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Abstract. As Arctic sea ice extent continues to decline, remote sensing observations are becoming even more vital for the 

monitoring and understanding of sea ice. Recently, the sea ice community has entered a new era of synthetic aperture radar 10 

(SAR) satellites operating at C-band with the launch of Sentinel-1A in 2014 and Sentinel-1B (S1) in 2016 and the RADARSAT 

Constellation Mission (RCM) in 2019. These missions represent 5 spaceborne SAR sensors, that together routinely cover the 

pan-Arctic sea ice domain. Here, we describe, apply and validate the Environment and Climate Change Canada automated sea 

ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using 

SAR images from S1 and RCM. We applied the ECCC-ASITS to the incoming image streams of S1 and RCM from March 15 

2020 to October 2021 using a total of 135,471 SAR images and generated new SIM datasets (7-day 25 km and 3-day 6.25 km) 

by combining the image stream outputs of S1 and RCM (S1+RCM). Results indicate that S1+RCM SIM provides more 

coverage in Hudson Bay, Davis Strait, Beaufort Sea, Bering Sea, and directly over the North Pole compared to SIM from S1 

alone. Based on the resolvable S1+RCM SIM grid cells, the 7-day 25 km spatiotemporal scale is able to provide the most 

complete picture of SIM across the pan-Arctic from SAR imagery alone but considerable spatiotemporal coverage is also 20 

available from 3-day 6.25 SIM products. S1+RCM SIM is resolved within the narrow channels and inlets of the Canadian 

Arctic Archipelago filling a major gap from coarser resolution sensors. Validating the ECCC-ASITS using S1 and RCM 

imagery against buoys indicate a root mean square error (RMSE) of 2.78 km for dry ice conditions and 3.43 km for melt season 

conditions. Larger speeds are more apparent with S1+RCM SIM as comparison with the National Snow and Ice Data Center 

(NSIDC) SIM product and the Ocean and Sea Ice Satellite Application Facility (OSI SAF) SIM product indicated a RMSE of 25 

u=4.6 km/day and v=4.7 km/day for the NSIDC and u=3.9 km/day and v=3.9 km/day for OSI SAF. Overall, our results 

demonstrate the robustness of the ECCC-ASITS for routinely generating large-scale SIM entirely from SAR imagery across 

the pan-Arctic domain.  

1 Introduction 

As Arctic sea ice extent continues to decline in concert with increases in carbon dioxide (CO2) emissions (Notz and 30 

Stroeve, 2016), remote sensing observations are becoming even more vital for the monitoring and understanding of Arctic sea 
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ice. Recently, the sea ice community has entered a new era of synthetic aperture radar (SAR) satellites operating at C-band 

(wavelength,  = 5.5 cm) with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 (S1; Torres et al., 2012) and the 

RADARSAT Constellation Mission (RCM) in 2019 (Thompson, 2015). Together these missions represent 5 spaceborne SAR 

sensors that when combined offer the opportunity to retrieve large-scale sea ice geophysical variables with high spatiotemporal 35 

resolution. An important sea ice geophysical variable that could also benefit from large-scale SAR estimates across the Arctic 

is sea ice motion (SIM). SIM is controlled by the exchange of momentum due to turbulent process primarily from atmospheric 

and oceanic forcing. Away from the coast, winds explain 70% or more of the variance in Arctic sea ice motion (Thorndike and 

Colony, 1982) and as a result, monitoring changes in SIM is important for understanding how sea ice responds to changes in 

atmospheric circulation (Rigor et al., 2002). SIM convergent and divergent processes impact the overall thickness of Arctic 40 

sea ice (Kwok, 2015) and the dynamic component of the Arctic sea ice area and volume balance is also impacted by SIM 

(Kwok, 2004; Kwok, 2009). The long-term record of SIM in the Arctic indicates the ice speed is increasing which are 

associated with thinner ice being more susceptible to wind forcing (Rampal et al., 2007; Kwok et al., 2013; Moore et al., 2019).  

Techniques for estimating SIM from satellite observations have a long history dating back to the late 1980s and early 

1990s that are primarily based on the maximum cross-correlation coefficient between overlapping images (e.g. Fily and 45 

Rothrock, 1987; Kwok et al., 1990; Emery et al., 1991). The maximum cross-correlation approach to estimate SIM can be 

applied to virtually any overlapping pair of satellite imagery separated by a relatively short time interval of ~1-3 days. For 

large-scale SIM, passive microwave imagery is typically the most widely used because of its large swath and daily coverage 

(e.g. Agnew et al., 1997; Kwok et al., 1998; Lavergne et al., 2010; Tschudi et al., 2020). Enhanced resolution SIM products 

with spatial resolutions of ~2 km have also been generated (e.g. Haarpaintner, 2006; Agnew et al., 2008) although they have 50 

not been widely utilized. The limitation with respect to large-scale SIM estimated from passive microwave imagery, however, 

is a low spatial resolution (50-100 km). As a result, SIM is more difficult to track with lower spatial resolution passive 

microwave sensors (Kwok et al., 1998) especially, within narrow channels and inlets (e.g. the Canadian Arctic Archipelago; 

CAA) compared to SAR. However, SIM estimates from SAR are typically regionally based because of image availability 

across the Arctic. With the availability of SAR imagery from S1 and RCM, a new opportunity exists to provide both the 55 

operational and scientific communities with larger-scale estimates of SIM from SAR. In addition, with marine activity in the 

Arctic increasing (e.g. Eguíluz et al., 2016, Dawson et al., 2018), a wide-range of maritime stakeholders could benefit from 

access to large-scale SAR SIM for safety, planning and situational awareness (Wagner et al., 2020).  

In this study, we describe, apply, and validate the Environment and Climate Change Canada automated sea ice 

tracking system (ECCC-ASITS) using SAR imagery from the S1 and RCM to generate new SIM products over the pan-Arctic 60 

domain. Prior to S1 there was a lack of widely available SAR imagery for pan-Arctic SIM generation and as a result, this is 

perhaps the first time such an extensive processing of SAR imagery at the pan-Arctic scale has been undertaken to generate 

SIM. The ECCC-ASITS is designed to facilitate the routine generation of SIM to serve operations within ECCC and provide 

new and unique SIM data to the wider scientific community and maritime stakeholders. Here, we focus primarily on the latter 

applications by first describing the ECCC-ASITS workflow that produces SIM from S1 and RCM SAR imagery (hereafter, 65 
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S1+RCM) in close to near-real time and combines the output into S1+RCM SIM products. A close to near-real time workflow 

is required given the considerable amount of incoming SAR imagery together with the computational time to generate SIM. 

We then present the results of two S1+RCM products from March 2020 to October 2021 followed by a section discussing the 

validation and uncertainty of S1+RCM SIM products.  Finally, we provide a comparison of our S1+RCM SIM to the existing 

SIM datasets from the National Snow and Ice Data Center (NSIDC) (Tschudi et al., 2020) and Ocean and Sea Ice-Satellite 70 

Application Facility (OSI SAF) SIM (Lavergne et al., 2010). 

2 Data 

The primary datasets used in this analysis were Extra Wide Swath imagery at HH polarization from S1 and ScanSAR 

Medium Resolution 50 m (SC50M), ScanSAR Low Resolution 100 m (SC100M), and ScanSAR Low Noise (SCLN) at HH 

polarization from RCM from March 2020 to April 2021 (Table 1). We also used daily buoy positions from International Arctic 75 

Buoy Programme (IABP) for April and August 2020 and 2021, 7-day 25 km SIM NSIDC Polar Pathfinder dataset and the 2-

day multi-sensor low resolution 62.5 km OSI-SAF sea ice motion dataset (OSI-405) from March to December 2020. Tschudi 

et al., (2020) provides a complete description of the NSIDC Polar Pathfinder SIM dataset and Lavergne et al., (2010) provides 

a complete description of the OSI-SAF SIM dataset.  Finally, we used daily pan-Arctic ice charts from the National Ice Center 

for 2020 and 2021 80 

 

Table 1. Satellite SAR image inventory used in this analysis from March 2020 to October 2021.  

Platform Beam Mode Pixel Size (m) Swath  

(km) 

Image Count 

RCM Single Beam Medium Resolution (SC16M) 6.25  30 123 

 ScanSAR Medium Resolution (SC30M) 12.5 125 115 

 ScanSAR Medium Resolution 50 m (SC50M) 20 350 50,468 

 Scan SAR Low Resolution 100 m (SC100M) 40 500 18,384 

 ScanSAR Low Noise (SCLN) 40 350 1,857 

S1 Extra-Wide Swath (EW) 40 410 64,524 

 

3 Methods 

3.1 ECCC automated sea ice tracking algorithm  85 

We make use of the automated SIM tracking algorithm developed by Komarov and Barber (2014) to estimate large-

scale SIM across the pan-Arctic domain. The algorithm has been widely utilized for applications that require robust estimates 

of SIM in Arctic using SAR at C-band (e.g. Howell et al., 2013; Howell et al., 2018; Komarov and Buehner, 2019; Moore et 

al., 2021a). A full description is provided by Komarov and Barber (2014), but the main components of the algorithm are briefly 

described here. To begin with, coarser spatial resolution images are generated from the original spatial resolution of the SAR 90 

image pairs. For example, if the original SAR image pairs have a spatial resolution of 200 m then the additional generated 

levels would be 400 m and 800 m. A set of control points (i.e. ice features) is automatically generated for each resolution level 

based on the SAR image local variances. To highlight edges and heterogeneities at each resolution level, a Gaussian filter and 
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the Laplace operator are applied sequentially. Beginning with the coarsest resolution level, ice feature matches in the image 

pairs are identified by combining the phase-correlation and cross-correlation matching techniques that allows for both the 95 

translation and rotational components of SIM to be identified. SIM vectors not presented in both forward and backwards image 

registration passes are filtered out, as well as vectors with low cross-correlation coefficients. In order to refine the SIM vectors, 

at each consecutive resolution level the algorithm is guided by SIM vectors identified at the previous resolution. An example 

of the SIM output generated from the algorithm based on two overlapping SAR image is shown in Fig. 1. The limitations that 

are widely known with respect to estimating SIM from SAR imagery include regions of low ice concentration, melt water on 100 

the surface of the sea ice and longer time separation between images also apply to this algorithm. 

 

 
Figure 1.  a) RCM image on April 7, 2020, b) RCM image on April 10, 2020, and c) detected sea ice motion vectors (green) over 

RCM April 7, 2020.  The black dotes indicate detection vectors with no motion. RADARSAT Constellation Mission Imagery © 105 
Government of Canada 2020. RADARSAT is an official mark of the Canadian Space Agency. 

 

3.2 ECCC automated sea ice tracking system (ECCC-ASITS) 

The ECCC-ASITS facilitates the routine generation of S1+RCM SIM products; however, it should be noted the 

system has roots (i.e. it has been built-up) in previous studies (e.g. Howell and Brady, 2019; Moore et al., 2021a; Moore et al., 110 

2021b). While the primary system methodology described here is for larger-scale SIM generation, it is not strictly limited for 

this application and can (has) been modified accommodate specific objectives. 

The generalized processing chain for generating large-scale S1+RCM SIM using ECCC-ASITS is illustrated in Fig. 

2. The approach processes the S1 and RCM image streams separately and then combines the outputs into a S1+RCM SIM 

product. This parallel approach was chosen for several reasons. First, mixing S1 and RCM primarily improves spatial coverage 115 

as RCM mainly fills in the spatial gaps in S1 coverage. Specifically, RCM coverage is more widely spread across the Arctic 

and covering Bering Sea, Laptev Sea, Davis Strait, Southern Beaufort Sea and even the North Pole thus filling a gap typically 

associated with the majority of satellite sensors (Fig. 3). An example of the ability of RCM to almost completely cover the 

North Pole on a single day is shown in Fig. 4. However, we note that the temporal resolution of SIM could be improved by 

mixing S1 and RCM, but this would be restricted to only certain regions of the Arctic. Second, SAR imagery is received by 120 

ECCC from S1 and RCM in close to near-real time and in order to “keep-up” with the 100’s of images coming in per day and 
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routinely generate products every day the processing system is run every hour given the computational load on automated SIM 

detection. Fig. 5 illustrates the amount of S1 and RCM SAR imagery that was processed over a 7-day time period in March 

2020 which amounted to over 1132 SAR images or ~160 images per day. Finally, different orbit characteristics of the satellites 

contribute to timing differences between when the images are acquired compared to when they are received by ECCC. For 125 

example, if an S1 image acquired at 1300h UTC is transferred to our system sooner than an RCM image that was acquired at 

1100h UTC then the RCM image would be missed. We note that S1A and S1B are freely mixed in the Sentinel processing 

chain as well as RCM1, RCM2 and RCM3 are mixed in the RCM processing chain. 

 

 130 
Figure 2. Generalized processing chain for generating large-scale sea ice motion from S1 and RCM across the pan-Arctic domain. 

 

 

Figure 3. Image density per week for a) S1, b) RCM, and c) S1+RCM based on Table 1 



6 

 

 135 
Figure 4. RCM image coverage over the North Pole on September 15, 2020. RADARSAT Constellation Mission Imagery © 

Government of Canada 2020. RADARSAT is an official mark of the Canadian Space Agency. 

 

 

Figure 5. Spatial distribution of S1 and RCM SAR images from March 11-17, 2020. 140 
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For both S1 and RCM images streams, the pre-processing steps shown in Fig. 2 first involve calibrating the imagery 

to the backscatter coefficient of sigma nought (°) using the HH-polarization channel and map-projected to the NSIDC North 

Pole Stereographic WGS-84, EPSG:3413 coordinate system with a 200 m pixel size. For S1 imagery, pre-processing steps 

were applied using the Graph Processing Tool (GPT) of the Sentinel Application Platform (SNAP) software, and for RCM 145 

imagery, the pre-processing workflow was applied using an in-house pre-processor. 

Manual inspection of SAR imagery and subsequent image stack compilation prior to automatic SIM generation, while 

effective in regional-scale studies (e.g. Howell et al., 2013; Howell et al., 2016; Moore et al., 2021a) is not practical for 

generating large-scale SIM. The main challenges of estimating large-scale SIM across the pan-Arctic domain are (i) handling 

the large volume and delivery frequency of the imagery, (ii) efficiently selecting image stacks, and (iii) providing more 150 

computationally efficient feature tracking from the image stacks.  

To address (i) and (ii), an automated approach for determining the suitability of images for inclusion in the automatic 

SIM generation (i.e. S1 or RCM image stack selection) was developed and depicted in Fig. 6. For the image stack selection, a 

400 km x 400 km grid of sectors encompassing the pan-Arctic was generated and used to create overlapping stacks of SAR 

image pairs (Fig. 6). The footprint geometry of each SAR image was compared to a given sector’s extent and if the overlap 155 

was greater than 30%, that image was retained for feature tracking. Next, we assess image-to-image overlap within each sector 

to create a temporally sequential image stack that intersected one another to an acceptable degree (>=32,000 km2). Images 

within each sector with an overlap of at least 32,000 km2 were retained for feature tracking. The stacks are created every hour 

using the last-processed image from the previous run and the accumulated new imagery that had arrived in the time preceding.  

For (iii), a more computationally efficient application of automatic SIM tracking algorithm (i.e. image stack 160 

processing) was developed. Traditionally, image stacks were processed serially which was effective for local-scale studies 

with limited amounts of imagery, but with significant increases in the SAR image data volume and study area domain size 

from S1 and RCM, it was necessary to enhance the processing speed of ice feature tracking analysis. The concurrent approach 

as outlined in Fig. 7 takes advantage of vertical scalability by increasing the number of processes during image pair analysis. 

This approach allowed for an entire image stack to be efficiently processed with as many computational cores as were available. 165 

For example, when three sets of image pairs are processing and process 3 finishes before process 2, process 3 picks up the next 

sequence of pairs instead of waiting for process 2 (Fig. 7). After stack processing, the last-processed image for the given sector 

is recorded in a database and processing ends. It is important to note there is currently no “staleness” limit for the SAR images 

in a given sector. There are occasionally instances when long stretches of time (e.g. 7-days) occur between image pairs but 

this is mostly confined to the edge-sectors of the grid. Unfortunately, the computational capacity to take on the additional 170 

processing load of using the same image in multiple pair combinations is not currently available in the infrastructure being 

used. 

 

 

 175 
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Figure 6. Processing steps for automatically generating the S1 or RCM synthetic aperture radar (SAR) image stack selection.  180 
 

 

 
 

Figure 7. Illustration of the horizontal scalability approach used to process S1 or RCM image stacks. 185 
 

The final step involves combining the results of the automatic S1 and RCM SIM tracking process into defined spatial 

and temporal resolution grids to be used for analysis and mapping (Fig. 2). Combining the SIM output from S1 with RCM 

(i.e., S1+RCM) facilitates the ability to improve the spatial coverage because of S1+RCM image density across the Arctic 

(Fig. 3). In addition, S1+RCM image density generally increases with latitude (Fig. 3) indicating that more consistent coverage 190 

of the ice pack will be possible during the melt season which is beneficial considering this is when automated SIM tracking 

algorithms have more difficulty. Two datasets are routinely produced: 7-day 25 km and 3-day (rolling) 6.25 km. The former 

is to represent a spatially complete picture of SIM generated from SAR and the latter to provide a more high resolution dataset 

that can benefit applications requiring higher spatiotemporal resolution. It should be noted that based on S1+RCM image 
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density shown in Fig. 3 regional S1+RCM SIM products at higher spatial and temporal resolution are certainly achievable and 195 

ECCC-ASITS can be modified to produce SIM to very localized studies (e.g. Moore et al., 2021a Moore et al., 2021b).  

For each grid cell, at least 5 individually tracked SIM vectors had to be within a distance of 3 times grid cell resolution 

cell centroid. Considering the SIM vectors are determined at a spatial resolution of 200 m and gridding takes place at 25 km 

and 6.25 km, numerous vectors are within the grid cell. Only SIM vectors estimated from image pairs with a time separation 

of greater than 12 hrs were considered. We selected a 12 hrs cut-off because below 12 hrs the SIM resulted in less representative 200 

results, often due to higher wind speeds  with respect to the averaged product value (over 3 or 7 days).  This was the primary 

observation from previous studies constructing a very high temporal resolution time series (e.g. Howell and Brady, 2019; 

Moore et al., 2021a). Use of ice displacement vectors derived from images with lower time separation (< 12 hrs) would lead 

to less representative (more uncertain) average ice speeds in 3 or 7 days average SIM products. In addition, SIM vectors with 

speeds greater than 75 km/day where filtered out because based on manual inspection of automatically detected SIM vectors 205 

there are sometimes unrealistic anomalous SIM vectors with speeds greater than 75 km/day. For each grid cell, a series of 

descriptive statistics are calculated that include the number of S1+RCM SIM vectors, the mean u and v, the mean cross-

correlation coefficient, and an estimate of speed uncertainty for dry and wet sea conditions (see Section 5). Even after removing 

anomalously large SIM speeds, the automatic SIM tracking algorithm sometimes detected obviously erroneous SIM vectors 

far from the marginal ice zone and/or near the coast in sufficient quantity (i.e. 5+) to meet the grid cell criteria. These grid cells 210 

were subsequently filtered out using a threshold distance of 150 km from the marginal ice zone (i.e., ice concentration of at 

least 18%) using the weekly National Ice Center ice charts.  

 

4 Large-scale SIM from S1+RCM  

 The 7-day 25 km spatiotemporal scale is able to provide the most complete picture of SIM across the pan-Arctic 215 

from SAR imagery alone, this has long been desired. Examples of 7-day 25 km S1+RCM SIM over the pan-Arctic for selected 

weeks during winter months are shown in Fig. 8.  Notable features include the Transpolar Drift (Fig. 8a; Fig. 8c), Beaufort 

Gyre (Fig. 8b), a Beaufort Gyre reversal (Fig. 8a), and minimal SIM because of landfast (no ice motion) ice conditions within 

the majority of the CAA (Fig. 8). Some spatial gaps are present in certain weeks, particularly in the Laptev Sea (Fig. 8) and 

these gaps, in addition to others are because of the spatial variability in weekly image density of S1+RCM (Fig. 3). Resolving 220 

SIM during the melt season, even with high spatial resolution SAR imagery is more challenging than dry winter conditions 

because automated feature tracking is more difficult when the ice concentration is low or water is on the ice surface (e.g. 

Agnew et al., 2008; Lavergne et al., 2010). Examples of the spatial distribution of 25 km 7-day S1+RCM SIM for selected 

weeks summer months are shown in Fig. 9 and indeed the spatial coverage from S1+RCM is still considerable during the 

summer months.  225 
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 230 

 

 

Figure 8. The spatial distribution of 25 km 7-day S1+RCM sea ice motion on a) March 11-17, 2020, b) December 16-22, 2020, c) 

March 10-16, 2021, and d) May 19-25, 2021. Note that the white areas in the figure indicate either zero ice motion for the landfast 

ice or no ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 235 
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Figure 9. The spatial distribution of 25 km 7-day S1+RCM sea ice motion on a) July 1-7, 2020, b) August 5-11, 2020, c) July 7-13, 

2021, and d) August 4-10, 2021. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice 240 
motion information extracted (because of no SAR data, no ice, or no stable ice features). 
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The spatial distribution of 6.25 km 3-day pan-Arctic S1+RCM SIM for selected periods during the winter and summer 

are shown in Fig. 10 and Fig. 11, respectively. The insets of both Fig. 10 and Fig. 11 illustrate the level of SIM spatial detail 

captured at 6.25 km. More spatial gaps across the pan-Arctic using higher spatiotemporal resolution especially during the 245 

summer months. These problems relate to the challenge of constructing a complete picture of pan-Arctic SIM every 3-days 

using available SAR imagery because of their different acquisition scenarios. Specifically, RCM acquisitions are more 

spatiotemporally distributed across the Arctic and S1 are more intensive in certain regions (Fig. 3) and as a result, some regions 

can be missed on certain days. This uneven spatial imaging problem is illustrated in Fig. 12 where it is apparent SIM is captured 

in the Beaufort Sea, Chukchi Sea and Hudson Bay from March 12-14, 2021 but absent from March 14-16, 2021. Also, just 250 

because SAR image pairs are available over a region does not imply automatic SIM detection will be successful particularly 

during the summer months. Despite this, there are still many regions across the Arctic where high spatial and temporal SIM 

can be resolved using S1+RCM but the aforementioned problems need to be taken into consideration with respect to regional 

time series development.  

Another benefit provided by S1+RCM SIM is that SIM is resolved within the CAA, and Fig 13. provides a more 255 

detailed look at summer SIM within the CAA. Indeed SIM in this region is very spatially heterogeneous as pointed out by 

Melling (2002). Estimating SIM within the CAA is challenging for coarse resolution satellites because of its narrow channels 

and inlets that make automated feature tracking difficult, especially during the melt season (Agnew et al., 2008) and this is a 

major gap with existing SIM products. Information on SIM within the CAA is important given it contains the Northwest 

Passage and has experienced increases in shipping activity (e.g. Dawson et al., 2018). Both large-scale S1+RCM SIM products 260 

generated by ECCC-ASITS provide valuable SIM information in this region not just for scientific analysis, but also for 

stakeholders operating in the CAA. Continued monitoring of SIM within the CAA is important as climate warming is expected 

make the region more navigable in the future (Mudryk et al., 2021). 

 

 265 
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Figure 10. The spatial distribution of 6.25 km 3-day S1+RCM sea ice motion on March 12-14, 2020. The letters correspond to 

zoomed in regions on the map. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice 

motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 270 
 

 
 

Figure 11. The spatial distribution of 6.25 km 3-day S1+RCM sea ice motion on August 27-29, 2020. The letters correspond to 

zoomed in regions on the map. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice 275 
motion information extracted (because of no SAR data, no ice, or no stable ice features). 
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Figure 12. The spatial distribution of 6.25 km 3-day S1+RCM sea ice motion on a) March 12-14, 2020 and b) March 14-16, 2020. 

Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice motion information extracted 285 
(because of no SAR data, no ice, or no stable ice features). 
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 290 
Figure 13. The spatial distribution of 25 km 7-day S1+RCM sea ice motion surrounding the Canadian Arctic Archipelago on a) 

September 9-15, 2020 and b) August 11-17, 2021.  Note that the white areas in the figure indicate either zero ice motion for the 

landfast ice or no ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 

 295 

5 S1+RCM SIM validation and assessing uncertainty  

ECCC’s automated SIM tracking algorithm has previously undergone validation against buoy positions and has an 

uncertainty of 0.43 km derived for RADARSAT-2 SAR image pairs separated by 1-3 days (Komarov and Barber, 2014). 

Moreover, SIM output from the tracking algorithm has been found to be in good agreement with other tracking algorithms that 

includes the RADARSAT Geophysical Processor (RGPS) (e.g. Kwok, 2006; Agnew et al., 2008; Howell et al., 2013). 300 

However, considering the application of the tracking algorithm in this study represents considerably larger spatial and temporal 

domains, together with new satellites sensors (i.e. S1 and RCM), it is important to reassess the quality and uncertainty of the 

resulting S1+RCM SIM vectors.  

To provide a quality assessment of the S1+RCM SIM vectors for each grid cell the cross-correlation coefficient for 

all S1+RCM vectors in each grid cell were averaged. Fig. 14 summaries the monthly cross-correlation coefficients of 6.25 km 305 

3-day S1+RCM SIM using boxplots. Note that for the ECCC automated SIM tracking algorithm, the cross-correlation 

coefficients are calculated for the second order derivatives (Laplacians) of the images, and not the original images; therefore, 

the cross-correlation coefficients may appear lower than reported in the literature by other studies. The cross-correlation 

coefficient exhibited the expected variability associated with the seasonal cycle of sea ice and remained relatively high and 

stable during the dry winter conditions (~0.45), decreased during the melt season (~0.33) and then returned to stability 310 
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following the melt season (~0.45). As found in previous studies, lower quality vectors are more apparent during the shoulder 

seasons (i.e. melt-freeze transitions) (e.g., Agnew et al., 2008; Lavergne et al., 2010; Lavergne et al., 2021).  

 

Figure 14. Boxplots of the monthly cross-correlation coefficient based on S1+RCM SIM from March 2020 to October 2021 
 315 

In order to estimate the SIM uncertainty from the ECCC’s automated SIM tracking algorithm for S1 and RCM SAR 

images, we compared SIM displacement vectors from S1 and RCM to buoy positions from the IABP during winter (April) 

and summer (August) time periods. For all S1 and RCM displacement vectors (derived from image pairs), the closest buoy 

trajectory was co-located to the start of each displacement vector position. The only restrictions placed on the buoys where 

that they were located north of 40N and the distance between the starting point of a given SAR ice motion tracking vector and 320 

the starting point of the corresponding buoy trajectory did not exceed 3 km.  Fig 15. summarizes the results for dry winter 

conditions (April 2020 and 2021) and during the melt season (August 2020 and 2021). The ECCC automated SIM tracking 

algorithm performs very well during winter conditions with a root mean square error (RMSE) of 2.78 km and a mean difference 

(MD) of 0.40 km. Performance slightly decreases during the summer with a lower number of vectors detected and an RMSE 

of 3.43 km.   325 

Our RMSE is higher than the value reported by Komarov and Barber (2014) likely because the initial validation 

assessment of the automated tracking algorithm only used 35 sample points in the Beaufort Sea during the winter and the 

vectors were at a higher spatial resolution (i.e. 100 m). Our RMSE is slightly higher than reported by Lindsay and Stern (2003) 

who compared the RGPS SIM to buoys in the Central Arctic and reported an RMSE of ~1 km for the winter and ~2 km for 

the summer. However, our RMSE estimates are much lower than Wilson et al. (2001) who compared RADARSAT-1 SAR 330 

estimates of SIM to buoys in Baffin Bay and reported an RMSE of 3.8 km for the winter and 6.8 km for the summer. The 

differences in RMSE’s can be attributed to numerous factors including the geolocation errors of the different SAR satellites, 

differences in the methodology for buoy comparison, and different tracking algorithms. Overall, our validation is certainly 

representative of large-scale SIM uncertainty because we considered a wide-range of ice conditions during both the winter and 

summer months 335 
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Taking into consideration the difference between the winter and the summer we assign two uncertainties to the 

S1+RCM SIM products for dry and wet conditions as follows. Consider a grid cell containing a set of N sea ice velocity 

vectors 𝑉⃗ 𝑖, where 𝑖 = 1,2, … , 𝑁. Ice speed for this each vector has the following uncertainty associated with the SIM tracking 

algorithm deriving the ice motion vector from two consecutive images: 

∆𝑉𝑖 =
𝑆0

∆𝑡𝑖
,           (1) 340 

where, ∆𝑡𝑖 is the time interval (in days) separating two SAR images used to derive the considered ice velocity vector 𝑉⃗ 𝑖. In (1) 

𝑠𝑜 is the uncertainty in sea ice displacement (not speed) for dry ice conditions (2.78 km) or wet ice conditions (3.43 km). Note 

that 𝑠𝑜 must be divided by ∆𝑡𝑖 to come up with the ice velocity uncertainty.  The average uncertainty for dry (𝑠𝑜 = 2.78 km) 

and wet (𝑠𝑜 = 3.43 km) ice conditions in each grid cell (N) is then determined using the following equation: 

𝜎𝑆𝐼𝑀 =
1

𝑁
∑ ∆𝑉𝑖

𝑁
𝑖=1            (2) 345 

 

 

Figure 15. Comparison between ice motion vectors derived by the Komarov and Barber (2014) automated sea ice tracking algorithm 

from S1 and RCM SAR images and buoy data. 

 350 

Fig. 16 shows an example of the spatial distribution of both dry and wet uncertainty estimates indicating higher 

uncertainty estimates for the latter. We acknowledge that it is difficult to quantify the impact of SAR image pair availability 

over 7-days together with automatic SIM vector detection under certain environmental conditions. The number of S1+RCM 

SIM vectors used in the grid cell generation can subsequently be used to account for this whereby, more confidence (less 

uncertainty) in SIM can be associated with a larger number of vectors. Moreover, S1+RCM image density increases with 355 

latitude (Fig. 3) indicating that more consistent coverage is available over the Central Arctic, which is also beneficial during 

the melt season when automated SIM tracking algorithms have more difficulty. However, SAR image pair coverage could be 
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exceptional over the 7-day time window, yet environmental conditions (e.g., melt ponds, low ice concentration, marginal ice 

zone, etc.) could still make automatic SIM vector detection difficult resulting in a low number of SIM vectors in the grid cell. 

The problem of image coverage is less of a concern for the 3-day product given the average image separation is ~2-days.  360 

 
Figure 16. Spatial distribution of (a) dry and (b) wet S1+RCM SIM uncertainty for August 5-11, 2020 

 

6 SIM comparison between S1+RCM, NSIDC, and OSI SAF 

Given the difficultly in quantifying SAR image pair coverage on S1+RCM SIM uncertainty, we now compare 365 

S1+RCM SIM to the NSIDC and OSI SAF SIM products that are widely utilized by the sea ice community . Such a comparison 

provides additional quantitative confidence metrics to assess the quality of the S1+RCM SIM estimates. To facilitate a 

representative 1-to-1 grid cell comparison between S1+RCM SIM and both the NSIDC and OSI SAF SIM products, the spatial 

and temporal resolution of the S1+RCM were matched with the NSIDC and OSI SAF SIM products from March to December 

2020. For OSI SAF, S1+RCM was generated with a 2-day at 62.5 km and for NSIDC, S1+RCM was generated with 7-day 370 

temporal resolution and 25 km spatial resolution. For each product’s temporal resolution (i.e. 7-day for NSIDC and 2-day for 

OSI SAF), all the S1+RCM SIM vectors within each products grid cells (i.e. 25 km for NSIDC and 62.5 km for OSI SAF) 

were averaged. This resulted in 455,905 grid cells for the S1+RCM and NSIDC comparison and 376,386 grid cells for the 

S1+RCM and OSI SAF comparison. More samples were available from NSIDC because of its higher spatial resolution. 

Scatterplots of the u and v vectors components of SIM for S1+RCM versus NSIDC and OSI SAF are shown in Fig. 375 

17 and 18, respectively. Both existing SIM products are in good agreement with S1+RCM with correlation coefficients for u 

and v of 0.75 and 0.78, respectively for the NSIDC and 0.84 and 0.85, respectively for OSI SAF providing confidence in the 
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SAR coverage for the 7-day and 3-day S1+RCM products. The RMSE is higher for the NSIDC (u=4.6 km/day and v=4.7 

km/day) compared to OSI SAF (u=3.9 km/day and v=3.9 km/day), and we note the better agreement between S1+RCM and 

OSI SAF is likely because the temporal resolution more closely matches the average overlap between SAR images (i.e. ~2 380 

days). However, the overall larger speed associated with S1+RCM is most likely the result of higher spatial resolution 

compared to lower resolution satellite data used in NSIDC and OSI-SAF as faster speeds are more difficult to track at lower 

spatial resolution because of temporal decorrelation. Kwok et al. (1998) also noted this problem when comparing SIM from 

passive microwave with SAR and found it also applies to regions of low ice concentration. Figs. 17 and 18 also illustrate that 

users of either the NSIDC or OSI SAF SIM products are underestimating SIM.  385 

 

 
Figure 17. Heat scatterplots of S1+RCM sea ice motion versus National Snow and Ice Data Center (NSIDC) SIM for a) u and b) v 

vector components.  Also shown is the number of samples (n), Pearson’s correlation coefficient (R), root-mean square error (RMSE), 

and the mean difference (MD). 390 
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Figure 18. Heat scatterplots of S1+RCM sea ice motion versus Ocean and Sea Ice Satellite Application Facility (OSI SAF) SIM for 

a) u and b) v vector components.  Also shown is the number of samples (n), Pearson’s correlation coefficient (R), root-mean square 395 
error (RMSE), and the mean difference (MD). 

 

7 Conclusions  

In this study, we described the ECCC-ASITS and its application of 135,471 images from 5 SAR satellites from S1 

and the RCM to routinely estimate SIM over the large-scale pan-Arctic domain from March 2020 to October 2021. The higher 400 

density image coverage of S1+RCM as oppose to just S1 and/or RCM provided more available SAR image pairs over Hudson 

Bay, Davis Strait, Beaufort Sea, Bering Sea, and the North Pole. S1+RCM SIM covered the majority of the pan-Arctic domain 

using a spatial resolution of 25 km and temporal resolution of 7-days.  6.25 km 3-day products also were generated and can 

provide improved spatiotemporal SIM representation in many regions of the pan-Arctic.  In particular, the spatial heterogeneity 

in large-scale S1+RCM SIM at both scales was preserved as well as SIM was able to be resolved within the narrow channels 405 

and inlets of the CAA filling a major information gap.   

 The S1+RCM SIM vectors were compared against buoy estimates from the IABP for both dry and wet ice conditions 

to assess the performance of the ECCC automated feature tracking algorithm with S1 and RCM imagery.  Results indicate an 

uncertainty of 2.78 km for the former and 3.43 km for the latter and we developed a range of ice speed uncertainties for the 

S1+RCM SIM products. Comparing the S1+RCM SIM estimates to the existing SIM datasets of NSIDC and OSI SAF revealed 410 

that S1+RCM provides larger ice speeds (~4 km/day) confirming the speed bias associated with lower resolution sensors.  

The primary purpose of ECCC-ASITS is to routinely deliver SIM information for operational usage within ECCC as 

well as the scientific community and maritime stakeholders. The data archive is available from March 2020 to October 2021 

and updates are produced ad hoc (every few months) but updates are expected to occur more frequently in the near-future. We 

recognize that the short data record of S1+RCM SIM does not make it well suited for long-term scientific studies. However, 415 



21 

 

the Arctic sea ice is rapidly changing and for recent large-scale process studies, or localized studies (e.g. MOSAiC) or regional 

studies (e.g. CAA) S1+RCM SIM products generated by the ECCC-ASTIS can provide more representative SIM estimates 

than their passive microwave counter-parts. Moreover, the time series of large-scale generated SIM from SAR needs to start 

now with the currently available and expected continuation of spaceborne SAR missions. The anticipated launch of the NASA-

ISRO (NISAR) L&S-band SAR satellite also provides an opportunity to add L-band into the ECCC-ASITS. L-band SAR 420 

would be able to provide improved SIM estimates during the melt season compared to C-band (Howell et al., 2018). Even 

without adding different frequency satellite sensors, the upcoming launch of Sentinel-1C and Sentinel-1D will continue to 

facilitate the routine generation of large-scale SIM using the ECCC-ASITS from C-band SAR for many years to come. 

Future refinements to the ECCC-ASITS are possible which includes adding the HV channel to complement SIM 

estimated from HH polarization. Mixing S1 and RCM images offers an opportunity to provide more spatiotemporally refined 425 

SIM estimation across the Arctic; however, based on the current image distribution of S1 and RCM it is unlikely to improve 

spatial coverage as RCM mainly fills in the spatial gaps in S1 coverage. It is also very challenging computationally to produce 

and work with large-scale SAR derived SIM products at very high spatiotemporal resolution. To that end, mixing sensors at 

C-band will likely not result in major advances of large-scale automated detected SIM, but it could provide more insight into 

local scale processes (e.g. fault generation, instantaneous reaction to forcing, inertial oscillations to name a few). In this regard, 430 

the temporal resolution of mixing S1 and RCM imagery could be pushed to sub-daily in some regions, and we anticipate 

exploring this option for targeted dense time series applications in the Arctic. While groups such as the Polar Space Task 

Group aim to improve or refine SAR coverage across the pan-Arctic over the annual cycle, it is unlikely a purely SAR derived 

SIM product will be able to achieve daily or sub-daily coverage consistently across the pan-Arctic. This has only recently been 

achieved with passive microwave observations using a swath-to-swath approach (Lavergne et al., 2021). Therefore, it could 435 

be worth exploring the complimentary of SIM provided from passive microwave “swath-to-swath” and SIM generated from 

SAR.  
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