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Abstract. Antarctic sea ice is an important component of the Earth system. However, its role in the Earth 9 

system is still unclear due to limited Antarctic sea-ice thickness (SIT) data. A reliable sea-ice reanalysis 10 

can be useful to study Antarctic SIT and its role in the Earth system. Among various Antarctic sea-ice 11 

reanalyses products, the Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output is 12 

widely used in the researches of Antarctic sea ice. As more Antarctic SIT observations with quality 13 

control are released, a further evaluation of Antarctic SIT from GIOMAS is conducted in this study based 14 

on in situ and satellite observations. Generally, though only sea-ice concentration is assimilated, 15 

GIOMAS can basically reproduce the observed variability of sea-ice volume and its changes in the trend 16 

before and after 2013, indicating that GIOMAS is a good option to study the long-term variation of 17 

Antarctic sea ice. However, due to deficiencies in the model and asymmetric changes in SIT caused by 18 

assimilation, GIOMAS underestimates Antarctic SIT especially in deformed ice regions, which has an 19 

impact on not only the mean state of SIT but also its variability. Thus, besides the further development 20 

of the model, assimilating additional sea-ice observations (e.g., SIT and sea-ice drift) with advanced 21 

assimilation methods may be conducive to a more accurate estimation of Antarctic SIT. 22 

1 Introduction 23 

Antarctic sea ice plays an important role in the Earth system. Firstly, Antarctic sea ice can influence the 24 

Earth climate system. For instance, changes in Antarctic sea ice could affect the freshwater flux of the 25 
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Southern Ocean that directly influences the stratification of the ocean (Goosse and Zunz, 2014; Haumann 26 

et al., 2016). Besides, Antarctic sea ice acts as a protective buffer for Antarctic ice shelves, with the 27 

thinning or absence of sea ice increasing the possibility of ice shelf disintegration (Robel, 2017; Massom 28 

et al., 2018). Secondly, Antarctic sea ice impacts on the biosphere of the Earth system. Studies have 29 

shown that the variation of Antarctic sea-ice thickness (SIT) will affect the maximum biomass of algae 30 

in different ice layers, influencing the food web of the Southern Ocean (Massom and Stammerjohn, 2010; 31 

Schultz, 2013). Thirdly, Antarctic sea ice impacts on human activities such as shipping and fishery 32 

management (Dahood et al., 2019; Mishra et al., 2021). Hence, studies on Antarctic sea ice are of great 33 

scientific and socio-economic importance. 34 

Although changes in Antarctic sea-ice extent (SIE) have been investigated extensively (Turner et al., 35 

2015; Parkinson, 2019), they may not be a robust proxy of large-scale changes in sea-ice volume (SIV) 36 

as the variation of SIV can be considerably different from that of SIE in some regions of the Antarctic 37 

(e.g., Kurtz and Markus, 2012).To truly understand changes in sea ice of the Southern Ocean, SIT is 38 

needed to estimate the SIV, since it is through volume changes that sea ice has its greatest impact on the 39 

water column (Maksym et al., 2012; Hobbs et al., 2016). Many studies related to Antarctic sea ice are 40 

limited by the lack of reliable SIT data. For example, the freshwater flux of the Southern Ocean, which 41 

affects the stratification of the ocean, cannot be accurately estimated as part of the freshwater flux comes 42 

from sea-ice melting and growth (Haumann et al., 2016). In addition, the skill of sea-ice prediction cannot 43 

meet the need of human activities in the Antarctic (Mishra et al., 2021). Studies have shown that the skill 44 

of Antarctic sea-ice prediction could be improved with better SIT initialization (Bushuk et al., 2021). So 45 

far, the commonly used types of the Antarctic SIT data are observations, model data, and reanalyses 46 

products and each type of data has its own limitations. 47 

Antarctic SIT observations can be divided into in situ and satellite observations. In situ observations can 48 

provide the local state of Antarctic SIT. However, the sparse distribution of in situ SIT observations 49 

poses considerable challenges to understanding the large-scale characteristics of SIT (Worby et al., 50 

2008a). It is well known that satellite observations have wider spatiotemporal coverage than in situ 51 

observations. However, previous studies indicate that there is large uncertainty in SIT data retrieval from 52 

satellite altimeters owing to the relatively small total freeboard (i.e., the thickness of sea ice and snow 53 

above the sea surface) of Antarctic sea ice compared to that in the Arctic (Maksym and Markus, 2008) 54 

and the lack of knowledge about coincident snow cover thickness as well as sea ice and snow density 55 
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(Alexandrov et al., 2010). In addition, results of numerical simulations are used to investigate the long-56 

term variation of Antarctic SIT (Zhang, 2007; Holland et al., 2014), but discrepancies are identified not 57 

only between models and observations but also among models (Shu et al., 2015; Tsujino et al., 2020), 58 

indicating the considerable uncertainty in model estimates. 59 

It is noted that reanalyses have unique advantages over observed and simulated SIT. Theoretically, 60 

reanalyses can provide more accurate or comprehensive state estimations than can otherwise be obtained 61 

through either observations or models alone (Buehner et al., 2017). Reanalyses merge the information 62 

from both observations and models through data assimilation. Compared with observations, reanalyses 63 

data can provide coordinated and gridded data with homogenous sampling in time and space over a long 64 

period (Parker, 2016). Besides, compared with model-only data, reanalyses data can produce the state 65 

estimations closer to observations because of data assimilation (Lindsay and Zhang, 2006; Rollenhagen 66 

et al., 2009). Hence, SIT reanalyses have been widely adopted in studies on the Antarctic sea ice 67 

(Abernathey et al., 2016; Kumar et al., 2017). Nevertheless, there are still large uncertainties of present 68 

sea-ice reanalyses in the Southern Ocean (Uotila et al., 2019; Shi et al., 2021), suggesting the necessity 69 

and importance of evaluation. 70 

Among a number of Antarctic sea-ice reanalyses, the Global Ice-Ocean Modeling and Assimilation 71 

System (GIOMAS) is one of the most widely used in studies of Antarctic sea ice. For instance, GIOMAS 72 

has been regarded as the reference in the assessments of simulations (Shu et al., 2015; Uotila et al., 2017; 73 

DuVivier et al., 2020) and predictions (Ordoñez et al., 2018; Morioka et al., 2021). However, GIOMAS 74 

has been less widely evaluated, in part because there are far fewer observations of Antarctic SIT against 75 

which evaluation is possible (DuVivier et al., 2020). 76 

Due to advances in observing technology as well as algorithms in recent years, the quality of Antarctic 77 

SIT observations is improved. For example, compared to the European Remote-Sensing Satellites (i.e., 78 

ERS-1 and ERS-2), the Synthetic-Aperture Interferometric Radar Altimeter (SIRAL) on board CryoSat-79 

2 (CS2) is equipped with two radar antennas, which can significantly improve the accuracy of sea-ice 80 

freeboard (i.e., thickness of sea ice above the sea surface). CS2 also has a much wider spatial coverage 81 

with an enhanced along-track resolution because of the design of the satellite orbit and multiple operation 82 

modes (Parrinello et al., 2018). In addition, Paul et al. (2018) developed an adaptive retracker threshold 83 

for CS2 to produce consistent sea-ice freeboard data. Besides, more Antarctic SIT observations have 84 

been available with the accumulation of observations. For instance, more in situ observations are 85 
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obtained from dedicated research stations, icebreakers and autonomous underwater vehicles due to 86 

increasing research activities in the Antarctic. These progresses provide an opportunity to further 87 

evaluate the Antarctic SIT of GIOMAS. Notably, since in situ observations provide relatively accurate 88 

estimations in specific points while satellite data provides relatively long and continuous observations 89 

with wide spatial coverage, various observations are adopted in the evaluation to make it more 90 

comprehensive. 91 

The paper is organized as follows. In Sect. 2, Antarctic SIT from GIOMAS and observations are 92 

introduced. In Sect. 3, the Antarctic SIT of GIOMAS is evaluated with observations from different 93 

aspects, including the climatology, the linear trend, the intensity of variability, as well as the frequency 94 

distribution. The final section provides the conclusions and discussion. 95 

2 Data and methods 96 

2.1 SIT from GIOMAS 97 

GIOMAS consists of a global Parallel Ocean and sea Ice Model (POIM) with data assimilation 98 

capabilities, which is developed at the University of Washington (Zhang and Rothrock, 2003). The ocean 99 

component of POIM is the Parallel Ocean Program, and the sea-ice component of POIM is the 8-category 100 

thickness and enthalpy distribution sea-ice model. The National Centres for Environmental Prediction-101 

National Centre for Atmospheric Research (NCEP-NCAR) daily reanalysis (Kalnay et al., 1996) 102 

provides the atmospheric forcing for POIM. Furthermore, in GIOMAS, the modelled sea-ice 103 

concentration (SIC) is nudged towards observed SIC derived from Special Sensor Microwave Imager 104 

launched by the Defense Meteorological Satellite Program (Weaver et al., 1987), and other modelled 105 

variables including SIT are adjusted subsequently. The detailed adjustment process of SIT is as follows: 106 

when SIC is nudged in the system, it will modify the SIT distribution to accommodate the change in SIC, 107 

which remove sea ice from the distribution without considering its SIT if modelled SIC is too large, while 108 

add sea ice to the 0.1-m ice thickness bin if modelled SIC is too small (Lindsay and Zhang, 2006). 109 

Compared with modelled SIT without assimilation, this process can reduce the root-mean-square 110 

difference and improve the correlation between modelled SIT and observed SIT and it will also cause 111 

the thinning of the mean SIT. More technical details for POIM and assimilation procedures can be found 112 

in Zhang and Rothrock (2003) and Lindsay and Zhang (2006), respectively. GIOMAS data is available 113 
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from 1979 to the present with a global coverage and data involved in the assessment spans from January 114 

1979 to December 2018 (Fig. 1a). The average horizontal spatial resolution is 0.8 degrees of longitude  115 

0.8 degrees of latitude (around 60 km  60 km), and the temporal resolution is one month for all variables. 116 

Additionally, GIOMAS also provides daily outputs for some variables, including SIT, SIC and snow 117 

depth, and the daily SIT of GIOMAS is assessed in this study. SIT data of GIOMAS is the equivalent 118 

SIT, which represents SIV per unit area. 119 

2.2 SIT from satellite altimeters and in situ observations 120 

Satellite-altimeter observations involved in this study are from radar altimeters on-board Envisat (ES) 121 

and CS2, which are generated by the Sea Ice Climate Change Initiative (SICCI) project under the 122 

European Space Agency Climate Change Initiative (ESA CCI) program. ES was equipped with the Radar 123 

Altimeter 2, measuring sea-ice freeboard mainly based on Ku-band frequency (Hendricks et al., 2018b). 124 

The Antarctic SIT data derived from ES freeboard spans from December 2002 to November 2011 (Fig. 125 

1a) with a coverage of entire Antarctic (Fig. 1b). The spatial resolution is 50 km  50 km and the temporal 126 

resolution is one month. CS2 was equipped with the SIRAL, measuring the sea-ice freeboard mainly 127 

based on Ku-band frequency like ES (Hendricks et al., 2018a). CS2 Antarctic SIT dataset spans from 128 

November 2010 to April 2017 (Fig. 1a) and the spatial coverage and the spatiotemporal resolution are 129 

the same as the ES SIT dataset. 130 

In situ SIT observations involved in this study are from upward-looking sonar (ULS), ship-based and 131 

air-based measurements. ULS is a kind of mooring measurement at fixed locations, measuring sea-ice 132 

draft (thickness of sea ice below the water surface) with a time interval shorter than 15 minutes (Behrendt 133 

et al., 2013). Ice draft needs to be converted into total SIT empirically, according to Harms et al. (2001). 134 

Thirteen ULSs used in this study were deployed in the Weddell Sea (Fig. 1b) by Alfred Wegener Institute 135 

(AWI) and spanned from 1990 to 2010 intermittently (Fig. 1a). 136 

The ship-based observations are made up of the Antarctic Sea Ice Processes & Climate program 137 

(ASPeCt), ANT-XXIX/6 (Schwegmann, 2013) and ANT-XXIX/7 (Ricker, 2016). The ASPeCt dataset 138 

not only includes ASPeCt observations collected from 1981 to 2005 (Worby et al., 2008a), but also 139 

includes the ASPeCt bridge-based sea-ice observations collected from 2007 to 2012. The ship tracks 140 

cover all sectors of the Southern Ocean (Fig. 1b) and the average spacing of data points is six nautical 141 

miles. The air-based SIT observations include data collected by the air-based electromagnetic system 142 
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(i.e., like an electromagnetic bird carried by helicopter) with a high frequency of 0.5 Hz and an average 143 

spacing of 3-4 m (Lemke, 2009, 2014), which is mainly located in the northwest Weddell Sea (Fig. 1b). 144 

2.3 Data processing and methods 145 

According to Parkinson and Cavalieri (2012), the austral summer, autumn, winter and spring in this 146 

research refer to January-March, April-June, July-September and October-December, respectively. As 147 

shown in Fig. 1b, the Southern Ocean is divided into the Weddell Sea (60° W-20° E), the Indian Ocean 148 

(20° E-90°E), the western Pacific Ocean (90°E-160°E), the Ross Sea (160°E-130°W) and the 149 

Amundsen/Bellingshausen Sea (130°W-60°W). 150 

Since the mismatch in spatial and temporal resolutions between reanalyses and observations could 151 

introduce substantial representation errors in the comparisons, the data is processed as Janjić et al. (2018) 152 

suggested to eliminate such mismatch between GIOMAS and observations. In general, GIOMAS data is 153 

converted to the locations of the observations when compared with satellite and ULS observations while 154 

the ship-based and air-based observations are converted to gridded data based on the GIOMAS grid since 155 

converting GIOMAS data to the locations of ship-based and air-based observations would introduce 156 

considerable errors. For details, when compared with satellite observations, daily GIOMAS data is 157 

interpolated to the grid of satellite observations using the linear approach and converted to monthly 158 

averages. For the comparisons between GIOMAS and ULS observations, 15-minutely ULS data is 159 

converted to daily averages for comparison with daily GIOMAS data and the nearest neighbour approach 160 

is used to find the GIOMAS grid cells closest to the ULS locations. Besides, when compared with ship-161 

based and air-based observations, since the observed data is very dense in space and the temporal 162 

resolution is always within one day, it is averaged into daily and gridded data based on the GIOMAS 163 

grid to create a proper dataset that is compatible with daily GIOMAS SIT data. 164 

The climatological annual cycle is defined as the multi-year averages in each month. For observations, 165 

the climatological annual cycles are calculated from all years available in each observation dataset. For 166 

GIOMAS, when compared with satellite observations, GIOMAS data that coincides with the time spans 167 

of satellite observations are selected (2002-2011 for ES and 2010-2017 for CS2) to calculate the 168 

climatology. When compared with ULS observations, all years available in GIOMAS (1979-2018) are 169 

used for the computation of climatology. Anomalies are defined as departures from the climatological 170 

annual cycle, and the intensity of variability is defined as the standard deviation of anomalies. During 171 
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the overlapping time of ES and CS2 (November 2010 to November 2011), though the difference in SIV 172 

anomalies between ES and CS2 (i.e., the root-mean-square error is 473.1 km3) is not small compared 173 

with the mean standard deviation of SIV anomalies (i.e., their standard deviations in ES and CS2 are 174 

960.7 km3 and 956.6 km3, respectively), the selection of data in the coincident segment has little effect 175 

on the trend. Thus, the SIV anomalies of CS2 during the overlapping time are chosen and ES from 176 

December 2002 to October 2010 and CS2 from November 2010 to April 2017 are combined to obtain a 177 

relatively long and continuous SIV time series for the linear trend computation. In addition, since the 178 

trajectories of air-based SIT observations are mainly distributed in the northwest Weddell Sea which is 179 

dominated by deformed sea ice (Fig. 1b), the comparison between GIOMAS and air-based observations 180 

is only conducted in the Weddell Sea. 181 

3 Results 182 

3.1 Comparison in the climatology of SIV and SIT 183 

Figure 2 shows the climatological annual cycle of Antarctic SIV. Although obvious uncertainties of SIV 184 

can be found in both ES and CS2, the annual cycle of ES is similar to that of CS2. Both ES and CS2 185 

show that the melt rate of sea ice is near twice the growth rate. Besides, there are also some differences 186 

in the SIV climatology between ES and CS2. The SIV of CS2 is greater than that of ES in the winter and 187 

spring, and larger uncertainties of SIV can be found in ES. The SIV difference between ES and CS2 may 188 

be owing to the mismatch in the sea-ice freeboard between ES and CS2. As Paul et al. (2018) indicated, 189 

due to the unresolved physical processes such as complex snow metamorphism or sea-ice surface 190 

roughness influenced by the flooding in the snow/ice interface, the sea-ice freeboard of ES cannot be 191 

well matched with the ones of CS2 in the Antarctic though the retracker algorithms are the same. 192 

GIOMAS can reproduce the asymmetry in the annual cycle of Antarctic SIV observed by ES and CS2 193 

while underestimating SIV by about 38% on average compared to ES and CS2. Meanwhile, the 194 

underestimation is seasonally dependent, with weaker underestimation in summer and stronger one in 195 

winter. 196 

Figure 3 shows the spatial distribution of SIT bias in summer as well as winter to investigate details of 197 

SIV underestimation in these two seasons. In both seasons, significant negative SIT bias of GIOMAS 198 

can be found in the deformed ice zone, such as the northwestern Weddell Sea and coasts of the 199 
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Amundsen/Bellingshausen Sea as well as the coast of East Antarctic. Meanwhile, the extent of negative 200 

bias is wider in the winter (Figs. 3b and d) rather than in the summer (Figs. 3a and c), which results in 201 

seasonal differences of the SIV underestimation (Fig. 2). In addition, there are weakly positive SIT biases 202 

in the southwestern Weddell Sea during winter (Figs. 3b and d), which may be due to model bias in 203 

simulating sea-ice transport in the western Weddell Sea (Shi et al., 2021). Considering sea-ice 204 

deformation is also related to sea-ice motion tightly, a better simulation of sea-ice motion is required to 205 

achieve a more accurate reconstruction of Antarctic SIT. In addition, the relatively large positive bias in 206 

winter Ross Sea SIT can only be found in the comparison between GIOMAS and CS2, which may be 207 

caused by a smaller freeboard of CS2 than ES in the winter Ross Sea as shown in Paul et al. (2018). 208 

Notably, some of the radar altimeter signals would originate from the snow/air interface or from 209 

somewhere inside the snow and result in an overestimation of ice freeboard (Willatt et al., 2010; Wang 210 

et al., 2020). These uncertainties, combined with often thick snow and complex snow metamorphism in 211 

the Antarctic, can contribute to the overestimation of the Antarctic SIT from ES and CS2. Thus, the 212 

underestimation of SIT from GIOMAS can be partially attributed to the uncertainties of SIT retrieved 213 

from ES and CS2. However, the underestimation in the deformed ice regions can be attributed to the 214 

deficiency of GIOMAS since the differences of SIT between GIOMAS and satellite observations in those 215 

regions are always larger than the uncertainties of satellite observations. 216 

Due to large uncertainties in the above satellite observations, the SIT of GIOMAS is further assessed by 217 

ULS measurement in the Weddell Sea. Considering the significant variation of sea ice over horizontal 218 

distances as small as a few meters, the standard deviation of ULS is displayed in Fig. 4a. It is obvious 219 

that the variability of ULS near the shore (i.e., 206, 207, 212, 217, 232 and 233) is stronger than that of 220 

ULS far from the shore (i.e., 208, 209, 210, 227, 229, 230 and 231), indicating larger sea-ice deformation 221 

near the shore. As Fig. 4b shows, GIOMAS significantly underestimates the nearshore SIT all year round 222 

while slightly overestimates SIT far from the shore in the winter, implying the deficiency of GIOMAS 223 

in the simulation of sea-ice deformation, which leads to underestimation of SIT in the Weddell Sea from 224 

a perspective of the regional average. The above deficiency of GIOMAS might be attributed to the 225 

insufficient resolutions of the model and assimilated SIC observations, which cannot resolve the coastal 226 

lines well and hinder GIOMAS from reproducing the ice deformation near shore. Therefore, GIOMAS 227 

does underestimate the climatology of Antarctic SIT, mainly in the deformed sea-ice zone, compared 228 

with satellite and in situ observations. In addition to the model drawbacks of GIOMAS, this 229 
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underestimation might also be introduced by the assimilation procedure of GIOMAS. Although only 230 

satellite SIC is nudged in GIOMAS, SIT would be adjusted asymmetrically as described in Sect 2.1. This 231 

asymmetric addition and removal of ice leads to a thinning of the mean ice thickness (Lindsay and Zhang, 232 

2006). Notably, though the uncertainty of satellite observations is large, the differences between 233 

GIOMAS and satellite SIT cannot be ignored since the uncertainty of satellite observations is expected 234 

to be large owing to the difficulties with the estimation of snow depth and density in the Antarctic (Ozsoy-235 

Cicek et al., 2011; Bunzel et al., 2018). 236 

3.2 Comparison in the trend of SIV 237 

Antarctic SIE shows different trends before and after 2014 (Parkinson, 2019), and SIV better represents 238 

the overall changes of sea ice than SIE. Therefore, it is necessary to examine whether there are similar 239 

changes in the trend of Antarctic SIV. As Figure 5 shows, the observed Antarctic SIV anomaly increased 240 

gradually from 2003, reached the maximum (2783 km3) in November 2013, and then abruptly declined 241 

from September 2013 to April 2017. The evolution of SIV anomaly is comparable to that of SIE anomaly, 242 

while the time of the SIV anomaly peak is earlier than that of the SIE anomaly peak nearly by one year. 243 

The trends of SIV anomalies in the GIOMAS and the observation are 989 and 2968 km3 per month before 244 

2013 while -84762 and -119875 km3 per month after 2013, respectively. Although there are differences 245 

in the SIV trend between GIOMAS and satellite observation, GIOMAS can basically reproduce the 246 

changes in the observed SIV trend before and after 2013. Besides, the correlation of SIV anomalies 247 

between GIOMAS and observations is 0.83, which passes a two-tailed t-test at a 99% significant level. 248 

Given the advantages of reanalyses over observations or models individually especially in the polar 249 

region (Buehner et al., 2017), GIOMAS data would be a good choice to study the variability and long-250 

term trends of Antarctic sea ice. 251 

3.3 Comparison in the intensity of SIT variability 252 

Figure 6 displays spatial differences in the intensity of SIT anomalies variability between GIOMAS and 253 

satellite observations. Compared with ES and CS2, GIOMAS underestimates the intensity of SIT 254 

variability in the Southern Ocean, especially in the deformed ice zone (Figs. 6a-b), which resembles the 255 

spatial pattern of Fig. 3. The underestimation in the deformed ice regions can also be found in the 256 

comparison between GIOMAS and ULS. The intensity of SIT variability is underestimated near the shore, 257 
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while overestimated away from the shore (Fig. 6c). The spatial distribution of differences in the intensity 258 

of variability is roughly consistent with that of SIT differences in Fig. 4b. These phenomena suggest that 259 

there appears to be a relationship between the mean SIT and the variability. As Blanchard-Wrigglesworth 260 

and Bitz (2014) suggested, models with a thinner mean ice state tend to have SIT anomalies with smaller 261 

amplitude. In addition, the comparison in SIT standard deviation ratio and mean bias between GIOMAS 262 

and satellite observations shown in the supplementary figure further clarifies the relationship that with a 263 

negative SIT bias, GIOMAS always underestimates the variability of SIT. Thus, the bias of SIT has an 264 

impact not only on the climatology of SIT but also on the variability of SIT. It should be mentioned that 265 

in the regions where the uncertainty of satellite observations is larger than the difference between 266 

GIOMAS and satellite observations (i.e., mainly in the regions with undeformed sea ice), the uncertainty 267 

would have an impact on the evaluation in the variability of SIT and cannot be ignored. 268 

3.4 Comparison of SIT frequency 269 

In addition to ULS observations, the rest of in situ sea-ice observations are sparse in the Southern Ocean 270 

and mainly provided by ship-based and air-based measurements. Figure 7 displays the SIT frequency 271 

distribution of GIOMAS and ship-based as well as air-based in situ observations. The peaks of 272 

observations are mainly around 0-0.6 m while the frequencies of GIOMAS SIT are mainly distributed in 273 

0-1.4 m in the Southern Ocean (Fig. 7a). In different sectors (Figs. 7b-f), the frequency distribution of 274 

observed SIT data is similar to that in the whole Southern Ocean while the peaks of GIOMAS SIT 275 

frequency vary from 0.2 m to 1.4 m. Compared with observations, for the Southern Ocean, GIOMAS 276 

has a higher frequency within 0.6-1.6 m while a lower frequency in the rest bins compared with ship-277 

based observations (Fig. 7a), which seems to imply the overestimation of SIT. Similar results can be 278 

found in different sectors (Figs. 7b-f). However, the sample selection bias should be noted in the ship-279 

based observations due to the ship’s track avoiding areas of thicker ice, which results in its estimation 280 

biased toward thinner ice (Timmermann, 2004; Williams et al., 2015). Besides, GIOMAS has a lower 281 

frequency of thick ice in the Weddell Sea than air-based observations. In conclusion, GIOMAS tends to 282 

overestimate SIT frequency between 0.6-1.6 m in the Southern Ocean compared with ship-based 283 

observations under the premise that ship-based observations always bias low. Additionally, the 284 

comparison between GIOMAS and air-based SIT observations further proves the weakness of GIOMAS 285 

in the simulation of sea-ice deformation. 286 
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4 Conclusions and discussion 287 

Considering the important role of SIT in studies of Antarctic sea ice and the wide application of GIOMAS, 288 

the Antarctic SIT of GIOMAS is assessed with satellite and in situ observations. In general, GIOMAS 289 

can basically reproduce the observed variability and linear trends of SIV even though only satellite SIC 290 

data is assimilated by nudging. For the climatology, GIOMAS can reproduce the asymmetry in the annual 291 

cycle of Antarctic SIV. For the long-term SIV variation, the variation of GIOMAS is in phase with that 292 

of observations, and it is also able to capture the changes in linear trends before and after 2013. These 293 

suggest that GIOMAS is useful to study the long-term variation of Antarctic sea ice. However, significant 294 

negative bias in SIT can be found in the comparison between GIOMAS and observations. Compared 295 

with satellite measurements, GIOMAS tends to underestimate SIT, especially in regions with strong ice 296 

deformation. This underestimation is of seasonal dependence with greater underestimation in the winter. 297 

Although the above underestimation can be partially attributed to the uncertainties of SIT retrieved from 298 

satellite, the SIT underestimation cannot be ignored in the northwest Weddell Sea and is further verified 299 

by the comparison between GIOMAS and ULS observations. Furthermore, the spatial distribution of the 300 

differences in the magnitude of SIT variability resembles that of the differences in SIT climatology 301 

between GIOMAS and observations. Given the relationship between the mean state of SIT and variability 302 

(Blanchard-Wrigglesworth and Bitz, 2014; also verified by the comparison between satellite 303 

observations and GIOMAS in the supplement), this phenomenon indicates that SIT underestimation 304 

might have an impact on not only the SIT climatology but also the SIT variability. In addition, GIOMAS 305 

overestimates SIT compared with ship-based observations, which can be due to the negative bias in ship-306 

based SIT estimation (Timmermann, 2004; Williams et al., 2015). The deficiency of GIOMAS in 307 

simulating deformed sea ice is further verified in comparison with air-based observations. 308 

Notably, though GIOMAS could basically reproduce the trends of Antarctic SIV anomalies before and 309 

after 2013, the differences in the trends of SIV anomalies between GIOMAS and satellite observations 310 

cannot be ignored. A simple comparison between the monthly GIOMAS sea-surface temperature (SST) 311 

and Microwave Optimally Interpolated SST observations reveals that the positive bias of GIOMAS in 312 

SST before 2014 is roughly corresponding to the underestimation of the positive trend of observed SIV 313 

anomalies while the negative SST bias of GIOMAS after 2014 is corresponding to the underestimation 314 

of the negative trend of observed SIV anomalies. There seems to be a possible relationship between the 315 
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difference in SST and the difference in the trends of SIV anomalies between GIOMAS and observations 316 

since higher SST would slow down the increase of SIV while lower SST would slow down the decrease 317 

of SIV. However, this relationship needs further quantification and further analysis is added to our future 318 

work plan. 319 

In addition, limitations from Antarctic SIT observations are non-negligible in this study. For one aspect, 320 

the scarcity of Antarctic SIT observations is one of the main sources of limitations for the evaluation. 321 

The time span of satellite observations is not long enough for the evaluation of GIOMAS SIT data from 322 

1979 to the present while the in situ observations are too few to show the estimation of SIT in the entire 323 

Southern Ocean. Those make it unable to comprehensively evaluate the entire GIOMAS Antarctic SIT 324 

data in this study. For another, this study is also limited by observations of Antarctic SIT due to their 325 

unsuitability for the evaluation. For example, though SIT from ICESat (Kern et al., 2016) equipped with 326 

the Geoscience Laser Altimeter System is available from 2004 to 2008 and proved to have a lower bias 327 

in SIT estimation than radar altimeter measurements (Willatt et al., 2010; Wang et al., 2020), it is not 328 

adopted in this study. The reasons are as follows. First, ICESat SIT is not available in winter (July-329 

September), when a greater underestimation of SIT is found in GIOMAS (Fig. 2). Second, the data size 330 

of ICESat is relatively smaller than that of ES and CS2 because ICESat provides seasonal mean data and 331 

its time range is narrower. Therefore, the additional assessment on SIT of GIOMAS will be conducted 332 

when the Antarctic SIT derived from ICESat-2 is available. Furthermore, the uncertainty of satellite 333 

observations has an impact on the evaluation and the accuracy of satellite observations needs to be further 334 

improved to obtain more accurate satellite-derived SIT estimations with smaller uncertainty. The 335 

uncertainty of satellite-derived SIT observations is mainly from the uncertainty introduced by the 336 

scattering surface of radar signals and the estimation of Antarctic snow depth and density. With the 337 

influences of complex snow stratigraphy and flooding inside the snow related to the formation of snow 338 

ice, the assumption that the radar signal reflects from the snow/ice interface is not applicable in most 339 

cases (Willatt et al., 2010). Besides, owing to the lack of knowledge of Antarctic snow, the climatology 340 

of snow depth from the European Space Agency-SICCI Advanced Microwave Scanning Radiometer for 341 

the Earth Observing System (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2) 342 

is used in the retrieval of ES and CS2-derived SIT, which would introduce extra uncertainties since the 343 

inter-annual variability in snow depth is omitted (Bunzel et al., 2018). Moreover, the AMSR-E/AMSR2 344 

snow depth is indicated to considerably underestimate the actual snow depth, which usually occurs in 345 
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the East Antarctic (Worby et al., 2008b; Ozsoy-Cicek et al., 2011). All those contribute to the large 346 

uncertainty of the satellite-derived SIT in the Antarctic and the uncertainty would influence the 347 

evaluation of SIT in the regions where the differences between GIOMAS SIT and satellite observations 348 

are smaller than the uncertainty. Therefore, a more accurate estimation of Antarctic snow depth and 349 

density would be essential to reducing the uncertainty of satellite SIT observations and thus improving 350 

the reliability of the evaluation. 351 

The above SIT underestimation of GIOMAS can be partially attributed to the model weakness. For 352 

example, insufficient resolution of the model restricts GIOMAS to reproduce the ice deformation near 353 

shore. Besides, the assimilation is a vital component in the reanalyses since it could constraint the model 354 

with observations and make the model obtain better state estimation (Lahoz and Schneider, 2014). 355 

However, it can also be a source of errors in the system. In GIOMAS, the asymmetric SIT changes 356 

introduced by assimilation cannot be ignored. Thus, besides the further development of the model, there 357 

are two suggested ways to improve the estimation of Antarctic SIT from the perspective of data 358 

assimilation. Firstly, additional sea-ice observations other than SIC should be assimilated. For example, 359 

besides Antarctic SIT derived from Envisat and CryoSat-2 used in this study, the Antarctic SIT retrieved 360 

from ICESat-2 is also to be released in the near future, and hence assimilating these SIT observations 361 

directly may suppress the bias of SIT (e.g., Yang et al., 2014; Fritzner et al., 2019; Luo et al., 2021). Also, 362 

assimilating sea-ice drift observations can improve the simulation of sea-ice motion and deformation, 363 

which can improve the estimation of SIT (e.g., Lindsay and Zhang, 2006; Mu et al., 2020). Secondly, 364 

advanced data assimilation methods should be adopted to provide a balanced estimation of the model 365 

state. For instance, the innovation of SIC can be converted to the increment of SIT in a more balanced 366 

way through the flow-dependent covariance of Ensemble Kalman Filter (e.g., Massonnet et al., 2013; 367 

Yang et al., 2015). Furthermore, though nudging of SIC is not state of the art, it makes the model of 368 

GIOMAS obtain better SIT simulation while the model-only data of GIOMAS is likely to overestimate 369 

SIT in the marginal seas. To promote the development of GIOMAS, further quantitative analyses on the 370 

impact of nudging SIC on the SIT in the Antarctic are worthy of attention and will be conducted in the 371 

future. 372 

Besides, in the course of global warming, Antarctic SIE rose gradually and reached a record high in 373 

2014/2015 before decreasing dramatically, which is obviously different from the dramatic drop in Arctic 374 

SIE during the satellite era (e.g., Turner and Comiso, 2017). Results from a recent study suggest that the 375 
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trend in Antarctic ice coverage may be due to changes in atmospheric (e.g., Holland and Kwok, 2012) 376 

and oceanic (e.g., Meehl et al., 2019) processes. Without better SIT and SIV estimates, it is difficult to 377 

characterize how Antarctic sea-ice cover is responding to changing climate, or which climate parameters 378 

are most influential (Vaughan et al., 2013). Thus, more Antarctic sea-ice observations and more studies 379 

on data assimilation are urgently needed to accurately evaluate the Antarctic SIT, which can help to 380 

improve the reconstruction and prediction of Antarctic SIV and to support research related to Antarctic 381 

sea ice. 382 
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 606 

Figure 1. (a) The temporal and (b) spatial coverage of data used in this study. 607 
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 609 

Figure 2. The climatological annual cycle of Antarctic SIV. The blue and red denote data related to ES 610 

and CS2, respectively. The solid and dashed curves denote satellite observations and corresponding 611 

GIOMAS data. 612 
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 614 

Figure 3. The SIT bias of GIOMAS relative to ES in (a) the summer and (b) winter. (c-d) same as (a-b) 615 

but for bias relative to CS2. 616 
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 618 

Figure 4. (a) The locations of ULS in the Weddell Sea and corresponding standard deviation of SIT. (b) 619 

The differences in SIT climatology between GIOMAS and ULS. 620 
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 622 

Figure 5. The SIV anomalies of satellite observations (green) and corresponding GIOMAS (khaki). The 623 

dashed lines denote the linear trends of SIV anomalies from December 2002 to November 2013 and from 624 

November 2013 to April 2017. All linear trends have passed a F-test at 99% significant level. 625 
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 627 

Figure 6. (a) The spatial differences in standard deviation of SIT anomalies between GIOMAS and ES. 628 

(b) same as (a) but for differences between GIOMAS and CS2. (c) The standard deviation of SIT 629 

anomalies for ULS (yellow) and corresponding GIOMAS (blue). 630 
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 632 

Figure 7. SIT histograms of GIOMAS and in situ observations in (a) the Southern Ocean and (b-f) 633 

different sectors. 634 


