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Abstract. As Arctic sea ice extent continues to decline, remote sensing observations are becoming even more vital for the 

monitoring and understanding of sea ice. Recently, the sea ice community has entered a new era of synthetic aperture radar 

(SAR) satellites operating at C-band with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 and the RADARSAT 10 

Constellation Mission (RCM) in 2019. These missions represent 5 spaceborne SAR sensors, that together routinely cover the 

pan-Arctic sea ice domain. Here, we describe, apply and validate the Environment and Climate Change Canada automated sea 

ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using 

SAR images from S1 and RCM. We applied the ECCC-ASITS to the incoming image streams of S1 and RCM from March 

2020 to October 2021 using a total of 135,471 SAR images and generated new SIM datasets (7-day 25 km and 3-day 6.25 km) 15 

by combining the image stream outputs of S1 and RCM (S1+RCM). Results indicate that S1+RCM SIM provides more 

coverage in Hudson Bay, Davis Strait, Beaufort Sea, Bering Sea, and directly over the North Pole compared to SIM from S1 

alone. Based on the resolvable S1+RCM SIM grid cells, the 7-day 25 km spatiotemporal scale is able to provide the most 

complete picture of SIM across the pan-Arctic from SAR imagery alone but considerable spatiotemporal coverage is also 

available from 3-day 6.25 products. S1+RCM SIM is resolved within the narrow channels and inlets of the Canadian Arctic 20 

Archipelago filling a major gap from coarser resolution sensors. Validating the ECCC-ASITS using S1 and RCM imagery 

against buoys indicate a root mean square error (RMSE) of 2.78 km for dry ice conditions and 3.43 km for melt season 

conditions. Larger speeds are more apparent with S1+RCM SIM as comparison with the National Snow and Ice Data Center 

(NSIDC) SIM product and the Ocean and Sea Ice Satellite Application Facility (OSI SAF) SIM product indicated a RMSE of 

u=4.6 km/day and v=4.7 km/day for the NSIDC and u=3.9 km/day and v=3.9 km/day for OSI-SAF. Overall, our results 25 

demonstrate the robustness of the ECCC-ASITS for routinely generating large-scale SIM entirely from SAR imagery across 

the pan-Arctic domain. 

Here, we utilized over 60,000 SAR images from Sentinel-1AB (S1) and RCM to generate large-scale sea ice motion (SIM) 

estimates over the pan-Arctic domain from March to December, 2020. On average, 4.5 million SIM vectors from S1 and RCM 

were automatically detected per week for 2020 and when combined (S1+RCM) they facilitated the generation of 7-day, 25 km 30 

SIM products across the pan-Arctic domain. S1+RCM SIM provided more coverage in Hudson Bay, Davis Strait, Beaufort 

Sea, Bering Sea, and over the North Pole compared to SIM from S1 alone. S1+RCM SIM was able to be resolved within the 
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narrow channels and inlets across the pan-Arctic alleviating the main limitation of coarser resolution sensors. S1+RCM SIM 

provided larger ice speeds with a mean difference (MD) of 1.3 km/day compared to the National Snow and Ice Data Center 

(NSIDC) SIM product and a MD of 0.76 km/day compared to Ocean and Sea Ice-Satellite Application Facility (OSI-SAF) 35 

SIM product. S1+RCM was also able to better resolve SIM in the marginal ice zone compared to the NSIDC and OSA-SAF 

SIM products. Overall, our results demonstrate that combining SIM from multiple spaceborne SAR satellites allows for large-

scale SIM to be routinely generated across the pan-Arctic domain.  

1 Introduction 

As Arctic sea ice extent continues to decline in concert with increases in carbon dioxide (CO2) emissions (Notz and 40 

Stroeve, 2016), remote sensing observations are becoming even more vital for the monitoring and understanding of Arctic sea 

ice. Recently, the sea ice community has entered a new era of synthetic aperture radar (SAR) satellites operating at C-band 

(wavelength,  = 5.5 cm) with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 (S1; Tores et al., 2012) and the 

RADARSAT Constellation Mission (RCM) in 2019 (Thompson, 2015). Together these missions represent 5 spaceborne SAR 

sensors that when combined offer the opportunity to retrieve large-scale sea ice geophysical variables with high spatiotemporal 45 

resolution. Small et al. (2021) demonstrated that combining SAR images from S1 and RADARSAT-2 allowed for the 

production of high spatiotemporal resolution analysis-ready composite products for large regions. Howell et al. (2019) used 

analysis-ready composite products generated from S1 and RADARSAT-2 based on the approach described by Small et al., 

(2021) to provide high spatial resolution estimates of melt onset over a large region in the northern Canadian Arctic. An 

important sea ice geophysical variable that could also benefit from large-scale SAR estimates across the Arctic is sea ice 50 

motion (SIM). SIM is controlled by the exchange of momentum due to turbulent process primarily from atmospheric and 

oceanic forcing. Away from the coast, winds explain 70% or more of the variance in Arctic sea ice motion (Thorndike and 

Colony, 1982) and as a result, monitoring changes in SIM is important for understanding how sea ice responds to changes in 

atmospheric circulation (Rigor et al., 2002). SIM convergent and divergent processes impact the overall thickness of Arctic 

sea ice (Kwok, 2015) and the dynamic component of the Arctic sea ice area and volume balance is also impacted by SIM 55 

(Kwok, 2004; Kwok, 2009). The long-term record of SIM in the Arctic indicates the ice speed is increasing which are 

associated with thinner ice being more susceptible to wind forcing (Rampal et al., 2007; Kwok et al., 2013; Moore et al., 2019).  

Techniques for estimating SIM from satellite observations have a long history dating back to the late 1980s and early 

1990s that are primarily based on the maximum cross-correlation coefficient between overlapping images (e.g. Fily and 

Rothrock, 1987; Kwok et al., 1990; Emery et al., 1991). The maximum cross-correlation approach to estimate SIM can be 60 

applied to virtually any overlapping pair of satellite imagery separated by a relatively short time interval of ~1-3 days. For 

large-scale SIM, passive microwave imagery is typically the most widely used because of its large swath and daily coverage 

(e.g. Agnew et al., 1997; Kwok et al., 1998; Lavergne et al., 2010; Tschudi et al., 2020). Enhanced resolution SIM products 

with spatial resolutions of ~2 km have also been generated (e.g. Haarpaintner, 2006; Agnew et al., 2008) although they have 
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not been widely utilized. The limitationtrade-off with respect to large-scale SIM estimated from passive microwave imagery, 65 

however, is a low spatial resolution (12-2550-100 km). As a result, SIM is more difficult to track with lower spatial resolution 

passive microwave sensors (Kwok et al., 1998) especially, within narrow channels and inlets (e.g. the Canadian Arctic 

Archipelago; CAA) compared to SAR. However, SIM estimates from SAR are typically regionally based because of image 

availability across the Arctic.  With the availability of SAR imagery from S1 and RCM, a new opportunity exists to provide 

both the operational and scientific communities with larger-scale estimates of SIM from SAR. In addition, with marine activity 70 

in the Arctic increasing (e.g. Eguíluz et al., 2016, Dawson et al., 2018), a wide-range of maritime stakeholders could benefit 

from access to large-scale SAR SIM for safety, planning and situational awareness (Wagner et al., 2020).  

In this study, we describe, apply, and validate the Environment and Climate Change Canada automated sea ice 

tracking system (ECCC-ASITS) using SAR imagery from the S1 and RCM to generate new SIM products over the pan-Arctic 

domain. In this study we make use of 5 SAR satellites from the S1 and RCM missions to generate SIM over the large-scale 75 

pan-Arctic domain (Fig. 1). To our knowledge this is perhaps the first time such an extensive combining processing of SAR 

imagery at the pan-Arctic scale has been undertaken to generate SIM. The ECCC-ASTIS is designed to facilitate the routine 

generation of SIM to serve operations within ECCC and provide new and unique SIM data to the wider scientific community 

and maritime stakeholders. Here, wWe focus primarily on the latter applications by first describeing our the ECCC-ASITS 

work flow thatworkflow that estimates SIM from S1 and RCM SAR imagery (hereafter, S1+RCM) in close to near-real time 80 

and combines the output into a S1+RCM SIM products. We then present the results of two S1+RCM products from March 

2020 to October 2021 followed by a then discuss section discussing the validation and uncertainty of S1+RCM SIM products. 

the vector quality and SIM uncertainty of large-scale  of the S1+RCM SIM over the annual cycle for the Arctic and its sub-

regions. Finally, we provide a detailed compareison of our S1+RCM SIM estimates product to the existing SIM datasets from 

the National Snow and Ice Data Center (NSIDC) (Tschudi et al., 2020) and Ocean and Sea Ice-Satellite Application Facility 85 

(OSI-SAF) SIM (OSI-SAF) (Lavergne et al., 2010). 
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Figure 1. Study area domain including sub-regions. 

2 Data 

The primary datasets used in this analysis were Extra Wide Swath imagery at HH polarization from S1 and ScanSAR 90 

50 m (SC50M), ScanSAR 100 m (SC100M), and ScanSAR Low Noise (SCLN) at HH polarization from RCM from March 

2020 to December 2020October 31, 2021 (Table 1). With the recent availability of RCM imagery in 2020, this provided an 

additional 29,744 images that when combined with S1 (~32,810 images) resulted in 60,000+ images being available to generate 

SIM across the pan-Arctic for 2020.We also used daily buoy positions from International Arctic Buoy Programme (IABP) for 

April and August 2020 and 2021, 7-day SIM NSIDC Polar Pathfinder dataset and the 2-day  multi-sensor low resolution 62.5 95 

kmthe 2-day OSI-SAF sea ice motion dataset (OSI-405) from March to December 2020. Tschudi et al., (2020) provides a 

complete description of the NSIDC Polar Pathfinder SIM dataset, and Lavergne et al., (2010) provides a complete description 

of the OSI-SAF SIM dataset.  Finally, we used the 2020 daily pan-Arctic ice charts from the National Ice Center for 2020 and 

2021.  

 100 

Table 1. Satellite SAR image inventory used in this analysis from March 2020 to October 2021. December 2020. 

Platform Beam Mode Pixel Size (m) Swath  

(km) 

Image Count 

RCM Single Beam Medium Resolution (SC16M) 6.25  30 123 

 ScanSAR Medium Resolution (SC30M) 12.5 125 115 

 ScanSAR Medium Resolution 50 m (SC50M) 20 350 50,468 

 Scan SAR Low Resolution 100 m (SC100M) 40 500 18,384 

 ScanSAR Low Noise (SCLN) 40 350 1,857 

S1 Extra-Wide Swath (EW) 40 410 64,524 
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3 Methods 

3.1 ECCC aAutomated sea ice motion tracking algorithm  

We make use of the automated SIM tracking algorithm developed by Komarov and Barber (2014) to estimate large-105 

scale SIM across the pan-Arctic domain. The algorithm has been widely utilized for applications that require robust estimates 

of SIM in Arctic using SAR at C-band (e.g. Howell et al., 2013; Howell et al., 2018; Komarov and Buehner, 2019; Moore et 

al., 2021a). A full description is provided by Komarov and Barber (2014), but the main components of the algorithm are briefly 

described here. To begin with, coarser spatial resolution levels images are generated from the original spatial resolution of the 

SAR image pairs. For example, if the original SAR image pairs have a spatial resolution of 200 m then the additional generated 110 

levels would be 400 m and 800 m. A set of control points (i.e., ice features) is automatically generated for each resolution level 

based on the SAR image local variances. To highlight edges and heterogeneities at each resolution level, a Gaussian filter and 

the Laplace operator are applied sequentially. Beginning with the coarsestlowest resolution level, ice feature matches in the 

image pairs are identified by combining the phase-correlation and cross-correlation matching techniques that allows for both 

the translation and rotational components of SIM to be identified. SIM vectors not presented in both forward and backwards 115 

image registration passes are filtered out, as well as vectors with low cross-correlation coefficients. In order to refine the SIM 

vectors, at each consecutive resolution level the algorithm is guided by SIM vectors identified at the previous resolution. An 

example of the SIM output generated from the algorithm based on two overlapping SAR image is shown in Fig. 21. The 

limitations that are widely known with respect to estimating SIM from SAR imagery include regions of low ice concentration, 

melt water on the surface of the sea ice and longer time separation between images also apply to this algorithm. 120 

 

The algorithm has been widely utilized for applications that require robust estimates of SIM in Arctic using SAR at 

C-band (e.g. Howell et al., 2013; Howell et al., 2018; Komarov and Buehner, 2019; Moore et al., 2021).  Moreover, when the 

SIM vector outputs were collocated and coincided with ice buoy trajectories, it was found to have a root-mean square error 

(RMSE) of 0.43 km. The limitations that are widely known with respect to estimating SIM from SAR imagery include regions 125 

of low ice concentration, melt water on the surface of the sea ice and longer time separation between images also apply to this 

algorithm. 
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Figure 21.  a) RCM image on April 7, 2020, b) RCM image on April 10, 2020, and c) detected sea ice motion vectors (green) over 130 
RCM April 7, 2020.  The black dotes indicate detection vectors with no motion. RADARSAT Constellation Mission Imagery © 

Government of Canada 2020. RADARSAT is an official mark of the Canadian Space Agency. 

 

3.2 Generating large-scale gridded sea ice motionECCC automated sea ice motion tracking system (ECCC-ASITS) 

The ECCC-ASTIS facilitates the routine generation of S1+RCM SIM products however, it should be noted the system 135 

has roots (i.e. built-up) in previous studies (e.g. Howell and Brady, 2019; Moore et al., 2021a; Moore et al., 2021b). While the 

primary system methodology described here is for larger-scale SIM generation, it is not strictly limited for this application and 

can (has) been modified to accommodate research or operational specific objectives. 

The generalized processing chain for generating large-scale S1+RCM SIM using ECCC-ASTIS is illustrated in Fig. 

32. The approach processes the S1 and RCM image streams separately and then combines the outputs into a S1+RCM SIM 140 

product. This parallel approach was chosen for several reasons. First, mixing S1 and RCM primarily improves spatial coverage 

as RCM mainly fills in the spatial gaps in S1 coverage as RCM coverage is more widely spread across the Arctic and covering 

Bering Sea, Laptev Sea, Davis Strait, Southern Beaufort Sea and even the North Pole thus filling a gap typically associated 

with the majority of satellite sensors (Fig. 3). An example of the ability of RCM to almost completely cover the North Pole on 

a single day is shown in Fig. 4. However, we note that the temporal resolution of SIM could be improved by mixing S1 and 145 

RCM but this would be restricted to only certain regions of the Arctic. Second,  because SAR imagery is received by 

Environment and Climate Change Canada (ECCC) from S1 and RCM in close to near-real time and in order to “keep-up” with 

the 100’s of images coming in per day and routinely generate products every day  and the subsequent computational load on 

automated SIM detection,  the processing system is run every hour given computational load on automated SIM detection,. 

Fig 5. illustrates the amount of S1 and RCM SAR imagery that was processed over a 7-day time period in March 2020 which 150 

amounted to over 1132 SAR images or ~160 images per day. As a resultFinally, , S1 and RCM imagery are currently not 

mixed together for automated SIM tracking given the the different orbit characteristics of the satellites which contribute to 

differences in terms of when images are acquired compared to when they are received by ECCC. For example, if an S1 image 

acquired at 1300h UTC is transferred to our system sooner than an RCM image that was acquired at 1100h UTC then the RCM 

image would be missed. We note that S1A and S1B are freely mixed in the Sentinel processing chain as well as RCM1, RCM2 155 

and RCM3 are mixed in the RCM processing chain. 
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For both S1 and RCM images streams, the pre-processing steps shown in Fig. 3 2 first involve calibrating the imagery 

to the backscatter coefficient of sigma nought (°) using the HH-polarization channel and map-projected to the NSIDC North 

Pole Stereographic WGS-84, EPSG:3413 coordinate system with a 200 m pixel size. For S1 imagery, pre-processing steps 

were applied using the Graph Processing Tool (GPT) of the Sentinel Application Platform (SNAP) software, and for RCM 160 

imagery, the pre-processing workflow was applied using an in-house pre-processor. 

Manual inspection of SAR imagery and subsequent image stack compilation prior to automatic SIM generation, while 

effective in regional-scale studies (e.g. Howell et al., 2013; Howell et al., 2016; Moore et al., 2021) is not practical for 

generating large-scale SIM. The main challenges of estimating large-scale SIM across the pan-Arctic domain are (i) handling 

the large volume and delivery frequency of the imagery, (ii) efficiently selecting image stacks, and (iii) providing more 165 

computationally efficient feature tracking from the image stacks.  

To address (i) and (ii), an automated approach for determining the suitability of images for inclusion in the automatic 

SIM generation (i.e. S1 or RCM image stack selection) was developed and depicted in Fig. 36. For the image stack selection, 

a 400 km x 400 km grid of sectors encompassing the pan-Arctic was generated and used to create overlapping stacks of SAR 

image pairs (Fig. 6) (Fig. 3). The footprint geometry of each SAR image was compared to a given sector’s extent and if the 170 

overlap <= 30% was achieved, that image was retained for feature tracking. Next, we assess image-to-image overlap within 

each sector to create a temporally sequential image stack that intersected one another to an acceptable degree (>=32,000 km2). 

Images within each sector with an overlap of at least 32,000 km2 were retained for feature tracking. The stacks are created 

every hour using the last-processed image from the previous run and the accumulated new imagery that had arrived in the time 

preceding.  175 

For (iii), a more computationally efficient application of automatic SIM tracking algorithm (i.e. image stack 

processing) was developed. Traditionally, image stacks were processed serially which was effective for local-scale studies 

with limited amounts of imagery, but with significant increases in the SAR image data volume and study area domain size 

from S1 and RCM, it was necessary to enhance the processing speed of ice feature tracking analysis. The concurrent approach 

as outlined in Fig. 5 7 takes advantage of vertical scalability by increasing the number of processes during image pair analysis. 180 

This approach allowed for an entire image stack to be efficiently processed with as many computational cores as were available. 

For example, when three sets of image pairs are processing and process 3 finishes before process 2, process 3 picks up the next 

sequence of pairs instead of waiting for process 2 (Fig. 57). After stack processing, the last-processed image for the given 

sector is recorded in a database and processing ends. It is important to note there is currently no “staleness” limit for the SAR 

images in a given sector. There are occasionally instances when long stretches of time (e.g. 7-days) occur between images 185 

pairs but this is mostly confined to the edge-sectors of the grid. Unfortunately, the computational capacity to take on the 

additional processing load of using the same image in multiple pair combinations is not currently available in the infrastructure 

being used. 

 

 190 
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Figure 32. Generalized processing chain for generating large-scale sea ice motion from S1 and RCM across the pan-Arctic domain. 

 

 

Figure 3. Image density per week for a) S1, b) RCM, and c) S1+RCM based on Table 1 195 
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Figure 46. Processing steps for automatically generating the S1 or RCM synthetic aperture radar (SAR) image stack selection.  

 200 
 

 

 

 

 205 

 
 

Figure 5. Figure 7. Illustration of the horizontal scalability approach used to process S1 or RCM image stacks. 

 

The final step involved involves combining the results of the automatic S1 and RCM SIM tracking process into 210 

defined spatial and temporal resolution grids to be used for analysis and mapping (Fig. 32). Combining the SIM output from 

S1 with RCM (i.e., S1+RCM) facilitated facilitates the ability to improve the spatial coverage and because of S1+RCM image 

density of SAR generated SIM across the Arctic (Fig 3.). For example, the spatial distribution of SAR image density per week 

in 2020 for S1, RCM and S1+RCM is shown in Fig. 6. S1 had a denser coverage compared to RCM for the majority of the 

Arctic regions and especially the Central Arctic and Greenland Sea. However, RCM coverage was more widely spread across 215 

the Arctic compared to S1 and extended into to the Bering Sea, Labrador Sea, and over the North Pole thus filling a gap 

typically associated with the majority of satellite sensors. An example of the ability of RCM to almost completely cover the 
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North Pole on a single day is shown in Fig. 7. In addition, S1+RCM image density increases with latitude (Fig. 63) indicating 

that more consistent coverage of the ice pack will be possible during the melt season which is beneficial considering this is 

when automated SIM tracking algorithms have more difficulty. Clearly, SAR image density from S1+RCM from March to 220 

December 2020 was significant (Fig. 6) with almost complete coverage every 3-days. Two datasets are routinely produced: 7-

day 25 km and 3-day (rolling) 6.25 km. The former is to represent a spatial complete picture of SIM generated from SAR and 

the latter to provide a more high resolution dataset that can benefit applications requiring higher spatiotemporal resolution. 

However, despite the high image density coverage from S1+RCM, more consistent pan-Arctic SIM coverage can be achieved 

over 7-days because there are more image overlaps during a longer time span. As a result, a 25 km spatial resolution with a 225 

temporal resolution of 7-day was selected to provide the most consistent S1+RCM SIM coverage across the pan-Arctic domain. 

It should be noted that based on S1+RCM image density shown in Fig. 6 3 regional S1+RCM SIM products at higher spatial 

and temporal resolution are certainly achievable given the image density S1+RCMand ECCC-ASITS can be modified to 

produce SIM to very localized studies (e.g. Moore et al., 2021a Moore et al., 2021b)., and as a result we also briefly demonstrate 

this capability in the results section.  230 

For each grid cell, at least 5 individually tracked SIM vectors had to be within a distance of 3 times grid cell resolution 

cell centroid. Considering the SIM vectors are determined at a spatial resolution of 200 m and gridding takes place at 25 km 

and 6.25 km, numerous vectors are within the grid cell. Only SIM vectors estimated from image pairs with a time separation 

of greater than 12 hrs were considered. We selected a 12 hrs cut-off because below 12 hrs the SIM resulted in less representative 

(usually higher speeds) with respect to the averaged product value (over 3 or 7 days).  This was the primary observation from 235 

previous studies constructing a very high temporal resolution time series (e.g. Howell and Brady, 2019; Moore et al., 2021a). 

Use of ice displacement vectors derived from images with lower time separation (< 12 hrs) would lead to less representative 

(more uncertain) average ice speeds in 3 or 7 days average SIM products. In addition,  SIM vectors with speeds greater than 

75 km/day where filtered out because based on manual inspection of automatically detected SIM vectors there are sometimes 

unrealistic anomalous SIM vectors with speeds greater than 75 km/day. In order to control for SIM speed heterogeneity within 240 

a 25 km grid cell, the median SIM was used to represent the ice speed for each grid cell. For each grid cell, a series of descriptive 

statistics were are calculated that included the number of S1 and +RCM SIM vectors, the median mean SIMu and v, the 

standard deviation of SIM, and the mean cross-correlation coefficient, and an estimate of speed uncertainty for dry and wet 

sea conditions (see Section 5). Even after removing anomalously large SIM speeds, the automatic SIM tracking algorithm 

sometimes detected obviously erroneous SIM vectors far from the marginal ice zone and/or near the coast in sufficient quantity 245 

(i.e. 5+) to meet the grid cell criteria. These grid cells were subsequently filtered out using a threshold distance of 150 km from 

the marginal ice zone (i.e., ice concentration of at least 18%) using the weekly National Ice Center ice charts.  
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Figure 6. Image density per week for a) S1, b) RCM, and c) S1+RCM. 250 
 

 

 
Figure 7. Figure 4. RCM image coverage over the North Pole on September 15, 2020. RADARSAT Constellation Mission Imagery 

© Government of Canada 2020. RADARSAT is an official mark of the Canadian Space Agency. 255 
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Figure 5. Spatial distribution of S1 and RCM SAR images from March 11-17, 2020. 

 

 260 

3.3 Quantifying vector quality and uncertainty  

The automated SIM tracking algorithm utilized in this study has undergone extensive validation against buoy 

positions and has an uncertainty of 0.43 km derived for SAR image pairs separated by 1-3 days (Komarov and Barber, 2014). 

Moreover, SIM output from the tracking algorithm has been found to be in good agreement with other tracking algorithms that 

includes the RADARSAT Geophysical Processor (e.g. Kwok, 2006; Agnew et al., 2008; Howell et al., 2013). However, 265 

considering the application of the tracking algorithm in this study represents considerably larger spatial and temporal domains 

it is important to assess the quality and uncertainty of the S1+RCM SIM vectors.  To provide a quality assessment of the 

S1+RCM SIM vectors for each grid cell, the cross-correlation coefficient for all S1+RCM vectors in each grid cell were 

averaged. However, in order estimate the SIM uncertainty of all the S1+RCM vectors in each grid cell, a more structured 

approach was adopted.  270 

Let us consider a grid cell containing a set of N sea ice velocity vectors �⃗� 𝑖, where 𝑖 = 1,2, … , 𝑁. Each vector has the 

following uncertainty associated with the SIM tracking algorithm deriving the ice motion vector from two consecutive images: 

∆𝑉𝑖 =
𝑆0

∆𝑡𝑖
,            (1) 
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where,  ∆𝑡𝑖 is the time interval (in days) separating two SAR images used to derive the considered ice velocity vector �⃗� 𝑖. 𝑠𝑜 =

0.43𝑘𝑚 is the uncertainty in sea ice displacement (not speed) reported by Komarov and Barber (2013). Note that 𝑠𝑜 was 275 

derived for the SAR images separated by a variable time interval (1-3 days), so it must be divided by ∆𝑡𝑖 to come up with the 

ice velocity uncertainty.  The average velocity value assigned to the considered grid cell is the following: 

�⃗� 𝑖 =
1

𝑁
∑ �⃗� 𝑖

𝑁
𝑖=1  .            (2) 

The SIM uncertainty of each grid cell,  𝜎𝑆𝐼𝑀 can be estimated as follows: 

𝜎𝑆𝐼𝑀 =
𝜎0

√1−𝛼2
,            (3) 280 

where, 𝜎0 is the base uncertainty given as follows: 

𝜎0 = {
1

𝑁
∑ ∆𝑉𝑖

2𝑁
𝑖=1 }

0.5

,            (4) 

and   is the uncertainty score (varying from 0 to 1) associated with the methodology used to aggregate N  individual ice 

motion vectors derived from pairs of images into the SIM product: 

𝛼 = {
1

3
[(𝑐𝑚𝑎𝑥 − 𝑐̅)2 + (1 − 𝜏)2 + (1 − 𝑛)2]}0.5        (5) 285 

where, 𝑐̅  is the average cross-correlation coefficient within each grid cell, 𝑐𝑚𝑎𝑥  is the maximum cross-correlation coefficient 

within each grid cell. 𝜏 =
𝑡𝑆𝐴𝑅

𝑇
 is the fraction of time when SAR imagery are available. Here, 𝑡𝑆𝐴𝑅 represents the time interval 

when SAR data were available over the entire time interval considered (𝑇). 𝑛 =
𝑁

𝑁𝑚𝑎𝑥
 is the relative number of ice motion 

vectors used to create the aggregated mean ice velocity vector �⃗� . Here, 𝑁 is the number of ice motion vectors within the cell, 

and 𝑁𝑚𝑎𝑥  is the maximum possible number of the ice motion vectors for a grid cell.  290 

 

4 Results and Discussion 

4.1 S1+RCM sea ice motion 

4.1.1 Pan-Arctic 

Table 2 shows the number of SIM vectors detected for the pan-Arctic and each sub-region (Fig. 1) based on over 295 

60,000+ S1 and RCM images available over the period of March to December 2020. On average, there were 4,555,186 SIM 

vectors detected each week for 2020. The majority (~60%) were located in the Central Arctic sub-region that contains the 

perennial Arctic sea ice pack and also has a very high weekly S1+RCM image density (Fig. 6).  

Fig. 8 illustrates the time series of 7-day ice speed from S1+RCM averaged over the entire pan-Arctic domain from March to 

December, 2020. The ice speed seasonal cycle as detected by S1+RCM was clear with ice speed decreasing during the melt 300 

season and increasing into the fall and winter.  

An example of the spatial distribution of S1+RCM SIM on March 11-17, 2020 and December 16-22, 2020 is shown 

in Fig. 9. Notable features for March include the Transpolar Drift, counter-clockwise SIM characteristic of a Beaufort Gyre 

reversal, and landfast (no ice motion) ice conditions within the majority of the CAA. The most notable feature for December 



14 

 

was the clockwise SIM characteristic of the Beaufort Gyre. For the March 11-17 example, the spatial coverage was extensive 305 

with the exception of a gap within the Laptev Sea which is to be expected based the weekly image density (Fig.6). For the 

December 16-22 example, the spatial coverage was also extensive and included in the Laptev Sea. Overall, the high density 

image coverage achieved with S1+RCM was able to provide weekly SAR derived estimates of SIM across the Arctic for 2020. 

 

Table 2. Average number of S1+RCM sea ice motion vectors detected per week for the Arctic from over the period of March to 310 
December 2020. 

Region Number of Vectors 

Baffin Bay/Labrador Sea 84,163 

Barents Sea 68,522 

Beaufort Sea 534,168 

Bering Sea 11,169 

Canadian Arctic Archipelago 79,316 

Chukchi Sea 369,844 

East Siberian Sea 346,031 

Greenland Sea 136,171 

Central Arctic 2,725,437 

Hudson Bay 89,624 

Kara Sea 104,453 

Laptev Sea 49,771 

Pan-Arctic 4,555,186 

 
Figure 8. The time series of 7-day ice speed from S1+RCM averaged over the entire pan-Arctic domain from March to December, 

2020. Only ice speeds > 0 were used to calculate the averages (i.e., no zero SIM data were used). 

 315 
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Figure 9. The spatial distribution of S1+RCM sea ice motion on a) March 11-17, 2020 and b) December 16-22, 2020. Note that the 

white areas in the figure indicate either zero ice motion for the landfast ice or no ice motion information extracted (because of no 

SAR data, no ice, or no stable ice features). 320 
 

4.1.2 Canadian Arctic Archipelago (CAA) 

Although not the primary focus of this study, Fig. 6 underscores that in addition to pan-Arctic S1+RCM SIM products, 

high spatial and temporal resolution regional S1+RCM products are certainly achievable for 2020. To that end, we generated 

12.5 km, 7-day S1+RCM SIM for the CAA from March to December, 2020. The CAA is a region where SIM is not typically 325 

well resolved from coarser resolution satellites because of its narrow channels and inlets which makes automated SIM tracking 

difficult, especially during the melt season. Resolving SIM within the CAA (and during the melt season) was achieved because 

S1+RCM SIM vectors are initially derived at a spatial resolution of 200 m, therefore, alleviating the main limitation of coarser 

resolution sensors.  The annual cycle of ice speed time series shown in Fig. 10 is representative of the CAA being mostly 

landfast from November to July as ice speed is typically slow and confined to the periphery regions (Agnew et al., 2008). The 330 

spike in June was associated with an ice fracture in eastern periphery of the CAA (not shown).  An example of the S1+RCM 

SIM spatial distribution from August 12-18 at 12.5 km is shown in Fig. 11 and illustrates the considerable spatial variability 

of SIM within the CAA.  

Given the considerable weekly image density available from S1 and RCM, further enhances in spatial and temporal 

resolution for more local scale SIM studies are also possible (e.g. Moore et al., 2021). Although the focus of this study is 335 

primarily large-scale SIM the latter point is important to demonstrate.  Figure 12 illustrates and example of how SIM can be 

resolved from resolutions of 6.25 km, 12.5 km, and 25 km for a 3-day temporal resolution within the middle of CAA. The 

level of detail that can be resolved at even 6.25 km is striking and even further increases are possible given the original 200 m 

spatial resolution.  
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 340 
Figure 10. The time series of 7-day ice speed from S1+RCM averaged over the Canadian Arctic Archipelago from March to 

December, 2020. Only ice speeds > 0 were used to calculate the averages (i.e., no zero SIM data were used). 

 

 

 345 
Figure 11. The spatial distribution of S1+RCM sea ice motion on August 12-18, 2020 in the Canadian Arctic Archipelago. Note 

that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice motion information extracted 

(because of no SAR data, no ice, or no stable ice features). 

 

 350 
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Figure 12. The spatial distribution of S1+RCM sea ice motion on August 12-18, 2020 in the middle of the Canadian Arctic 

Archipelago at spatial resolutions of a) 25 km, b) 12.5 km, and c) 6.25 km. 

 355 

4.2 Spatiotemporal variability of sea ice motion vector quality and uncertainty  

Figure 13 shows the time series of the S1+RCM weekly average of the cross-correlation coefficients and  𝜎𝑆𝐼𝑀 across 

the pan-Arctic. Note that for automated SIM tracking algorithm used in this study, the cross-correlation coefficients are 

calculated for the second order derivatives (Laplacians) of the images, and not the original images; therefore, the cross-

correlation coefficients may appear lower than reported in the literature by other studies. Both the cross-correlation coefficient 360 

and  𝜎𝑆𝐼𝑀 exhibited the expected variability associated with the seasonal cycle of sea ice and remained relatively high and 

stable during the dry winter conditions, decreased during the melt season and then returned to stability following the melt 

season (Fig. 13).  𝜎𝑆𝐼𝑀  was initially high in early-March because of lower amounts RCM imagery when it first became 

operational (Fig. 13). As found in previous studies, higher  𝜎𝑆𝐼𝑀  and lower quality vectors are more apparent during the 

shoulder seasons (i.e. melt-freeze transitions) as a result of water on the surface of the ice and low ice concentration making 365 

automated feature tracking more difficult (e.g., Agnew et al., 2008; Lavergne et al., 2010). Moreover, there are also fewer 

vectors detected during the shoulder seasons compared to dry winter conditions which contributes to higher  𝜎𝑆𝐼𝑀.  

Figure 14 illustrates the  𝜎𝑆𝐼𝑀 spatially for selected weekly periods during the 2020 annual cycle. For all cases,  𝜎𝑆𝐼𝑀 

values are typically found in the central Arctic and gradual increases outwards (Fig. 14).  The observed spatial variability of 

 𝜎𝑆𝐼𝑀 is in part related to weekly SAR image density that decreases away from the central Arctic because they are primarily 370 

only covered by RCM (Fig.6). For example, higher  𝜎𝑆𝐼𝑀 was observed in the periphery regions of the Beaufort Sea, Hudson 

Bay, and the Bering Sea during March 11-17 (Fig. 14a) and in Lapev Sea for December 16-22 (Fig. 14d).  𝜎𝑆𝐼𝑀 was lower 

during the summer months but the weekly image density of S1+RCM (Fig. 6), provided considerably more images over the 

marginal ice zones during the melt season. As a result, there are more image data to better resolve challenging ice conditions 

during the shoulder as shown from August 11-17 (Fig. 14b) and September 30-October 7 (Fig. 14c).  375 
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Figure 15 summarizes 𝜎𝑆𝐼𝑀 and the cross-correlation coefficient using box-plots for the each Arctic sub-region from 

March to December 2020. The interquartile range for most sub-regions were between 0.35-0.45 for the cross-correlation 

coefficient (Fig. 15a) and between 0.4-0.6 km/day for  𝜎𝑆𝐼𝑀 (Fig.15b).  The largest  𝜎𝑆𝐼𝑀 was found in Bering Sea and the 

lowest in the Central Arctic (Fig. 15b). Lower cross-correlation coefficients were more apparent for regions that contain a 

significant portion marginal ice zone in 2020 (e.g. East Siberian Sea, Chukchi Sea, and Greenland Sea). Based on Fig.15, the 380 

association between higher (lower)  𝜎𝑆𝐼𝑀 and lower (higher) cross-correlation coefficients was not always apparent at the sub-

region scale because of the variability of each regions sea ice physical characteristics over the annual cycle. Depending on 

how ice conditions evolve during the melt season, the distribution of regions with low ice concentrations may vary accordingly. 

Sub-region  𝜎𝑆𝐼𝑀 may also change regionally in subsequent years depending if the weekly pan-Arctic S1+RCM image density 

changes.  To that end, the regional  𝜎𝑆𝐼𝑀 and cross-correlation coefficients values presented in Fig. 15 should be interpreted as 385 

initial or baseline values since we are only considering the year 2020. 

 

 
Figure 13. Time series of the weekly average of sea ice motion cross-correlation coefficient and sea ice motion uncertainty (sim) 

across the pan-Arctic from March to December, 2020. 390 
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Figure 14. Spatial distribution of S1+RCM sea ice motion uncertainty on a) March 11-17, 2020, b) August 12-18, c) September 30-395 
October 6, and d) December 16-22, 2020. Note that the white areas in the figure indicate either zero ice motion for the landfast ice 

or no ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 

 
Figure 15. Boxplots of the S1+RCM a) cross-correlation coefficient and b) sea ice motion uncertainty (sim) for the Arctic sub-regions 400 
from March to December, 2020. 
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4 Large-scale SIM from S1+RCM  405 

 Table 2 shows the average number S1+RCM SIM grid cells per month across the pan-Arctic for the 25 km 7-day 

and 6.25 km 3-day products from March 2020 to October 2021. Based on the resolvable S1+RCM grid cells, the 7-day 25 km 

spatiotemporal scale is able to provide the most complete picture of SIM across the pan-Arctic from SAR imagery alone. 

However, the higher temporal resolution of the 3-day SIM product captures more of the temporal variability. Examples of 

S1+RCM SIM over the pan-Arctic for selected weeks during winter months are shown in Fig. 8.  Notable features include the 410 

Transpolar Drift (Fig. 8a; Fig. 8c), Beaufort Gyre (Fig. 8b), a Beaufort Gyre reversal (Fig. 8a), and minimal SIM because of 

landfast (no ice motion) ice conditions within the majority of the CAA (Fig. 8). Some spatial gaps are present in certain weeks, 

particularly in the Laptev Sea (Fig. 8) and these gaps, in addition to others are because of the spatial variability in weekly 

image density of S1+RCM (Fig. 3). Despite some spatial gaps, an average 16,000+ grid cells containing S1+RCM SIM 

estimates per week during the winter months were resolved for 2020 and 2021 (Table 2).  415 

Resolving SIM during the melt season, even with high spatial resolution SAR imagery, is more challenging than dry 

winter conditions because automated feature tracking is more difficult when the ice concentration is low or water is on the ice 

surface (e.g. Agnew et al., 2008; Lavergne et al., 2010). The average number of grid cells containing S1+RCM SIM during 

the summer months decreased by ~40% compared to the winter period (Table 2) but this decrease is also from summer melt. 

Examples of the spatial distribution of 25 km 7-day S1+RCM SIM for selected weeks summer months are shown in Fig. 9 and 420 

indeed the spatial coverage from S1+RCM is still considerable during the summer months.  

 

Table 2. Average number S1+RCM SIM grid cells per month across the pan-Arctic that are resolved at for the 25 km 7-day and 

6.25 km 3-day products from March 2020 to October 2021 

Month 7-day 25 km 

S1+RCM SIM Grid cells 

3-day 6.25 km 

S1+RCM SIM Grid cells 

 2020 2021 2020 2021 

January  16,373  106,315 

February  16,803  75,946 

March 15,500 17,050 107,901 116,919 

April 15,548 16,758 99,735 118,624 

May 14,387 15,449 80,812 91,334 

June 13,316 13,901 63,519 66,678 

July 9,466 10,436 35,621 45,449 

August 6,220 7,537 20,934 32,940 

September 5,683 7,400 34,989 47,386 

October 7,864 10,242 54,597 69,052 

November 11,023  72,117  

December 15,189  99,626  

 425 

 

 

 



21 

 

 

 430 

Figure 8. The spatial distribution of 25 km 7-day S1+RCM sea ice motion on a) March 11-17, 2020, b) December 16-22, 2020, c) 

March 10-16, 2021, and d) May 19-25, 2021. Note that the white areas in the figure indicate either zero ice motion for the landfast 

ice or no ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 
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Figure 9. The spatial distribution of 25 km 7-day S1+RCM sea ice motion on a) July 1-7, 2020, b) December 5-11, 2020, c) July 7-440 
13, 2021, and d) August 4-10, 2021. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no 

ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 

The spatial distribution of 6.25 km 3-day pan-Arctic S1+RCM SIM for selected periods during the winter and summer 

are is shown in Fig. 10 and Fig. 11, respectively.  Although considerably more grid cells are contained S1+RCM SIM (Table 445 

2), there are more spatial gaps across the pan-Arctic using higher spatiotemporal resolution especially, during the summer 

months. Despite this, there are still many regions across the Arctic where high spatial and temporal SIM can be resolved using 

S1+RCM. The insets of both Fig. 10 and Fig. 11 illustrate the level of SIM spatial detail captured at 6.25 km.  

 

 450 

Figure 10. The spatial distribution of 6.25 km 3-day S1+RCM sea ice motion on March 12-14, 2020. The letters correspond to 

zoomed in regions on the map. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice 

motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 

 455 
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 460 
 

Figure 11. The spatial distribution of 6.25 km 3-day S1+RCM sea ice motion on August 27-29, 2020. The letters correspond to 

zoomed in regions on the map. Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice 

motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 465 
In both S1+RCM SIM products, SIM is resolved within the CAA, and Fig 12. provides a more detailed look at summer 

SIM within the CAA. Indeed SIM in this region is very spatially heterogeneous as pointed out by Melling (2002). Estimating 

SIM within the CAA is challenging for coarse resolution satellites because its narrow channels and inlets that make automated 

feature tracking difficult, especially during the melt season (Agnew et al., 2008) and this is a major gap with existing SIM 

products. Information on SIM within the CAA is important given it contains the Northwest Passage and has experienced 470 

increased in shipping activity (e.g. Dawson et al., 2018). Both large-scale S1+RCM SIM products generated by ECCC-ASIS 

provide valuable SIM information in this region not just for scientific analysis, but also for stakeholders operating in the CAA. 

Continued monitoring of SIM within the CAA is important as climate warming is expected make the region more navigable 

in the future (Mudryk et al., 2021). 

 475 
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Figure 12. The spatial distribution of 25 km 7-day S1+RCM sea ice motion surrounding the Canadian Arctic Archipelago on a) 

September 9-15, 2020 and b) August 11-17, 2021.  Note that the white areas in the figure indicate either zero ice motion for the 

landfast ice or no ice motion information extracted (because of no SAR data, no ice, or no stable ice features). 

 480 

5 S1+RCM SIM validation and assessing uncertainty  

ECCC’s automated SIM tracking algorithm has previously undergone validation against buoy positions and has an 

uncertainty of 0.43 km derived for RADARSAT-2 SAR image pairs separated by 1-3 days (Komarov and Barber, 2014). 

Moreover, SIM output from the tracking algorithm has been found to be in good agreement with other tracking algorithms that 

includes the RADARSAT Geophysical Processor (e.g. Kwok, 2006; Agnew et al., 2008; Howell et al., 2013). However, 485 

considering the application of the tracking algorithm in this study represents considerably larger spatial and temporal domains, 

together with new satellites sensors (i.e. S1 and RCM), it is important to reassess the quality and uncertainty of the resulting 

S1+RCM SIM vectors.  

To provide a quality assessment of the S1+RCM SIM vectors for each grid cell the cross-correlation coefficient for 

all S1+RCM vectors in each grid cell were averaged. Fig. 13 summaries the monthly cross-correlation coefficients of 6.25 km 490 

3-day S1+RCM SIM using boxplots. Note that for the ECCC automated SIM tracking algorithm, the cross-correlation 

coefficients are calculated for the second order derivatives (Laplacians) of the images, and not the original images; therefore, 

the cross-correlation coefficients may appear lower than reported in the literature by other studies. The cross-correlation 

coefficient exhibited the expected variability associated with the seasonal cycle of sea ice and remained relatively high and 

stable during the dry winter conditions (~0.45), decreased during the melt season (~0.33) and then returned to stability 495 
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following the melt season (~0.45). As found in previous studies, lower quality vectors are more apparent during the shoulder 

seasons (i.e. melt-freeze transitions) (e.g., Agnew et al., 2008; Lavergne et al., 2010; Lavergne et al., 2021).  

 

Figure 13. Boxplots of the monthly cross-correlation coefficient based on S1+RCM SIM from March 2020 to October 2021 
 500 

In order to estimate the SIM uncertainty from the ECCC’s automated SIM tracking algorithm for S1 and RCM SAR 

images, we compared SIM displacement vectors from S1 and RCM to buoy positions from the IABP during winter (April) 

and summer (August) time periods.  For all S1 and RCM displacement vectors (derived from image pairs), the closest buoy 

trajectory was co-located to the start of each displacement vector position. The distance between the starting point of a given 

SAR ice motion tracking vector and the starting point of the corresponding buoy trajectory did not exceed 3 km. Fig 14. 505 

summarizes the results for dry winter conditions (April 2020 and 2021) and during the melt season (August 2020 and 2021). 

The ECCC automated SIM tracking algorithm performs very well during winter conditions with a root mean square error 

(RMSE) of 2.78 km and a mean difference (MD) of 0.40 km.  The RMSE is higher than the value reported by Komarov and 

Barber (2014) likely because more image pairs over a larger geographical area were used in this comparison as well as the 

spatial resolution was lower. Performance slightly decreases during the summer with a lower number of vectors detected and 510 

an RMSE of 3.43 km.   

Taking into consideration the difference between the winter and the summer we assign two uncertainties to the 

S1+RCM SIM products for dry and wet conditions as follows. Consider a grid cell containing a set of N sea ice velocity 

vectors �⃗� 𝑖, where 𝑖 = 1,2, … , 𝑁. Ice speed for this each vector has the following uncertainty associated with the SIM tracking 

algorithm deriving the ice motion vector from two consecutive images: 515 

∆𝑉𝑖 =
𝑆0

∆𝑡𝑖
,           (1) 

where, ∆𝑡𝑖 is the time interval (in days) separating two SAR images used to derive the considered ice velocity vector �⃗� 𝑖. In (1) 

𝑠𝑜 is the uncertainty in sea ice displacement (not speed) for dry ice conditions (2.78 km) or wet ice conditions (3.43 km). Note 
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that 𝑠𝑜 must be divided by ∆𝑡𝑖 to come up with the ice velocity uncertainty.  The average uncertainty for dry (𝑠𝑜 = 2.78 km) 

and wet (𝑠𝑜 = 3.43 km) ice conditions in each grid cell (N) is then determined using the following equation: 520 

𝜎𝑆𝐼𝑀 =
1

𝑁
∑ ∆𝑉𝑖

𝑁
𝑖=1            (2) 

 

 

Figure 14. Comparison between ice motion vectors derived by the Komarov and Barber (2014) automated sea ice tracking algorithm 

from S1 and RCM SAR images and buoy data. 525 
 

Fig. 15 shows an example of the spatial distribution of both dry and wet uncertainty estimates indicating higher 

uncertainty estimates for the latter. We acknowledge that it is difficult to quantify the impact of SAR image pair availability 

over 7-days together with automatic SIM vector detection under certain environmental conditions. The number of S1+RCM 

SIM vectors used in the grid cell generation can subsequently be used to account for this whereby, more confidence (less 530 

uncertainty) in SIM can be associated with a larger number of vectors. Moreover, S1+RCM image density increases with 

latitude (Fig. 3) indicating that more consistent coverage is available over the Central Arctic, which is also beneficial during 

the melt season when automated SIM tracking algorithms have more difficulty. However, SAR image pair coverage could be 

exceptional over the 7-day time window, yet environmental conditions (e.g., melt ponds, low ice concentration, marginal ice 

zone, etc.) could still make automatic SIM vector detection difficult resulting in a low number of SIM vectors in the grid cell. 535 

The problem of image coverage is less of a concern for the 3-day product given the average image separation is ~2-days. Given 

the difficultly in quantifying SAR image pair coverage on S1+RCM SIM uncertainty, we now compare S1+RCM SIM to 

existing products with different temporal resolutions. Such a comparison provides additional quantitative confidence metrics 

to assess the quality of the S1+RCM SIM estimates. 

 540 
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Figure 15. Spatial distribution of (a) dry and (b) wet S1+RCM SIM uncertainty for August 5-11, 2020 

 

 545 

4.36 SIM cComparison of S1+RCM against NSIDC and OSI -SAF 

To facilitate a representative 1-to-1 grid cell comparison between S1+RCM SIM and both the NSIDC and OSI SAF 

SIM products, the spatial and temporal resolution of the S1+RCM were matched with the NSIDC and OSI SAF SIM products 

from March to December 2020. For OSI SAF, S1+RCM was generated with a 2-day at 62.5 km and for NSIDC, S1+RCM 

was generated with 7-day temporal resolution and 25 km spatial resolution. For each product’s temporal resolution (i.e. 7-day 550 

for NSIDC and 2-day for OSI SAF), all the S1+RCM SIM vectors within each products grid cells (i.e. 25 km for NSIDC and 

62.5 km for OSI-SAF) were averaged. This resulted in 455,905 grid cells for the S1+RCM and NSIDC comparison and 376,386 

grid cells for the S1+RCM and OSI SAF comparison. More samples were available from NSIDC because of its higher spatial 

resolution. 

Scatterplots of the u and v vectors components of SIM for S1+RCM versus NSIDC and OSI SAF are shown in Fig. 555 

16 and 17, respectively. Both existing SIM products are in good agreement with S1+RCM with correlation coefficients for u 

and v of 0.75 and 0.78, respectively for the NSIDC and 0.84 and 0.85, respectively for OSI-SAF providing confidence in the 

SAR coverage for the 7-day and 3-day S1+RCM products. The RMSE is higher for the NSIDC (u=4.6 km/day and v=4.7 

km/day) compared to OSI SAF (u=3.9 km/day and v=3.9 km/day), and we note the better agreement between S1+RCM and 

OSI SAF is likely because the temporal resolution more closely matches the average overlap between SAR images (i.e. ~2 560 
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days). However, the overall larger speed associated with S1+RCM is most likely the result of higher spatial resolution 

compared to lower resolution satellite data used in NSIDC and OSI SAF as faster speeds are more difficult to track at lower 

spatial resolution because of temporal decorrelation. Kwok et al. (1998) also noted this problem when comparing SIM from 

passive microwave with SAR and found it also applies to regions of low ice concentration. Figs. 16 and 17 also illustrate that 

users of either the NSIDC or OSI SAF SIM products are underestimating SIM.  565 

 

 
Figure 16. Scatterplots of S1+RCM sea ice motion versus National Snow and Ice Data Center (NSIDC) SIM for a) u and b) v vector 

components.  Also shown is the number of samples (n), Pearson’s correlation coefficient (R), root-mean square error (RMSE), and 

the mean difference (MD). 570 
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Figure 17. Scatterplots of S1+RCM sea ice motion versus Ocean and Sea Ice Satellite Application Facility (OSI SAF) SIM for a) u 

and b) v vector components.  Also shown is the number of samples (n), Pearson’s correlation coefficient (R), root-mean square error 575 
(RMSE), and the mean difference (MD). 

 

Comparing our S1+RCM SIM results with existing NSIDC and OSI-SAF SIM products provides additional 

quantitative confidence metrics. In order to facilitate a representative 1-to-1 comparison between S1+RCM SIM and both the 

NSIDC and OSI-SAF SIM products, the spatial and temporal resolution of the S1+RCM were matched with the NSIDC and 580 

OSI-SAF SIM products for 2020. For OSI-SAF, S1+RCM was generated with a 2-day at 62.5 km and for NSIDC, S1+RCM 

was generated with 7-day temporal resolution and 25 km spatial resolution. For each product’s temporal resolution (i.e. 7-day 

for NSIDC and 2-day for OSI-SAF), all the S1+RCM SIM vectors within each products grid cells (i.e. 25 km for NSIDC and 

62.5 km for OSI-SAF) were averaged. The average of all the grid cells within each region across the Arctic (Fig.1) was then 

determined for all products. This resulted in 343 weekly averages for the S1+RCM and NSIDC comparison and 1957 2-day 585 

averages for the S1+RCM and OSI-SAF comparison.  More samples were available from OSI-SAF because of the difference 

in temporal resolution of these two products (i.e., 2-day vs 7-day) 

Scatterplots of S1+RCM versus NSIDC and OSI-SAF are shown in Figs. 16a and 16b, respectively. Both existing 

SIM products are in good agreement with S1+RCM with correlation coefficients greater than 0.85. Larger speeds are more 

apparent for S1+RCM with the mean difference (MD) 1.3 km/day for the NSIDC and 0.76 km/day for OSI-SAF for 2020. The 590 

root-mean square difference (RMSD) was lower for the NSIDC compared to OSI-SAF at 2.58 km/day and 3.25 km/day, 

respectively. We note better agreement with NSIDC because of its higher spatial resolution compared to OSI-SAF and the 

absence of larger ice speeds in NSIDC compared to OSI-SAF due to lower temporal resolution. The overall larger speed 
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associated with S1+RCM is most likely the result of higher spatial resolution compared to lower resolution satellite data used 

in NSIDC and OSI-SAF that is more difficult to track at lower spatial resolution because of temporal decorrelation. Kwok et 595 

al. (1998) also noted this problem when comparing SIM from passive microwave with SAR and found it also applies to regions 

of low ice concentration.   

Although SAR has difficultly tracking sea ice in the vicinity of the marginal ice zone and regions of low concentration, 

passive microwave has more difficultly. With the high S1+RCM image density available over the marginal ice zone during 

the melt season (Fig. 6) there was sufficient number of images available during the summer months for S1+RCM to be able to 600 

better resolve SIM compared to these existing SIM products with a lower nominal spatial resolution. For example, the spatial 

distribution of SIM for S1+RCM and NSIDC product in the Beaufort Sea is shown for September 9-15, 2020 in Fig. 17. While 

larger ice speeds are apparent with S1+RCM, there are also many regions along the marginal ice zone with sea ice concentration 

(SIC) below 18% that are not detected by NSIDC SIM product.  

 605 

 

 

 
Figure 16. Scatterplots of S1+RCM sea ice motion versus a) National Snow and Ice Data Center (NSIDC) SIM and b) Ocean and 

Sea Ice-Satellite Application Facility (OSI-SAF) sea ice motion. Also shown is the number of samples (n), Pearson’s correlation 610 
coefficient (R), root-mean square difference (RMSD), and the mean difference (MD).  
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Figure 17. The spatial distribution of a) S1+RCM sea ice motion and b) National Snow and Ice Data Center (NSIDC) sea ice motion 615 
in the Beaufort Sea region from September 9-15, 2020. Also shown are the sea ice concentration (SIC) polygons for 18% (black) and 

81% (magenta). Note that the white areas in the figure indicate either zero ice motion for the landfast ice or no ice motion information 

extracted (because of no SAR data, no ice, or no stable ice features). 

 

5 7 Conclusions 620 

In this study, we described the ECCC-ASTIS and its application of 135,471 images from 5 SAR satellites from S1 

and the RCM to routinely estimate SIM over the large-scale pan-Arctic domain from March 2020 to October  2021. The higher 

density image coverage of S1+RCM as oppose to just S1 and/or RCM provided more available SAR image pairs over Hudson 

Bay, Davis Strait, Beaufort Sea, Bering Sea, and the North Pole. S1+RCM SIM covered the majority of the pan-Arctic domain 

using a spatial resolution of 25 km and temporal resolution of 7-days.  6.25 km 3-day products also were generated and can 625 

provide improved spatiotemporal SIM representation in many regions of the pan-Arctic.  In particular, the spatial heterogeneity 

in large-scale S1+RCM SIM at both scales was preserved as well as SIM was able to be resolved within the narrow channels 

and inlets of the CAA filling a major information gap.   

 The S1+RCM SIM vectors were compared against buoy estimates from the IABP for both dry and wet ice conditions 

to assess the performance of the ECCC automated feature tracking algorithm with S1 and RCM imagery.  Results indicate an 630 

uncertainty of 2.78 km for the former and 3.43 km for the latter and we developed a range of ice speed uncertainties for the 

S1+RCM SIM products. Comparing the S1+RCM SIM estimates to the existing SIM datasets of NSIDC and OSI SAF revealed 

that S1+RCM provides larger ice speeds (~4 km/day) confirming the speed bias associated with lower resolution sensors.  

The primary purpose of ECCC-ASITS is to routinely deliver SIM information for operational usage within ECCC as 

well as the scientific community and maritime stakeholders. The data archive is available from March 2020 to October 2021 635 

and updates are produced ad hoc (every few months) but updates are expected to occur more frequently in the near-future. We 
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recognize that the short data record of S1+RCM SIM does not make it well suited for long-term scientific studies. However, 

the Arctic sea ice is rapidly changing and for recent large-scale process studies or localized studies (e.g. MOSAiC) or regional 

studies (e.g. CAA) S1+RCM SIM products generated by the ECCC ASTIS can provide more representative SIM estimates 

than their passive microwave counter-parts. Moreover, the time series of large-scale generated SIM from SAR needs to start 640 

now with the currently available and expected continuation of spaceborne SAR missions. The anticipated launch of the NASA-

ISRO (NISAR) L&S-band SAR satellite also provides an opportunity to add L-band into the ECCC-ASITS. L-band SAR 

would be able to provide improved SIM estimates during the melt season compared to C-band (Howell et al., 2018). Even 

without adding different frequency satellite sensors, the upcoming launch of Sentinel-1C and Sentinel-1D will continue to 

facilitate the routine generation of large-scale SIM using the ECCC-ASITS from C-band SAR for many years to come. 645 

Future refinements to the ECCC-ASTIS are possible which includes adding the HV channel to complement SIM 

estimated from HH polarization. Mixing S1 and RCM images offers an opportunity to provide more spatiotemporally refined 

SIM estimation across the Arctic; however, based on the current image distribution of S1 and RCM it is unlikely to improve 

spatial coverage as RCM mainly fills in the spatial gaps in S1 coverage. It is also very challenging computationally to produce 

and work with large-scale SAR derived SIM products at very high spatiotemporal resolution. To that end, mixing sensors at 650 

C-band will likely not result in major advances of large-scale automated detected SIM, but it could provide more insight into 

local scale processes (e.g. fault generation, instantaneous reaction to forcing, inertial oscillations). In this regard, the temporal 

resolution of mixing S1 and RCM imagery could be pushed to sub-daily in some regions, and we anticipate exploring this 

option for targeted dense time series applications in the Arctic. While groups such as the Polar Space Task Group aim to 

improve or refine SAR coverage across the pan-Arctic over the annual cycle, it is unlikely a purely SAR derived SIM product 655 

will be able to achieve daily or sub-daily coverage consistently across the pan-Arctic. This has only recently been achieved 

with passive microwave observations using a swath-to-swath approach (Lavergne et al., 2021). Therefore, it could be worth 

exploring the complimentary of SIM provided from passive microwave “swath-to-swath” and SIM generated from SAR.  

 

In this study we made use of 5 SAR satellites from S1 and the RCM with over 60,000 images to estimate SIM over 660 

the large-scale pan-Arctic domain from March to December 2020. The higher density image coverage of S1+RCM as oppose 

to just S1 and/or RCM provided more available SAR image pairs over Hudson Bay, Davis Strait, Beaufort Sea, Bering Sea, 

and the North Pole. Results indicated that on average, 4.5 million SIM vectors from S1 and RCM were automatically detected 

per week for 2020 facilitating the generation of large-scale S1+RCM SIM products. Notable spatial features were apparent 

(i.e. the Transpolar Drift and the Beaufort Gyre) and the seasonal cycle of sea ice speed exhibited the expected variability with 665 

decreases during the melt season and increases into the fall and winter. Moreover, by using an input spatial resolution of 200 

m, more spatial heterogeneity in large-scale SIM was preserved as well as SIM was able to be resolved within the narrow 

channels and inlets across the Arctic. The corresponding S1+RCM SIM vector quality (cross-correlation coefficients) and 

 𝜎𝑆𝐼𝑀 also reflected the seasonal cycle with lower quality vectors and higher  𝜎𝑆𝐼𝑀 during the shoulder seasons. Comparing the 

S1+RCM SIM estimates to the existing SIM datasets of NSIDC and OSI-SAF revealed that S1+RCM provides larger ice 670 
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speeds and detects more vectors in the marginal ice zone. The advantages of detecting SIM from SAR as opposed to passive 

microwave were ultimately confirmed from a large-scale comparison.   

S1+RCM SIM covered the majority of the pan-Arctic domain from March to December using a spatial resolution of 

25 km and temporal resolution of 7-days.  However, more consistent spatial coverage was achieved during the melt season 

given the weekly image density of S1+RCM decreases with decreasing latitude. Continued coordinated efforts by working 675 

groups like the Polar Space Task Group are encouraged to improve or refine SAR coverage across the pan-Arctic over the 

annual cycle. Although, covering the majority of pan-Arctic domain with SIM generated from S1+RCM at spatial resolutions 

of less than 25 km and temporal resolutions less than 7-days was not consistently possible for 2020, we demonstrated that 

regional S1+RCM SIM products at higher spatial and temporal resolution are achievable given the weekly image density of 

S1+RCM.  680 

The unique nature of the approach to automatically estimate SIM from S1+RCM described in this paper is that future 

refinements are possible. For instance, we anticipate adding HV channel to complement SIM estimated from HH polarization. 

Should the timing of when S1 and RCM images acquired and received by ECCC becomes more consistent, we can explore if 

mixing S1 and RCM images provides most robust pan-Arctic SIM estimation.  The anticipated launch of the NASA-ISRO 

(NISAR) L&S-band SAR satellite also provides an opportunity to add L-band into our SIM processing chain. L-band SAR 685 

would be able to provide improved SIM estimates during the melt season compared to C-band (Howell et al., 2018). Even 

without refining our approach, the upcoming launch of Sentinel-1C and Sentinel-1D will continue to facilitate large-scale SIM 

from C-band SAR for many years to come. 

 

Data availability 690 

The S1 imagery is available at the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) and RCM 

imagery is available online at Natural Resources Canada’s Earth Observation Data Management System (https://www.eodms-

sgdot.nrcan-rncan.gc.ca). 62.5 km 2-day sea ice motion from OSI SAF available at: https://osisaf-hl.met.no/osi-405-c-desc. 

Weekly sea ice motion from the NSIDC Polar Pathfinder available at: https://nsidc.org/data/nsidc-0116. IABP data is available 

at https://iabp.apl.uw.edu/data.html. Ice charts from the National Ice Center are available at: 695 

https://usicecenter.gov/Products/ArcticData. S1+RCM pan-Arctic SIM products generated in this analysis are available at: 

https://crd-data-donnees-rdc.ec.gc.ca/CPS/products/PanArctic_SIM/. 
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