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Abstract. The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imper-

fectly represent this variability, because of uncertain meteorological inputs, physical parameterisations, and unresolved terrain

features. In-situ observations of the height of snow (HS), despite their limited representativeness, could help constrain inter-

mediate and large scale modelling errors by means of data assimilation. In this work, we assimilate HS observations from

an in-situ network of 295 stations covering the French Alps, Pyrenees and Andorra, over the period 2009-2019. In view of5

assimilating such observations into a spatialised snow cover modelling framework, we investigate whether such observations

can be used to correct neighbouring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow

cover modelling, based on a Particle Filter suited to the propagation of information from observed to unobserved areas. This

ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also

proposes various localisation strategies to assimilate snow observations. These approaches are evaluated in a Leave-One-Out10

setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimila-

tion. Results show that intermediate localisation radius of 35-50 km yield a slightly lower root mean square error (RMSE), and

a better Spread-Skill than the strategy of assimilating all the observations from a whole mountain range. Significant continuous

ranked probability score (CRPS) improvements of about 13% are obtained in the areas where the open-loop modelling errors

are the largest, e.g. the Haute-Ariège, Andorra and the Extreme Southern Alps. Over these areas, weather station observations15

are generally sparser, resulting in more uncertain meteorological analyses, and therefore snow simulations. In-situ HS observa-

tions thus shows an interesting complementarity with meteorological observations to better constrain snow cover simulations

over large areas.
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1 Introduction

Better monitoring the spatio-temporal variability of the mountainous snow cover is paramount to improve the forecasting of20

snow-related hazards (Morin et al., 2020) and anticipate downstream river flow (Lettenmaier et al., 2015). In mountainous ter-

rain, the snow cover inherits a high spatial variability from several factors. The topography controls on the precipitation phase,

air temperature, wind exposition and radiation fluxes (Durand et al., 1993; Oliphant et al., 2003). Wind drift redistributes snow

at every scale (Mott et al., 2018). Finally, vegetation traps the snow (Sturm et al., 2001) and also affects its net shortwave and

longwave radiation (Qu and Hall, 2014; Malle et al., 2019).25

Snowpack models are commonly used to derive snowpack properties in the mountains. Yet, their ability to represent snow

cover variability over large areas is inherently limited by large errors in their meteorological forcings (Raleigh et al., 2015),

and uncertain physical parameterisations (Essery et al., 2013; Krinner et al., 2018). In addition, explicitly accounting for pro-

cesses such as wind drift and snow-vegetation interaction is not yet affordable at large scales.

In that context, additional sources of information are needed to mitigate snowpack modelling uncertainty in the mountains.30

Observations from weather stations located in the mountains can be used to correct Numerical Weather Prediction (NWP)

model outputs. Dedicated downscaling and analysis schemes such as SAFRAN (Durand et al., 1993) or RhiresD interpolation

in Switzerland (Frei and Schär, 1998) can be used to efficiently reduce the large errors of the NWP models in the mountains,

in particular by the assimilation of local precipitation observations. Such approaches significantly improve snow cover sim-

ulations (Durand et al., 1999; Magnusson et al., 2014). These weather stations, however, are generally located below 1200m35

(Frei and Schär, 1998; Vernay et al., in review), and important errors in precipitations (for example) remain at higher elevations

(Magnusson et al., 2014).

Data assimilation of snowpack observations may help address this issue in complement to these observations. Remotely-sensed

retrieval of snow bulk properties (e.g. the height of snow (HS, m) and the snow water equivalent (SWE, kg m−2)) is a promising

wealth of snowpack observations for data assimilation (e.g. Margulis et al., 2019) but it is inherently limited by spatio-temporal40

gaps (De Lannoy et al., 2012), or only available at coarse resolutions (Andreadis and Lettenmaier, 2006). In-situ observations

of HS and SWE cover large mountainous areas and are operational on a daily basis in numerous countries (e.g. Serreze et al.,

1999; Jonas et al., 2009; Durand et al., 2009b; Cantet et al., 2019). Their potential to improve local simulations is unambiguous

as demonstrated by many studies (e.g. Magnusson et al., 2017; Piazzi et al., 2018; Smyth et al., 2019; Cantet et al., 2019).

However, the representativeness of such observations is limited by the snow cover spatial variability (Grünewald and Lehning,45

2015; Lejeune et al., 2019). The potential to transfer information into neighbouring areas is therefore a key question when

considering their potential added value for snow cover modelling over large domains (e.g. Slater and Clark, 2006; Liston and

Hiemstra, 2008; Gichamo and Tarboton, 2019). This question has long been debated. Cantet et al. (2019) successfully applied

a spatialised Particle Filter (PF) over a very large domain (Southern Quebec), and with a loose observation network, though

not in a rugged terrain, i.e. less spatial variability. In alpine terrain, Magnusson et al. (2014); Winstral et al. (2019) showed50

that enhancing snow cover simulations with in-situ snow observations from a dense network in Switzerland reduced modelling

errors over unobserved locations. It is yet to demonstrate that this approach can be applied over mountainous areas with a
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coarser in-situ observational coverage (Largeron et al., 2020).

Here, we investigate whether the assimilation of in-situ HS observations can improve simulations of the Météo-France opera-

tional modelling chain for snow cover monitoring and avalanche hazard forecasting in the vicinity of the measurement stations,55

and what is the most appropriate assimilation strategy for that purpose. We assess this in a network of in-situ HS observations

over the French Alps, French Pyrenees, and Andorra, with contrasted observation densities. We use CrocO, an ensemble data

assimilation system of snow cover modelling (Cluzet et al., 2021). CrocO is built around an ensemble version of the opera-

tional modelling system of Météo-France (Vionnet et al., 2012; Vernay et al., in review), accounting for modelling uncertainties

from the meteorological forcings (Charrois et al., 2016; Deschamps-Berger et al., in review) and the snowpack model itself60

(Lafaysse et al., 2017; Dumont et al., 2020). CrocO includes several versions of the Particle Filter tailored for the propagation

of information from observed into unobserved areas (Cluzet et al., 2021). These variants are used in a localised framework,

in which only observations coming from a certain radius around the considered location are assimilated (Van Leeuwen, 2009;

Penny and Miyoshi, 2016; Poterjoy, 2016; Farchi and Bocquet, 2018). Domain localisation is commonly used in the Ensemble

Kalman Filter (EnKF, (Evensen, 1994)) and PF communities (Van Leeuwen, 2009; Poterjoy, 2016; Penny and Miyoshi, 2016;65

Farchi and Bocquet, 2018). It is used to remove far-range unrealistic correlations in the EnKF (Houtekamer and Mitchell,

2001) and to circumvent the curse of dimensionality, causing the PF to diverge when too many observations are assimilated

simultaneously (so-called PF degeneracy) (Bengtsson et al., 2008). PF localisation proved to be efficient in several studies (e.g.

Poterjoy and Anderson, 2016; Potthast et al., 2019).

To assess the potential transfer of information, we opt for a leave-one-out approach (e.g. Slater and Clark, 2006), whereby the70

assimilation is performed considering neighbouring observations, but discarding any local observation. The assimilation per-

formance can be then evaluated using these independent local observations. If such potential transfer could be demonstrated, it

would mean that the assimilation method is able to improve simulations at a sufficient distance of available observations to be

efficient over the whole simulation domain. In other words, this network of observations could be used to constrain spatialised

snowpack simulations over the French Alps, Pyrenees and Andorra. Furthermore, the methodology could be applied to other75

areas with similar densities of observations.

To summarize, the following questions will be addressed in this paper:

– What is the performance of data assimilation compared with the operational and ensemble models?

– Can data assimilation manage to propagate information in space?

– What is the best localisation strategy for assimilation?80

– Could an increased observation density yield better results for assimilation?

The study area, observations, modelling chain and data assimilation scheme are described in Sec. 2. In Sec. 3, the evaluation

strategy and scores are presented. The results are presented and discussed in Sec. 4 & 5. We finally conclude and open research

perspectives in Sec. 6.
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2 Material and methods85

2.1 Study area and observations

The study area spans the French sides of the Alps and Pyrenees and Andorra. The French Alps culminate at the Mont-Blanc

(4810 m) and are higher and about two times larger than the French Pyrenees (culminating at Vignemale, 3298 m). Andorra

is a principality located at the center-East of the Pyrenees. In the following, for the sake of simplicity, we will refer to French

Pyrenees and Andorra as "Pyrenees", and to French Alps as "Alps".90

The winter climate of the Alps is contrasted between the North and the South. The Southern Alps are on average drier than

the Northern Alps (Isotta et al., 2014). The Pyrenees are very elongated with a strong longitudinal gradient between the humid

oceanic Western side to the drier Mediterranean Eastern side. The elevation of the winter snow line is around 1500 m in the

Pyrenees (Durand et al., 2012), and about 1200 m in the Northern Alps (Durand et al., 2009a). Finally, the inter-annual vari-

ability of the snow cover is marked in both massifs (Durand et al., 2009a; Gascoin et al., 2015).95

In this work, we perform snowpack simulations in a network of 295 daily HS observations stations. 217 stations are located

in the Alps, and 78 in the Pyrenees (of which 7 are in Andorra). This network is an aggregate of several data sources. Most of

the observations (144 stations) come from ski resorts, where HS is manually observed every morning during the commercial

season (mid-December to April in general). The second source is a network of climatological observations (77 stations) in100

which several meteorological parameters and HS are observed on a daily basis for the whole year. These stations are generally

located around populated areas or in ski resorts. A few sites (19 stations) come from various automated measurements in ski

resorts. Two networks of automated HS sensors were also used: Météo-France’s Nivôses (27 stations) and Électricité de France

(EDF) EDFNIVO stations (28 stations), the latter only from the winter season 2016-2017 on. These networks are located in

remote areas and at generally higher altitudes than the rest of the observations.105

The density of HS observations within each SAFRAN massif (Fig. 1, see Sec. 2.2.2 for more details on SAFRAN) is very

variable, from less than 0.5 daily observations per hundred km2 in the Extremely Southern Alps and Western Pyrenees to more

than ten times higher densities in the Mont-Blanc massif. It is mainly explained by the variable density of ski resorts. Although

the density of observations is generally lower than in the Alps, the Pyrenees exhibit two clusters of dense observations, in the110

Central Western part around Bigorre and in the Central eastern part close to Andorra. In the Alps, the density of observations

is especially high from the Northern to the South Central area. The Southern massifs, as well as the lower altitude western

massifs generally have fewer observations.

Fig. 2a-c shows the number of observation per month for two representative winters. It increases from 3000 during Fall to115

6000 in January-March (when the ski resorts are open), suggesting that the beginning and end of season are less well observed

both in terms of number of observations and spatial coverage. Fig. 2b-d shows the histograms of the available daily observa-

tions per 300 m-elevation bands for the same years. A notable increase in the observations count above 2100 m for the three
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Figure 1. Average daily observation density (per 100 km2) within each SAFRAN massif, in the French Alps (top panel) and French Pyre-

nees/Andorra (bottom panel).
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Figure 2. Number of daily observations per month (a-c) and per 300 m elevation bands (b-d) for winters 2011 (239 stations, a-b) and 2017

(250 stations, c-d) over the whole domain.
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last years can be explained by the inclusion of the EDFNIVO stations.

120

2.2 Ensemble data assimilation setup

The ensemble system consists in an ensemble of meteorological forcings generated by stochastic perturbations, forcing a mul-

tiphysics ensemble of snow models as described in Cluzet et al. (2020) and Cluzet et al. (2021). The total number of ensemble

members (also named particles in the PF context) was set to 160. An open-loop run (i.e. without assimilation) was performed

to serve as reference. Only a few changes were performed in the ensemble setup, which are described in Secs. 2.2.1 and 2.2.2.125

2.2.1 Ensemble of snowpack models

The simulation setup is based on a multiphysics framework representing the uncertainties of the main physical parameteri-

sations of Crocus (Lafaysse et al., 2017; Cluzet et al., 2020). However, in this paper, the advanced radiative transfer scheme

TARTES (Libois et al., 2013, 2015) was not used contrary to previous studies (Cluzet et al., 2020, 2021) because it requires130

Light Absorbing Particles (LAP) fluxes from chemistry transport models such as MOCAGE, ALADIN or GFDL_AR4 (Josse

et al., 2004; Nabat et al., 2015; Horowitz et al., 2020). To date, such products are not interpolated within SAFRAN geometry

and would require a specific treatment and validation, going much beyond the scope of this study. Instead, we opted for a

single parameterization of the snowpack radiative transfer, the ’B60’ option from Brun et al. (1992) presented in Lafaysse et al.

(2017), whereby the snow albedo of a layer is a function of its age.135

2.2.2 Ensemble of meteorological forcings

Meteorological forcings are taken from SAFRAN (Système D’Analyse Fournissant des Renseignements Adaptés à la Neige,

Durand et al. (1993)) reanalysis over the Alps and Pyrenees. SAFRAN is a surface meteorological analysis system adjust-

ing backgrounds from NWP model ARPEGE (Courtier et al., 1991) with local meteorological observations (air temperature,

pressure, precipitation, humidity) within so-called massifs of about 1000 km2 (see Fig. 1) and further downscaled to the sta-140

tions of our study. Over the considered period of time, 438 observation sites provided precipitation observations to SAFRAN

between November and April. These stations are mostly located at lower elevations (below 1500 m) as presented in Fig.4 of

Vernay et al. (in review). Among them, 164 of these sites correspond to locations with snow depth observations included in the

present study. SAFRAN analysis is issued separately for each massif in a semi-distributed geometry, i.e within 300 m elevation

bands, aspect and slopes, the main topographic parameters controlling the snow cover evolution. This analysis is subsequently145

downscaled into the specific topographic conditions (i.e. elevation, slope, aspect and local topographic mask) of the simulated

station (Vionnet et al., 2016). This means that a same analysis is applied to all the points within a same massif, and interpolated

consistently with their topographic parameters, while analyses for neighbouring stations located in distinct massifs will be

6



different.

150

An ensemble of forcings was generated by applying stochastic perturbations in the same spirit as Charrois et al. (2016) but

with slight corrections in the implementation of the perturbations compared with Cluzet et al. (2020, 2021) as described in

Deschamps-Berger et al. (in review). For each member, perturbations are auto-correlated in time following an auto-regressive

process and are spatially homogeneous. The perturbation parameters were taken from Charrois et al. (2016). Precipitation

parameters were adjusted (i.e. multiplicative noise with auto correlation time τ = 1500h, and dispersion σ = 0.5) in order to155

obtain a spread-skill close to 1 for the open-loop run (see Sec. 4.1). We used these perturbed analyses as input for the snowpack

simulations at the stations.

2.2.3 The Particle Filter in CrocO

The Particle Filter used in this work is based on the version described in Cluzet et al. (2021). Only a brief description of the160

procedure is given here. The ensemble is updated sequentially with the PF on each assimilation date and propagated forward

until the following assimilation date. The PF is localised: each point receives a different analysis. Based on the comparison

of neighbouring simulations of HS with their corresponding HS observations, the PF selects a sample of the best ensemble

members. The idea is that if a particle is performing well against nearby observations, it should also be efficient locally (Farchi

and Bocquet, 2018). Different localisation radius are tested in this study ranging from 17 km to 300 km. Note that when a165

particle is selected by the PF, the full local state vector is copied: the local physical consistency of the variables is preserved.

Particle Filter degeneracy (see Sec. 1) may arise even with a reduced local domain size, and approaches to increase the PF tol-

erance may be required to overcome it. The localisation is complemented here by two different strategies described in Cluzet

et al. (2021), inflation and k-localisation, leading to the ’rlocal’ and ’klocal’ algorithms, respectively. If the initial analysis

is degenerated (i.e. the effective sample size Neff is inferior to a target N∗
eff ), the rlocal and klocal iteratively modify the170

assimilation settings to make it more tolerant, so that the PF analysis reaches a sample size of N∗
eff . The rlocal algorithm

performs an inflation of observation errors inspired by Larue et al. (2018). The klocal algorithm discards observations coming

from locations exhibiting the lower ensemble correlations with the considered location. It is important to note that inside a

localisation radius, the rlocal method assimilates all available observation stations whereas the klocal method only selects a

subset of observations from locations where the ensemble members are sufficiently correlated with the simulation members of175

the considered point.

2.2.4 Example

This section presents an illustrative example for the propagation of information with the localised PF. On December 3rd, 2009,

we perform an analysis at an unobserved point ploc (2135 m.a.s.l) using an observation from a nearby point pobs (2293 m.a.s.l,180

7 km away). The top panel of Fig. 3 shows the HS simulated by the 160 ensemble members at the two locations until the
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considered assimilation date. The observed HS at pobs is 0.87 m, above the ensemble median at this location (about 0.5 m).

The PF will likely select the particles that have above average HS at pobs. The bottom panel of Fig. 3 shows the particles’ HS

values at pobs as a function of their value at ploc. A correlation can be noted: the particles predicting the highest HS at ploc

usually also predict higher than average HS at pobs. It means that the ensemble that we constructed (see Sec. 2.2) considers185

that the modelling errors are linked: if there is an underestimated snowfall in early December at pobs, it’s likely that this is also

the case at ploc.

The localised PF performs an analysis for ploc by comparing the values modelled at pobs with the available observation, thereby

selecting the ’best’ particles at pobs, (bottom panel, in green). The marginal distribution of the ensemble at pobs (right of the

bottom panel, in green) is significantly sharpened compared to the background, and is much closer to the observation. At ploc,190

the distribution of the HS values of these particles is also sharper, and exhibits higher HS than before the analysis.

This example shows how the localised PF has used the non-local observation at pobs to infer information about the local unob-

served point ploc. This example can be generalized to the situation where multiple observations are assimilated simultaneously

as done in this study. It also highlights the implicit importance of ensemble correlations with distant locations: in the absence

of correlation, no information can be transferred. In such a situation, the klocal algorithm would discard the observations from195

the least areas, while the rlocal would keep them. Finally, note that if the ensemble correlation is dramatically wrong, (i.e.

positive correlation instead of negative correlation), the analysis will degrade the ensemble performance.

3 Evaluation strategy

This work aims at assessing the potential transfer of information between points in an HS observation network by means of200

localized data assimilation, and more specifically to address the questions presented in the end of Sec. 1. To demonstrate that,

the data assimilation system must over-perform its ensemble counterpart with the assimilation switched off (open-loop) and the

state-of-the-art operational deterministic snow cover modelling system from Météo-France (oper), which consists in a default

Crocus version forced by the unperturbed SAFRAN meteorological forcings (Vernay et al., in review).

3.1 Setup205

Assessing the ability of data assimilation to propagate information requires use independent data for validation. We opted for

a leave-one-out setup in which local observations are removed from the set of observations used in the local PF analysis. Only

weekly observations were assimilated, while all available observations between October 1st and June 30th were kept for evalu-

ation.

There are two key design parameters for the data assimilation system: the value of the localisation radius (large or small) and210

the choice of the PF algorithm (rlocal or klocal). Both exert a direct or indirect control on the number of observations simultane-

ously assimilated by the PF, and therefore, on its potential degeneracy and its ability to transfer information between locations.

Experiments respectively combining the rlocal and klocal algorithm with 4 different localisation radius were conducted: rang-
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(a)

(b)

(c)

Figure 3. Ensemble HS simulation at the observed location pobs (a) and the unobserved point where we want to perform the local PF, ploc (b).

The median (black), assimilation dates (dashed grey lines) and the available observation on December 3rd (red star, and probability density

function (PDF) in red) are also represented. Panel (c) is a scatter plot of the ensemble members at the two locations, for the background

(blue) and analysis (green, superimposed on the blue). Marginal distributions at the individual locations are added at the top and right side of

the plot. The observation PDF is shown on the right side, with a red band showing the ±1σ range around the observation.

ing from 17 km, (the radius of an idealised circular SAFRAN massif of 1000 km2) to 300 km (the maximal distance between

two observations inside the Pyrenees and the Alps) with two intermediate radius of 35 km and 50 km. The standard deviation215

of observation errors was set to 0.1 m, as a way to accommodate for measurement and representativeness errors.

Because the klocal approach does not use inflation (except in the case of degeneracy with only one observation), it is quite
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sensitive to the initial value of observation error. In case of degeneracy, the smaller the observation error, the fewer observa-

tions will be selected by the klocal algorithm. For this reason, the klocal algorithm was run with a multiplication factor of 5

on observation error variance (hence a fixed error standard deviation of 0.22 m) , allowing more observations to be assimilated220

simultaneously.

3.2 Evaluation Scores

Several metrics are used in this work to assess the performance of the oper, open-loop and assimilation runs with respect to HS

observations. From the ensemble Em,p,t of Ne members m at station p and time t, the mean can be computed using Eq. 1:

Ep,t =
1

Ne

Ne∑
m=1

Em,p,t (1)225

The mean is a convenient way of synthesizing ensemble properties for evaluation, however, some artifacts can be observed with

bounded variables such as HS. On a decaying snow cover for example, the mean will not reach zero until every member has

melted. For this reason, the ensemble median Ẽp,t will be preferred in the following. From Ẽp,t, we can compute the Absolute

Error of the ensemble median compared with the observations op,t (AE):

AEp,t = |Ẽp,t− op,t| ∀(p,t) ∈ [1,Npts]× [1,Nt] (2)230

Where Nt is the number of evaluation time steps.

The ensemble bias is defined as the average difference between the ensemble median and the observations (Eq. 3):

bias =
1

Nt

1

Npts

Nt∑
t=1

Npts∑
p=1

Ẽp,t− op,t (3)

The Root Mean Squared Error of the median (RMSE) is computed from the AE, following (Eq. 4):235

RMSE =

√√√√ 1

Nt

1

Npts

Nt∑
t=1

Npts∑
p=1

AE2
p,t (4)

Bias and RMSE can be computed for the oper run (treating it as a single-member ensemble) in order to evaluate the median

performance, and can be taken over time and/or space by dropping the time/spatial mean in Eqs.3 and 4. These scores are not

sufficient because they reduce an ensemble to its median. The ensemble spread (or dispersion) σ (Eq. 5), defined as the average

variance, is a first metric to assess an ensemble reliability:240

σ =

√√√√ 1

Nt

1

Npts

1

Ne

Nt∑
t=1

Npts∑
p=1

Ne∑
m=1

(Em,p,t−Ep,t)2 (5)

Reliability is a desirable property for an ensemble, it means that all events are forecast with the right probability regardless

of the probability value. The pdf of a reliable ensemble matches the actual pdf of observations over a large enough sample. We
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introduce the Spread-Skill (SS) as:

SS =
σ

RMSE
(6)245

Where sigma must be computed only in the dates and locations where the RMSE is computed. For a reliable ensemble, we

have σ ∼ RMSE (Fortin et al., 2015), i.e a spread-skill close to unity (necessary but not sufficient condition). This means that

the spread is on average a good estimate of the modeling error, which is useful to make decisions. Rank diagrams (Hamill,

2001) are the histogram of the position of the observation within the ensemble and enable to verify the reliability of an ensem-

ble more closely (e.g. Bellier et al., 2017). Their flatness is a stronger condition for an ensemble’s reliability than the SS=1.250

The Continuous Ranked Probability Score (CRPS, (Eq. 7) Matheson and Winkler, 1976) is an aggregate, ensemble score

evaluating the reliability and resolution of an ensemble based on a verification dataset. An ensemble has a good resolution

when it is able to issue different forecasts on different events (contrary to the climatology) (Atger, 1999).

If we denote Fp,t the Cumulative Distribution Function (CDF) and Op,t the corresponding observation CDF (Heaviside func-255

tion centered on the truth value), the CRPS is computed at (p,t) following:

CRPSp,t =

∫
R

(Fp,t(x)−Op,t(x))
2dx ∀(p,t) ∈ [1,Npts]× [1,Nt] (7)

The CRPS skill score (CRPSS) is commonly used to compare the performance of an ensemble E to a referenceR. Although

CRPS can be computed from a deterministic run, R should be preferably an ensemble because comparing CRPS of determin-

istic and ensemble runs mainly illustrates the obvious fact that an imperfect deterministic run is a poor representation of a260

probability distribution. The following equation is frequently used:

CRPSS*(E,R) = 1− CRPS(E)
CRPS(R)

(8)

In this formulation, if E is more skillful than R, CRPSS*(E, R) will be positive, with a perfect score of 1., while less skillful

scores range between −∞ and 0, resulting in an asymmetry between positive and negative scores (i.e. CRPSS*(E,R) =
CRPSS*(R,E)

CRPSS*(R,E)−1 ). We introduce the new formulation:265  CRPSS(E,R) = 1− CRPS(E)
CRPS(R) if CRPS(E)< CRPS(R)

CRPSS(E,R) = CRPS(R)
CRPS(E) − 1 otherwise

(9)

With such formulation, CRPS(E,R) ∈ [−1,1] and CRPS(E,R) = - CRPS(R,E). These properties are important to visually com-

pare and average improvements (positive CRPSS) and degradations (negative CRPSS) of the CRPS.
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oper mean (m) oper RMSE (m) oper bias (m) open-loop RMSE (m) open-loop sigma (m) open-loop bias (m) openloop SS

2009 0.28 0.27 −0.02 0.28 0.28 −0.04 1.02

2010 0.16 0.22 −0.01 0.21 0.18 −0.03 0.85

2011 0.26 0.26 −0.05 0.28 0.26 −0.10 0.92

2012 0.44 0.37 −0.03 0.39 0.38 −0.11 0.98

2013 0.32 0.31 0.01 0.32 0.29 −0.06 0.92

2014 0.23 0.26 0.01 0.26 0.23 −0.03 0.89

2015 0.24 0.27 0.01 0.27 0.25 −0.01 0.92

2016 0.20 0.27 −0.02 0.27 0.19 −0.07 0.70

2017 0.41 0.41 −0.09 0.45 0.31 −0.16 0.70

2018 0.23 0.31 −0.07 0.33 0.19 −0.12 0.56

Table 1. Yearly performance of the reference runs, in terms of RMSE, bias, spread (sigma), and spread-skill (SS).

4 Results270

4.1 Performance of the reference runs

The operational deterministic run from Météo-France suffers from significant errors (Lafaysse et al., 2013), which we try to

reduce by means of assimilation. The open-loop run is a first step to represent modelling uncertainty using an ensemble. Tab.

1 summarizes the yearly performance of both simulations over the 10 years and the 295 stations. Oper and open-loop simula-

tions exhibit almost identical RMSE scores across all years, with an average error of about 0.2-0.3 m. Their RMSE significantly275

varies (from 0.21 m in 2010 to 0.45 m in 2017 for the open-loop) in proportion with the yearly average snow depth. Oper and

open-loop are slightly negatively biased, especially for the open-loop.

Regarding ensemble metrics, the open-loop exhibits Spread-Skills (SS) around 0.9-1 (SS is obtained by dividing the σ

column by the RMSE column in Tab. 1). SS ranges from a good balance between spread and RMSE in 2009 (SS=1.) to under-280

dispersive values (e.g. SS=0.55 in 2018) in the three last years. In Fig. 4, yearly rank diagrams exhibit higher frequencies in

their right part, meaning that observations lie preferentially in the upper half of the ensemble, consistently with the negative

biases exhibited in Tab. 1.

A map of the open-loop bias for each station is shown in Fig. 5. The bias is significantly negative in most locations, and its

spatial variability is high, with neighbouring stations exhibiting strong biases of opposite signs, e.g. in the Central Alps. Around285

Andorra and in the Southern Alps the bias is mostly negative. Some stations exhibit positive biases in the Central Alps, more

rarely in the Pyrenees.
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Figure 4. Yearly rank diagrams of the open-loop, binned into 20 bins (i.e. for a reliable ensemble, all bars should be on the 0.05 line). Values

on the x-axis correspond to the proportion of ensemble members under the observation.
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Figure 5. Map of the open-loop bias (m) on each station over the ten considered years (same layout as Fig. 1). SAFRAN massifs are outlined

in black. The green circle has a radius of approximately 35 km.

13



0.2

0.3

0.4

RM
SE

 (m
)

0.1

0.0

bi
as

 (m
)

17 35 50 300 17 35 50 300

0.5

1.0
SS

rlocal klocal5
op

er ol

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
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4.2 Overall results of the assimilation experiments

In this work, we want to compare the performance of the rlocal and klocal algorithm, with different localisation radii (rang-290

ing from 17 km to 300 km) with the oper and open-loop runs. Fig. 6 shows the yearly values of RMSE, bias and SS for all

these runs. Results show no significant RMSE improvements for the assimilation runs compared with the references. RMSE

varies more from one year to another than between assimilation configurations (algorithm and localisation radii). The median

RMSE is slightly lower for the intermediate localisation radii of 35 km and 50 km. Compared with the open-loop, assimilation

runs significantly reduce the bias both in terms of median value from around -0.06 to about -0.03 and inter-annual variability.295

Compared with the oper run, the absolute bias of the assimilation runs is higher on average, but in some years, the bias is

significantly reduced (e.g. 2015, 2017, 2018).

In terms of SS, the assimilation runs exhibit values almost twice as small as the open-loop run which has a median value

around 0.85. The SS significantly decreases with an increasing localisation radii both for the rlocal and klocal algorithm.300

The assimilation strategy without localisation (radii of 300 km) appears as most efficient in reducing biases (lower absolute
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median (blue) and klocal:35km median (black), by 500 m-wide elevation bands. Occurrences when the three differences are equal to zero

are excluded.

median, lower inter-annual variability) but yields the lowest spread-skills and highest RMSE of all the assimilation runs sug-

gesting that this approach is not the most desirable. The most selective localisation strategies (radii of 17 km) achieve the

highest SS, but their inter-annual performance variability is higher than for the other localisation radii.

305

4.3 Factors of variability of the assimilation skill

In the following, we will investigate the different factors influencing the skill variability of the assimilation runs. As described

in the previous Sec. 4.2, there are only small skill differences between the localised radii of 17-50 km, and between the

rlocal and klocal algorithm. For the sake of illustration, we decided to focus on the assimilation configuration yielding the low-

est median RMSE. This configuration, the klocal with a 35 km localisation radii, is further referred to as ’klocal’ configuration.310

4.3.1 Spatial variability

Fig. 7 shows boxplots of the daily deviation values (difference between the model median Ẽp,t and the observation op,t) for

the klocal and the reference runs grouped per 500 m elevation classes. The bias of the oper varies from slightly positive values

between 1000-1500 m to negative values in the range 1500-2500 m to finally a positive bias at the highest elevations. The315

open-loop exhibits a similar pattern, with a negative shift. The klocal algorithm seems to temper these elevation biases, with

lower biases (in absolute value) than the oper both at higher and intermediate elevations.

Fig. 8 shows the CRPSS of the klocal (using the open-loop as reference) at each station, over the ten years. Overall per-

formance is only slightly positive (blue), but with a non negligible minority of station showing negative CRPSS (red color)320

denoting a degradation of performance. Some "clusters" of good performance also appear, as in the Central-Eastern part of the
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Figure 8. Same as Fig. 5, showing the CRPSS of the klocal against the open-loop over the ten years.

Pyrenees (Andorra and Haute Ariège) or the Southern Alps, while the performance in the Central Alps and Central Western

Pyrenees seems poor.

Fig. 9a represents the CRPSS as a function of the station elevation. On average, the analysis exhibits positive CRPSS (be-325

tween 0. and 0.15) showing that it is more skilful than the open-loop. CRPSS values exhibit a significant spread (of about 0.2)

which results in a number of stations with a degradation of skill by the analysis (negative CRPSS). The average CRPSS varies

with the altitude, increasing from a very low skill (0.-0.03) in the range 1000-1500 m to a significant skill (0.1-0.15) between

1600-2000 m, and finally decreasing to about 0.05 above 2000 m.

Given the strong link between the bias of the open-loop reference and the elevation, the CRPSS was also plotted against the330

bias of the open-loop in Fig. 9b. The CRPSS exhibits significant averaged positive values (0.13-0.2) for strong negative biases,

under -0.1. The CRPSS varies from null performance around null bias to significant negative performance for positive biases

(-0.12).

The density of available observations was identified as an important factor for the success of the assimilation of in-situ335

measurements (Winstral et al., 2019; Largeron et al., 2020). We define the observation density as the average number of ob-
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Figure 9. Scatter plot of the CRPSS of the klocal run compared with the open-loop for each station over the 10 years, as a function of the

station elevation (left panel) and the open-loop bias at each station (right panel). The transparency of the points is related to the proportion of

available observations over the validation period. The black line denotes a 51-stations-wide CRPSS rolling average, with an orange shading

±1σ. This average is weighted proportionally to each station transparency.

servations available on each analysis date, divided by the area of the localisation disk. Fig. 10a shows the values of CRPSS

as a function of the observation density. CRPSS values are rather spread, and do not seem to vary much with the observation

density. On Fig.10 (bottom panel), the open-loop bias is also plotted against the observation density, showing that the highest

biases are obtained for the lowest observation densities, although there cannot be any causal relationship as HS observations340

are not assimilated in the open-loop.

4.3.2 Temporal variability

Timeseries of ensemble bias can also provide information on their nature and origin. Fig. 11 shows the timeseries of domain

wide ensemble median Ẽ against the bias and SS of the several runs in 2009. This year is representative of the different runs345

behaviours over the 10 years. The bias of the oper run is negative except in April during the melting season. During this year,

the bias of the klocal run is centered on zero from mid-January to the end of April. The open-loop is negatively biased for

the whole season. Consistently, the ensemble median is the highest for the klocal run. The most interesting feature here, is

that the biases of all the simulations are increasing (in absolute value) on several drops, coinciding with increases in Ẽ during

solid precipitation events (e.g. early December, first week of February, late March). The bias difference between the klocal350

and the open-loop (in mauve) shows the ability of the former to reduce this bias. This reduction is stepwise, with the strongest

reductions occurring on analyses (dashed vertical lines) during the accumulation period (e.g. early December, and the two first

analyses of January). Between the analyses, and during the melting season, the time evolution of the klocal bias follows the

time evolution of the open-loop bias, and the bias difference remains more or less constant.

The SS is an estimate of the ability of ensemble systems to assess their errors (see Sec. 3). Here, consistently with Sec. 4.2355

and Fig. 6, we note that throughout the season, the SS of the klocal is less than to 1 and significantly lower compared to the
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Figure 10. CRPSS of the klocal PF as a function of the average density of available observations (top), and open-loop bias as a function of

the average density of observations (per 100km2) (bottom)

open-loop. While the SS is similar in both simulations in the early season, klocal analyses seem to coincide with reductions of

SS, suggesting that the ensemble spread is more reduced than its error (RMSE) by the PF. In line with the assessment of the

reliability, Fig. 12 shows the rank diagrams of the klocal over the 10 years. Compared with the results of the open-loop on Fig.

4, these rank diagrams exhibit a U-shape, consistent with the significant under-dispersion of the klocal. Indeed, by summing360

the left and right bin frequencies, we observe that the observations lie about 20% of the time in the extremal bins of the rank

diagram (twice as much as for a reliable ensemble), and preferentially above, which is consistent with the residual negative

bias of the klocal simulation.

5 Discussion

In the following, we analyse the strengths and weaknesses of the operational and open-loop simulations and comment on the365

performance of the data assimilation algorithms in comparison to them.

5.1 On the performance of the reference simulations

The performance of the operational simulation has been regularly assessed until recently (Durand et al., 2009a; Vernay et al.,

in review). Overall, it is an accurate modelling system whose potential has been demonstrated in several recent climate studies

and projections (e.g. López-Moreno et al., 2020; Verfaillie et al., 2018). However, it exhibits a contrasted regional performance370
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Figure 12. same as Fig. 4 for the klocal.

(Vernay et al., in review, Fig. 13), and its errors are badly known at high altitude, due to the lack of observations (Fig. 12 of

Vernay et al. (in review)). This is a common issue in mountainous areas (Frei and Schär, 1998) and is detrimental for the use

of the operational chain for all applications (e.g. avalanche hazard forecasting, hydrology etc.).

Results from Tab. 1 shows that the operational version of the system, and its ensemble version, the open-loop, have comparable
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RMSE. The open-loop run is reliably accounting for its modelling uncertainties and errors, since its SS is slightly below unity375

over the ten years. This means that on average, the ensemble spread is almost a reliable estimate of the modelling error. This

feature could be valuable for forecasters (Buizza, 2008).

Tab. 1, and Figs. 6 and 11 show that the open-loop is negatively biased compared to the oper. This could be due to the cen-

tered stochastic perturbations (Charrois et al., 2016; Deschamps-Berger et al., in review), or a bias in the ESCROC multiphysics380

model configurations (Lafaysse et al., 2017). However, the oper model configuration is not expected to be perfectly centered in

the open-loop, as several configurations, such as the parametrization of surface heat fluxes, ground heat capacity or fresh snow

density strongly influence the resulting modelled snow depth. Strong increases in the oper and open-loop biases match with

precipitation events, and they are only partly compensated by the following snow settling period (see Sec. 4.3.2), suggesting

that it is likely that error compensations take place in the oper chain, between solid precipitation amounts, fresh snow density,385

snow compaction, and ablation processes as suggested by results from Quéno et al. (2016). Evaluation with co-located SWE

and HS data would help disentangle this situation (e.g. Smyth et al., 2019).

Biases of the oper and open-loop strongly depend on the altitude (Fig. 7) in a pattern that matches the evaluation from Vernay

et al. (in review), though on a smaller number of stations and considered years. They are unambiguously negative in the range

1500-2500 m, and more variable above, probably due to a higher snow cover variability, and depending on the considered390

region. In the range 1500-2500 m, this bias may be explained by higher wind speeds than at lower elevations, causing an

underestimation of solid precipitation amounts in gauges (Kochendorfer et al., 2017), and consequently in SAFRAN, as evi-

denced by (Quéno et al., 2016) during strong precipitation events.

5.2 On the PF strategies395

In general one of the primary motivations of the domain localisation is to prevent the PF from degenerating (Farchi and Bocquet,

2018). In our case, as evidenced by the reasonable performance of the rlocal with a 300 km localisation radii (e.g. therefore

simultaneously assimilating up to 217 observations in the Alps), domain localisation is not required against PF degeneracy

thanks to the mitigations (i.e. inflation or k-localisation) developed in Cluzet et al. (2021). Here, localisation is rather used to

adapt to the structures of errors of the reference run. From Fig. 5, it seems that open-loop bias is systematic and widespread.400

Then a large localisation radii, averaging a significant number of observations, seems a good option. However, we also see

regional structures in this bias, probably inherited from the oper (Vernay et al., in review). They are likely due to the fact that

SAFRAN analyses are performed at the scale of the massif. To address this type of error, reducing the localisation radii is

probably a better option. Finally, errors structures can depend on other parameters such as the elevation, and vary in time. In

this situation, the klocal approach might be more adapted, since it adjusts the observation selection on the model background405

correlation patterns. However, these background correlation patterns could sometimes be unrealistic, and therefore, misleading

for the algorithm.
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The klocal algorithm, by construction, selects observations from locations that are correlated in the model’s point of view.

However, because we apply spatially homogeneous perturbations to the meteorological forcings, strong large scale background410

correlation patterns are present in the open-loop, even between the Alps and Pyrenees (not shown). These strong, potentially

artificial, large scale correlation patterns could hamper the performance of the klocal PF, leading it to assimilate very distant

observation with no actual link with the considered location. Conversely, a completely random field of perturbations would

prevent the algorithm from propagating any information between locations (Magnusson et al., 2014; Cantet et al., 2019). Using

physically-based meteorological ensemble, such as PEARP (Descamps et al., 2015), used in Vernay et al. (2015) or AROME-415

EPS (Bouttier et al., 2016), or spatially correlated perturbation fields (Magnusson et al., 2014), could lead to more realistic

correlation fields, but this goes much beyond the scope of this study, as actually, domain localisation prevents the klocal from

assimilating too distant observations.

5.3 Overall performance of the assimilation compared with the references

Here, we discuss the ability of the proposed assimilation approaches (with several localisation radii) to succeed in reducing420

the modelling errors from the oper and open-loop shown in Sec. 5.1. Aggregated results from Fig. 6 show that none of the

proposed assimilation configurations enable us to significantly reduce overall modelling errors compared to the operational

run. However, they overcome the significant negative bias of the open-loop they originate from, but at the expense of a strongly

under-dispersive spread-skill. The bias reduction seems more efficient and stable (i.e. less variable from year to year) with the

rlocal than with the klocal, and with a larger localisation radii, which makes sense as the open-loop bias is widespread (e.g.425

Fig. 11) and both tend towards assimilating more observations at the same time. However, the RMSE is slightly larger for the

largest localisation radii, and the spread-skill is strongly reduced too.

There are two reasons why the assimilation could not outperform the operational run in terms of RMSE. First, its error may

be of a same magnitude than the natural variability of point scale observations and in that case, no added value can be extracted430

even from nearby observations, or similarly, there are too few observations to efficiently constrain modelling errors. Increasing

the observation density could be an option to overcome this issue. However, our results do not show a strong relationship

between assimilation skill and density (Fig. 10, see Sec. 5.5 later on). Another explanation could be that there still remain

systematic errors to correct, namely biases (as suggested by Fig. 7) but it is difficult to propagate information between loca-

tions. In an idealised case, (Cluzet et al., 2021) showed that the potential to propagate information from HS observations across435

elevations is limited. Here, modelling errors are not systematic and strongly vary with the altitude (Fig. 7). If the ensemble does

not account for this specific bias structure, an observation at an elevation affected by a positive bias could never help choose

the best member configuration for an elevation affected by a negative bias.
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5.4 On the difficulties faced by assimilation algorithms440

In this part, we comment the performance of the klocal with a localisation radii of 35 km assimilation configuration against

the open-loop. Although it does not outperform other configurations significantly, the klocal seems best suited to solve the

bias-elevation relation in the references and an intermediate localisation radii enables to adapt to local error structures (see Sec.

5.2).

The CRPS improvement is the highest for intermediate elevations coinciding with the highest open-loop negative bias (Fig. 9,445

the latter being consistent with Cluzet et al. (2021) who showed that the largest improvements were obtained in the presence

of systematic biases.

However, the klocal is strongly underdispersive, contrary to the open-loop which achieves a SS around 1, and therefore is

significantly less reliable as evidenced by the U-shaped rank diagrams in Fig. 12. As the CRPS is a measure of both accuracy

and reliability, it seems surprising to see that the klocal is more skilful than the open-loop in terms of CRPS, with average450

positive CRPSS around 0.06 (Fig. 9).

This under-dispersion is not satisfactory because it implies that the assimilation run is too confident about its simulated dis-

tributions. This is a general issue for all the presented assimilation strategies (Fig. 6). In additional experiments (not shown),

the assimilation frequency was reduced to 14 days, in order to let the ensemble spread increase between assimilation dates. It

seems a reasonable value according to e.g. Smyth et al. (2020) and Viallon-Galinier et al. (2020), and resulted in an increased455

spread, but was detrimental to the RMSE. We did not consider increasing the target efficient sample size, N∗
eff , which is set to

100. This value, is much higher than previous studies (Larue et al., 2018; Cluzet et al., 2021) and was chosen as preliminary

experiments (not shown) with values of 25 and 50 which gave an even lower SS. Finally, the spread of the stochastic pertur-

bations on the forcings could be increased, or statistically calibrated distributions of the main forcing variables (e.g. Taillardat

and Mestre, 2020) could be used.460

Nevertheless, obtaining a perfect spread-skill may be a challenging goal for our assimilation system. Under dispersion is

a common issue in the NWP (e.g. Bellier et al., 2017) and snow cover modelling communities (Lafaysse et al., 2017; Nousu

et al., 2019). The spatial scale of our ensemble modelling framework cannot account for two important processes affecting the

observations at the stations: the variability of the meteorological conditions inside SAFRAN massifs, and the snow redistribu-465

tion by wind (Mott et al., 2018). On the one hand, the variability of the meteorological conditions inside SAFRAN massifs is

limited to topographic parameters (including local masks) so that two distant stations with the same topography will receive

the exact same forcing (especially precipitation), and the snow redistribution by wind is not represented (Vionnet et al., 2018).

On the other hand, the spatial representativeness of observations is limited by plot-scale variability.

Data assimilation is known to partly compensate for such scale mismatches via error compensation. Error compensations are470

also possible between physical processes (Klinker and Sardeshmukh, 1992; Rodwell and Palmer, 2007; Wong et al., 2020). For

example, an ablation event in one observation can be compensated in the Particle Filter by selecting some members with a lower

precipitation factor or a compaction scheme with a higher settling (Deschamps-Berger et al., in review). This compensation
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immediately results in lower errors, but implicitly, the model does a wrong assumption, which results in being over confident,

thus with a lower spread. The only way to mitigate for this over confidence is to account for any relevant physical phenomenon,475

which is a desirable goal, but a real challenge when it comes to snowdrift by wind, local meteorology and plot-scale variability.

This goal is to date out of reach at the temporal and spatial scale of this study.

Despite these limitations, the assimilation shows some ability to correct weaknesses of the reference runs. The first one is

the significant bias above 1500 m in the reference run (Fig. 7). This bias probably originates from a lack of meteorological ob-480

servations in SAFRAN analysis at those altitudes (see Sec. 5.1 and Fig. 4 of (Vernay et al., in review)). In the range 1500-2000

m, the klocal has a significantly lower bias than the open-loop. There is a lower benefit at higher elevations, above 2000 m.

(Fig. 9), maybe owing to the fact that snow cover variability is higher, in particular due to stronger winds. There are also less

observations available, and a less clear bias at this altitude (there seems to be a transition from a negative bias to a positive bias),

reducing the odds of a successful assimilation. Unfortunately, such elevations are key for avalanche activity (Eckert et al., 2013;485

Lavigne et al., 2015). Another good feature of the assimilation is to improve the accuracy in areas where the references are less

accurate due to a lack of meteorological observations, namely Andorra and Haute-Ariège in the Pyrenees, and Ubaye, Haut

Verdon and Mercantour in the southern Alps (Fig. 8). Both features underline the complementarity between HS observations

and the meteorological observations already assimilated in SAFRAN.

490

5.5 Performance in relation to the density of observations

The density of in-situ observations has been pointed out as a critical parameter for the success of data assimilation (Largeron

et al., 2020). Winstral et al. (2019) managed to strongly reduce modelling errors with a high observation density, (about 1

observation site every 100 km2). Because of natural variability, they considered detection of systematic errors may be more

difficult with a lower density. Our study case explores a wide range of observation density (Fig. 10), from about 0.1 to 0.8495

observations every 100 km2 (accounting for the availability of observations). Yet, as mentioned in Secs. 4.2 and 5.1, the as-

similation performance relative to the open-loop does not decrease with a lower observation density. It may be due to the

fact that the assimilation is efficient only for strong open-loop negative biases (Fig. 9b), which seems the highest where the

station density is the lowest (Fig. 10b). In other words: the assimilation can not outperform the open-loop in the most densely

observed areas (e.g. in the Northern Alps, where the observation density is similar to the studies of Magnusson et al. (2014)500

and Winstral et al. (2019)) because the open-loop performance is already high there. This behaviour is explained by the fact

that the HS observation density is correlated with the density of precipitation observations used by SAFRAN to analyse the

meteorological forcings (see Fig. 13 and Sec. 2.2.2)). Both (at the exception of the Nivôse and EDF nivo stations for the HS

observations) are actually related to human implantation in the valleys and the presence of ski resorts. A higher weather station

density for SAFRAN is likely to result in more accurate meteorological forcings, thus reducing the bias of the reference runs,505

which finally leaves less room for improvement by the assimilation.
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Figure 13. same as Fig. 4 for the klocal.

This assumption may guide the strategies of definition of snow cover networks, not only in terms of observation density but

also in terms of localisation. Our study suggests that snowpack observations do not yield significant improvements in areas

where a sufficient amount of meteorological observations is already assimilated in the snowpack modelling chain (here, in510

SAFRAN). The assimilation of snow depth observations rather gives significant improvements at higher altitudes, and in areas

where model errors are larger, generally corresponding to areas where less meteorological observations are assimilated. This

result could be verified in future work, in either semi distributed or distributed frameworks, validated by e.g. satellite retrievals

of the snow cover fraction (Magnusson et al., 2014).

515

5.6 Towards the assimilation in a semi-distributed geometry?

The aim of this study was to assess the potential of the assimilation of in-situ HS observations to correct nearby simulations, in

view of applying it in a semi-distributed or distributed framework (Cluzet et al., 2021), in a similar strategy as Magnusson et al.

(2014) and Griessinger et al. (2019). We used CrocO (Cluzet et al., 2021), an ensemble system accounting for meteorological

and snowpack modelling uncertainties, using a Particle Filter to assimilate spatialised snowpack observations.520

The results are mitigated: an added value is observed only when initial modelling errors are large (Fig. 9b), similarly to results

obtained by Winstral et al. (2019). In the Northern Alps, Western Pyrenees and under 1500 m, the added value is null on aver-

age, and seems too insufficient to be of a real use. Over these areas, it seems that there is no room for improvement with data

assimilation of point scale HS only. There, simulation accuracy may be more limited by snow related processes such as wind

drift and uncertain physical processes resulting in snow cover variability, than by meteorological errors. The use of spatialised525

satellite retrievals (Margulis et al., 2019; Cluzet et al., 2020) to better constrain snow cover variability, or a finer correction of

meteorological forcings using radar precipitation data (e.g. Birman et al., 2017; Le Bastard et al., 2019) in combination with
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higher resolution NWP models and their ensemble counterparts, might be a solution.

6 Conclusions530

This study investigates the potential for localised versions of the Particle Filter to spatially propagate information from in-situ

observations of the height of snow (HS) in an ensemble of snowpack simulations. Compared with state-of-the-art deterministic

and ensemble open-loop approaches, over ten years, we demonstrate that substantial improvements are only obtained in loca-

tions and elevation ranges where the reference errors are the highest. These areas correspond to locations where the density

of meteorological observations, which are crucial for the correction of the meteorological forcings within SAFRAN analysis535

scheme, is the lowest. This demonstrates a good complementarity with the meteorological observation analysed by SAFRAN

to reduce the current errors of the operational chain.

Previous studies already demonstrated the added value of in-situ HS observations in a similar setting with a dense observation

coverage (Magnusson et al., 2014; Winstral et al., 2019). It was suspected that lower observation densities would reduce the

potential for assimilation. Here, we exploit data with a wide range of densities, generally lower than these studies, and find no540

sensitivity of the assimilation performance to the observation density. This finding may be specific to the error structures of the

reference simulations, which are correlated with the observation density.

Results also show that intermediate localisation strategies between 35-50 km of radii yielded slightly lower errors than a

strategy addressing large scale errors only (300 km), while lower radii (17 km) may be too small to capture the snow cover

variability where the density of observations is too small.545

Our results finally show a good complementarity between the HS observations and meteorological observations already as-

similated in the modelling chain, in particular in the most remote areas. This result is encouraging in the way of reducing the

weaknesses of the current operational modelling chain, and shows that even scarce in-situ snowpack observations could be

beneficial for snow cover modelling over large areas.

Code availability. The Crocus snowpack model (including all physical options of the ESCROC system) and the Particle Filter algorithm are550

developed inside the opensource SURFEX project. The source files of SURFEX code are provided at 10.5281/zenodo.5111449 to guarantee

the permanent reproducibility of results. However, we recommend potential future users and developers to access to the code from its git

repository (git.umr-cnrm.fr/git/Surfex_Git2.git, tag CrocO_v1.1). Experiments were pre/post-processed using CrocO_toolbox package. It is

available on Github (https://github.com/bertrandcz/CrocO_toolbox, release v1.1) along with a documentation.

However, this software could not be applied outside Météo-France HPC environment, CrocO python software offers the possibility to run555

CrocO simulations locally. This functionality was not used here due to the high numerical cost of our simulations, which required the use of

Météo-France HPC environment.
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