8.0

:
% lower than the TOPAZ4 forecasts(between 1.0 % and 16.6 %350

depending on the lead time). This is significantly better than the
:
.
:::
The

:
models trained with SAR observations which have a

mean absolute error about 5.9 % lower on average than the
::::::::::
significantly

:::::::::
outperform

:::
the

::::::::
TOPAZ4

:::::::::
prediction

::::::
system

:::
for

::::
lead

::::
times

:::
up

::
to

::
5
:::::
days,

:::
and

::::::
reduce

:::
the

:::::
mean

::::::::
absolute

:::::
errors

:::
by

:::
3.3

::
%

:::::::::
compared

::
to

:
TOPAZ4 forecasts.

::::::::
However,

:::
the

::::::::
TOPAZ4

::::::::
prediction

::::::
system

:::::::
slightly

:::::::::
outperform

:::
the

:::::::
models

::::::
trained

::::
with

::::
SAR

:::::::::::
observations

:::
for

:::
lead

:::::
times

:::::
from

:
8
::
to
:::
10

:::::
days,

::::::
though

:::
the

:::::::::
differences

:::
are

:::
not

:::::::::
statistically

::::::::::
significant. Moreover, the fraction of forecasts improved by the calibration is, on average, larger355

for the models trained with buoy observations (57.0
:::
55.7

:
%) than for the models trained with SAR observations (54.8

:::
52.9

:
%).

Furthermore, the root mean square error is reduced by 5.4 % and 4.0 % by the calibration for the models trained with buoy

and SAR observations respectively
::::::::
correlation

::::::::
between

:::
the

:::::::
forecasts

:::
and

:::
the

:::::
buoy

::::::::::
observations

::
is

::::::::
improved

:::
by

::::
both

:::::::::
calibration

:::::::
methods

:::
for

:::
lead

:::::
times

:::
up

::
to

:
7
:::::
days,

:::
and

::::::::::
deteriorated

:::
for

::::::
longer

::::
lead

:::::
times.

For the speed of sea-ice
::
sea

:::
ice

:
drift, the mean absolute errors are lower in the models trained with buoy observations360

during the first five days, relatively similar in both versions of the calibrated forecasts for lead times between six and seven

days, and lower in
::::
have

:::
the

::::
best

::::::::::::
performances

::
for

:::
all

::::
lead

:::::
times.

:::::
They

:::::::::::
significantly

:::::::::
outperform

:::
the

::::::::
TOPAZ4

::::::
system

::::
and

:::
the

::::::
models

::::::
trained

::::
with

:::::
SAR

::::::::::
observations

:::
for

:::
all

::::
lead

:::::
times,

::::::
except

:
4
:::::
days

:::
for

:::::
which

:::
the

:::::::::
difference

::::
with

:::
the

::::::::
TOPAZ4

::::::
system

::
is
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:::
not

:::::::::
statistically

::::::::::
significant.

:::
The

::::::::
forecasts

:::::
from the models trained with SAR observations

::::
have

::::::
slightly

::::::
larger

::::
mean

::::::::
absolute

:::::
errors

::::
than

::::::::
TOPAZ4

::::::::
forecasts

:::
for

::::
lead

:::::
times

:::
up

::
to

::
5

::::
days,

::::
but

::::::::::
significantly

::::::::::
outperform

::::::::
TOPAZ4

::::::::
forecasts for longer lead365

times. On average, the mean absolute error is reduced by 9.6 % and 7.1
::
7.1

::
%

::::
and

:::
2.5

:
% by the calibration for the models

trained with buoy and SAR observations,
:
respectively. The fraction of forecast

:::::::
forecasts

:
improved is, on average, slightly

larger for the models trained with SAR observations (55.3
:::
buoy

:::::::::::
observations

:::::
(53.4 %) than for the models trained with buoy

observations (54.9
::::
SAR

:::::::::::
observations

:::::
(53.1 %). However, the root mean square errors are smaller in the models trained with

buoy observations for all lead times. On average, the root mean square error is reduced by 12.0 % and 6.1 % by the calibration370

for the models trained with buoy and SAR observations, respectively. Moreover, the correlation between the buoy observations

and the calibrated forecasts is higher for the models trained with buoy observations for all lead times, except for 1 and 4

days
:::::::
forecasts

::
is

::::::::
improved

::
by

::::
both

:::::::::
calibration

::::::::
methods.

The spatial variability of the fraction of forecasts improved by the calibration has been analyzed using SAR observations

as reference in order to use as many observations as possible (figures 4, 5, 6, 7), though the grid points with less than 20375

SAR observations during the period from June 2020 to November 2020
:::
May

:::::
2021 have been excluded from this analysis. The

number of SAR observations per grid cell used for this comparison has been mapped in figure 1 d). While the two versions

of the calibrated forecasts
::::::
Overall,

:::::
both

:::::::::
calibration

::::::::
methods perform relatively well for predicting the direction of sea-ice

drift in most of the central Arctic , they have lower performances than TOPAZ4 in the Canadian Archipelago
:::
sea

:::
ice

::::
drift

::
in

::
the

:::::::
Central

::::::
Arctic

:::
for

:::
lead

:::::
times

:::
up

::
to

::
5
::::
days

:
(figures 4 and 5).

::::::::
However,

:::
the

:::::::
fraction

::
of

::::::::
forecasts

::::::::
improved

:::::::::
decreases

::::
with380

::::::::
increasing

::::
lead

::::::
times,

:::
and

:::::
both

:::::::::
calibration

::::::::
methods

::::
have

::::::::
relatively

:::::
poor

:::::::::::
performances

:::
in

:::
the

::::::::
Beaufort,

::::::::
Chukchi,

::::
and

::::
East

:::::::
Siberian

::::
seas. Furthermore, the models trained with buoy observations seem to perform slightly

:::::::
perform better than the models

trained with SAR observations in most of the area taken into account in this analysis.

For the speed of sea-ice
:::
sea

:::
ice

:
drift, the models trained with

:::
SAR

:::::::::::
observations

:::::::
perform

::::::
better

::::
than

:::
the

::::::
models

:::::::
trained

::::
with

::::
buoy

:::::::::::
observations

::
in

::::
most

:::
of

:::
the

::::
area

::::::::
analyzed.

::::
The

::::::
models

::::::
trained

::::
with

:
buoy observations have particularly poor per-385

formances compared to TOPAZ4 in the Canadian Archipelago, along the east coast of Greenland , and north of Svalbard
::::
near

::
the

:::::::::
Greenland

::::
and

::::::
Russian

:::::::::
coastlines (figure 6). The

:
,
:::::
while

:::
the models trained with SAR observations perform better in these

areas , though they also have poor performances in the Canadian Archipelago (figure 7). Most
::
It

::
is

:::::
worth

:::::
noting

::::
that

::::
most

:
of

the buoys taken into account for evaluating the forecasts in figures 3 and ??
:::::
figure

:
3
:
are not located in the areas where the

models trained with buoy observations have poor performances, and this
:::::
which likely explains the better performances of the390

models trained with buoy observations compared to the models trained with SAR observations in figures 3and ??. Furthermore,

in the Canadian Archipelago, sea-ice drift is more constrained by the coastlines than in most of the Arctic, and there is a lot of

landfast ice (Li et al., 2019). This could explain the poor performances of the random forest models that are mainly trained in

areas where the coastlines have less influence on sea-ice drift (data from the Canadian Archipelago representabout 5 % and 3

:::::
figure

::
3.395

4.3
:::::::::

Importance
:::
of

::::::::
predictor

::::::::
variables
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:::
For

::::
both

:::::::::
calibration

::::::::
methods,

:::
the

:::::
most

::::::::
important

:::::::
variable

:::
for

:::::::::
predicting

:::
the

::::
drift

:::::::
direction

::
is
:::
the

::::
sea

::
ice

:::::
drift

:::::::
direction

:::::
from

:::::::
TOPAZ4

::::::::
forecasts,

::::::::
followed

:::
by

:::
the

::::
wind

::::::::
direction

::::
from

::::::::
ECMWF

::::::::
forecasts

::::::
(figure

::
8).

:::
On

::::::::
average,

::
the

:::::::
relative

::::::::::
importance

::
of

:::
sea

:::
ice

::::
drift

:::::::
direction

::::::::
forecasts

::
is
:::::
about

::::
1.4

:::
and

:::
1.5

:::::
times

::::::
larger

::::
than

:::
the

:::
one

:::::
from

:::::
wind

:::::::
direction

::::::::
forecasts

:::
for

:::
the

:::::::
models

::::::
trained

::::
with

::::
buoy

::::
and

::::
SAR

:::::::::::
observations,

:::::::::::
respectively.

::::
The

::::
sum

::
of

:::
the

:::::::
relative

::::::::::
importances

::
of

:::::
these

::::
two

:::::::
variables

:::::::::
represent,400

::
on

:::::::
average,

:::::
about

:::
46

:::
and

:::
41 % of the training data

::::
sum

::
of

::
all

:::::::
relative

::::::::::
importances

:
for the models trained with SAR and buoy

::::
buoy

:::
and

:::::
SAR observations, respectively).

4.4 Importance of predictor variables

:
.
::::::::
However,

:::
the

::::::
relative

::::::::::
importances

::
of

:::::
these

::::
two

:::::::
variables

::::::::
decrease

::::
with

::::::::
increasing

::::
lead

::::::
times.

In order to assess the importance of each predictor variable, the algorithms using all predictor variables have been compared405

to algorithms in which one of the predictor variables was removed (figure ??). This experiment was performed by using only

data from the training periods (June 2013 - May 2020 and January 2018 - May 2020 for the algorithms
::::::::
Similarly,

:::
the

:::
sea

:::
ice

:::
drift

::::::
speed

::::
from

::::::::
TOPAZ4

::
is

:::
the

::::
most

::::::::
important

:::::::
variable

:::
for

:::::::::
predicting

:::
the

:::::
speed

::
of

:::
sea

:::
ice

:::::
drift,

:::::::
followed

:::
by

:::
the

:::::
wind

:::::
speed

::::
from

::::::::
ECMWF

::::::::
forecasts.

:::
On

:::::::
average,

:::
the

:::::::
relative

:::::::::
importance

:::
of

::::::
sea-ice

::::
drift

:::::
speed

::::::::
forecasts

::
is

:::::
about

:::
1.7

:::
and

:::
2.2

::::::
larger

::::
than

::
the

::::
one

::::
from

:::::
wind

:::::
speed

::::::::
forecasts

::
for

:::
the

:::::::
models trained with buoy and SAR observationsrespectively). 80 % of the data sets410

during these periods were selected for training the algorithms, and the remaining 20 % of the data sets were used to evaluate

the performances of the algorithms. The selection of
:
,
::::::::::
respectively

::::::
(figure

:::
8).

:::
For

:::
the

::::::
models

:::::::::
predicting

:::
the

:::::
speed

:::
of

:::
sea

:::
ice

::::
drift,

:
the data sets used for training and evaluating the

::::
sum

::
of

:::
the

:::::::
relative

::::::::::
importances

::
of

:::::
these

::::
two

::::::::
variables

::::::::
represent,

:::
on

:::::::
average,

:::::
about

::
40

::
%

::
of

:::
the

::::
sum

::
of

:::
all

::::::
relative

::::::::::
importances

:::
for

::::
both

:::::::::
calibration

::::::::
methods.

:::::::::::
Furthermore,

:::
the

::::::
relative

:::::::::::
importances

::
of

::::
these

::::
two

:::::::
variables

::::
also

::::::::
decrease

::::
with

::::::::
increasing

::::
lead

:::::
times.

:
415

::
On

::::::::
average,

:::
the

:::::
mean

::::::::
absolute

:::::
errors

:::
are

:::::::
reduced

:::
by

:::
all

:::::::::
predictors

:::
for

:::
the

::::::::
direction

::::
and

:::::
speed

::
of

::::
sea

:::
ice

::::
drift

::
in
:::::

both

:::::::::
calibration

:::::::
methods

::::::
(figure

:::
9),

:::::::
though

:::::
some

::::::::
predictor

::::::::
variables

:::
do

:::
not

::::::::
improve

:::
the

:::::::
forecast

::::::::
accuracy

:::
for

:::
all

::::
lead

::::::
times.

:::::
While

:::
the

:::
sea

:::
ice

::::::::::::
concentration

::::
from

::::::::
TOPAZ4

::::::::
forecasts

:::
and

:::::
from

:::
the

:::::::::::
observations

::::::
during

:::
the

:::::::::::
initialization

::
of

:::
the

::::::::
forecasts

::
are

::::::::::
correlated,

::::::::
removing

::::
one

::
of

:::::
these

::::::::
variables

::::::::
decreases

::::
the

:::::::
accuracy

:::
of

::::
most

:
random forest modelsis a random process

according to the forecast start date to avoid the influence of neighboring grid points with very similar conditions, and has been420

repeated 100 times in order to obtain reliable results.
:::::::::
Therefore,

:::
we

:::::::
decided

::
to

:::::
keep

::::
both

::::::::
variables,

::::
even

::
if
:::
the

:::::::::::
importances

::
of

::::
these

::::::::
variables

:::
are

::::::::
probably

:::::::::::::
underestimated

:::
due

::
to
::::

this
:::::::::
correlation. Furthermore, the algorithms were evaluated using the

same product as the one used for training the random forest models (CMEMS SAR MOSAIC product for those trained with

SAR observations, and IABP buoys for those trained with buoy observations). It is worth noting that this method tends to

underestimate the importance of highly correlated predictors since similar information is provided to the algorithms when one425

of the correlated predictors is removed
::
we

::::
also

:::::
tested

:::::
using

:::
the

:::
day

::
of
::::

year
:::
as

::
an

:::::::::
additional

:::::::
predictor

:::::::
variable

::::::
(figure

:::
S7

::
of

:::
the

::::::::::::
supplementary

::::::::
material),

:::
but

::::::
adding

:::
this

:::::::
variable

:::::
tends

::
to

:::::::::
deteriorate

:::
the

:::::::
forecast

::::::::
accuracy

:::
for

::::
most

:::::::
models,

::
so

:::
we

:::::::
decided

::
to

::::::
discard

:::
this

:::::::
variable.

For both calibration methods, the most important variable for predicting the drift direction is the sea-ice
::
the

::::::
models

:::::::::
predicting

::
the

::::::::
direction

:::
of

:::
sea

:::
ice

:::::
drift,

::::::::
removing

:::
the

:
drift direction from TOPAZ4 forecasts . Similarly, the sea-ice drift speed from430
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TOPAZ4 is the most important variable for
:::::::
increases

:::
the

:::::
mean

::::::::
absolute

::::
error

::::::::
between

:::
1.1

::::
and

:::
6.7

:::::::
degrees

:::::::::
depending

:::
on

::
the

:::::
lead

::::
time

:::
and

::::
the

::::::::::
observations

:::::
used

:::
for

:::
the

:::::
target

::::::::
variable.

::::
This

::
is
::::::

much
:::::
larger

::::
than

:::
the

::::::::::
differences

::
in

:::::
mean

::::::::
absolute

::::
error

:::::
when

:::
the

::::
wind

::::::::
direction

::::
from

::::::::
ECMWF

:::::::
forecasts

::
is

:::::::
removed

::::::::
(between

:::
0.1

:::
and

:::
2.2

::::::::
degrees).

:::
For

:::
the

::::::
models

:
predicting the

speed of sea-ice drift. Moreover, the ECMWF wind forecasts and
::
sea

:::
ice

:::::
drift,

::::::::
removing

::
the

::::
drift

:::::
speed

:::::
from

:::::::
TOPAZ4

::::::::
forecasts

:::::::
increases

:::
the

:::::
mean

:::::::
absolute

:::::
error

:::::::
between

:::::
0.041

:::
and

:::::
0.444

:::
km

::::
/day

:::::::::
depending

:::
on

:::
the

::::
lead

::::
time

:::
and

:::
the

:::::::::::
observations

::::
used

:::
for435

::
the

::::::
target

:::::::
variable.

::::
This

::
is
::::
also

:::::
much

:::::
larger

::::
than

:::
the

::::::::::
differences

::
in

:::::
mean

:::::::
absolute

:::::
error

:::::
when

:::
the

::::
wind

:::::
speed

:::::
from

::::::::
ECMWF

:::::::
forecasts

::
is

::::::::
removed.

:::::::::::
Surprisingly,

::::::::
removing

:::
the

:::::
wind

:::::
speed

:::::::
forecasts

:::::::
slightly

:::::::
reduces

:::
the

:::::
mean

:::::::
absolute

::::
error

:::::::::
(difference

:::
of

:::::
0.005

:::
km

:
/
::::
day)

:::
for

:::
the

::::::
model

:::::::::
predicting the geographical coordinates in the stereographic projection used in the TOPAZ4

system also have a significant impact on the forecast errors for predicting both the direction and speed of sea-ice drift
:::::
speed

::
of

:::
sea

::
ice

::::
drift

:::
for

::
a
::::
lead

::::
time

::
of

:
4
:::::

days
::::::
trained

::::
with

::::
SAR

:::::::::::
observations. For the algorithms

::::
other

:::::::
models predicting the speed of440

sea-ice drift,
::
sea

:::
ice

::::
drift,

:::::::::
removing

:::
the

::::
wind

:::::
speed

::::::::
forecasts

::::::::
increases

:::
the

::::
mean

::::::::
absolute

::::
error

:::::::
between

:::::
0.001

::::
and

:::::
0.127

:::
km

:
/

:::
day.

:::::::::::
Furthermore,

:
the mean absolute errors are also significantly

::
for

:::
the

:::::
speed

::
of

:::
sea

:::
ice

::::
drift

:::
are

::::
also

::::::::::
considerably

:
reduced by

adding the sea-ice
::
sea

:::
ice thickness forecasts from TOPAZ4 . Some predictor variables do not improve the forecast accuracy for

all lead times. In particular, for the algorithms predicting the speed of sea-ice drift trained with buoy observations, the forecasts

of wind direction and drift direction increase the mean absolute errors for five and four lead times, respectively
::::::::
(between

:::::
0.011445

:::
and

:::::
0.098

:::
km

:
/
:::::
day),

:::::::
probably

::::
due

::
to

:::
the

::::::::::::
anti-correlation

::::::::
between

:::
sea

::
ice

::::::::
thickness

::::
and

:::
sea

:::
ice

::::
drift

:::::
speed

:::::::::::::
(Yu et al., 2020).

5 Discussion and conclusion

The characteristics and performances of the calibrated forecasts developed in this study depend on the observations used for

training the algorithms, as well as the data sets used for the predictor variables. The 24-hour mean composites of drift vectors

provided by the CMEMS SAR MOSAIC product have been used for training some algorithms due to the fixed time spans450

of this data set, the large number of available observations, and the relatively high spatiotemporal
::::::::::::
spatio-temporal

:
resolution

compared to sea-ice
:::
sea

:::
ice drift products developed from passive microwave observations (Lavergne et al., 2010; Girard-

Ardhuin and Ezraty, 2012; Tschudi et al., 2020). However, the spatial resolution (10 km) and the time spans (24 hours) of this

product prevent to develop high-resolution calibrated forecasts. Furthermore, the averaging process of drift vectors introduces

significant uncertainties in the product (figure 2), which represent a limitation for developing accurate calibrated forecasts.455

On the other hand, buoy
::::
Buoy

:
observations are more accurate, but the relatively low number of available observations is a

limitation for the development of random forest algorithms
::::::
models. Both methods also have common limitations such as the

heterogeneous spatio-temporal sampling of the buoy and SAR observations. The random forest algorithms are more influenced

by areas often covered by sea-ice
:::
sea

:::
ice drift observations than by areas with a poor coverage in these observations. This

could potentially explain some of the spatial variability of the performances of the calibrated forecasts. In particular, the poor460

performances of the calibrated forecasts compared to TOPAZ4 in the Canadian Archipelago could be partly due to local

characteristics (narrow channels and presence of landfast ice) that are not often encountered in
:::::::
Overall,

:::
the

::::::::
calibrated

::::::::
forecasts

::::
have

::::
their

::::
best

:::::::::::
performances

::
in

:::
the

::::::
Central

::::::
Arctic

:::::
where

:::::
most

::
of the training data sets

::
are

:::::::
located.
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The forecasts used for the predictor variables are produced by operational models (ECMWF Integrated Forecasting System

and the TOPAZ4 prediction system) which are constantly developed. The development of these systems could affect the465

performances of the random forest algorithms due to changes between the different versions of the models. This issue is more

important for the algorithms
::::::
models trained with buoy observations due to the longer period used for training these algorithms

(June 2013 to May 2020
:::::::
models.

:::::::::
Moreover,

::::::::
TOPAZ4

::::
does

:::
not

:::::::::
reproduce

:::
the

::::::
recent

::::::::::
acceleration

::
of

::::
sea

:::
ice

::::
drift

::
as

:::::::
already

:::::::
reported

::
by

::::::::::::::
Xie et al. (2017),

:::
and

:::
the

::::
bias

::
of

::::::::
TOPAZ4

:::
sea

::
ice

::::
drift

:::::
speed

:::
has

:::::::
changed

::::::
during

:::
the

::::::
studied

::::::
period

:::::
(figure

:::
S6

::
of

:::
the

::::::::::::
supplementary

::::::::
material).

::::
This

::::::::
probably

::::::
affects

:::
the

:::::::::::
performances

::
of

:::
the

:::::::
random

:::::
forest

::::::
models

:::::::
trained

::::
with

::::
buoy

:::::::::::
observations470

:::
due

::
to

:::::
their

::::::::
relatively

::::
long

:::::::
training

::::::
period,

::::
and

:::::
using

:
a
:::::::

shorter
:::::::
training

::::::
period

:::::
would

:::::
have

::::::::
improved

:::
the

::::::::::::
performances

:::
for

::::::::
predicting

:::
the

:::::
speed

::
of

:::
sea

:::
ice

::::
drift

::::::
(figure

:::
S2

::
of

:::
the

::::::::::::
supplementary

:::::::
material). Furthermore, while only the TOPAZ4 forecasts

starting on Thursdays were used for training the random forest algorithms (only these forecasts are stored in the long-term

archive), the operational forecasts have been produced daily. Because only the forecasts starting on Thursdaysare initialized

using data assimilation
::::
data

::::::::::
assimilation

::
is

::::
only

:::::::::
performed

::
on

:::::::::
Thursdays, this could be an issue when producing forecasts not475

starting on Thursdays
:::
(the

:::::::
weights

::
of

:::
the

:::::::
different

::::::::
predictor

:::::::
variables

::::::
might

:::
not

::
be

:::::::
optimal).

Despite these limitations, it has been shown that the calibrated forecasts produced by both methods outperform the
::::::
random

:::::
forest

::::::
models

::::::
trained

::::
with

:::::
buoy

::::::::::
observations

::::::::::
outperform

::::::::
TOPAZ4

:::::::
forecasts

:::
for

:::::
both

:::
the

:::::
speed

:::
and

::::::::
direction

::
of

:::
sea

:::
ice

:::::
drift,

:::::
except

:::
for

::::::
10-day

::::
lead

::::
time

::
for

:::
the

::::::::
direction

::
of

:::
sea

::
ice

:::::
drift.

:::
The

::::::
models

::::::
trained

::::
with

:::::
SAR

::::::::::
observations

::::::::::
significantly

::::::::::
outperform

TOPAZ4 forecasts for both the direction and speed of sea-ice driftwhen using buoy observations as reference (figures 3 and480

??)
:::
lead

:::::
times

:::
up

::
to

:
5
:::::

days
:::
for

:::
the

::::::::
direction

::
of

:::
sea

:::
ice

:::::
drift,

:::
but

::::
have

::::::
similar

::::::::::::
performances

::
as

::::::::
TOPAZ4

::::::::
forecasts

:::
for

::::::
longer

:::
lead

::::::
times.

:::
For

:::
the

:::::
speed

::
of

:::
sea

:::
ice

:::::
drift,

:::
the

::::::
models

::::::
trained

::::
with

:::::
SAR

::::::::::
observations

:::::
have

::::::
slightly

:::::
larger

:::::
mean

::::::::
absolute

:::::
errors

:::
than

::::::::
TOPAZ4

:::
for

::::
lead

:::::
times

:::
up

::
to

:
5
:::::
days,

:::
but

:::::::::::
significantly

:::::::::
outperform

::::::::
TOPAZ4

::::::::
forecasts

::
for

::::::
longer

::::
lead

:::::
times. On average,

the mean absolute errors for the direction of sea-ice drift are 8.1 % and 5.9
:::
sea

:::
ice

::::
drift

:::
are

:::
8.0

::
%

::::
and

:::
3.3

:
% lower than in

TOPAZ4 forecasts for the algorithms
::::::
models trained with buoy and SAR observations,

:
respectively. For the models predicting485

the speed of sea-ice
::
sea

:::
ice

:
drift, the mean absolute errors are reduced by 9.6 % and 7.1

:::
7.1

::
%

:::
and

:::
2.5

:
% for the algorithms

::::::
models trained with buoy and SAR observations

:
,
:
respectively. The lower errors of the algorithms

::::::
models trained with buoy

observations, despite their smaller training data sets, show that the accuracy of the observations used for the target variables

plays a crucial role in the performances of the calibrated forecasts.

The spatial analysis of the forecast performances using SAR observations as reference has shown that the algorithms
::::::
models490

trained with buoy observations slightly outperform the algorithms
:::::::::
outperform

:::
the

::::::
models

:
trained with SAR observations for

predicting the direction of sea-ice
::
sea

:::
ice

:
drift in most of the area analyzed in this study (figures 4 and 5). However, for

the algorithms predicting the speed of sea-ice
:::
sea

:::
ice drift, the forecasts

:::::
models

:
trained with SAR observations have better

performances in most of the area analyzed in this study (figures 6 and 7). The algorithms
::::::
models trained with buoy observations

have particularly poor performances north of Svalbard, along the east coast of Greenland, and in the Canadian Archipelago
:::
for495

::::::::
predicting

:::
the

:::::
speed

:::
of

:::
sea

:::
ice

::::
drift

::::
near

:::
the

:::::::::
Greenland

:::
and

:::::::
Russian

::::::::
coastlines. This is likely due to the low number of buoy

observations available for training the algorithms in these areas and the particular characteristics of these areas (presence of

16



landfast ice in the Canadian Archipelago, and high sea-ice
:::
high

:
drift speed along the east coast of Greenland and north of

Svalbard
::::::::
Greenland

::::
East

:::::
coast

:::
and

::::::::
presence

::
of

:::::::
landfast

:::
ice

:::::
along

:::
the

::::::
Russian

:::::
coast).

In order to reduce forecast errors from numerical prediction systems, calibration procedures can be applied, although their500

performances depend on the number and accuracy of the observations used as target variables. The increasing amount of

satellite data available and the improvements in sea-ice
:::
sea

:::
ice remote sensing, as well as the development of new statistical

approaches, enhance the potential of calibration techniques for sea-ice
:::
sea

:::
ice forecasting. This should contribute to improve

the accuracy of sea-ice
::
sea

:::
ice

:
forecasts delivered to maritime end-users.

Code and data availability. Buoy observations are available on the International Arctic Buoy Programme (IABP) website (https://iabp.apl.uw.edu).505

Synthetic-aperture radar observations and TOPAZ4 forecasts are available on the Copernicus Marine Environment Monitoring Service server
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server (ftp://osisaf.met.no/ reprocessed/ice/conc/v2p0) until 2015, but the data after 2015 are not publicly available. A licence is needed to
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this analysis are available in the following Github directory: "https://github.com/cyrilpalerme/Calibration_of_sea_ice_drift_forecasts/".510
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Figure 1. a) Number of buoy observations per grid cell used for training the random forest algorithms during the period from June 2013 to

May 2020. b) Number of buoy observations per grid cell used for evaluating the random forest algorithms during the period from June 2020

to November 2020.
::::
May

::::
2021. c) Number of SAR observations per grid cell used for training the random forest algorithms during the period

from January 2018 to May 2020. d) Number of SAR observations per grid cell used for evaluating the random forest algorithms during the

period
::::
from June 2020 to November 2020.

:::
May

:::::
2021. These four maps show the number of observations for a lead time of one day (similar

results have been found for other lead times).
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Figure 2. Difference in mean absolute errors during the period from June 2020 to November 2020 between the algorithms trained using all

the grid points with SAR observations and the algorithms trained using only a fraction
::::::::
Evaluation of the grid points with SAR observations

:::::::
CMEMS

:::::::::::::::::::::::::::::::::::::::::::::::
SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006

::::::
product

::::::::
(MOSAIC

::::::
version

:::
2.0) for the

::
sea

:::
ice

:::
drift

:
direction (a)

and the speed (b) of sea-ice drift. IAPB buoy observations have been used as reference. Positive values mean that
:::::
during the algorithms using

only a fraction of
:::::
period

::::
from

::::::
January

::::
2018

::
to

:::::::
December

:::::
2020.

:::
The

::::
axes

:::
are

::::::
bounded

::
to

::
30

:::
km

:
/
:::
day

:::
for the available grid points

::::
speed

:
for

training outperform
::::

clarity,
:::
but

:
the algorithms using all

::::
speed

::
of

::
73

:::::
buoys

:::::
exceed

::
30

:::
km

:
/
:::
day.

::::::::
However,

::::
these

::::
buoys

::::
were

::::
taken

::::
into

::::::
account

::::
when

::::::::
calculating

:
the available grid points

::::::
statistics

:::::
shown

:::
on

:::
the

:::::
figures

:::
(N:

::::::
number

::
of
:::::::

samples,
:::
Rc:

::::::
circular

:::::::::
correlation

::::::::
coefficient,

::::
Rp:

::::::
Pearson

::::::::
correlation

::::::::
coefficient,

::::::
RSME:

::::
root

::::
mean

:::::
square

:::::
error). The legend from figure a) shows

:::
color

:::::
scales

:::::::
represent

:
the fraction

::::::
number

of grid points randomly selected
:::::::::
observations

::
in

::::
each

:::
bin

::
of

:
5
::::::
degrees

:
for training the random forest algorithms

:::::::
direction

:::
and

:::
0.5

:::
km

:
/
:::
day

::
for

:::
the

::::
speed.

Evaluation of the CMEMS SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006 product (MOSAIC version 2.0) for the sea-ice

drift direction (a) and speed (b) during the period from January 2018 to November 2020. The axes are bounded to 30 km / day for the speed

for clarity, but the speed of 72 buoys exceed 30 km / day. However, these buoys were taken into account when calculating the statistics

shown on the figures (N: number of samples, Rc: circular correlation coefficient, Rp: Pearson correlation coefficient, RSME: root mean

square error). The color scales represent the number of observations in each bin of 5 degrees for the direction and 500 meters / day for the

speed.
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Figure 3. Evaluation of the performances of the calibrated forecasts
:::::::
produced

::::
using

::::::
random

:::::
forest

::::
(RF)

::::::::
algorithms and the TOPAZ4 forecasts

during the period from June 2020 to November 2020. IAPB
::::
May

::::
2021.

:::::
IABP buoy observations have been used as reference. Mean absolute

errors
:::::
(MAE) of the forecasts for the direction (a) and the speed (b), fraction

:::
and

:::::
relative

::::::::::
improvement

::::::::::::::::::::::::::::
(100 × TOPAZ4 MAE - calibrated forecast MAE

TOPAZ4 MAE )

::
for

:::
the

:::::::
direction

::
(c)

:::
and

:::
the

::::
speed

:::
(d).

:::::::
Fraction of calibrated forecasts with lower absolute errors than the TOPAZ4 forecasts for the direction

(c
:
e) and the speed (d

:
f). Relative improvement (100 × TOPAZ4 errors - calibrated forecast errors

TOPAZ4 errors )
::::::
Circular

:::
and

::::::
Pearson

::::::::
correlation

:::::::::
coefficients

:::::::
between

::
the

:::::::
forecasts

:::
and

:::
the

::::
buoy

:::::::::
observations

:
for the direction (e

:
g) and the speed (f)

:
,
:::::::::
respectively.

23



Figure 4. Evaluation of the performances
::::::
Fraction

:
of the calibrated forecasts and

:::::
trained

::::
using

:::::
buoy

:::::::::
observations

:::::
which

:::::::::
outperform

:
the

TOPAZ4 forecasts
::
for

:::
the

::::::
direction

::
of
:::
sea

:::
ice

:::
drift

:
during the period from June 2020 to November 2020. IAPB buoy

::::
May

::::
2021.

:::::
Daily

::::
SAR

observations have been used as reference. Root mean square errors of
:::
The

::::
graph

::
in
:
the forecasts for

::::
lower

::::
right

:::::
corner

:::::
shows

:
the direction

(a) and for
::::::
fraction

::
of the speed (b), circular correlation coefficient for

:::::
surface

:::::
where the direction (c) and Pearson correlation coefficient for

::::::
fraction

::
of

:::::::
calibrated

:::::::
forecasts

:::::::::::
outperforming the speed (d)

::::::
TOPAZ4

:::::::
forecasts

::
is

:::::
higher

::
or

::::
equal

::
to

::
50

::
%.

Fraction of calibrated forecasts trained using buoy observations which outperform the TOPAZ4 forecasts for the direction of sea-ice drift

during the period from June 2020 to November 2020. Daily SAR observations have been used as reference. The graph in the lower right

corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is higher or equal to

50 %.
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Figure 5. Fraction of calibrated forecasts trained using SAR observations which outperform the TOPAZ4 forecasts for the direction of sea-ice

::
sea

:::
ice drift during the period from June 2020 to November 2020.

:::
May

:::::
2021. Daily SAR observations have been used as reference. The graph

in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is

higher or equal to 50 %.
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Figure 6. Fraction of calibrated forecasts trained using buoy observations which outperform the TOPAZ4 forecasts for the speed of sea-ice

::
sea

:::
ice drift during the period from June 2020 to November 2020.

:::
May

:::::
2021. Daily SAR observations have been used as reference. The graph

in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is

higher or equal to 50 %.
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Figure 7. Fraction of calibrated forecasts trained using SAR observations which outperform the TOPAZ4 forecasts for the speed of sea-ice

::
sea

:::
ice drift during the period from June 2020 to November 2020.

:::
May

:::::
2021. Daily SAR observations have been used as reference. The graph

in the lower right corner shows the fraction of the surface where the fraction of calibrated forecasts outperforming the TOPAZ4 forecasts is

higher or equal to 50 %.
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Figure 8. Differences in mean absolute error when one
::::::
Relative

:::::::::
importance of the predictor variables is not used in the random forest

algorithms for the direction (a, b) and
::
the

:
speed (c, d) of sea-ice

::
sea

:::
ice drift . The results are shown for the algorithms trained with buoy

observations (a, c), and for the algorithms trained with SAR observations (b, d). The lead times are indicated in the legend of figure a). The

differences represent the subtraction between the performances of the algorithms
::::::
assessed

:
using all the predictor variables and the algorithms

in which one predictor variable was not used. Therefore a negative value means that adding the variable in the algorithm improves the

forecasts
:::::::::::
impurity-based

::::::
feature

::::::::
importance

::::::
method.
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Figure 9.
:::::::::
Differences

::
in

::::
mean

:::::::
absolute

::::
error

::::
when

:::
one

::
of
:::
the

:::::::
predictor

:::::::
variables

::
is

:::
not

:::
used

::
in
:::
the

::::::
random

:::::
forest

:::::
models

:::
for

:::
the

:::::::
direction

::
(a,

::
b)

:::
and

::::
speed

:::
(c,

::
d)

::
of

::
sea

:::
ice

::::
drift.

:::
The

:::::
results

:::
are

:::::
shown

:::
for

::
the

::::::
models

::::::
trained

:::
with

::::
buoy

::::::::::
observations

::
(a,

::
c),

:::
and

:::
for

:::
the

:::::
models

::::::
trained

:::
with

::::
SAR

::::::::::
observations

:::
(b,

::
d).

::::
The

:::
lead

:::::
times

:::
are

:::::::
indicated

::
in

:::
the

:::::
legend

::
of

:::::
figure

::
a).

::::
The

::::::::
differences

::::::::
represent

::
the

:::::::::
subtraction

:::::::
between

::
the

:::::::::::
performances

::
of

::
the

::::::
models

::::
using

:::
all

::
the

::::::::
predictor

::::::
variables

::::
and

::
the

::::::
models

::
in

:::::
which

:::
one

:::::::
predictor

::::::
variable

::::
was

::
not

:::::
used.

:::::::
Therefore

::
a

::::::
negative

::::
value

:::::
means

:::
that

::::::
adding

::
the

:::::::
variable

::
in

::
the

::::::::
algorithm

:::::::
improves

::
the

::::::::
forecasts.
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