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Abstract. Snow water equivalent (SWE) can be measured using low-cost Global Navigation Satellite System (GNSS) sensors 

with one antenna placed below the snowpack and another one serving as a reference above the snow. The underlying GNSS 

signal-based algorithm for SWE determination for dry- and wet-snow conditions processes the carrier phases and signal 5 

strengths and derives additionally liquid water content (LWC) and snow depth (HS). So far, the algorithm was tested 

intensively for high-alpine conditions with distinct seasonal accumulation and ablation phases. In general, snow occurrence, 

snow amount, snow density and LWC can vary considerably with climatic conditions and elevation. Regarding alpine regions, 

lower elevations mean generally earlier and faster melting, more rain-on-snow events and shallower snowpack. Therefore, we 

assessed the applicability of the GNSS-based SWE measurement at four stations along a steep elevation gradient (820, 1185, 10 

1510 and 2540 m a.s.l.) in the eastern Swiss Alps during two winter seasons (2018-2020). Reference data of SWE, LWC and 

HS were collected manually and with additional automated sensors at all locations. The GNSS-derived SWE estimates agreed 

very well with manual reference measurements along the elevation gradient and the accuracy (RMSE = 34 mm, 

RMSRE = 11 %) was similar under wet- and dry-snow conditions, although significant differences in snow density and 

meteorological conditions existed between the locations. The GNSS-derived SWE was more accurate than measured with 15 

other automated SWE sensors. However, with the current version of the GNSS algorithm, the determination of daily changes 

of SWE was found to be less suitable compared to manual measurements or pluviometer recordings and needs further 

refinement. The values of the GNSS-derived LWC were robust and within the precision of the manual and radar measurements. 

The additionally derived HS correlated well with the validation data. We conclude that SWE can reliably be determined using 

low-cost GNSS-sensors under a broad range of climatic conditions and LWC and HS are valuable add-ons.  20 
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1 Introduction 

The water stored in the seasonal snow cover plays a crucial role in the hydrological cycle in mountain regions and is a key 

source of fresh water supply. The snow water equivalent (SWE) expresses the amount of water stored in the snow, which 

together with its melt rate influences river runoff with large effects on agriculture, hydropower production, water supply and 

ecosystems downstream of mountain head-watersheds and can contribute to floods, slush flows and other natural hazards. 25 

Estimating SWE in high temporal resolution as well as its spatial distribution is a major task in snow hydrology (Dozier et al., 

2016; Largeron et al., 2020). On the other hand, snow effects the climate system due to its high reflectivity, insulation properties 

and cooling effects and is, therefore, an essential climate variable (Bojinski et al., 2014). Monitoring the temporal and spatial 

distribution of the snow mass is hence essential for assessing the water storage in snow and subsequent runoff for climatological 

applications (e.g. Marty et al., 2017). Moreover, measuring SWE is necessary for the development of building codes and 30 

monitoring current snow loads to guarantee the stability of structures.  

Despite the need for monitoring SWE for various applications, and although different methods exist for estimating SWE, 

encompassing in situ measurements, remote sensing and physically-based modelling, as well as combinations thereof and 

assimilation techniques, continuous measurements are often not available or feasible, especially in complex topography such 

as mountain areas. For large subarctic areas, the spatial and temporal distribution of SWE under dry-snow and rather shallow 35 

snowpack conditions can be obtained from microwave satellite remote sensing (Larue et al., 2017; Pulliainen and Hallikainen, 

2001; Shi and Dozier, 2000). This is, however, until now, not sufficiently feasible in highly complex alpine terrain due to 

either low spatial resolution especially of passive microwave sensors or regarding active microwave sensors, due to penetration 

depth limits, foreshortening, shadowing and layover effects. However, recent developments including Sentinel-1 radar 

observations seem promising (Lievens et al., 2019; Marin et al., 2020). In contrast to SWE, snow depth (HS) can accurately 40 

be determined with various methods even for alpine catchments. This encompasses the application of satellite stereo images 

(Deschamps-Berger et al., 2020), airborne LiDAR altimetry approaches (Deems et al., 2013; Helfricht et al., 2014), 

photogrammetric reconstructions, using images taken by drones (Avanzi et al., 2018; Bühler et al., 2017), or terrestrial LiDAR 

surveys (Grünewald et al., 2010; Prokop et al., 2008). However, for the conversion of the HS products into SWE additional 

density information, e.g. using modelling approaches (Jonas et al., 2009; Winkler et al., 2021) or additional measurements, is 45 

still needed (Dozier et al., 2016), which is not at every location available or easy to obtain. SWE can also be derived by 

physically-based modelling (e.g. Le Roux et al., 2020; Lehning et al., 2006). However, the results depend largely on the quality 

and availability of meteorological input data and should be validated against in situ measurements. The best results in 

distributed modelling at high resolution (250 m) (Griessinger et al., 2019) are achieved by assimilating either space born or in 

situ observations (Magnusson et al., 2017; Winstral et al., 2019).  50 

Hence, point measurements of SWE are still essential, for data assimilation, validation and calibration of models and remote 

sensing data. Moreover, long-term time series of SWE measurements, which only few exist, are particularly valuable for 

climate change monitoring (Marty et al., 2017; Mote et al., 2018). Traditionally, SWE is measured by weighting a given 
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volume of snow (Haberkorn, 2019). At a limited number of stations worldwide such manual measurements are performed 

(bi-)weekly. Manual SWE measurements are, however, non-continuous, time costly, destructive and often sparse, especially 55 

in remote and mountainous terrain. Common approaches providing continuous data are gravimetric sensors, sensors based on 

natural gamma radiation and cosmic ray sensors (Haberkorn, 2019; Pirazzini et al., 2018). Gravimetric sensors such as snow 

pillow and snow scale, which measure SWE by weighing the overlaying snow cover, are costly, difficult to install and prone 

to errors due to bridging effects in the snow cover, non-natural heat-flux and drainage effects (Johnson and Schaefer, 2002; 

Johnson et al., 2015). Passive gamma radiation instruments determine SWE from the attenuation of the natural gamma 60 

radiation emitted and travelling through the snow, but can only measure SWE < 600 mm with reasonable accuracy (Haberkorn, 

2019). In recent years, cosmic ray sensors showed good results in deriving SWE from the absorption of natural fast neutrons 

in the snow cover and the consequent attenuation of the neutron count (Gugerli et al., 2019; Schattan et al., 2017; Schattan et 

al., 2019).  

In the last decade, promising approaches emerged that use L-band microwave signals transmitted from Global Navigation 65 

Satellite System (GNSS) satellites to derive continuously and non-destructively snow cover properties. On the one side, HS 

can be derived with reflectometry techniques using antennas, which are permanently installed above the ground (Botteron et 

al., 2013; Jin and Najibi, 2014; Larson et al., 2009). However, to obtain SWE, some external information on snow density is 

needed. On the other side, recently a GNSS method to directly derive SWE was developed using low-cost GNSS sensors 

installed above and below the snow cover. SWE is derived by using a combined approach of carrier phases measurements and 70 

signal strength information, retrieving the time delay and attenuation of the GNSS signals in the snowpack. The development 

of the current algorithm with all processing steps described in Koch et al. (2019) is the result of merging several steps of 

development. In a first step, Koch et al. (2014) derived the liquid water content (LWC) of a snowpack from the attenuation of 

the GNSS signals travelling through the snow cover. Combining the GNSS signal attenuation approach of Koch et al. (2014) 

with two-way travel time information derived by an L-band upward-looking ground penetrating radar (upGPR), it was possible 75 

to simultaneously derive SWE, HS and LWC for dry- and wet-snow conditions (Schmid, 2015; Schmid et al., 2015). However, 

radar systems are rather expensive and the data retrieval still needs manual supervision. In a further step, Henkel et al. (2018) 

exploited the GNSS carrier phase measurements for deriving SWE with a low-cost GNSS system for dry-snow conditions. A 

similar approach relying on carrier phase measurements allowed an hourly SWE estimation from the GNSS signal (Steiner et 

al., 2018; Steiner et al., 2019a; Steiner et al., 2019b). Koch et al. (2019) generalized the techniques of Koch et al. (2014), 80 

Schmid et al. (2015) and Henkel et al. (2018) for dry- and wet-snow conditions by combining GNSS carrier phases and signal 

strength, snow permittivity models and a simple snow densification model to simultaneously derive SWE, HS and LWC with 

only one GNSS sensor system.  

The GNSS algorithm described by Koch et al. (2019) includes different snow densification assumptions for dry and wet snow, 

allowing HS derivation for both conditions. The two density model assumptions were first developed for high-alpine seasonal 85 

snowpack conditions (Koch et al., 2015; Koch et al., 2019; Schmid et al., 2014), which are characterized by distinct seasonal 

accumulation and ablation phases. Good accuracy of the GNSS-derived SWE was achieved for the high-alpine site 
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Weissfluhjoch (2540 m a.s.l) near Davos, Switzerland, were the algorithm was intensively tested and validated (Koch et al., 

2019). The algorithm was further tested at sites in Newfoundland and the Canadian subarctic where the accumulation phase is 

also clearly separated from the ablation phase and was integrated in the SnowSense® GNSS sensor system (Appel et al., 2019).  90 

In low-elevation areas of the Alps, however, the snow cover is overall shallower and the density evolution might differ 

considerably from the high-alpine site Weissfluhjoch due to different meteorological conditions (Figure A1 in Appendix A). 

Moreover, there is often no clear separation into an accumulation period with dry-snow conditions and an ablation period with 

wet-snow conditions. Instead, transitions from wet to dry snow frequently occur due to positive air temperatures and rain-on-

snow events. Therefore, in this study, we aim to assess the performance of the GNSS algorithm described by Koch et al. (2019) 95 

for locations with a shallow snowpack, more frequent changes between dry- and wet-snow conditions, potential differences in 

densification and a higher influence of rain events compared to the high-alpine site Weissfluhjoch (2540 m a.s.l), where the 

algorithm was validated. To this aim, we installed SnowSense® GNSS stations and performed validation measurements along 

a steep elevation gradient (from 820 to 2540 m a.s.l.) for two winter periods (2018-2019 and 2019-2020). While our focus is 

on the accuracy of the GNSS-derived SWE, we also assessed the accuracy of water equivalent of daily snowfall, LWC and 100 

HS. Finally, we discuss the advantages and limitations of an operational use of the GNSS system for SWE derivation in general 

and point out potential future development steps.  

2 GNSS measuring principles 

The target value of the GNSS approach is SWE, whereas HS and LWC are rather considered by-products. The GNSS algorithm 

applied for this study is based on differential GNSS measurements using microwave L1-band signals with a central frequency 105 

of 1.57542 GHz (wavelength ca. 19 cm) encompassing signals of the U.S. Global Positioning System (GPS) and the European 

Galileo system. Each GNSS-based SWE sensor consists of two GNSS receivers and antennas. One of the antennas is placed 

on the bare ground and gets subsequently covered by snow. The second antenna acts as a reference and is placed above the 

snow cover (Figure 1), e.g. on the top of a pole. Snow on the ground has a clear impact on the GNSS carrier phase 

measurements received at the buried antenna and in case of wet snow, also on signal strength since signal attenuation increases 110 

with increasing LWC. Atmospheric delays from the ionosphere and troposphere as well as satellite position, clock offset, phase 

and code bias errors affect the measurements of both the upper and lower antenna. The differential processing of the GNSS 

signals (using double difference measurements) eliminates these errors and keeps only the snow information, the relative 

position between the two antennas (also called baseline vector), the double differenced carrier phase integer ambiguities and 

the double difference measurement noise and multipath propagation (Henkel et al., 2018). In case of no snow, the relative 115 

position is determined with standard RTK positioning with millimeter-level accuracy. The relative position is then considered 

as a known parameter and does no longer need to be estimated during the winter season. 

Under dry-snow conditions, the SWE information is included directly in the differential carrier phase measurements. More 

specifically, the differential carrier phase measurements are a linear function of SWE and the carrier phase integer ambiguities. 
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The mapping between SWE and the differential carrier phase measurements depends on the elevation of the refracted satellite 120 

signals and the speed of signal propagation in dry snow (vs,dry = 2.3  108 m s-1; Schmid et al. (2014)). The mapping between 

the carrier phase integer ambiguities and the differential carrier phase measurements depends only on the signal wavelength 

(19 cm in L1 band) and is straightforward. 

 

 

Figure 1: a) Schematic representing the GNSS sensor setup and the measuring principles. The bottom graphics illustrate the phase 125 
delay and attenuation of the GNSS signal in snow. b) Measuring station at site Laret with GNSS sensor setup as well as automated 

HS and SWE sensors for validation. The pressure sensor “snow scale” is partially visible in the lower right corner. 

For the derivation of SWE under wet-snow conditions, the carrier phases processing is similar, however, as the speed of signals 

in wet snow vs,wet depends on LWC, also signal strength information has to be considered. According to Koch et al. (2014), 

LWC can be derived by GNSS signal strength, HS and permittivity models for wet snow. For the latter, we applied for the real 130 

part the dielectric three-phase mixing model after Roth et al. (1990) and for the imaginary part the semi-empirical equation 

after Tiuri et al. (1984). Therefore, in case of wet snow, a combined approach of using time delay, signal strength and an 

information on HS is necessary to derive SWE, which is explained in detail in Koch et al. (2019).  

In the entire combined approach, HS is considered as a supporting value and its calculation is based on simple snow 

densification models, which differ for dry and wet snow. In case of dry-snow conditions, HS is calculated based on the GNSS-135 

derived SWE of the current time step as well as the SWE evolution of all previous times steps with continuous snow cover on 

the ground by assuming that densification follows an exponential behavior with time (Koch et al., 2019). For dry-snow 

conditions, each layer has a specific density 𝜌s,dry,𝑡  at a certain time step t and the layer densifies over 30 days with an 

exponential densification rate of 1/6 d-1 up to a set maximum dry-snow density 𝜌s,dry,max = 357 kg m-3 as proposed for the site 

Weissfluhjoch by Schmid et al. (2015). If SWE increases from the previous time step of measurements, a new snow layer with 140 

an initial density 𝜌s,0 = 100 kg m-3 is added to the model and densifies over time.  
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For wet-snow conditions, we used the bulk densification approach described in Schmid et al. (2015) which largely depends on 

the LWC. The input variables for this approach are LWC and SWE derived for the current time step and as starting value for 

density the defined maximum dry snow density 𝜌s,max. The upper bound of snow densification is set to 𝜌s,wet,max = 600 kg m-3 

HS is then derived for both wet and dry-snow conditions with 𝐻𝑆 =
𝑆𝑊𝐸

𝜌s
 with 𝜌s being the bulk snow density of either dry or 145 

wet snow. So far, the implemented dry- and wet-snow density model assumptions worked well for the high-alpine seasonal 

snowpack evolution with distinct accumulation and ablation phases.  

The main processing steps for the derivation of SWE, LWC and HS from the GNSS signals under either dry- or wet-snow 

conditions are summarized schematically in Figure 2. First, a distinction between dry- and wet-snow conditions is made based 

on a GNSS signal strength threshold. The processing in case of dry snow is straightforward, and in addition to SWE, an 150 

estimate of HS is given by applying the integrated dry-snow densification model. In contrast to dry snow, the processing of 

wet snow is more complex. SWE, HS, LWC, snow density and signal speed vs are derived in multiple iterative steps from 

phase delay and signal attenuation starting and using the snow density and signal speed of the previous time step (e.g., previous 

day) as initial values. For more details on the dry- and wet-snow GNSS algorithm see Henkel et al. (2018) and Koch et al. 

(2019). 155 

 

Figure 2: Diagram illustrating the main processing steps for the derivation of the snow cover properties SWE, LWC and HS (blue 

boxes) using as GNSS input phase delay, derived from the differential carrier phase measurements and signal strength (orange 

boxes). Snow density and the velocity of signals in dry and wet snow are additional inputs or intermediate variables (yellow boxes). 

For dry snow, the processing is straightforward and a constant value vs,dry = 2.3  108 m s-1 is assumed. Regarding the wet-snow 

processing chain, SWE, HS and LWC are first derived as initial values (violet arrows) using snow density ρs and the velocity vs 160 
information of the previous time step; in a second step (black arrows), two iterative calculation steps (second circulation is marked 

with dashed lines) follow to derive the final values. 
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3 Study sites and data  

The four sites selected for the study were the stations Küblis, Klosters, Laret and Weissfluhjoch, situated in close geographical 

vicinity (within a radius of 6 km) and covering a steep elevation gradient ranging from 820 to 2540 m a.s.l. in the region of 165 

Davos (eastern Swiss Alps). Table 1 provides a summary of the station characteristics. The snow cover at the study sites can 

be considered as representative for the respective elevation in this area. The high-alpine site Weissfluhjoch is located on a flat 

part of a valley at 2540 m a.s.l., which is well protected from strong wind and has a permanent snow cover for about two thirds 

of the year. The site is equipped with automated snow and meteorological sensors (Marty and Meister, 2012). A snow scale 

and a snow pillow continuously record SWE and an ultrasonic sensor snow depth. In addition, daily at 8:00, an observer 170 

measures snow depth, height of new snow (HN) and water equivalent of snowfall (HNW). Daily manual observations from a 

second snow depth pole (HS2) in the immediate vicinity of the snow pillow and scale are available as well. LWC was measured 

automatically with an upward-looking ground penetrating radar (upGPR) according to Schmid et al. (2014) in the winter 

2019-2020. A good overview of the location and the sensors is given in Schmid et al. (2015) or Koch et al. (2019). At this site, 

GNSS measurements are ongoing since several years (Henkel et al., 2018; Koch et al., 2014; Koch et al., 2019; Steiner et al., 175 

2019b). The site of Laret is located on an open meadow at 1510 m a.s.l, and is wind sheltered resulting in a very uniform snow 

depth. The Laret site is a CryoNet station belonging to the GCW CryoNet cluster "Davos" (Wiesmann et al., 2019) and is 

equipped with automated snow and meteorological sensors: SWE is measured with a snow scale, HS with an ultrasonic and 

two laser sensors and precipitation with a heated pluviometer. The GNSS ground antenna was placed in close proximity of the 

snow scale and the ultrasonic snow depth sensor (< 1 m) (Figure 1b). The measuring site in Klosters is located at 1210 m a.s.l. 180 

in a private garden. In the immediate vicinity of the GNSS ground antenna we installed an automated laser snow depth sensor. 

In addition, an automated air temperature sensor (radiation shielded) was installed for the winter 2019-2020. Snow depth, HN 

and HNW (for HN > 10 cm) were measured daily by an observer. An automated and heated pluviometer is present within 

200 m at the same elevation. The Küblis site is situated at 820 m a.s.l. on a lawn in front of a hydroelectric power plant. Snow 

depth was measured continuously by a laser sensor in the immediate vicinity of the GNSS ground antenna and an air 185 

temperature sensor (radiation shielded) was installed for the winter 2019-2020. HS, HN and precipitation (rain gauge) were 

manually measured each morning. For the winter 2019-2020, the plot of the manual measurements (daily data) was moved to 

a nearby location (distance 330 m, elevation difference 20 m). Camera pictures documenting snow conditions and snow 

coverage of the ground antenna are available for all sites.  

Manually observed snow profiles were performed weekly for the sites of Laret, Klosters and Küblis and bi-weekly at 190 

Weissfluhjoch. The measurements included HS, SWE and snow temperature. LWC was derived from snow density (density 

cutter) and relative dielectric permittivity (capacitive sensor; Denoth, 1994). LWC was measured only for some of the manual 

profiles due to the time-consuming procedure and need for a trained observer.  

The spatial variability of snow density is lower than of HS (Jonas et al., 2009). For this reason, all manual SWE values and 

the SWE data recorded with the snow pillow and scale at the Weissfluhjoch site were scaled to the nearby reference depth 195 
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measurement (laser or ultrasonic HS gauges) with: SWE′ = SWE
HSref

HSSWE
, where HSref is the reference snow depth from the 

automated sensor and HSSWE is the snow depth recorded in the snow pit or at the snow depth pole (HS2) near the snow pillow 

and scale. 

At each of the four sites, we installed a SnowSense® GNSS sensor system. It consisted of two GNSS antennas and receivers, 

an onboard processing, an LTE communication module and a power management unit. The integrated u-blox LEA-M8T GNSS 200 

receivers are Multi-GNSS receivers that can receive both GPS and Galileo signals (Lamm et al., 2018). 

The choice of the measurement duration is mainly driven by two factors: On the one hand, the measurement period must be 

sufficiently long to enable a separation of SWE and carrier phase integer ambiguities. As the satellite geometry is changing 

only slowly over time and as satellites are visible up to 6 hours per pass, a time span of at least 6 hours is recommended. On 

the other hand, the measurement period should not be too long to be able to account for changes in SWE. We have chosen a 205 

12-hour measurement period as it provides the best trade-off between accuracy and latency. 

GNSS receivers provide raw data with a rate of 10 Hz or even higher. However, the receiver-satellite geometry as well as the 

SWE is changing only at much lower rates. Therefore, we have chosen a measurement rate of only 1 Hz. A continuous carrier 

phase tracking during the measurement is still essential to prevent the need for a re-estimation of the carrier phase integer 

ambiguities.  210 

For the determination of a set of snow parameters, we discarded data sets if the duration was less than 6 hours to avoid outliers 

in GNSS-based SWE determination. The data collection and processing with 12-hour measurement periods was successful for 

the site at Weissfluhjoch for both winter seasons and for the majority of times at the other three sites in winter 2019-2020. 

 

Table 1: Summary of the station characteristics. An asterisk (*) indicates that the measurements were only available during the 

second winter season 2019-2020. 215 

 Weissfluhjoch Laret Klosters Küblis 

Elevation (m a.s.l.) 2540  1510  1210  820  

Coordinates 46°49’47’’N, 9°48’34”E 46°50’2”N, 9°52’17”E  46°51’49”N, 9°53’17”E 46°54’48”N, 9°46’54”E 

SWE manual bi-weekly weekly weekly weekly 

SWE auto pillow and scale scale no no 

HS manual Daily no daily daily 

HS sensor ultrasonic ultrasonic laser laser 

Pluviometer automated, heated automated, heated automated, heated manual daily 

HN manual Daily no daily daily 

HNW manual Daily no only if, HN > 10 cm no 

upGPR yes* no no no 

Temperature Yes yes yes* yes* 
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In winter 2018-2019, we were faced with a firmware issue at the sites in Laret, Küblis and Klosters that caused temporally 

shorter data sets and some data gaps of up to two days in Küblis and Klosters and one data gap of four days in Laret (April 

2019). The outages could be significantly reduced in the season 2019-2020 with only very few data sets of less than 6 hours. 

Unfortunately, the unusually large snowfall in mid-January 2019 caused a bending/tilting of the station masts at the sites 

Klosters and Küblis. The bending and/or tilting of the mast affects the relative position between the two GNSS antennas and 220 

therefore compromises the validity of the calibration process and the derivation of snow parameters. The masts were replaced 

and the data recording was continued. The subsequent data were evaluated in post-processing as a re-calibration could only be 

performed after snow melt. The tilted masts caused data gaps at the site Klosters from 14 January to 17 February 2019 and at 

the site Küblis from 14 January to 4 March 2019.  

The data recording at the Laret site started at 14 December 2019, one month after the beginning of the snow accumulation, 225 

due to some issues with the initial GNSS system set-up. An issue with the data logging at the Laret site resulted in a premature 

end of the data sets in mid-April.  

A corrosion at a cable connection at one receiver at the site Klosters caused a short gap (17-25 January 2020) that could be 

easily fixed by cleaning the connection. In general, GNSS-derived SWE is quite robust to such data gaps, but not HS (see also 

Section 6.1 in the Discussion). To have plausible HS starting values after larger data gaps during the snow-covered period, an 230 

independently measured value of HS (automated snow depth sensor) was used as input for the GNSS algorithm.  

 

4 Results 

4.1 Snow water equivalent 

The seasonal evolution of the GNSS-derived SWE and the reference data for the four measuring sites along the elevation 

gradient are shown in Figure 3. It is clearly visible that the temporal occurrence and the amount of snow increases with the 235 

elevation of the sites for both winter seasons. Moreover, at the sites of higher elevation the snow-covered period starts earlier, 

peak SWE occurs later and the melt phase is longer. The winter season 2018-2019 was characterized by few but large snowfall 

events and snow mass was among the largest in the last 20 years within the study area. At the site Weissfluhjoch, peak SWE 

(1313 mm) was even the highest ever measured since 1936. The 10-day sum of new snow at the beginning of January 2019 

was one of the largest ever measured for this region. Due to low temperatures in January, the snow depth was above average 240 

also at the lower elevation sites Klosters and Küblis. The winter 2019-2020 was particularly mild with average snow 

precipitation at Laret and Weissfluhjoch, but below average snow amounts at the lower elevation sites, with frequent 

rain-on-snow events in Klosters and non-continuous snow cover in Küblis where the snow never lasted longer than a week. 

The end of the melt season in 2019-2020 was approximately one month earlier at Laret and Klosters than in the previous winter 

2018-2019 and 15 days earlier at Weissfluhjoch. 245 
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Figure 3: GNSS-derived SWE and reference data for (a) the winter 2018-2019 and (b) 2019-2020 for the sites Weissfluhjoch 

2540 m a.s.l. (WFJ), Laret 1510 m a.s.l. (LAR), Klosters 1185 m a.s.l. (KLO) and Küblis 820 m a.s.l. (KUB). The color bars indicate 

whether the dry-snow (blue) or wet-snow (orange) GNSS algorithm was used. 

 

The GNSS-derived SWE agreed well with the reference data from manual measurements, snow scale and snow pillow during 250 

both winter seasons for the three higher elevation sites. For Küblis, only a qualitative evaluation was possible as there was 

hardly any snow during winter 2019-2020 and a long data gap in winter 2018-2019. However, the available data from Küblis 

show that the GNSS system can discern very well, whether snow is covering the ground also for SWE values lower than 5 mm 

(See Figure B1 in Appendix B). While the GNSS-derived SWE and the manual SWE data agreed very well during the entire 

season, the snow scale and pillow showed some deviations at the onset of the melt period. These anomalies are visible in 255 

Figure 3 as sudden decreases in SWE (May 2019 and end of April 2020 at Weissfluhjoch, mid-March 2020 at Laret) and daily 

cycles (Laret, end of March 2020). For this reason, the accuracy of the GNSS-derived SWE was evaluated relative to the 
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manual SWE measurements. The root mean squared absolute (RMSE), relative errors (RMSRE) and R2 from linear regression 

are shown in Table 2. Scattering and linear regression lines and parameters are shown in Figure 4.  

With a very shallow snowpack the spatial variability of SWE relative to the total SWE can be very large. Accordingly, the 260 

difference between SWE above the GNSS antenna and the manually measured SWE can be large, and the relative error very 

high. Therefore, we considered only cases with SWE ≥ 25 mm in our statistical comparison. Overall, considering all sites and 

both winter seasons, the root mean square error (RMSE) was 34 mm and the root mean square relative error (RMSRE) was 

11 %. The absolute error increased with elevation from Klosters to Laret and Weissfluhjoch and was 21, 24 and 47 mm, 

respectively, whereas the relative error decreased and was 15, 11 and 8 %, respectively, since at the higher elevation sites SWE 265 

was generally larger.  

 
Figure 4: Scatter plots of GNSS-derived SWE vs. manually measured SWE for dry-snow conditions (blue) and wet-snow conditions 

(red) for all sites together and the single sites (for both winter seasons). We do not show the data for Küblis because only few data 270 
points were available. The dashed lines represent the linear regressions (green for dry- and wet-snow data jointly). Data points with 

SWE < 25 mm were excluded from the analysis. The 1:1 line is shown in black. 
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In addition to the entire season, we analyzed the accuracy of the SWE measurements separately for dry-snow and wet-snow 

conditions; the latter ones were defined by the occurrence of liquid water (LWC > 0 %). The accuracy of GNSS-derived SWE 

was also very good when dry- and wet-snow conditions were analyzed separately (Figure 4 and Table 2). In general, the 275 

absolute error was larger for wet-snow conditions, whereas the relative error was of comparable magnitude. Also, in this case 

the difference was mainly due to the higher amount of snow during the melt season ( mean(SWEdry) = 300 mm 

and mean(SWEwet) = 440 mm for all data from all sites).  

Relating the SWE measured by the snow scale and pillow with the manual measurements at the sites Weissfluhjoch and Laret 

for two seasons and wet-snow conditions revealed that the RMSE and RMSRE were considerably higher than those obtained 280 

for the comparison with the GNSS-derived SWE. For dry-snow conditions, the errors were still higher but in general closer to 

the range of those for the GNSS-derived SWE. The lower accuracy of snow scale and pillow is mainly caused by the large 

differences observed at the onset of the melt period for the snow pillow and scale (Figure 3).  

A qualitative analysis of rain-on-snow events showed no particular influence of rain on the GNSS-based SWE estimation. See 

Figure C1 in Appendix C.  285 

 

Table 2: Root mean square error (RMSE), root mean square relative error (RMSRE), number of data points N and linear regression 

parameters (slope, intercept and R2) for GNSS-derived SWE compared to the manual measurements for the single stations and all 

data (for both winter seasons). For the snow pillow, the data from Weissfluhjoch were used. For the snow scale, the analysis includes 

data from Weissfluhjoch and Laret. 290 

 
 RMSE RMSRE N R2 

  (mm) (%) (-) (-) 

All 34 11 84 0.99 

 dry 24 11 45 0.99 

 wet 43 11 39 0.99 

WFJ 47 8 32 0.99 

 dry 29 9 18 0.99 

 wet 62 7 14 0.98 

Laret 24 11 30 0.98 

 dry 20 12 19 0.98 

 wet 30 8 11 0.94 

Klosters 21 15 21 0.96 

 dry 16 12 7 0.98 

 wet 24 16 14 0.95 

Küblis 12 80 5 0.95 

Pillow 92 13 32 0.95 

 dry 47 11 18 0.99 

 wet 128 15 14 0.91 

Scale 79 17 61 0.95 

 dry 39 14 37 0.99 

 wet 117 204 24 0.91 
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4.2 Detection of new snow 

Some operational applications (e.g. avalanche forecasting or flood prediction) require not only an estimation of SWE of the 

bulk snowpack but also the daily variations indicative of snowfall and melting. Therefore, we evaluated whether the GNSS 

algorithm can reliably measure such variations over 24 h and 72 h by comparing these with reference precipitation data. As 

reference data for the Weissfluhjoch we used the water equivalent of the new snow measured manually daily at 8 a.m. For the 295 

other sites, which are less influenced by snow drift due to wind, we used the precipitation data from nearby pluviometers 

(automated for Klosters and Laret, and manual for Küblis). For this analysis, we used only the data from the season 2019-

2020, since the GNSS-derived SWE for Laret, Küblis und Klosters for the season 2018-2019 was available only at irregular 

time intervals and determining the daily change in SWE (ΔSWE) was not feasible.  

 

 

 
Figure 5: Changes in GNSS-derived SWE vs. new snow water equivalent from reference measurements (pluviometer or observer) 300 
for all stations and for winter 2019-2020: (a) over 24 h and (b) over 72 h. Changes in SWE obtained with (c) snow pillow 

(Weissfluhjoch) and (d) snow scale (Weissfluhjoch and Laret) vs. reference measurements for both winters. The dashed lines indicate 

linear regression for the dry-snow conditions (red) and the entire season (green). The black dashed line indicates the 1:1 line. The 

linear regressions were computed only for data points with 𝚫SWEref > 10 mm within 24 h or 𝚫SWEref > 20 mm within 72 h (dotted 

lines). 305 
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Snow melt results in a decrease in total SWE and consequently in negative values of ΔSWEGNSS that were not measured with 

the reference method. Therefore, we did a separate analysis for dry-snow conditions when decreases in SWE are not expected. 

Figure 5 shows scatter plots of ΔSWE for 24 h and 72 h for the GNSS-derived, the snow pillow and the snow scale data versus 

the reference data for all sites for winter 2019-2020. The linear regressions were computed only for days with considerable 

precipitation, i.e. for reference changes SWEref > 10 mm within 24 h or SWEref > 20 mm within 72 h. The GNSS-derived 310 

daily ΔSWE relative to reference data showed considerable scatter with an RMSE of 11 mm and an RMSRE of 65 % for dry-

snow conditions (Fig. 5a). For the entire season (dry- and wet-snow conditions), RMSE and RMSRE were 12 mm and 72 %, 

respectively. Considering the 72 h time period (Fig. 5b), the relative errors (RMSRE) were slightly smaller, namely 55 % for 

dry-snow conditions and 62 % for the entire season (dry- and wet-snow conditions).  

Even for days without precipitation, the changes in total SWE can be quite large as can be seen in Figure 5 for days with 315 

SWEref = 0. For dry-snow conditions, the majority of the changes in total SWE on these days were within [-10 mm, +10 mm] 

for the 24 h period and within [-20 mm, +20 mm] for the 72 h period.  

To evaluate the performance of the different methods with regard to new snow detection we compiled a contingency table 

(Table 3) that compares the number of days with or without precipitation (SWEref,24h ≤ 10 mm) with the number of days 

with an increase, decrease or unchanged value of SWE from GNSS, scale and pillow. We used the same threshold (± 10 mm) 320 

over 24 h for determining whether on a given day there was an increase (SWE > 10 mm), a decrease (SWE < -10 mm) or 

no change (|ΔSWE| ≤ 10 mm). For the 72-h period we used a threshold of ± 20 mm. On 28 out of 317 days (9 %) without 

precipitation (ΔSWEref ≤ 10 mm) and dry-snow conditions, GNSS-derived ΔSWE24h resulted in a false alarm (increase or 

decrease). The magnitude of false alarms was up to ΔSWEGNSS,24h= 32 mm. On days with precipitation, 41 % (18 out of 44) 

of the GNSS-derived changes were classified as no change or even decrease (ΔSWEGNSS,24h ≤ 10 mm), i.e. these snowfall 325 

events were missed. Missed events included snowfalls with up to ΔSWEref,24 h = 34 mm. For the 3-day sum of new snow, 

there were fewer false alarms on days without precipitation, but again about 30 % of the precipitation days with 

SWEref,72h > 20 mm were not detected. The maximum magnitude of the undetected events over 72 h was 

ΔSWEref,72 h = 32 mm water equivalent. The maximum value for false alarms over 72 h was ΔSWEGNSS,72h= 32 mm.  

If days with wet-snow conditions were included in the analysis the accuracy of ΔSWE decreased compared to dry-snow 330 

conditions, with an increase in false and missed precipitation days. Figure 5 shows that the increase in false events is strongly 

influenced by melting (large increase of days with negative values). Therefore, the scatter of ΔSWE24h was larger when wet-

snow conditions were included (Figure 5a, RMSRE = 72 %, and lower correlation). We did not find any distinct difference in 

the accuracy of ΔSWE between the sites at the different elevations.  

Compared to the GNSS-derived data, the number of missed events for dry-snow conditions was much lower for the snow 335 

pillow (17 %) and the snow scale (16 %) (Table 3). For dry-snow conditions, also RMSE and RMSRE of 𝚫SWE from pillow 

and scale (Figure 5c,d) were moderately smaller than those of the GNSS-based 𝚫SWE. However, the large deviation in SWE 
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of pillow and scale occurring at the onset of the melt season (see Figure 3) caused some large errors in ΔSWE under wet-snow 

conditions.  

Table 3: Contingency table illustrating the detection performance of new snow events for GNSS (all sites, winter 2019-2020), snow 340 
pillow (Weissfluhjoch, 2018-2019 and 2019-2020) and snow scale (Weissfluhjoch and Laret, 2018-2019 and 2019-2020). We 

considered new snow days with an increase in SWEref larger than 10 mm in the preceding 24 h or larger than 20 mm in the 

preceding 72 h. For SWE from GNSS, pillow and scale we defined three classes: (1) days with an increase if SWE > 10 mm over 

24 h, (2) days with no change if |𝚫𝐒𝐖𝐄| ≤ 10 mm and (3) days with a decrease if SWE < -10 mm. For SWE over 72 h we used 

± 20 mm as threshold. N is the total number of days considered. 345 

   Reference measurements 

   Dry snow All 

  𝚫SWE 24 h 𝚫SWE 72 h 𝚫SWE 24 h 𝚫SWE 72 h 

  >10 mm ≤ 10 mm > 20 mm ≤ 20 mm >10 mm ≤ 10 mm > 20 mm ≤ 20 mm 

P
re

d
ic

ti
o

n
 

G
N

S
S

 Increase 26 19 48 11 45 44 78 26 

No change 17 289 20 261 36 435 43 393 

Decrease 1 9 1 6 1 75 2 74 

N 44 317 69 278 82 554 123 493 

P
il

lo
w

 Increase 48 11 78 4 70 32 108 21 

No change 10 245 9 205 11 358 17 289 

Decrease 0 7 0 10 0 68 3 79 

N 58 263 87 219 81 458 128 389 

S
ca

le
 Increase 67 15 109 19 98 40 152 44 

No change 13 336 13 269 17 544 30 440 

Decrease 0 8 0 10 3 75 5 80 

N 80 359 122 298 118 659 187 564 

 

4.3  Liquid water content 

The temporal evolution of the GNSS-derived LWC and the corresponding reference data for Weissfluhjoch, Laret and Klosters 

for the winter season 2019-2020 are shown in Figure 6. The reference data were obtained from the manual snow pit 

observations (capacitive probe). In addition, the snow temperature as was measured in the snow pit is indicated with three 350 

classes: dry (< 0 °C), partially dry (< 0 °C) and isothermal. For Weissfluhjoch also the LWC obtained from the upGPR data is 

shown (Figure 7a). In general, the higher the elevation the later liquid water was present or LWC was lower at a specific time 

within the season. Generally, we observed a good qualitative correspondence between the value of the GNSS-derived LWC 

and the snow cover temperature. The transition from dry to partially isothermal snow cover based on the snow temperatures 

corresponded with the first increase of LWC. The LWC was below 2 % for partially isothermal conditions and increased once 355 

the snow cover reached isothermal conditions. The periods with LWC < 1 % corresponded to periods with daily melting and 

freezing of the snow surface. Depending on the time of the manual snow temperature measurements, the snow cover 

temperature conditions were classified as dry (< 0 °C) or as partially isothermal. GNSS-derived values of LWC and 

measurements with the capacitive probe agreed well, yet values obtained with the capacitive probe were generally lower during 

periods with partially isothermal snow cover. We assume that the lower values are due to a systematic error of the dielectric 360 

measurement method, which is known to be subject to uncertainties, in particular at low values of LWC (Techel and Pielmeier, 
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2011). In contrast, the GNSS-derived and upGPR-derived values of LWC agreed well, with regard to both absolute values and 

variation in time for the period after 7 April 2020 (Figure 6a). For the preceding period since mid-February 2020, repeated 

melting at the snow surface was evident in the upGPR data, but the LWC could not be derived due to the limited resolution of 

the radar. The performance of LWC derivation with the GNSS method was similar at all sites and did not depend on elevation. 365 

The high values of LWC observed at the Weissfluhjoch site during the melt season 2020 were probably due to a particular 

snowpack layering with many ice lenses, which may have hindered melt water percolation. The LWC results for spring 2019 

were similar to the above presented ones.  

1 370 
Figure 6: GNSS-derived LWC during the winter 2019-2020 for (a) Weissfluhjoch, (b) Laret and (c) Klosters in blue. The red points 

show the manually measured LWC (capacitive probe) and the green diamonds indicate the snowpack temperature. Only data points 

with HS > 5 cm are shown. 

4.4  Snow depth 

The seasonal evolution of the GNSS-derived HS and the reference data from the ultrasonic and laser sensors are shown in 375 

Figure 7 for the four sites and two winters. Both seasons followed the patterns as described for SWE in Section 4.1. Table 4 

shows RMSE, RMSRE and linear regression values for the GNSS-derived HS relative to the reference values. Scatter plots of 

GNSS-derived HS vs. reference data for all stations are shown in the Appendix D in Figure D1. Overall, GNSS-derived HS 

correlated well with the reference data; RMSE and RMSRE were 14 cm and 19 %, respectively, for all sites and both winters. 
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The correlation for the high-alpine site Weissfluhjoch, where the dry-snow and wet-snow densification models were developed 380 

and tested, was highest with R² = 0.99. RMSE values for all sites were in the range of 12 to 15 cm, without a clear dependence 

on elevation. However, the RMSRE increased with decreasing elevation – as was observed for SWE. Towards the end of the 

melt season 2018-2019, the GNSS-derived decrease in snow depth was delayed at Weissfluhjoch in June and at Laret and 

Klosters since mid-March. In contrast, the decrease was rather well captured during the melt season 2019-2020. At the lower 

elevation sites, the densification after a snowfall during dry-snow conditions was often overestimated. Moreover, small 385 

snowfalls on top of a thick snowpack were often not detected, in particular for wet-snow conditions (e.g. in February and 

March 2020 for Weissfluhjoch, Laret and Klosters).  

 

 

Figure 7: GNSS-derived snow depth (HS) and reference data for (a) the winter 2018-2019 and (b) 2019-2020 for Weissfluhjoch 

2540 m a.s.l. (WFJ), Laret 1510 m a.s.l. (LAR), Klosters 1185 m a.s.l. (KLO) and Küblis 820 m a.s.l. (KUB). The color bars indicate 

whether the dry-snow (blue) or wet-snow (orange) GNSS algorithm was used. 390 
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Table 4: Root mean square error (RMSE), root mean square relative error (RMSRE), number of data points N and R2 from linear 

regression for GNSS-derived HS compared to the data from the automated sensors for all sites jointly and separately for the 

individual sites. Data points with HS < 10 cm were excluded from the analysis. 

 
 RMSE RMSRE N R2 

  (mm) (%) (-) (-) 

All 14 19 1729 0.97 

dry 12 18 947 0.98 

wet 17 23 782 0.95 

WFJ 15 15 989 0.97 

dry 10 15 568 0.99 

wet 19 14 421 0.94 

Laret 15 18 383 0.88 

dry 

wet 

14 18 227 0.94 

16 18 156 0.78 

Klosters 12 26 337 0.83 

dry 

wet 

13 25 138 0.90 

12 26 199 0.76 

Küblis 12 45 48 0.79 

dry 

wet 

17 41 36 0.86 

21 57 12 0.83 

 

5 Discussion 

5.1 GNSS-derived snow cover properties and reference data 395 

The GNSS-derived SWE values were accurate compared to the reference data and no particular dependence on the elevation 

of the sites or their differing local snow conditions were found, which implies that the algorithm is in addition to high-alpine 

sites also suitable for lower laying sites. Regarding all sites and the two winter seasons overall, the RMSE was 34 mm and the 

RMSRE 11 % compared to manual reference measurements, which also have an uncertainty of at least 5 % (López-Moreno et 

al., 2020). Previously reported findings on GNSS-based SWE measurements (Henkel et al., 2018; Koch et al., 2019; Steiner 400 

et al., 2019a) at Weissfluhjoch are in agreement with our results. For the three preceding winter seasons 2015-2016, 2016-2017 

and 2017-2018, Koch et al. (2019) reported RMSE values of 41 mm for dry-snow and 73 mm for wet-snow conditions. These 

values are slightly higher than the ones we reported (29 mm and 62 mm, respectively) since Koch et al. (2019) used the SWE 

data from the snow pillow and scale as reference, which included an offset at the beginning of the melt season. Steiner et al. 

(2019a), using an alternative algorithm, reported an RMSE of 42 mm for dry-snow and 137 mm for wet-snow conditions at 405 

the Weissfluhjoch site for the season 2017-2018. In general, SWE and its temporal evolution over the entire winter season can 

be captured very well with the GNSS method, which is very promising for, e.g. long-term monitoring of the snow cover and 

many hydrological applications. 

The overall accuracy of the other two automated SWE sensors, snow pillow and scale, was lower than the accuracy of the 

GNSS-derived SWE. For dry-snow conditions, the RMSRE of the GNSS-derived SWE (11 %) was equal to the RMSRE of 410 

the snow pillow and slightly lower than REMSE of the snow scale (14 %). For wet-snow conditions, the accuracy of the GNSS 
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method (RMSRE = 11 %) was better than the pillow with an RMSRE of 15 % and the scale with an RMSRE of 20 %. The 

reported accuracies are in accordance with results from previous studies, which reported an accuracy for the snow pillow of 

5-15 % (Serreze et al., 1999) and 8-21 % (Johnson et al., 2015). The lower accuracy of the snow pillow and scale for wet-snow 

conditions is due to large deviations often observed at the beginning of the melt period. These anomalies are probably due to 415 

bridging effects caused by different heat fluxes at the bottom of the snowpack causing different melt rates and snow 

densification above the sensor surface compared to the surrounding ground, and by meltwater infiltration and drainage 

(Johnson and Schaefer, 2002; Johnson et al., 2015). 

The results for LWC derived from the GNSS data were in accordance with the reference data and within the accuracy of the 

reference data (0.5-1%; Fierz and Föhn, 1995). This finding suggests that LWC can be measured reliably also for snow 420 

conditions different from those found at Weissfluhjoch where the method was developed (Koch et al. 2014). The quality of 

LWC data derived from GNSS was found to be similar to those derived with the upGPR method according to Schmid et al. 

(2014). However, the GNSS method does not need independently measured data from another source and supervision in the 

data processing such as snow surface picking in radargrams (Schmid et al., 2014). Therefore, the GNSS method is well suited 

for operational monitoring of LWC. As it can measure LWC non-invasively from below the snow cover, it could be used for 425 

wet-snow avalanche research and forecasting. The frequency of data sampling of 12 h used in this study did not allow to reveal 

the sub-daily wetting and refreezing cycle. However, LWC derivation at (half-)hourly frequency is possible and allows 

detecting sub-daily melt-freeze cycles as demonstrated by Koch et al. (2014) and Schmid et al. (2015).  

The GNSS-derived snow depth data, which can be seen as a by-product of the SWE derivation, showed a good correlation 

with the reference data and an acceptable accuracy. For the lower elevation sites, the densification after a snowfall event was 430 

often too fast because the exponential densification rate for dry-snow conditions we used does not apply equally well to all 

situations. Moreover, small snowfalls on top of a thick snowpack in spring were often not detected indicating that the density 

model for wet-snow needs to be improved for such conditions. The quality of the GNSS-derived HS is, however, not 

comparable to the well-established and widely used ultrasonic or laser HS sensors as the implemented simple snow density 

models cannot capture the HS evolution for each snowfall event and densification situation reliably. Therefore, the GNSS-435 

derived HS is currently only of interest for operational application in the case of a stand-alone installation of a SnowSense® 

GNSS station. It is a supporting value for the other snow cover parameters SWE and LWC during wet-snow conditions, 

whereas for dry-snow conditions it is just a model output relying on the GNSS-derived SWE. Therefore, future efforts should 

aim at improving the densification model used for HS derivation with the objective of further improving the accuracy of SWE 

and LWC.  440 

5.2 Current limitations in retrieving the water equivalent of new snow  

While monitoring the seasonal evolution of snow cover properties is valuable for various climatological and snow hydrological 

applications, other applications require an exact estimation of variations in SWE at a shorter time scale. Currently, the GNSS-

derived SWE shows significant daily fluctuations resulting in a rather low accuracy in the estimation of precipitation 
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accumulated over 24 and 72 h. The GNSS-derived changes in SWE were in general related to the reference precipitation data, 445 

but scattered largely compared to the reference data. Measuring small daily variations on top of the much larger total SWE is 

quite challenging and emerges in the observed large relative errors (RMSE) for ΔSWE. During the melt season, many of the 

negative deviations can be explained by the fact that snow melting is not reflected in the reference data. False positive events 

(increase in SWE) and decreases in SWE during the dry-snow conditions were mainly due to uncertainties in the GNSS-

derived SWE determination caused by increased measurement noise and multipath propagation leading to an erroneous integer 450 

ambiguity fixing. In addition, snow drift by wind and the resulting spatial variability may be a source of uncertainty in the 

daily variations of SWE for both, the GNSS-derived and the reference data. Moreover, pluviometers are known to be prone to 

under catch of up to 50 % due to wind during snowfall (Grossi et al., 2017; WMO, 2019). Therefore, errors in the reference 

data may as well contribute to the observed large deviations. However, wind speed was generally low at the lower elevation 

sites and, therefore, little influence on SWE and precipitation measurements is expected. For the Weissfluhjoch site, we used 455 

manual data as reference since these are less influenced by wind. Moreover, cumulated precipitation data agreed well with 

SWE for all sites.  

A correct carrier phase integer ambiguity resolution is necessary for accurate SWE determination since an error of only one 

cycle leads to a considerable bias in the SWE estimate. The integer ambiguity fixing of GNSS measurements below snow is 

challenging since the pseudo-range measurements are affected by severe multipath propagation and since both the integer 460 

ambiguities and the snow-caused time delay are nearly constant over short time periods, i.e. the parameters can only be 

separated based on the change of the satellite geometry over time. As the orbital period for GNSS satellites is nearly 12 hours 

and as the integer ambiguity fixing uses the SWE estimates from the previous day as prior information, an erroneous integer 

fixing may occur over subsequent days. 

Missed snowfall events and false alarms as described regarding GNSS-derived changes in SWE are, as the SWE and HS 465 

derivation are interconnected, also visible in the time evolution of the GNSS-derived HS (Figure 7). In particular in spring, 

rather small snowfall events on top of a thick snowpack are mostly not detected at first, although in the following days HS 

increases progressively.  

In summary, we conclude that for practical applications such as avalanche forecasting the GNSS-derived daily changes in 

SWE are not sufficiently reliable and accurate. The currently necessary data measurement period for the SWE derivation of at 470 

least 6 h is a further limitation for such (sub-)daily applications, which need hourly input data. On the other hand, snow pillow 

and scale allow a real time observation of precipitation events. In fact, for dry-snow conditions, the performance of the snow 

pillow in determining changes in SWE over 24 h and 72 h was better than with GNSS. However, for wet-snow conditions, 

both, the scale and the pillow were unreliable due to the large errors caused by bridging effects and other artefacts. 

5.3 Stability of GNSS-derived snow parameters regarding data gaps  475 

A measuring system meant for operational use does not solely need to deliver accurate data but also to be reliable in terms of 

operation. This is particularly challenging for sensors systems that are subject to harsh conditions and often not accessible for 
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maintenance due to remoteness or dangerous access, e.g. in case of avalanche danger. As described in Section 3, our GNSS 

data series over two winter seasons had some data gaps. The unusual large snow load in January 2019 caused the failure of the 

mast at the sites in Klosters and Küblis and consequently data loss. This clearly shows that it is crucial that the reference 480 

antenna is always mounted on a stable existing structure or massive pole well anchored to the ground. Further data gaps were 

caused by problems with the initial version of the power management firmware. These problems could be fixed by a firmware 

update in summer 2019.  

 485 
Figure 8: GNSS-derived (a) SWE, (b) HS and (c) LWC after a data gap of 7 days with corresponding reference value at the site 

Klosters for the winter period 2020. Three approaches were used to derive the snow parameters after the data gap: neglecting any 

previous information (green), using the last available HS data point (orange) and using the reference HS measurement as a priori 

information (blue). 

However, data gaps can occur also with the best measurement design, for instance, due to a power shortage and an operational 490 

measurement system should resume uninfluenced by the interruption. It is therefore crucial that data quality is not affected by 

data gaps. The algorithm deriving the snow cover properties from the GNSS signals could particularly be prone to such 

problems since it recursively derives all snow properties from the previous data for wet-snow conditions, whereas for dry-

snow conditions only HS depends on previous data. Therefore, we analyzed the consequences of data gaps. We chose 

exemplarily the data gap from 16-23 January 2020 at the site Klosters, which occurred due to corrosion. We investigated the 495 

impact on the derivation of the snow cover properties for the entire period after the data gap occurred, which was mainly 

characterized by the wet-snow period until the end of April 2020. During these 7 days of lacking GNSS data, there was a 
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snowfall with 10 cm new snow (ΔSWE = 8 mm) (Figure 8). The parameter derivation after this data gap was implemented in 

a post-processing step in three different ways: (1) neglecting any previous information, which is normally stored after 

processing, corresponding to a cold start of the system, (2) using the HS information of the last data point of snow cover 500 

properties as input and (3) using the HS value measured with the laser sensor as a priori information.  

The GNSS-derived SWE was affected only minimally no matter which of the three methods was used. For HS the differences 

between the three approaches were large. For LWC also significant differences existed as it is calculated based on HS and 

signal strength. The best solution was obtained with the a priori information from the HS laser sensor. In case we used the last 

available data point, HS was underestimated by approximately the amount of snow fallen during the data gap. This offset 505 

propagated more or less constantly for the rest of the season. If no previous information was used, HS was largely 

overestimated since with a cold start the algorithm erroneously assumed an initial snow density of 100 kg m-3 for the entire 

snowpack. As the LWC calculation within the algorithm depends besides GNSS signal strength information also on the GNSS-

derived HS, it therefore reflects to a certain extent also the error in HS. Thereby, the error in LWC increased with a decrease 

in HS and an increase in signal strength. This example shows that SWE, being the main target value of the GNSS approach, 510 

was only affected marginally by an error in HS or LWC and would not be affected at all during dry-snow conditions, as the 

derivation solely depends on carrier phase measurements and no additional changes in the snow cover parameters. Therefore, 

we conclude that the SWE derivation is robust with regard to data gaps. Regarding HS and LWC, however, a more complex 

model of densification or an HS estimate obtained by GNSS reflectometry may mitigate the problem (see below in Section 

6.1.) Moreover, a potential further improvement may be to feed the onboard processing in real time with updated a priori 515 

information on e.g. SWE and snow depth after a data gap so that also HS and LWC can be derived reliably.  

6 Outlook on potential improvements and further applications 

6.1 Density and snow depth estimation  

Although improvements of the dry- and wet-snow density models and the HS estimation is out of the scope of this paper, we 

would like to outline potential future developments. As the densification is rather too fast at the lower elevation sites, changes 520 

of the set time period of densification, which was in our case 30 days, the applied exponential densification rate as well as the 

set maximum dry snow density could be optimized for the layer-dependent exponential dry-snow model. For instance, we 

assume that the densification rate decreases the shallower the snowpack, as the bulk weight of the snowpack decreases. The 

simple wet-snow densification approach, which is up to now solely dependent on LWC and SWE changes, could be improved 

by including additionally an exponential layer-dependent snow densification similar to the dry-snow model. Such 525 

optimizations seem feasible based on the data collected in this study.  

Alternatively, models deriving SWE statistically from HS and considering elevation, region and season could be integrated 

(e.g., Jonas et al., 2009; Winkler et al., 2021). Such models show good results as they rely on numerous HS measurements at 

various locations and over long time periods. However, regarding an implementation into the GNSS algorithm, they would 
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first need to be inverted so that HS could be derived from SWE and an ad hoc calibration would be necessary for each climatic 530 

region.  

However, some effects such as a significant decrease in snow densification over time due to temperature gradient driven snow 

metamorphism leading to the development of faceted crystal and depth hoar (e.g., Wiese and Schneebeli, 2017), typically 

occurring for shallow snowpacks in cold conditions, could still be difficult to capture with the above mentioned methods. Such 

a situation with a shallow snowpack and low temperatures leading to faceting and slowing down snow settlement was observed 535 

in Klosters in January 2020. Therefore, we suggest that a combination of the applied GNSS approach with GNSS reflectometry 

(e.g. Larson et al., 2009) may lead to a more stable HS derivation, as it would allow tracing the densification rate after a 

snowfall event. Reflectometry approaches derive HS via exploiting the multipath of reflected signals at a GNSS antenna above 

the snow cover, which could be in our case the reference antenna. Recent studies showed a high accuracy of HS derivation 

applying GNSS reflectometry (Boniface et al., 2015; Zhang et al., 2020) and the possible use of low cost GNSS receivers 540 

(Rover and Vitti, 2019). With such a combined GNSS signal delay, attenuation and reflectometry approach, all snow cover 

properties could solely be derived from GNSS signals. 

6.2 Potential further applications and improvements of the GNSS algorithm 

The GNSS-based snow parameter determination is suitable for many applications including hydrology, snow load monitoring 

and avalanche forecasting. With the GNSS method snow cover properties are measured non-invasively from below the snow 545 

cover with a small GNSS antenna. Therefore, the ground antenna could be installed in avalanche terrain without the risk of 

being damaged by avalanches provided the reference antenna is mounted at a safe location, e.g., on a nearby ridge. In general, 

the antenna below the snow and the reference antenna can be separated by several kilometers in horizontal direction and by up 

to 100 m in vertical direction without the need to consider differential atmospheric errors provided the overall meteorological 

conditions do not differ. Measuring LWC is relevant for studying wet-snow and glide-snow avalanches. However, some 550 

adaptations of the GNSS algorithm and data validation are needed, e.g. for on-slope measurements, since the present GNSS 

system was developed for flat terrain with the purpose of retrieving SWE in remote areas for hydrological applications.  

The focus of our future work will be on the reduction of fluctuations to improve the determination of SWE and water equivalent 

of new snow, as discussed in Section 5.2, as well as the reduction of the measurement period for GNSS-derived snow 

parameters. We see mainly three opportunities: 1) The use of all 4 GNSS (GPS, Galileo, Glonass and Beidou) compared to the 555 

current GPS/Galileo dual constellation solution. The integration of Beidou is straightforward but the integration of Glonass 

needs to consider a Frequency Division Multiple Access (FDMA) adapted ambiguity resolution technique. 2) The integration 

of additional frequencies (L2, L5/ E5, E6) compared to the current single-constellation solution. The first dual-constellation 

mass-market GNSS receivers have recently become available and it is expected that mass-market GNSS receivers will be able 

to track all frequencies including E6 in the near future. 3) The use of a Kalman filter with an integrated integer least-squares 560 

estimator instead of a least-squares estimation. Initial results show that, with these three improvements, the measurement 

period can be significantly reduced to less than one hour. Hourly input data would be particularly beneficial for an accurate 
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determination of the water equivalent of new snow and in general of sub-daily changes of SWE that are crucial for avalanche 

as well as flood forecasting. 

7 Conclusions 565 

We installed GNSS snow measurement systems at four sites along a steep elevation gradient (820, 1185, 1510 and 2540 m 

a.s.l.) in the eastern Swiss Alps for two winter seasons (2018-2020) and compared the GNSS-derived snow cover properties 

with concurrent reference data.  

The GNSS-based SWE measurement was robust and accurate. We did not observe any notable dependency on elevation or 

snow conditions. The accuracy was similar for dry-snow and wet-snow conditions and was negligibly influenced by rain-on-570 

snow events. Compared to manual reference measurements, considering the data from all sites jointly, the RMSE was 34 mm 

and the RMSRE was 11 %. This accuracy was achieved for a GNSS data frequency of 12 h. The shallower the snowpack was, 

the larger became the relative error. Therefore, SWE values below 10 mm could not accurately be determined. Still, the GNSS 

method reliably detected whether snow was lying on the ground or not. The accuracy of GNSS-derived SWE was similar to 

the accuracy of SWE measurements obtained with snow scale and pillow for dry-snow conditions and higher for wet-snow 575 

conditions. However, noise in the GNSS-derived SWE prevented a reliable estimation of the mass of newly fallen snow during 

24 h and 72 h. Only large snowfall events were detected, but still with poor accuracy in SWE changes. Snow scale and pillow 

showed better results in this regard under dry-snow conditions but performed poorly under wet-snow conditions. Currently, 

these methods are not suitable for reliably and accurately estimating the water equivalent of new snow for practical applications 

such as avalanche forecasting. Regarding the GNSS algorithm, further developments may overcome this deficiency.  580 

The derivation of LWC was robust and the values of LWC were in the range of the manual and upGPR measurements. The 

GNSS method seems suitable for continuous LWC determination, which could be of interest for wet-snow avalanche 

forecasting.  

As a by-product, the GNSS-derived HS showed in general a good correlation to the reference values with a RMSE of 14 cm 

and RMSRE of 19 %. However, snow densification after a major snowfall especially during dry-snow conditions was generally 585 

too fast at the lower elevation sites. Moreover, with a thick snowpack during wet-snow conditions, snowfall events were not 

captured with the currently implemented simple wet-snow densification model. Future improvements of the dry-snow and wet-

snow densification model might mitigate these problems.  

Overall, our analysis confirmed that the GNSS system can reliably measure the seasonal evolution of SWE at different 

elevations where different snow conditions prevail. We conclude that the GNSS-based derivation of SWE is a valuable, 590 

affordable and reliable alternative to manual measurements or other automated SWE sensors; the method is in principle suited 

for operational SWE monitoring. Moreover, the GNSS method represents to the best of our knowledge the most appropriate 

and cost-effective approach for measuring SWE and LWC simultaneously, continuously and non-destructively. 
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Appendix A: Seasonal snow density evolution 

In Figure A1 we show the seasonal evolution of the snow density for all stations in relation to SWE. The density was initially 595 

low and increased in general with increasing SWE, although some larger snowfall events cause the density to temporarily 

decrease. Toward spring, SWE decreased with the density staying high. The maximum density was higher at higher elevations 

due to the larger amount of snow accumulated over the season. In the second season (2019-2020) there was less snow and 

generally lower values of snow density and SWE were observed.  

 600 

Figure A1: Seasonal evolution of snow density vs. SWE from manual measurements for (a) 2018-2019 and (b) 2019-2020 at the four 

sites Weissfluhjoch 2540 m a.s.l., Laret 1510 m a.s.l., Klosters 1185 m a.s.l. and Küblis 820 m a.s.l. Measurements were done weekly 

at the three lower elevations sites and bi-weekly at Weissfluhjoch. 
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Appendix B: Detection of snow on the ground  605 

Figure B1 illustrates the ability of the GNSS signal-based method to discern whether snow is lying on the ground for HS > 5 cm 

and SWE > 5 mm. However, the absolute values of GNSS-derived HS differ largely from HS measured with the laser sensor. 

It is to be mentioned that for such low amounts of snow the spatial variability in HS may be high, limiting the validity of the 

comparison. 

 610 

Figure B1: GNSS-derived SWE and HS from laser sensor measurements at Küblis for the winter season 2019-2020. The gray zone 

indicates when snow was covering the GNSS ground antenna as determined from concurrent webcam pictures. It can be seen that 

for HS > 5 cm and SWE > 5 mm (horizontal dashed line) the GNSS system could discern well if snow was laying on the ground. 
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Appendix C: Rain-on-snow events 

The robustness of the GNSS-derived snow parameters during rain-on-snow events is demonstrated with Figure C1. We did 615 

not observe any considerable effect of rain-on-snow events on the GNSS-derived SWE or HS. The LWC increased during 

some of the larger rain-on-snow events. Moreover, the cumulated precipitation (pluviometer) agreed well with the values of 

SWE weekly measured for the dry-snow part of the season provided melting early in the season is neglected, as occurred in 

2019-2020. 

 
Figure C1: Seasonal evolution of GNSS-derived SWE and HS and corresponding reference data for Klosters. The blue columns 620 
correspond to precipitation in form of snow; the red columns correspond to rain. Reference precipitation was measured by a 

pluviometer and classified as rain for T > 1.1 °C and as snow for T < 1.1 °C. The various rain-on-snow events did not affect GNSS-

derived SWE and HS. 
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Appendix D: Snow depth validation 

In addition to Figure 7 and Table 4 we show scatter plots of GNSS-derived HS vs. reference data for all stations in Figure D1. 625 

 
Figure D1: Scatter plot of GNSS-derived snow depth (HS) vs. automatic measurement with ultrasonic and laser sensors for dry-

snow conditions (blue) and wet-snow conditions (red). The dashed lines represent the linear regressions. Data points with HS < 10 cm 

were excluded from the analysis. 
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