
We would  like  to  thank  the  reviewers  for  their  comments  which  helped  us  to  improve  the  quality  of  the
manuscript. Please find below our responses to the reviewer’s comments. 

Reviewer 1

##########

# Summary

Palerme and Müller use random forest regression to predict Arctic sea-ice drift speed and direction from a
set of predictors that contains besides dynamical sea-ice drift forecasts (TOPAZ4) also wind forecasts,
geographical coordinates, sea-ice concentration and thickness, and distance from land. Using both buoy
and satellite-derived drift for training and evaluation, the authors find that the predicted drift slightly
outperforms the original TOPAZ4 drift forecasts at all lead times considered (1-10 days); mean absolute
errors are reduced by roughly 5-10%. In my view the study is very relevant and innovative, scientifically
sound, and well presented.  What I think deserves additional effort is  to illuminate more clearly what
happens within the "black box" of the random forecast algorithm, for example, which of the predictands
are  picked  how often  to  split  nodes,  what  the  output  resolution  of  the  individual  trees  is,  how  the
predictands "modify" the TOPAZ4 drift forecasts, how that compares to simpler bias corrections, and
how such characteristics change with lead time. With more explanations along these lines, the article could
help readers (including myself) to better understand how the approach really functions, thereby providing
an educational example how ML methods can help us to enhance predictions beyond the direct outputs of
numerical  models.  In summary,  I  recommend publication of  this  work in The  Cryosphere subject  to
minor(-to-major) revisions as detailed in the following.

##########

# Specific comments

Regarding the term "calibration": In my view it would be helpful to clarify in how far the presented
approach is a "calibration" of dynamical model-based drift forecasts. Typically, calibration in this context
means to use raw dynamical model forecasts and to modify them in some systematic way, e.g., to remove
model biases. However, here the TOPAZ4 drift forecasts are used qualitatively in the same way as the
other predictands, which appears to be a conceptual deviation from the standard calibration approach
and leads to interesting questions. For example, would there be ways to formulate the random forecast
algorithms such that  they are  explicitly  used to modify  the raw TOPAZ4 drift  forecasts  rather than
predicting the drift "from scratch"? Or is that basically equivalent to the way it's currently being done,
treating the TOPAZ4 drift just like any other predictand? It would be good to provide some clarification
and/or discussion in this regard.

All the predictors are similarly provided to the random forest algorithms (it is not possible to explicitly define
some  predictors  as  more  important  than  others  before  training  the  models).  However,  the  most  relevant
predictors will be used more often to split the nodes, and will have a more important role in the predictions than
other predictors. Furthermore, we agree that the meaning of the term “calibration” here differs from systematic
bias  corrections.  Nevertheless,  it  is  commonly  used  to  describe  weather  forecasts  produced using  machine
learning techniques, including random forests based on similar approaches as our study (for example: Gagne et
al., 2014 ; Loken et al., 2019 ; Hill et al., 2020). Therefore, we have decided to keep the term “calibration” in the
manuscript.



P2L47+56: "... have been used for training some random forest algorithms ...": First, from these sentences
it is at first not clear that you are not talking about previous work, but that this is what has been done in
the present study. Second, the "some" sounds very vague, maybe you can refer here to Sect. 3.2.

We agree that it was not clear in the text, and we have replaced these sentences by: 
“In  this  study,  satellite  sea  ice  drift  observations  from  the  CMEMS  product  named
SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_00675  (MOSAIC  version  2.0,  hereafter  referred  as
CMEMS SAR MOSAIC product) were used for training some random forest algorithms (see section 3), as well
as for analyzing the spatial variability of the performances of sea ice drift forecasts.”

and 

“In addition, data from the International Arctic Buoy Programme (IABP) were also used for training some
random forest algorithms (see section 3), as well as for evaluating the SAR observations and the sea ice drift
forecasts.”

Sect. 2.2.: I think it would help to make very clear here that the TOPAZ4 drift forecasts are the basic
ingredient  here,  but  that  other  predictands  are  added  and  actually  treated  in  the  same  way  as  the
TOPAZ4 drift forecasts within the random forest algorithms, see my previous remarks.

A more detailed description of the random forest method has been added in section 3.1 of the revised version of
the paper which describes how the predictor variables are selected to split the nodes:

“Random forest algorithms consist of an ensemble of decision trees used for regression or classification tasks
(Breiman, 2001). In order to avoid overfitting (meaning that the models learn from noise in the training data),
independent decision trees must be developed. The independence of decision trees is ensured by using different
subsets of the training data set for developing each decision tree, as well as by randomly selecting a fraction of
the predictor variables at each node (the node is then split using the variable maximizing a dissimilarity metric
among the selected predictors). Each decision tree is trained with a data set created using the bootstrap method,
which consists of randomly selecting samples from the original training data with replacement for creating a
new data set of the same size as the original one. This results in using about 63 % of the samples from the
original data set for training each decision tree. 

In this study, random forest models were developed for regression using the Python library Scikit-learn-0.23.2
(Pedregosaet al., 2011), and the mean squared error was used to measure the quality of the splits. Different
models were developed for predicting the direction and speed of sea ice drift, as well as for different lead times
(1  to  10  days).  Moreover,  two  sets  of  models  were  developed  using  target  variables  either  from  buoy
displacements  or  from  SAR  observations.  Therefore,  20  different  models  were  developed  using  buoy
displacements, and 20 other models were developed using SAR observations. ”

P3L79-80: "while TOPAZ4 forecasts are produced daily, only the forecasts starting on Thursdays are
initialized using data assimilation": This sounds as if the forecasts starting on other days than Thursdays
would not at all be affected by data assimilation, but I assume that they are affected by previous data
assimilation, that is, from the last Thursday (and earlier), right? So I would say they are still "initialized",
just not with particularly timely observations.

It is right that the TOPAZ4 forecasts are affected by the previous data assimilation (last Thursday). The sentence:
 
“However, while TOPAZ4 forecasts are produced daily, only the forecasts starting on Thursdays are initialized
using data assimilation and stored in the long-term archive.” 



has been replaced by:

“While TOPAZ4 forecasts are produced daily, data assimilation is only performed on Thursdays, and only the
forecasts starting on Thursdays are stored in the long-term archive.”

P4L91: "The initial bearing on the great-circle path": From the context one can guess what is meant by
"bearing" here, but is this word really correct?

Thanks for this comment. We have checked this, and “initial great-circle course angle” seems to be the most
common term. We have used this term in the revised version of the paper.

P5L120: "as independent data sets": Please clarify what you mean here exactly by "independent".

We meant that  we used all  the  grid points with buoy observations  similarly for training the random forest
algorithms. However, some of the grid points could be spatially correlated, and the term “independent” would
not be appropriate. We have decided to remove the term “independent” here.

P5L121-133: Given that, if I understand correctly, the main motivation for subsetting the SAR data is to
avoid the use of highly-correlated neighbouring data points and thus overfitting,  wouldn't  it  be more
effective to do the thinning in a more systematic way by omitting more points in data-rich regions rather
than subselecting completely randomly without taking data density into account?

The spatial distribution of the number of SAR observations is influenced by the orbit of the satellites and by the
sea-ice extent. Therefore, the spatial distribution of the number of observations used for training the algorithms
shown in figure 1 c) is influenced by the seasonal cycle of the sea-ice extent.  Furthermore, there is a high
variability in the spatial coverage of the MOSAICs (see example below), and some regions can be well covered
during a particular day while there are not many observations in these regions during the full training period.
Nevertheless, the grid points in these regions can be highly correlated, and a sub-sampling can be necessary. The
regions  with  many  observations  (typically  the  Central  Arctic)  are  also  the  regions  with  the  most  reliable
observations due to a larger number of overpasses. Therefore, reducing the number of grid points used in the
Central Arctic could potentially reduce the quality of the observations used as target variables, and having a
negative impact on the random forest algorithms. Though we consider this question as very interesting and
relevant, we also think that this is a complex question which is out of the scope of our paper (which is a first
attempt of using random forests for calibrating sea-ice drift forecasts). Therefore, we have decided to keep the
method which consists of randomly selecting the grid point covered by SAR observations.



Example  of  MOSAIC showing  the  speed  of  sea-ice  drift  on  13/03/2020  from the  CMEMS product  named
SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006 (MOSAIC version 2.0).

P5L130: By evaluating only over the period June-November 2020, doesn't this potentially introduce a
seasonal bias for the evaluation? (This also raises the question whether it would be worthwile considering
to add the time of the year as an additional predictand?)

We agree that using the period June-November 2020 for evaluating the forecasts was not ideal, and we have
updated the results using the period from June 2020 to May 2021. Furthermore, we have tested using the “day of
year” as an additional predictor (see figure below). However, this results in a decrease in forecast accuracy,
except  for  the  random  forest  models  predicting  the  speed  of  sea-ice  drift  which  are  trained  using  buoy
observations. Based on these results, we have decided to discard the “day of year” from the list of predictors. We
have added the figure below in the supplementary material and the following sentence in the main paper (section
4.3 Importance of predictor variables):
“Furthermore,  we  also  tested  using  the  day  of  year  as  an  additional  predictor  variable  (figure  S7  of  the
supplementary material), but adding this variable tends to deteriorate the forecast accuracy for most models, so
we decided to discard this variable”



Figure S7. Differences in mean absolute error when one of the predictor variables is not used in the random
forest  algorithms  for  the  direction  (a,  b)  and  speed (c,  d)  of  sea-ice  drift.  The  results  are  shown for  the
algorithms trained with buoy observations (a, c), and for the algorithms trained with SAR observations (b, d).
The lead times are indicated in the legend of figure a). The differences represent the subtraction between the
performances of the algorithms using all  the predictor variables and the algorithms in which one predictor
variable was not used. Therefore a negative value means that adding the variable in the algorithm improves the
forecasts.



P5L133: "10^4 training data sets": Should this be "data points"?

We agree that “data sets” can be confusing, and we have replaced it by “data points”.  

P5L143: Here again,  the TOPAZ4 drift forecasts are mentioned just alongside all  other predictands -
shouldn't  they  he  highlighted  much  more  upfront  as  the  "main  predictors"  (which  are  to  be
"calibrated")?

We think that TOPAZ4 drift forecasts should not be highlighted as the main predictors in this section because all
the predictor variables are provided similarly to the random forest algorithms. Furthermore, we have added a
paragraph in section 3.1 of the revised paper to better describe the random forest method:

“Random forest algorithms consist of an ensemble of decision trees used for regression or classification tasks
(Breiman, 2001). In order to avoid overfitting (meaning that the models learn from noise in the training data),
independent decision trees must be developed. The independence of decision trees is ensured by using different
subsets of the training data set for developing each decision tree, as well as by randomly selecting a fraction of
the predictor variables at each node (the node is then split using the variable maximizing a dissimilarity metric
among the selected predictors). Each decision tree is trained with a data set created using the bootstrap method,
which consists of randomly selecting samples from the original training data with replacement for creating a
new data set of the same size as the original one. This results in using about 63 % of the samples from the
original data set for training each decision tree.

In this study, random forest models were developed for regression using the Python library Scikit-learn-0.23.2
(Pedregosa et al., 2011), and the mean squared error was used to measure the quality of the splits. Different
models were developed for predicting the direction and speed of sea ice drift, as well as for different lead times
(1  to  10  days).  Moreover,  two  sets  of  models  were  developed  using  target  variables  either  from  buoy
displacements  or  from  SAR  observations.  Therefore,  20  different  models  were  developed  using  buoy
displacements,  and  20  other  models  were  developed  using  SAR  observations.  In  order  to  optimize  some
parameters of the algorithms, sensitivity tests were performed using only data from the training periods (see
supplementary material). For these sensitivity tests, the random forest models were trained using data from
about 80 % of the forecast start dates (randomly selected) within the training periods. Then, the data from the
remaining forecast start dates were used for evaluating the forecast performances. This selection prevents using
neighboring grid points with very similar conditions in the training and validation data sets, and was repeated
10 times in order to obtain robust results. Furthermore, the algorithms were evaluated using the same product as
the one used for training the random forest models for these sensitivity tests (CMEMS SAR MOSAIC product for
those trained with SAR observations, and IABP buoys for those trained with buoy observations). This method
was also used to evaluate the optimal fraction of the grid points covered by SAR observations used for training
some random forest models (see section 3.2), as well as to assess the importance of the predictor variables (see
section 3.5). Based on the sensitivity tests, we decided to develop random forest models using 200 decision trees
(there were no significant improvements when using more trees), to maximize the depth of the decision trees
(most of the leaves contain only one sample from the training data set), and to set the number of predictor
variables  considered  for  splitting  the  nodes  at  three.  These  parameters  were  chosen  for  all  the  models
developed”

P5L143: Also, I think it would be good to state clearly that for a specific lead time only the forecasts
(TOPAZ4 & IFS) for that specific lead time are used as predictands - or is that not the case?

This is true that it was not mentioned in the text. We have modified the following sentence:
“The variables from sea-ice and wind forecasts during the predicted lead time can be considered as the last
category.”



P6L153-155: "maximizing the depth of the decision trees" - First, given that the decision trees are based
on quasi continuous predictor variables as well as continuous target variables, there does not appear to be
an absolute "maximum" depth. Can you please specify what depth is actually used? Second, related to
this, how meany leaves do the individual decision trees have, and how are the associated predicted values
distributed? 

We hope that the section 3.1 of the revised manuscript will help to understand this better (see our previous
responses). The leaves of a decision tree must contain at least one sample from the training data set obtained
after bootstrapping. By maximizing the depth of the decision trees, we develop decision trees in which most of
the leaves contain only one sample from the training data set. Due to bootstrapping, the number of leaves is
about 63 % of the size of the original training data set. However, it can happen that the target variable has the
same value multiple times, and that the associated predictors are very similar (for example with very correlated
grid points). This explains why some leaves can have several samples, even when maximizing the depth of the
decision trees. Therefore the number of leaves is not fixed, and can vary slightly (though close to 63 % of the
size of the original training data set in our study). 

Furthermore, the depth of a decision tree is not fixed in our study and varies depending on various parameters
such as the size of the training data set (which varies depending on lead time, and the bootstrap method also
slightly influences the number of independent samples), as well as the structure of the tree (not all leaves are at
the same depth). 

Do the resulting distribution densities approximately match the distributions of the target variables (or
does the "resolution" vary in a specific way)?

The distribution densities of the decision trees match the distribution of the target variable during the training
period. However, the predicted value from a random forest model is the average of the predictions from all
decision trees, which tends to reduce the number of extreme values predicted. In our study, this should not be an
issue for predicting the direction (due to the circular nature of directional data), but this could be an issue for the
speed of sea ice drift.

We have added the following sentences in the section “3.1 Development of random forest models”:

“Furthermore, random forest models tend to predict less extreme values than the target variable because the
mean value from all decision trees is used as the prediction. This should not be an issue for predicting the
direction of sea ice drift due to the circular nature of directional data, but particularly low and high sea ice drift
speed could be difficult to predict with random forest models.”

P6L153-155: "setting the number of predictor variables considered for splitting the nodes at three": First,
I speculate this small number of random predictands per split "forces" the algorithms to use the less-
informative predictands (other than TOPAZ4 drift and IFS winds) more often than a decision tree would
do that can always choose from all predictands. Can you provide some more insight into this? 

We have added the following paragraph in section 3.1:
“Random forest algorithms consist of an ensemble of decision trees used for regression or classification tasks
(Breiman, 2001). In order to avoid overfitting (meaning that the models learn from noise in the training data),
independent decision trees must be developed. The independence of decision trees is ensured by using different
subsets of the training data set for developing each decision tree, as well as by randomly selecting a fraction of
the predictor variables at each node (the node is then split using the variable maximizing a dissimilarity metric
among the selected predictors). Each decision tree is trained with a data set created using the bootstrap method,
which consists of randomly selecting samples from the original training data with replacement for creating a



new data set of the same size as the original one. This results in using about 63 % of the samples from the
original data set for training each decision tree.”

Second, related, which predictands are chosen how often to split nodes? I imagine over a large number of
layers, TOPAZ4 drift (or IFS winds) would always be preferred over other predictands as long as those
main  predictands  are  not  yet  used  so  often  that  the  resulting  resolution  of  the  target  variable  is
approximately as high as the effective accuracy of those forecasts in the first place. Do you find such a
systematic behaviour, that the "main" predictands dominate the upper layers and "other" predictands
gain importance in lower layers? 

The random selection of the predictors at each node makes this analysis biased. Even predictors that are not very
important are sometimes chosen to split a node in the upper layers of a decision tree because they are the most
effective predictor among the selected predictors. Instead of analyzing how often the predictors are chosen to
split the nodes, we have decided to add an analysis of the impurity-based feature importance. This method is
more commonly used than analyzing the number of times each predictor is selected by all individual trees in the
forest, and considered more robust (e.g. Strobl et al., 2007). This analysis is shown in a new figure (figure 8 in
the revised paper, see response to the next comment), and we have added the following paragraph to explain this
method:

“In this study, the importance of the predictor variables was estimated using two different methods. First, the
impurity-based feature importance was assessed. This method is based on the measure of impurity decreases
(the mean squared error here) at all nodes in the random forest algorithm (the variables that often split nodes
with large impurity decreases are considered important). It provides an assessment of the relative importance of
the predictor variables, but is known for underestimating the importance of non-continuous predictors (Strobl et
al., 2007).”

Moreover, does the relative "use frequency" of different predictands change for the different lead times?
For example, I could imagine that the relative importance of TOPAZ4 drift versus winds might change
with lead time, which might in turn be related to the way IFS forcing and perturbations are used to drive
the ice and ocean in TOPAZ4? 

We have analyzed the evolution of the relative importances of the predictors over lead times using the impurity-
based feature importance method (figure 8 of the revised version of the paper):



 
Figure 8. Relative importance of the predictor variables for the direction (a, b) and the speed (c, d) of sea ice
drift assessed using the impurity-based feature importance method.

Sect.  4.3:  First  of  all,  I  really like these sensitivity experiments  to quantify the impacts  of  individual
predictors. As mentioned above, I think it would be really helpful to add more information about how
often the predictands are actually used in the regression trees, which I suppose would provide similar
information about  relative  importance  from a very  different  angle  -  in  fact  without  the need to run
additional algorithms. 

We have answered to this comment in our previous two responses.

Furthermore, it is not surprising that the TOPAZ4 drift forecasts (speed for speed, direction for direction)
are the most important predictands, right? Again, this makes me wonder how the approach followed here
relates to classical "calibration", that is, to use a raw forecast and "modify" it based on some additional
information, and how the final forecasts derived here deviate from the raw forecasts. E.g., are the raw
drift speeds and directions systematically corrected (on average) in one or the other way - and maybe this
depends  on  the  region  (e.g.,  CAA  vs.  open  ocean),  the  lead  time,  and  the  sea-ice  thickness  or
concentration? Some more information and discussion regarding these aspects would in my view be very
helpful.

We have  added  the  figures  below which  show the  mean  differences  between  the  calibrated  forecasts  and
TOPAZ4 forecasts in the supplementary material. We have answered to the rest of this question in our response
to the next comment. 



Figure S13.  Difference between the random forest  models trained with buoy observations and the TOPAZ4
forecasts for the direction of sea ice drift (degrees) during the period June 2020 - May 2021.

Figure S14.  Difference between the random forest  models  trained with SAR observations  and the TOPAZ4
forecasts for the direction of sea ice drift (degrees) during the period June 2020 - May 2021.



Figure S15.  Difference between the random forest  models trained with buoy observations and the TOPAZ4
forecasts for the speed of sea ice drift (km / day) during the period June 2020 - May 2021.

Figure S16.  Difference between the random forest  models  trained with SAR observations  and the TOPAZ4
forecasts for the speed of sea ice drift (km / day) during the period June 2020 - May 2021.



Following  up  on  the  previous  point(s),  I  am wondering  in  how far similar improvements  (over raw
TOPAZ4  drift)  might  have  been  achieved  with  a  simpler ("classical")  calibration  approach,  e.g.,  by
correcting the drift speeds and directions with some constant factors and/or offsets? In this regard, it
would also he helpful to see if mean biases for speed and direction exist that could be corrected for by such
a trivial calibration approach. On the other hand, if such simple biases are absent, that might be a strong
argument against such simplistic calibration, right?

We have added some maps of the TOPAZ4 biases during the period 2018 – 2019 compared to SAR observations
in the supplementary material:

Figure S9. Mean direction bias (degrees) from TOPAZ4 forecasts during the period 2018 - 2019 compared to
SAR observations. Only the grid points containing at least 20 SAR observations during the period 2018 - 2019
have been taken into account.



Figure S10. Mean speed bias (km / day) from TOPAZ4 forecasts during the period 2018 - 2019 compared to SAR
observations. Only the grid points containing at least 20 SAR observations during the period 2018 - 2019 have
been taken into account.

We have also compared the random forest models described in the paper with calibrated forecasts produced
using  a  simple  bias  correction,  as  well  as  with  random forest  models  using  only  3  predictors:  the  spatial
coordinates (x and y)  and the predicted variable  from TOPAZ4 (TOPAZ4 drift  direction and speed for  the
models predicting the direction and speed of sea ice drift, respectively). For the bias correction of TOPAZ4, we
have calculated the bias during the period 2018-2019 for all grid points with at least 20 SAR observations for a
given lead time. Therefore, the biases are calculated using SAR observations as reference. Note that the limited
number of available sea ice drift observations makes this approach limited because it is not possible to cover the
entire Arctic (see figures above). Furthermore, due to this limited coverage, a smaller number of buoys have
been used  for  evaluating  the  mean absolute  errors  of  the  forecasts  in  the  figure  below (figure  S12 of  the
supplementary material) than in figure 3 of the main paper. We have also added the following paragraphs in the
supplementary material:



2 Bias correction of TOPAZ4 forecasts

In order to compare the random forest models developed in this study with more simple calibration methods, we
have developed calibrated forecasts by correcting the biases from TOPAZ4 forecasts. The biases from TOPAZ4
forecasts have been evaluated for each grid point and each lead time during the period 2018 - 2019 using SAR
observations  as  reference  (figures  S9,  S10,  and  S11).  Only  the  grid  points  containing  at  least  20  SAR
observations during the period 2018 - 2019 have been used for this calibration and for the evaluation presented
in figure S12. For the direction of sea ice drift, the bias from the period 2018 – 2019 has been subtracted from
the TOPAZ4 forecasts. For the speed of sea ice drift, the TOPAZ4 forecasts have been multiplied by the ratio of
the SAR observations over the TOPAZ4 forecasts during the period 2018 – 2019.

3 Random forest models using only three predictors (figure S12)

Random forest models using only three predictor variables have been developed and compared to the other
calibration methods. Only the x and y coordinates, as well as the drift direction from TOPAZ4 have been used
for the models predicting the direction of sea ice drift. For the models predicting the speed of sea ice drift, the
drift  speed from TOPAZ4 has been used with the x and y  coordinates.  Note that  the number of  predictors
randomly selected at each node has been fixed at two for these random forest models.

4 Random forest models predicting sea ice drift along the x and y axes of TOPAZ4 grid

We developed random forest models predicting the sea ice drift along the x and y axes of the TOPAZ4 grid using
a different set of predictor variables (figure S12). For these models, the northward and eastward components of
the ECMWF wind forecasts were used as predictors instead of the wind speed and direction, as well as the sea
ice drift along the x and y axes from TOPAZ4 forecasts (which are provided by TOPAZ4 outputs) instead of the
sea ice drift speed and direction. The direction and speed of sea ice drift were then calculated using the start and
end location of the sea ice for comparing those models with the ones directly predicting the direction and speed
of sea ice drift.



Figure S12. Mean absolute errors of different calibration methods for the period June 2020 – May 2021. Buoy
observations  have  been  used  as  reference.  The  random  forest  (RF)  models  using  all  the  predictors  (10
predictors) described in the main paper are shown by the blue and green curves. The random forest models
using  only  3  predictors  (x  and y  coordinates,  as  well  as  the  drift  direction  from TOPAZ4 for  the  models
predicting the direction, and the drift speed from TOPAZ4 for the models predicting the speed of sea ice drift)
are shown by the orange and purple curves. The TOPAZ4 forecasts which are bias corrected (using the period
2018-2019 for calculating TOPAZ4 bias) are shown by the yellow curve. The random forest models predicting
the sea ice drift along the x and y axes of TOPAZ4 grid are shown by the brown and gray curves.
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We would  like  to  thank the  reviewers  for  their  comments  which  helped  us  to  improve  the  quality  of  the
manuscript. Please find below our responses to the reviewer’s comments. 

Reviewer 2

##########

Review of Calibration of sea ice drift forecasts using random forest algorithms.

The manuscript describes a new method that post-processes numerical  forecasts of sea ice drift using
either in situ drifting buoys or satellite images for the training of a random forest algorithm. The results
are evaluated against ice drift observations but in a different period, posterior to the training data. The
results reveal that there is a systematic component of the ice drift forecast error that can be corrected by
machine learning, although the reduction of error remains often less than 10%. The ML algorithms learns
more efficiently from the buoys data than from the satellite images, highlighting the problem of temporal
averaging. 

The  drift  direction  can  mostly  be  improved  in  the  short  forecast  range,  likely  because  of  the
unpredictability of wind directions,  but interestingly the algorithm is more often able to correct drift
speed at longer forecast horizons, which I did not expect. The authors could spice up their article by
analysing what their algorithm does to the sea ice drift speed that improves the skills at a 10 days range:
are the drifts made systematically faster or slower?  This kind of analysis can - if understood - lead to
improvements of the forecast systems. More generally, not seeing what the algorithm does to the forecast
is a little frustrating. An example of comparison of original to postprocessed and to observed sea ice drifts
could be more convincing than cold-blooded skills scores. 

We have added the following example of vector maps from TOPAZ4 forecasts and the calibrated forecasts in the
supplementary material:



Figure S8. Example of calibration with the random forest (RF) algorithms for the forecasts which started on
03/03/2021 and for lead times of 1, 5, and 9 days.

Furthermore, we have also added the following figures showing the difference between the TOPAZ4 forecasts
and the calibrated forecasts in the supplementary material:



Figure S13.  Difference between the random forest  models trained with buoy observations and the TOPAZ4
forecasts for the direction of sea ice drift (degrees) during the period June 2020 - May 2021.

Figure S14.  Difference between the random forest  models  trained with SAR observations  and the TOPAZ4
forecasts for the direction of sea ice drift (degrees) during the period June 2020 - May 2021.



Figure S15.  Difference between the random forest  models trained with buoy observations and the TOPAZ4
forecasts for the speed of sea ice drift (km / day) during the period June 2020 - May 2021.

Figure S16.  Difference between the random forest  models  trained with SAR observations  and the TOPAZ4
forecasts for the speed of sea ice drift (km / day) during the period June 2020 - May 2021.



One general remark pertains to the Lagrangian nature of sea ice drift. The variable influencing the drift
at a lead time of several days may not be at the same location as the sea ice drift value. This issue is not
addressed in the paper, what do the authors expect to be the effect of considering both the predictor and
the target at the same location?

We agree  that  the  spatial  variability  in  the  sea-ice  conditions  plays  a  role  in  the  sea-ice  drift  predictions.
However, our approach consists of using the most reliable information available at the same location as the target
variable.  We think that  this  approach makes sense because the ECMWF and TOPAZ4 forecasts  at  a given
location  are  influenced  by  the  atmospheric  and  sea-ice  conditions  in  the  forecasts  around  this  location.
Furthermore, it would be possible to use a coarser resolution for the predictors.  Nevertheless, this approach
could be problematic in areas with a high spatial variability (for example near the coastlines). Another option
would be to use several predictors for the same variable at different locations, but this would likely increase the
risk of overfitting due to the spatial correlation between these predictor variables.  

The authors have also neglected the seasonal changes of the forecast model performance, as well as the
long-term model drift (or rather the absence of sea ice acceleration) as pointed out originally by Rampal et
al. (2011) and then Xie et al. (2017) using an almost identical model. 

We agree that using the period June-November 2020 for evaluating the forecasts was not ideal, and we have
updated the results using the period from June 2020 to May 2021. We have also analyzed the sea ice drift trends
in the buoy observations and in TOPAZ4 (figure S6 of the supplementary material): 

Figure S6. Mean annual sea ice drift speed from collocated IABP buoy observations and TOPAZ4 forecasts. The
solid lines show the mean annual sea ice drift speed (km / day) from buoy observations and TOPAZ4 forecasts.
The dashed lines show the linear trends.

We have added the following sentences in the section 3.2 of the revised version of the paper:



“Several training periods were tested between June 2012 and May 2020, and the chosen period from June 2013
to May 2020 seems to be optimal for predicting the direction of sea ice drift. However, using a shorter training
period would have improved the forecasts for the speed of sea ice drift (figure S2 of the supplementary material).
This is probably due to the smaller bias of TOPAZ4 sea ice drift speed in the recent years, which results from the
negative  trend  of  the  sea-ice  drift  speed  in  TOPAZ4  (in  contrast  with  IABP observations  which  show  an
acceleration, see figure S6 of the supplementary material).”

And the following sentence in the discussion and conclusion:

“Moreover, TOPAZ4 does not reproduce the recent acceleration of sea ice drift as already reported by Xie et al.
(2017), and the bias of TOPAZ4 sea ice drift speed has changed during the studied period. This probably affects
the  performances  of  the  random forest  models  trained  with  buoy  observations  due  to  their  relatively  long
training period.”

Can the algorithm learn the seasonality of the errors or could it be improved if trained separately on
summer and winter data? 

We have tested training the models separately on summer and winter data (see figure below), but this results in
calibrated forecasts less accurate than developing only one model with the full training data set. Furthermore, we
have also tested using the “day of year” as an additional predictor (see figure below). However, this results in a
decrease in forecast accuracy, except for the random forest models predicting the speed of sea-ice drift which are
trained using buoy observations. Based on these results, we have decided to discard the “day of year” from the
list of predictors. 

Comparison between the random forest (RF) models trained using the full training data set and the models
trained separately for the winter and the summer. The mean absolute errors are assessed during the period from
June 2020 to May 2021.



Figure S7. Differences in mean absolute error when one of the predictor variables is not used in the random
forest  algorithms  for  the  direction  (a,  b)  and  speed (c,  d)  of  sea-ice  drift.  The  results  are  shown for  the
algorithms trained with buoy observations (a, c), and for the algorithms trained with SAR observations (b, d).
The lead times are indicated in the legend of figure a). The differences represent the subtraction between the
performances of the algorithms using all  the predictor variables and the algorithms in which one predictor
variable was not used. Therefore a negative value means that adding the variable in the algorithm improves the
forecasts.

We have also added the following sentence in the section “4.3 Importance of predictor variables”:



“Furthermore,  we  also  tested  using  the  day  of  year  as  an  additional  predictor  variable  (figure  S7  of  the
supplementary material), but adding this variable tends to deteriorate the forecast accuracy for most models, so
we decided to discard this variable.”

The manuscript cites the relevant literature and is original in its goals. I am not aware of any similar study
carried out elsewhere. The article is logically structured and reads quite well. The figures are generally
nice and clear. Exceptions are noted in detailed comments below. 

Based on the above, I recommend the manuscript is published with minor corrections.

Detailed comments:

• P1, l21: The relationship is complex and nonlinear in the ice pack where the rheology is active, but for
low ice concentrations, the ice is in free drift and should be a linear function of the winds (the Nansen
relationship). 

Thanks for this comment. We have added the following statement in the introduction: “Though sea ice drift is
mainly driven by the wind in areas with a low sea ice concentration, the relationships between these variables
and sea ice drift are complex and not linear in most of the ice-covered areas (Yu et al., 2020).”

• P2, l29: “but they obtained”: false opposition. Is there any reason why RF or CNNs would have an
advantage for sea ice concentrations? 

The authors suggest that it might be due to the larger learning capacity of the CNN model compared to the RF
model, in particular concerning the ability of CNN to learn spatial features from the predictors. The following
sentence:

“Recently,  Kim  et  al.  (2020)  developed  sea-ice  concentration  forecasts  based  on  random  forests  and
convolutional neural networks, but they obtained more accurate results using convolutional neural networks.”

has been replaced by:

“Recently, Kim et al. (2020) developed and compared sea-ice concentration forecasts based on random forests
and convolutional neural networks. They obtained more accurate results using convolutional neural networks
probably due to the larger learning capacity of convolutional neural networks compared to random forests, in
particular to extract spatial features from the predictors (Kim et al., 2020).”

• P3, l78: The overestimation of sea ice drift was reported in reanalysis, but since the decadal acceleration
of sea ice drift is not reproduced by the model, the bias should be smaller in recent times, as can be seen
in  the  TOPAZ4  validation  pages:
https://cmems.met.no/ARC-MFC/V2Validation/timeSeriesResults/year-day-01/SItimeSeries_year-day-
01.html#drift (accessed 2nd March 2021) 

We  have  analyzed  the  sea  ice  drift  trends  in  the  buoy  observations  and  in  TOPAZ4  (figure  S6  of  the
supplementary material):



Figure S6. Mean annual sea ice drift speed from collocated IABP buoy observations and TOPAZ4 forecasts. The
solid lines show the mean annual sea ice drift speed (km / day) from buoy observations and TOPAZ4 forecasts.
The dashed lines show the linear trends.

We have added the following sentences in the section 3.2 of the revised version of the paper:

“Several training periods were tested between June 2012 and May 2020, and the chosen period from June 2013
to May 2020 seems to be optimal for predicting the direction of sea ice drift. However, using a shorter training
period would have improved the forecasts for the speed of sea ice drift (figure S2 of the supplementary material).
This is probably due to the smaller bias of TOPAZ4 sea ice drift speed in the recent years, which results from the
negative  trend  of  the  sea-ice  drift  speed  in  TOPAZ4  (in  contrast  with  IABP observations  which  show  an
acceleration, see figure S6 of the supplementary material).”

And the following sentence in the discussion and conclusion:

“Moreover, TOPAZ4 does not reproduce the recent acceleration of sea ice drift as already reported by Xie et al.
(2017), and the bias of TOPAZ4 sea ice drift speed has changed during the studied period (figure S6 of the
supplementary material). This probably affects the performances of the random forest models trained with buoy
observations due to their relatively long training period.”

• l108: "different algorithms were used": “models” should not be synonymous with “algorithm” (the
Random Forest is  one algorithm, from which you can build several  models).  Maybe use "distincts
models were developed to..."?

We agree with this comment and we have replaced  “algorithms” by “models” here and several times in the
paper.



• L148: At which point is the averaging used? Is it related to the averaging of each prediction tree? 
The prediction from a random forest model used for regression is the mean value of the predictions from all
decision trees. In our study, the decision trees predict an angle in degrees (between 0 and 360 °). These angles
are then converted to complex numbers in order to average the angles predicted by the decision trees.  The
mean value from all decision trees (the final prediction) is then converted in degrees. In order to clarify this
point, we have replaced  “results” by  “predictions” (line 147 of the discussion paper), and we have added
“(in degrees)” in the following sentence:
“In order to avoid this issue, the predictions from all decision trees (in degrees) were converted to complex
numbers before averaging.”

The new paragraph: 
“The prediction from a random forest model used for regression is the mean value of the predictions from all
decision trees. For the direction of sea ice drift, each decision tree predicts a value between 0 and 360°. When
averaging several predictions close to the northward direction, this can be an issue because values slightly
higher than 0° and slightly lower than 360°  can be averaged, possibly leading to a mean value close to the
southward direction.  In  order  to  avoid this  issue,  the  predictions  from all  decision trees  (in  degrees)  were
converted to complex numbers before averaging. Then, the average of complex numbers was converted into an
angle in degrees.”

• L148 If  the predictive variable is a complex number, isn't it similar to predict normalised u and v
components (with a norm of 1)? In that case, this choice is apparently contradictory with the assertion
line 90: "In order to predict independent variables, it has been chosen to forecast the direction and
speed of sea-ice drift rather than the eastward and northward components"

Because the complex numbers are only used to average the angles predicted by all decision trees (in degrees), we
do not think that this is similar to predict the normalized u and v components.

• Section 3.2: It is very positive that sensitivity studies are detailed. The algorithms were tuned against
the size of the training set (period for buoys, subsampling rate for SAR), size of the forest (number of
trees), other parameters of the RF. It is not clear to me which criteria were used for this tuning. On
which dataset the error has been computed to evaluate the tuning? Is it the one used to evaluate the
results  (buoys  in  June-November  2020)  or  the  one  used  to  evaluate  the  importance  of  predictor
variables (section 4.3)? 

We have added a supplementary material in which the results from the sensitivity experiments are described. We
have decided to use only the training period for all the sensitivity experiments (similar as section 4.3), except for
the period used for training the random forest models using buoy observations because this does not make sense
for this one. We have added the following paragraph in the method section (section 3.1):

“In order to optimize some parameters of the algorithms, sensitivity tests were performed using only data from
the training periods (see supplementary material). For these sensitivity tests, the random forest models were
trained using data from about 80 % of the forecast start dates (randomly selected) within the training periods.
Then, the data from the remaining forecast start dates were used for evaluating the forecast performances. This
selection prevents using neighboring grid points with very similar conditions in the training and validation data
sets, and was repeated 10 times in order to obtain robust results. Furthermore, the random forest models were
evaluated using the same product as the one used for training for these sensitivity tests (CMEMS SAR MOSAIC



product for those trained with SAR observations, and IABP buoys for those trained with buoy observations).
This method was also used to evaluate the optimal fraction of the grid points covered by SAR observations used
for training some random forest models (see section 3.2), as well as to assess the importance of the predictor
variables (see section 3.5).”

• L183: The period chosen for evaluating the model is mostly in the summer season (June-November)?
Do you expect it to be representative of the winter? The link above shows a seasonal signal in the drift
bias, though not a large one. 

We agree that using the period June-November 2020 for evaluating the forecasts was not ideal, and we have
updated the results using the period from June 2020 to May 2021. 

• L206-2018. It is fair to note the absence of data where the performance deteriorates. This however
deserves an explanation as to how the random forest algorithm extrapolates the training data spatially.
Does it find the most analogous situations where and when training observations are available? The
authors explain that the random forest does provide the average of an ensemble but it would be good to
have insights about the values returned, for example, in places of intermittent landfast ice. 

We hope that the section 3.1 of the revised manuscript will help to understand this better. In this section, the
principle of random forest algorithms is described (see below). Basically, the decision trees will find the most
analogous  situation  depending  on  the  predictor  variables  chosen  to  split  the  nodes.  Furthermore,  we  have
removed the Canadian Archipelago from our analysis in order to reduce the issues related to the presence of
landfast ice.

“Random forest algorithms consist of an ensemble of decision trees used for regression or classification tasks
(Breiman, 2001). In order to avoid overfitting (meaning that the models learn from noise in the training data),
independent decision trees must be developed. The independence of decision trees is ensured by using different
subsets of the training data set for developing each decision tree, as well as by randomly selecting a fraction of
the predictor variables at each node (the node is then split using the variable maximizing a dissimilarity metric
among the selected predictors). Each decision tree is trained with a data set created using the bootstrap method,
which consists of randomly selecting samples from the original training data with replacement for creating a
new data set of the same size as the original one. This results in using about 63 % of the samples from the
original data set for training each decision tree. 
In this study, random forest models were developed for regression using the Python library Scikit-learn-0.23.2
(Pedregosa et al., 2011), and the mean squared error was used to measure the quality of the splits.”

• L224-226 "The selection of the data sets used for training and evaluating the random forest models is a
random process according to the forecast start date to avoid the influence of neighboring grid points
with very similar conditions," this point of correlations between training and validation data (leading to
data leakage) is essential to avoid correlation between training/validation data that could lead to data
leakage and overfitting. It would be beneficial for the community to give more details (even if it is given
in appendix) about your selection procedure.

We have added the following paragraph in section 3.1:
“In order to optimize some parameters of the algorithms, sensitivity tests were performed using only data from
the training periods (see supplementary material). For these sensitivity tests, the random forest models were



trained using data from about 80 % of the forecast start dates (randomly selected) within the training periods.
Then, the data from the remaining forecast start dates were used for evaluating the forecast performances. This
selection prevents using neighboring grid points with very similar conditions in the training and validation data
sets, and was repeated 10 times in order to obtain robust results. Furthermore, the random forest models were
evaluated using the same product as the one used for training for these sensitivity tests (CMEMS SAR MOSAIC
product for those trained with SAR observations, and IABP buoys for those trained with buoy observations).
This method was also used to evaluate the optimal fraction of the grid points covered by SAR observations used
for training some random forest models (see section 3.2), as well as to assess the importance of the predictor
variables (see section 3.5).”

• l 236: Intuitively one may expect that the areas of thicker ice drift slower than thin ice due to the
increased resistance to stress. 

We have added the following statement in the section “4.3 Importance of predictor variables”:

“Furthermore, the mean absolute errors for the speed of sea ice drift are also considerably reduced by adding
the sea ice thickness forecasts from TOPAZ4 (between 0.011 and 0.098 km / day), probably due to the anti-
correlation between sea ice thickness and sea ice drift speed (Yu et al., 2020).”

• Section 4.3. This sensitivity study is important. But I am surprised not to see the standard "Importance
variable" diagnostic available in any random Forest algorithm? Even if the results are redundant with
your study, it would have offered another point of view of variable importance.

We  have  added  an  analysis  of  the  relative  importance  of  the  predictors  using  the  impurity-based  feature
importance method (figure 8 of the revised version of the paper):



 
Figure 8. Relative importance of the predictor variables for the direction (a, b) and the speed (c, d) of sea ice
drift assessed using the impurity-based feature importance method.

We have added the following paragraph in the section “3.5 Evaluation of the importance of predictor variables”:
“In this study, the importance of the predictor variables was estimated using two different methods. First, the
impurity-based feature importance was assessed. This method is based on the measure of impurity decreases
(the mean squared error here) at all nodes in the random forest algorithm (the variables that often split nodes
with large impurity decreases are considered important). It provides an assessment of the relative importance of
the predictor variables, but is known for underestimating the importance of non-continuous predictors (Strobl et
al., 2007).”

And the following paragraphs in the section “4.3  Importance of predictor variables”:

“For both calibration methods, the most important variable for predicting the drift direction is the sea ice drift
direction fromTOPAZ4 forecasts, followed by the wind direction from ECMWF forecasts (figure 8). On average,
the relative importance of sea ice drift direction forecasts is about 1.4 and 1.5 times larger than the one from
wind direction forecasts for the models trained with buoy and SAR observations, respectively (figure 8). The sum
of the relative importances of these two variables represent, on average, about 46 and 41 % of the sum of all
relative importances for the models trained with buoy and SAR observations, respectively. However, the relative
importances of these two variables decrease with increasing lead times. 



Similarly, the sea ice drift speed from TOPAZ4 is the most important variable for predicting the speed of sea ice
drift, followed by the wind speed from ECMWF forecasts. On average, the relative importance of sea-ice drift
speed forecasts is about 1.7 and 2.2 larger than the one from wind speed forecasts for the models trained with
buoy and SAR observations, respectively (figure 8). For the models predicting the speed of sea ice drift, the sum
of the relative importances of these two variables represent, on average, about 40 % of the sum of all relative
importances for both calibration methods. Furthermore, the relative importances of these two variables also
decrease with increasing lead times.”

• L258: It is correct to mention the changes in operational systems but the authors should note that even
with unchanged reanalysis systems, the gradual acceleration of ice drift is not reproduced by the models
and may also affect the training over long periods. 

We have added the following statement in the discussion and conclusion section:
“Moreover, TOPAZ4 does not reproduce the recent acceleration of sea ice drift as already reported by Xie et
al. (2017), and the bias of TOPAZ4 sea ice drift speed has changed during the studied period (figure S6 of the
supplementary material). This probably affects the performances of the random forest models trained with
buoy observations due to their relatively long training period”

• L261: I may have misunderstood this point. I do not expect any 7-days frequency signal in sea ice drift
so Thursdays are representative of the rest of the week. 

Our point here is that TOPAZ4 forecasts could be more accurate when they start on Thursdays than on other days
due to data assimilation. If so, it means that the weights given to the different predictors might not be optimal for
the forecasts not starting on Thursdays. The ECMWF wind forecasts and the sea-ice concentration observations
could have larger weights if daily forecasts would have been used for training the random forest algorithms.  In
order to clarify this, the following sentence: 

“Because only the forecasts starting on Thursdays are initialized using data assimilation, this could be an issue
when producing forecasts not starting on Thursdays.”

has been replaced by:

“Because data assimilation is only performed on Thursdays, this could be an issue when producing forecasts not
starting on Thursdays (the weights of the different predictor variables might not be optimal).”

• Code availability: I would like to point out that there is not enough details given on the results so it can
be reproduced. It is said that "the codes used for this analysis can be made available upon request." but
without the code, it is not possible to reproduce the results as the RF models are not detailed.

We have created a github directory (https://github.com/cyrilpalerme/Calibration_of_sea_ice_drift_forecasts/) in
which the codes are available.

• Figures 2 and 10: the crosses colours are not colourblind-friendly. Try a simpler scale - a gradient - that
can easily distinguish the high from the low percentages. The general tendency is more interesting to me
than the exact values. 



Thanks for this comment, we have changed the color scale of these figures.

• Figures 4 and 5: do we need to see both the MAE and the RMSE ?

We agree with this comment and we have removed the RMSE.
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We would  like  to  thank  the  reviewers  for  their  comments  which  helped  us  to  improve  the  quality  of  the
manuscript. Please find below our responses to the reviewer’s comments. 

Reviewer 3

##########

Title: Calibration of sea ice drift forecasts using random forest algorithms
Authors: Cyril Palerme and Malte Müller

This papers present short-term (1-10 days) forecasts of sea ice drifts using a random forest (AI)
algorithm and a comparison of the AI forecasts with those of the operational ice-ocean prediction
system  TOPAZ.  The  models  were  trained  using  buoy  or  radarsat-derived  sea-ice  drifts.
Predictors  include  short-term  forecast  ice  speed  and  angle,  wind  speed  and  angle  and  ice
thickness. Results show that the AI forecasts are more skillful than those of TOPAZ irrespective
of the training data set. Furthermore, the model trained using sea ice buoys is more skillful in
predicting sea ice drift for all lead-time when compared with the model trained with radarsat ice
drifts.

The paper addresses an interesting question. The use of AI in sea-ice forecasting is relatively new
and for this reason, this is a welcome contribution. The paper however is not well written, the
introduction is succinct and does not place the work in the context of previous effectively, the
model section is entirely missing and there is relatively little discussion of the pre-processing of
the input data and its impact on the forecast skill (a factor that is at least equally important as
the AI algorithm in producing a skillful model).

I recommend that the paper be accepted for publication after the comments below have been
addressed (i.e. not rebutted).

Major Points:
1- The paper must be substantially edited/restructured.

I) The introduction is vague, there is a lot of name-dropping but it does not present an in-depth
description of the previous work that is required to fully appreciate the content of the paper. I
suggest  that  the  authors  review  the  literature  more  in-depth  and  revise  the  introduction
substantially, or add a third co-author that works more closely in the field of sea ice forecasting.

We have completely changed the introduction in order to add a more in-depth description of previous
works.  We  hope  that  the  new  introduction  meets  the  expectations  of  the  reviewer.  The  new
introduction:

“Passive microwave observations of sea ice concentration have been available for more than 40 years,
and have shown negative trends in Arctic sea ice extent since the beginning of the satellite era (e.g.,
Cavalieri  and  Parkinson,  2012;  Comiso  et  al.,  2017),  with  particularly  strong  trends  during  the
summer (e.g., Comiso et al., 2017). There have been less satellite observations of sea ice thickness, and
these retrievals  have mainly  been restricted to  the winter  due to  issues related to  surface melting
during the summer (Ricker et al., 2017; Petty et al., 2020). Nevertheless, long-term negative trends in
sea ice thickness have also been assessed by comparing retrievals from satellite altimeters (ICESat and
CryoSat-2) with submarine measurements during the period 1958 - 2000 (Kwok and Rothrock, 2009;



Kwok, 2018). Furthermore, an acceleration of sea ice drift has been observed using drifting buoys and
satellite observations (Rampal et al., 2009; Spreen et al., 2011; Tandon et al., 2018; Tschudi et al.,
2020),  and  has  been  suggested  as  being  a  consequence  of  decreases  in  sea  ice  thickness  and
concentration due to reduced sea ice strength (Rampal et al., 2009; Olason and Notz, 2014; Tandon et
al., 2018). 

As a result of these changes, the Arctic ocean is becoming more accessible to marine operations, and
there is an increase in maritime traffic (Eriksen and Olsen, 2018; Berkman et al., 2020). In order to
ensure maritime safety, it is essential that accurate sea ice information is delivered to marine end-
users.  National  ice services manually  produce high-resolution sea ice charts  using retrievals  from
various satellites such as passive microwave radiometers, optical instruments, and synthetic aperture
radars (SAR). In addition to sea ice charts, short-term sea ice forecasts are also necessary for planning
activities and providing up-to-date information to end-users. However, the spatial resolution of current
sea ice models is often too coarse compared to user needs. 

Short-term sea ice drift forecasts are operationally produced by numerical prediction systems, but are
affected  by  biases  despite  the  numerous  efforts  for  improving  the  models  (Hebert  et  al.,  2015;
Schweiger and Zhang, 2015; Rabatel et al., 2018;Williams et al., 2019). Hebert et al. (2015) evaluated
sea ice drift speed forecasts from the U.S. Navy’s Arctic Cap Now-cast/Forecast system. They found
that the predicted ice drift speed was slower than drifting buoys in the summer months, and that a
persistence forecast  was generally  better  than the forecasts from the prediction system during the
summer. In contrast, the forecasts produced by the U.S. Navy’s Arctic Cap Nowcast/Forecast system
outperformed persistence forecasts during the winter months. Schweiger and Zhang (2015) evaluated
forecasts  of  sea  ice  drift  speed  from  the  Marginal  Ice  Zone  Modeling  and  Assimilation  System
(MIZMAS) and found root mean square errors from 4.5 to 8 km per day for lead times of 1 and 9 days,
respectively. These forecasts outperform a climatological reference for all lead times (up to 9 days).
Sea ice drift forecasts from the neXtSIM-F system have been evaluated by Rabatel et al. (2018) and
Williams et al. (2019), and root mean square errors of about 3 and 4 km per day have been reported
for lead times of 1 and 4 days, respectively (Williams et al., 2019). 

Sea ice drift is influenced by various sea ice characteristics such as concentration and thickness, as
well as by near-surface wind and ocean currents (Rampal et al., 2009; Spreen et al., 2011; Olason and
Notz, 2014; Yu et al., 2020). Though sea ice drift is mainly driven by the wind in areas with a low sea
ice concentration, the relationships between these variables and sea ice drift  are complex and not
linear in most of the ice-covered areas (Yu et al., 2020). In order to improve the accuracy of sea ice
drift forecasts, we have developed two calibration methods using random forest algorithms (Breiman,
2001), which is a supervised machine learning technique suitable for assessing nonlinear relationships
between a set of predictor variables and a target variable.

While random forest methods have been widely used in sea ice remote sensing (Miao et al., 2015; Han
et al., 2016; Lee et al., 2016; Gegiuc et al., 2018; Park et al., 2020), as well as in weather forecasting
(Gagne et al., 2014; Ahijevych et al.,2016; Herman and Schumacher, 2018; Loken et al., 2019; Mao
and Sorteberg,  2020),  there has  been less  interest  in  using random forests  in  sea ice  forecasting.
Recently, Kim et al. (2020) developed and compared 1-month sea ice concentration forecasts based on
random  forests  and  convolutional  neural  networks.  They  obtained  more  accurate  results  using
convolutional neural networks probably due to the larger learning capacity of convolutional neural
networks compared to random forests, in particular to extract spatial features from the predictors (Kim
et al., 2020). Furthermore, other machine learning and statistical methods have been used for sea ice
forecasting, particularly for predicting the sea ice concentration and extent. Wang et al. (2019) used a



vector  autoregressive  model  and  a  vector  Markov  model  to  predict  sea  ice  concentration  at
subseasonal  timescales,  and obtained the  best  results  using the  vector  Markov model.  The  vector
Markov  model  also  significantly  outperformed  the  National  Centers  for  Environmental  Prediction
(NCEP) Climate Forecast System, version 2 (NCEP CFSv2) for lead times between 2 and 6 weeks.
Comeau et al. (2019) used a method based on analog forecasting for predicting Arctic sea ice area and
volume  anomalies  at  seasonal  time  scales,  and  obtained  improvements  compared  to  damped
persistence  forecasts.  Moreover,  various  neural  networks  have  been  used  for  predicting  sea-ice
concentration, and found to be skillful for 1 and 12 month forecasts (Chi and Kim, 2017; Kim et al.,
2020),  but  only slightly better than persistence forecasts for short-term prediction (Fritzner et  al.,
2020). Nevertheless, there has not been any attempt to calibrate short-term sea ice drift forecasts using
advanced statistical methods.

The random forest  models  developed  in  this  study  are  based on predictor  variables  from sea  ice
forecasts produced by the Copernicus Marine Environment Monitoring Service’s (CMEMS) TOPAZ4
prediction system (Sakov et al., 2012), wind forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF), and sea ice satellite observations from the Ocean and Sea Ice Satellite
Application Facility (OSI-SAF). While all the models use the same predictor variables, two sets of
models were developed using either drifting buoy displacements or SAR observations for the target
variables. The data and methods used in this study are presented in sections 2 and 3, respectively. In
section 4, the daily SAR observations used for analyzing the spatial variability of the forecast errors, as
well as for training some of the random forest algorithms, are evaluated using buoy observations.
Then,  the performances  of the calibrated forecasts  are evaluated and compared to  those from the
TOPAZ4 forecasts in section 4. The discussion and conclusion of this study are presented in section 5.”

ii)The use of the present perfect to describe the data is odd. “Satellite sea-ice drift observations ...
have been used...” (Line 47, 56, etc.). It sounds as though the authors are speaking of previous
work by other authors when they are speaking of their own work being presented. The use of the
present tense is much more engaging for the reader, or at least the simple past. I.e. We use (used)
satellite  sea-ice drifts  observations...” .  These are two examples; there are many more in the
paper.

We agree with this comment and we have replaced the present perfect by the preterit many times in the
revised version of the paper.

Iii) Line 67: “Section 2.2: Data used for the predictor variable”. The model used as a reference
for the  evaluation of  the  AI  models  (i.e.  TOPAZ)  is  included  here,  yet  it  is  not  a  predictor
variable. The forecasted sea ice thickness, concentration, drift speed and angle are all predictor
variables but are not described in this section. Only the 10-m wind speed is discussed.

This section was initially about the data sets used in this study, and not about the predictor variables.
However, we have decided to describe the predictor variables in this section in the revised version of
the paper: 
“The list of predictor variables is the same for all the models developed in this study, and can be
divided into three different categories. First, some geographical information is used with the Cartesian
coordinates of the grid points (x and y in the stereographic projection from the TOPAZ4 system), and
the  distance  of  the  grid  point  to  the  nearest  coastline  in  the  TOPAZ4  system.  Then,  the  sea  ice
concentration from passive microwave observations during the day preceding the forecast start date is
also used as predictor variable. The variables from sea ice and wind forecasts during the predicted
lead time can be considered as the last category. These variables are the wind direction and speed from



ECMWF forecasts,  as  well  as the sea ice concentration,  thickness,  drift  speed and direction from
TOPAZ4 forecasts. Furthermore, the sea ice drift and concentration observations, as well as ECMWF
wind forecasts,  were projected onto the grid used in the TOPAZ4 prediction system using nearest-
neighbor interpolation before developing the random forest models.”

iv) TOPAZ is described only very succinctly. It does not say which sea ice model is used, whether
there is an ice thickness distribution included, the grid on which the equation are solved, etc.

We agree with this comment and we have added a more detailed description of TOPAZ4 in section 2.2
of the revised version of the paper:
“TOPAZ4 is a coupled ice-ocean model for the North Atlantic and the Arctic which provides 10-day
forecasts at a spatial resolution of 12.5 km, as well as a reanalysis (Sakov et al., 2012). It uses the
version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM; Bleck, 2002; Chassignet et al., 2006)
coupled with a one thickness category sea ice model using an elastic-viscous-plastic rheology (Hunke
and Dukowicz, 1997) derived from the version 4.1 of the Community Ice CodE (CICE). The model
native grid created using conformal mapping has a spatial resolution between 12 and 16 km in the
whole  domain.  An  ensemble  Kalman  filter  is  used  to  assimilate  satellite  sea  ice  and  oceanic
observations  such as  sea ice concentration and drift,  along-track sea-level  anomalies,  sea-surface
temperature,  as  well  as  in-situ  temperature  and  salinity  profiles.  Moreover,  TOPAZ4 is  forced  by
ECMWF high-resolution weather forecasts at the ocean surface. While TOPAZ4 forecasts are produced
daily, data assimilation is only performed on Thursdays, and only the forecasts starting on Thursdays
are stored in the long-term archive. Though the TOPAZ4 system provides forecasts with hourly time
steps, the forecasts with daily outputs were used here due to the 24-hour span of SAR observations.
Previous studies have reported that the speed of sea ice drift is overestimated in the TOPAZ4 system
compared to buoy observations from the IABP (Sakov et al., 2012; Xie et al., 2017)”

2- The model  is  section is  entirely missing. A mathematical  description of the random forest
model must be given because AI is relatively new in the field of short-term sea ice forecasting and
more simply for the sake of completeness. The reader should not have to read other papers about
random forest in order to fully appreciate the content of the current work.

We agree that the description of the random forest technique was missing, and we have added a longer
description of the random forest technique in the section 3.1 of the revised version of the paper:
“Random  forest  algorithms  consist  of  an  ensemble  of  decision  trees  used  for  regression  or
classification tasks (Breiman, 2001). In order to avoid overfitting (meaning that the models learn from
noise  in  the  training  data),  independent  decision  trees  must  be  developed.  The  independence  of
decision trees is ensured by using different subsets of the training data set for developing each decision
tree, as well as by randomly selecting a fraction of the predictor variables at each node (the node is
then split using the variable maximizing a dissimilarity metric among the selected predictors). Each
decision tree is trained with a data set created using the bootstrap method, which consists of randomly
selecting samples from the original training data with replacement for creating a new data set of the
same size as the original one. This results in using about 63 % of the samples from the original data set
for training each decision tree.
In this  study, random forest models were developed for regression using the Python library Scikit-
learn-0.23.2 (Pedregosaet al., 2011), and the mean squared error was used to measure the quality of
the splits.”



3- Some pre-processing was done to the data. E.g. the authors used speed and angle rather than
latitudinal and meridional components; two different models for speed and angle were proposed.
All these decisions leads to improvements in the forecast. Was there any more pre-processing
done to the data to improve skill? What was the improvement in the forecast skill using these pre-
processing techniques? A few sentences should be included in the discussion about this in section
4.3. I would call this section “Pre-processing of the data”.

The reason why we develop different models for predicting the speed and direction of sea ice drift is
that random forest algorithms can only be used to predict one variable. We hope that the new section
describing the random forest technique will help to understand this better. 

We have added the following statement at the beginning of the new section 3.3 called “Pre-processing
of the data”:

“In order to avoid overfitting, it is better to use predictor variables that are not highly correlated. This
is why the speed and direction of sea-ice drift, as well as the wind speed and direction, have been used
as predictor variables instead of the eastward and northward components. ”

Furthermore we have added the following paragraph at the end of the same section:

“We also tested random forest models predicting the sea ice drift along the x and y axes of the TOPAZ4 grid
using a different set of predictor variables  (figure S12 of the supplementary material). For these models, the
northward and eastward components of the ECMWF wind forecasts were used as predictors instead of the wind
speed and direction, as well as the sea ice drift  along the x and y axes from TOPAZ4 forecasts (which are
provided by TOPAZ4 outputs) instead of the sea ice drift speed and direction. The direction and speed of sea ice
drift were then calculated using the start and end location of the sea ice for comparing those models with the
ones directly predicting the direction and speed of sea ice drift. Relatively similar performances were achieved
by  these  models  for  predicting  the  direction  of  sea  ice  drift,  but  these  models  had  significantly  worse
performances for predicting the speed of sea ice drift (larger mean absolute errors of about 12.2 % and 13.7 %
on average for the models trained with buoy and SAR observations, respectively). ”

4- Line 215: A model trained within the Arctic Ocean proper should not be used to predict sea-ice
drift in the land-lock sea ice of the Canadian Arctic Archipelago. This is an entirely different
dynamical regime. This results and associated discussion should be removed from the paper and
from the abstract. Or at least not given such an important presence.

We agree with this comment, though random forest algorithms could, in principle, be able to identify
regions  with  particular  conditions  with  the  spatial  coordinates.  Nevertheless,  we  have  decided  to
exclude the Canadian Arctic Archipelago in the revised version of the paper, and we have added the
following statement:

“The Canadian Arctic Archipelago is excluded from our study due to the different characteristics of
sea-ice drift in this region (largely influenced by the presence of narrow channels and landfast ice)
compared to the rest of the Arctic. Therefore, no data located in the Canadian Arctic Archipelago were
used for training and evaluating the random forest models.”

Minor Points:
Line 13-14: Sea ice conditions in the Arctic do not change increasingly faster because of
increase in ice drift speed. Increase sea ice drift speed is one such change associated with
arctic climate change, but it is not the cause. The cause is thinning of sea ice associated



with warmer air temperature, change in cloud phase and its impact on the radiative fluxes
at the surface, increased ocean heat flux that interacts closely with sea ice on the shallow
arctic shelves, increased storminess in the Arctic, etc

We have modified the introduction and this statement has been removed.

Line 61: Why only use sea ice drift speed lower than 5km per day? The mean speed in
the Arctic Ocean is 5km /day or ~5cm/sec. It seems that a large amount of data is being
ignored without acknowledging it or without providing a rationale for doing so.

It seems that there has been a misunderstanding here. In the discussion paper, it was written (lines 59-
62):
“While all buoy observations located in an area with a sea-ice concentration higher than 10 % (in the
OSI-SAF product described in the next section) were used for training the random forest algorithms,
only the buoys  with a speed between 0.5 and 100 km per  day,  located in  an area with a sea-ice
concentration  higher  than  10  %,  and  further  than  50  km  from  the  coastlines  were  used  for
verification.”

Therefore, we have never excluded the buoy observations with a speed higher than 5 km / day, but only
the buoy observations with a speed lower than 0.5 km / day and higher than 100 km / day. In the
revised version of the paper, we have changed the threshold of  0.5 km / day to 0.1 km / day. However,
we agree that the fraction of observations excluded by this selection was missing, and we have added
the following statement in the revised version of the paper:

“In order to avoid inaccurate and unrealistic values, only the buoys with a speed between 0.1 and 100
km per day, located in an area with a sea ice concentration higher than 10 %, and further than 50 km
from the coastlines were used for verification. While only the buoys with a speed between 0.1 and 100
km per day were used for training the random forest models predicting the direction of sea ice drift, all
the buoys with a speed lower than 100 km per day were used for training the models predicting the
speed of sea ice drift in order to make them able to predict very low speed. During the period from
June 2013 to May 2020, about 4.5 % and 0.1 % of the buoys had a speed lower than 0.1 km per day
and higher than 100 km per day, respectively. ”

Line 63: “...have been projected onto the grid used in the TOPAZ4 system”. This is not
useful information. What grid is used in TOPAZ4? Tri-polar? Curvi-linear? Cube-
sphere? I see now that this has been defined later in the paper on Line 103. The grid must
be defined when it is first discussed. Is it a Cartesian grid? Or Lat/Lon?

We have added the projection in the following sentence:  “The drift vectors from buoy observations
were then projected onto the polar stereographic grid used in the TOPAZ4 system.” However, we have
described the other information in section 2.2 in the description of the TOPAZ4 prediction system (see
our response to major point iv).

Line 79: Which ocean observations are assimilated?

We have added this information in the revised version of the paper:
“An ensemble Kalman filter is used to assimilate satellite sea ice and oceanic observations such as sea
ice concentration and drift, along-track sea-level anomalies, sea-surface temperature, as well as in-
situ temperature and salinity profiles.”



Line 86: When did the switch to higher resolution happened?

We have changed this sentence in the revised version of the paper: “These forecasts have lead times up
to 10 days, and the model’s spatial resolution changed from about 16 km to 9 km in March 2016
(https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model).”

Line 95: No new paragraph here. “... where R is the Earth’s radius, lamda and phi are
the...”

We agree with this comment and we have modified this. The new sentence:
“where arctan2 represents the 4-quadrant inverse tangent function, R is the Earth’s radius, φ and λ
represent the latitude and the longitude, and the subscripts "start" and "end" indicate the start and end
locations”

Equ 4: Unusual notation. arctan(v/u)?

It is true that “arctan2” was not defined in the text. We have added the following statement in the text:
“where arctan2 represents the 4-quadrant inverse tangent function”.

Line 121: Should it be “data points” instead of “data sets”?

We agree with this comment, and we have replaced “data sets” by “data points”.

Line 165, Equ. 5: Why Case #3 in Equ. 5? Don’t Case #1 and #2 above cover all cases?

There are also cases where the difference between two directions is between -180 and 180°. However,
there was an error in the discussion paper (but not in the analysis). We have corrected this error in the
revised version of the paper. When ΔD > 180 => Error =  ΔD – 360 (and not 360  -  ΔD). Note that this
error only affected the direction error, but not the absolute error.

Line 169-171: This is “Method” material that was already covered earlier. It should be
moved to the method section.

We have removed this statement in the revised version of the paper.

Line 191. “Moreover the fraction of forecasts improved by the calibration is, on average,
larger for the models trained with buoy observations (57.0 %) than for the models trained
with SAR observations (54.8 %)”. Is this really statistically significant? Errors are
provided throughout the paper but it does not transpire in the discussion. The errors
should used to assess whether the improvements are significant or not.

We have added an analysis of the statistical significance using the Wilcoxon signed-rank test, which is
suitable for non-parametric data and paired observations (see paragraph below). Note that we have used
the Wilcoxon signed-rank test to assess if the difference in absolute errors are significant. The fraction
of forecasts improved does not have any statistical distribution, and it is therefore more difficult to
assess the statistical significance for this metric.

We have added the following paragraph in the method section:



“In this  study,  we used  the  Wilcoxon signed-rank test  to  assess  the  statistical  significance  of  the
differences between the absolute errors due to its suitability for non-parametric data (the absolute
errors  are  not  normally  distributed)  and  paired  observations  (the  same  data  set  was  used  for
evaluating the different models). We performed this analysis using the two-tailed hypothesis test and
the significance level of 0.05.”

And we have describe the statistical significance of the results in the section “4.2  Evaluation of the
calibrated forecasts”:

“The performances of the calibrated forecasts have been evaluated and compared to those from the
TOPAZ4 prediction system during the period from June 2020 to May 2021 using buoy observations
(figures 3). For predicting the direction of sea ice drift, the models trained with buoy observations
significantly outperform the TOPAZ4 prediction system and the models trained with SAR observations
for all lead times, except 10 days. On average, the calibrated forecasts produced by these models have
a mean absolute  error  about  8.0  % lower  than  TOPAZ4 forecasts.  The  models  trained  with  SAR
observations significantly outperform the TOPAZ4 prediction system for lead times up to 5 days, and
reduce the mean absolute  errors by 3.3 % compared to TOPAZ4 forecasts.  However,  the TOPAZ4
prediction system slightly outperform the models trained with SAR observations for lead times from 8
to 10 days, though the differences are not statistically significant. Moreover, the fraction of forecasts
improved by the calibration is, on average, larger for the models trained with buoy observations (55.7
%) than for the models trained with SAR observations (52.9 %). Furthermore, the correlation between
the forecasts and the buoy observations is improved by both calibration methods for lead times up to 7
days, and deteriorated for longer lead times.
For the speed of sea ice drift, the models trained with buoy observations have the best performances
for all lead times. They significantly outperform the TOPAZ4 system and the models trained with SAR
observations for all lead times, except 4 days for which the difference with the TOPAZ4 system is not
statistically significant.  The forecasts from the models trained with SAR observations have slightly
larger mean absolute  errors than TOPAZ4 forecasts  for  lead times up to  5 days,  but  significantly
outperform TOPAZ4 forecasts for longer lead times. On average, the mean absolute error is reduced by
7.1  %  and  2.5  %  by  the  calibration  for  the  models  trained  with  buoy  and  SAR  observations,
respectively. The fraction of forecast improved is, on average, slightly larger for the models trained
with  buoy  observations  (53.4  %)  than  for  the  models  trained  with  SAR  observations  (53.1  %).
Moreover,  the  correlation  between  the  buoy  observations  and  the  forecasts  is  improved  by  both
calibration methods.
The spatial variability of the fraction of forecasts improved by the calibration has been analyzed using
SAR observations as reference in order to use as many observations as possible (figures 4, 5, 6, 7),
though the grid points with less than 20 SAR observations during the period from June 2020 to May
2021 have been excluded from this analysis. The number of SAR observations per grid cell used for this
comparison has been mapped in figure 1 d). Overall, both calibration methods perform relatively well
for predicting the direction of sea ice drift in the Central Arctic for lead times up to 5 days (figures 4
and 5). However, the fraction of forecasts improved decreases with increasing lead times, and both
calibration methods have relatively poor performances in the Beaufort, Chukchi, and East Siberian
seas. Furthermore, the models trained with buoy observations perform better than the models trained
with SAR observations in most of the area taken into account in this analysis.
For the speed of sea ice drift, the models trained with SAR observations perform better than the models
trained  with  buoy  observations  in  most  of  the  area  analyzed.  The  models  trained  with  buoy
observations  have  particularly  poor  performances  compared  to  TOPAZ4 near  the  Greenland  and
Russian coastlines (figure 6), while the models trained with SAR observations perform better in these



areas  (figure  7).  It  is  worth  noting  that  most  of  the  buoys  taken  into  account  for  evaluating  the
forecasts in figure 3 are not located in the areas where the models trained with buoy observations have
poor performances, which likely explains the better performances of the models trained with buoy
observations compared to the models trained with SAR observations in figure 3.”

Line 197: “The fraction of forecast improved is, on average, slightly larger for the models
trained with SAR observations (55.3 %) than for the models trained with buoy
observations (54.9 %). ” Again, is this statistically significant?

We have answered to this comment in our previous response. 

Line 222: The fraction of data used in the training and validation of the model belongs to
the Method section.

We have moved this statement in the Method section in the revised version of the paper.

Line 225-230: Repetitive. This was already mentioned in the Method section.

We have moved this section in the Method section in the revised version of the paper.

Line 236: Sea ice thickness does not change very much in 10 days. I suspect the ice
thickness at t=0 would be equally skillful. This should be mentioned.

We agree  that  using  sea  ice  thickness  during  the  initialization  of  the  forecasts  should  provide  a
relatively  similar  information  to  the  algorithms.  However,  because  Pan-Arctic  sea  ice  thickness
observations are not available during the summer, it is not possible to use sea ice thickness observations
in  our  random forest  models  which  are  used  all  year  round.  Therefore,  we consider  that  the  best
available information is the sea ice thickness forecasts at the predicted lead time, and we do not think
that the low temporal variability of sea ice thickness should be mentioned here.

Section 4.3: The discussion does not present a quantitative assessment of the predictive
skill of each predictor. A more quantitative discussion should be provided.

We  agree  with  this  comment,  and  we  have  modified  this  section  to  present  the  results  more
quantitatively. The new section:
“For both calibration methods, the most important variable for predicting the drift direction is the sea
ice drift  direction from TOPAZ4 forecasts,  followed by the wind direction from ECMWF forecasts
(figure 8). On average, the relative importance of sea ice drift direction forecasts is about 1.4 and 1.5
times larger than the one from wind direction forecasts for the models trained with buoy and SAR
observations,  respectively  (figure  8).  The  sum  of  the  relative  importances  of  these  two  variables
represent, on average, about 46 and 41 % of the sum of all relative importances for the models trained
with  buoy  and   SAR  observations,  respectively.  However,  the  relative  importances  of  these  two
variables decrease with increasing lead times. 
Similarly, the sea ice drift speed from TOPAZ4 is the most important variable for predicting the speed
of  sea  ice  drift,  followed  by  the  wind  speed  from  ECMWF  forecasts.  On  average,  the  relative
importance of sea-ice drift speed forecasts is about 1.7 and 2.2 larger than the one from wind speed
forecasts  for  the  models  trained with  buoy and SAR observations,  respectively  (figure 8).  For the
models predicting the speed of sea ice drift, the sum of the relative importances of these two variables
represent, on average, about 40 % of the sum of all relative importances for both calibration methods.



Furthermore, the relative importances of these two variables also decrease with increasing lead times.
On average, the mean absolute errors are reduced by all predictors for the direction and speed of sea
ice drift in both calibration methods (figure 9), though some predictor variables do not improve the
forecast  accuracy  for  all  lead  times.  While  the  sea  ice  concentration  observations  during  the
initialization of the forecasts and the sea ice concentration forecasts from TOPAZ4 are correlated,
removing one of these variables decreases the accuracy of most random forest models. Therefore, we
decided to keep both variables, even if the importances of these variables are probably underestimated
due to this correlation. Furthermore, we also tested using the day of year as an additional predictor
variable (figure S7 of the supplementary material), but adding this variable tends to deteriorate the
forecast accuracy for most models, so we decided to discard this variable.
For the models predicting the direction of sea ice drift,  removing the drift  direction from TOPAZ4
forecasts increases the mean absolute error between 1.1 and 6.7 degrees depending on the lead time
and the observations used for the target variable. This is much larger than the differences in mean
absolute  error  when the  wind direction  from ECMWF forecasts  is  removed (between 0.1  and 2.2
degrees). For the models predicting the speed of sea ice drift, removing the drift speed from TOPAZ4
forecasts increases the mean absolute error between 0.041 and 0.444 km / day depending on the lead
time and the observations used for the target variable. This is also much larger than the differences in
mean absolute error when the wind speed from ECMWF forecasts is removed. Surprisingly, removing
the wind speed forecasts slightly reduces the mean absolute error (difference of 0.005 km / day) for the
model predicting the speed of sea ice drift for a lead time of 4 days trained with SAR observations. For
the other models predicting the speed of sea ice drift, removing the wind speed forecasts increases the
mean absolute error between 0.001 and 0.127 km / day. Furthermore, the mean absolute errors for the
speed of sea ice drift are also considerably reduced by adding the sea ice thickness forecasts from
TOPAZ4 (between 0.011 and 0.098 km / day), probably due to the anti-correlation between sea ice
thickness and sea ice drift speed (Yu et al., 2020).”

Figure 1: Colorbar for the d panel should be changed to avoid saturation.

The colorbar has been changed.

Figure 4: Units for sea ice drift should be km/day or ideally cm/sec. It should not be
m/day.

We have changed the unit for sea ice drift speed in the revised version of the paper, and km / day is
now used.

Bruno Tremblay
McGill University


