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Introduction  

This supplement includes details of all satellite imagery tiles used in the study (Table S1). 

Elaboration of methodology, specifically method testing, is outlined in detail in Text S2. Detail 

regarding the selection of NDWI algorithm for this study is provided in Text S2.1, and Table S3. 

Additional detail on the approach taken to compensate for Landsat-7 scanline corrector failure is 

addressed (Text S2.2) as part of the method testing section, and also numerically justified (Table 

S4). Justification is given for the selection of the specific MAR climate model used in this study, 

with comparison to other models: RACMO2.3 and ERA5 (Text S5). Further detail covering the 

statistical method used in this study – the multivariate regression analysis – is provided, covering 10 
the specific backwards selection method used (Text S6). 

Additional supporting findings for our study are provided, including a spatial map of the 

community firn model output as forced by MAR, which provides further context to our findings 

in regards to FAC controls on lake coverage (Figure S7). Additionally, we provide our lake 

polygons used in this study for download as shapefiles for use in future work (Data Set S8). This 

dataset may be of use to future studies of the supraglacial hydrology of GVIIS. 
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<Table provided as a separate document> 

Table S1. Satellite images acquired for this research. Designation column refers to path and row 

identifiers of each tile, while full designation refers to the full tile identifier as catalogued. All 

tiles were used in analysis, except those listed in red, due to low study region coverage. 20 

 

Text S2. Method testing detail 

S2.1 NDWI Method comparison 

Method testing of different NDWI methods was carried out to identify the NDWI method with 

the greatest efficacy for the study area. Two methods were selected for comparison: a ratio of the 

Blue and Red bands of satellite imagery, and a Green and Near InfraRed (NIR) method 

(Williamson et al., 2017). To test efficacy, we compared the results of standard NDWI lake 

delineation for several periods on George VI ice shelf (GVIIS) using both Sentinel-2 (S2) and 

Landsat-8 (LS8) images. Different months were selected to identify potential issues with solar 

angle, with 2019 and 2020 being used as the test years due to the high quality and frequent 30 
temporal sampling of imagery. Images were delineated and edited in line with the post-processing 

chain implemented in this project, removing all polygons under 1800 m2, and repetitive false 

positives, primarily rocks. Cloud polygons were not removed here, as testing for cloud cover 

interference was an important part of this test. We found the Green and NIR method to be more 

successful on GVIIS, as there is little variance in ice shelf surface reflectance, and no blue ice, a 

factor the Red-Blue ratio aims to nullify. Overall, both methods were in close agreement (Table 

S3), with only 6% mean variance in total polygon area between each method. Maximum polygon 

area displayed the greatest variance due to the Red-Blue ratio being stricter on large area 

boundaries and the interconnectedness of lakes on GVIIS. 

 40 
 

SATELLITE Period Method Count 

Total 

Polygon 

Area, m2 

Mean 

Polygon 

Area, m2 

Max Polygon 

Area, m2 

Min Polygon 

Area, m2 

Sentinel2 Jan-20 GNIR 9842 796355700 80914 245276200 1800 

Sentinel2 Jan-20 RB 9916 743352600 74965 216209200 1800 

Landsat8 Jan-19 GNIR 8251 680878800 82521 158217300 1800 

Landsat8 Jan-19 RB 8302 611175600 73618 77863500 1800 

Landsat8 Dec-19 GNIR 694 8989200 12953 856800 1800 

Landsat8 Dec-19 RB 655 8890200 13573 415800 1800 

Mean variance - GNIR to RB   1.42% 6.00% 4.45% 38.04% 0.00% 

Table S3. Comparison of Red-Blue (RB) and Green-NIR (GNIR) NDWI methods. Minimum 

polygon area shows no variance due to the 2 Landsat pixel minimum value. 

S2.2 Landsat 7 Correction 

Due to the scanline corrector failure of Landsat-7 (LS7), output from this satellite was not 

initially comparable to the others due to notable data loss. To address this, we produced three sets 

of masking polygons of the blank areas in LS7 imagery for three different periods (January 2009, 

January 2007 and January 2005) in order to determine a mean data loss. We then selected several 

LS8 and S2 periods: January 2020, January 2018 and February 2018. The scanline data loss 

masks were overlain on lake polygons from these months and any obscured lakes were clipped. 50 
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Change in total lake area was calculated and averaged to find the mean total data loss, resulting in 

a value of 77.69% of data retained. This falls closely in line with the value provided in LS7 

documentation of 78% (Ihlen & Zanter, 2019). Henceforth, we applied a conversion factor to all 

data not affected by the scanline failure (SLC failure), lowering their total areas by 22.31%, 

making all data comparable. 

 

Period 
Original 

Area m2 January 09 January 07 January 05 

J2020 Clip 

811231173 

505060903 m2 732475913 m2 605258048 m2 

J2020 Clip % 62.26 90.29 74.61 

J2020 % Change -37.74 -9.71 -25.39 

J2018 Clip 

193865900 

132516651 m2 181582741 m2 147311178 m2 

J2018 Clip % 68.35 93.66 75.99 

J2018 % Change -31.65 -6.34 -24.01 

F2018 Clip 

324645800 

210647217 m2 304905648 m2 244402578 m2 

F2018 Clip % 64.89 93.92 75.28 

F2018 % Change -35.11 -6.08 -24.72 

Mean Clip % 65.17 92.63 75.29 

Mean % Change -34.83 -7.37 -24.71 

 

Mean Data Loss % Retained % Change 

Area 77.69 -22.31 

 

Table S4. Output of LS7 scanline masking versus polygons in January 2020, January 2018 and 

February 2018. Clip and Clip % refer to the area remaining after applying the mask, while Clip % 

change quantifies the change from original to clipped. 60 

Text S5. Comparison of climate models at GVIIS 

Several climatic products were identified for potential use in this study: ERA5 and the regional 

climate models (RCMs) RACMO2.3 and MAR (Agosta et al., 2019). MAR data showed close 

agreement to Fossil Bluff automated weather station (AWS) recorded near-surface air 

temperature (SAT) values, despite MAR having the poorest spatial resolution of 35 km. MAR 

additionally outperformed RACMO in several winter and summer seasons during testing when 

comparing to the AWS data. RACMO differed on average -1.3°C from the recorded AWS values, 

while MAR differed by a mean of 0.6°C. ERA5 showed close agreement when corrected for 

lapse rate, even though it also had a relatively coarse (31 km) spatial resolution. However, ERA5 

data for the 2020 melt season was not available at the time of study. RACMO2.3 showed a 70 
notable cold bias in data of 2-3°C but with a good spatial resolution of 5.5 km. Hence, MAR data 

was selected as it offered the most accurate and up to date values. A representative grid cell of 

MAR was chosen for climate simulations at centroid 71.38S, 67.83W, corresponding to the rough 

location of the Fossil Bluff AWS. We forced MAR with several GCM (general circulation 

models): CESM2, CNRM-CM6 and ACCESS1.3. These forcings were compared with MAR 

results when forced by ERA-Interim over 1979-2020 to evaluate their accuracy. The comparison 

showed good agreement (correlation coefficient = 0.8), hence providing a basis for using these 

forcings in future simulations to 2100. Between 1979 and 2020, MAR was forced with ERA-

Interim at its boundaries. The resulting MAR data was further used to force the Community Firn 

Model (CFM; Stevens et al., 2020) to produce values of firn air content (FAC), refreezing, runoff 80 
and ice lens depth values. 
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Text S6. Regression analysis method detail 

A multivariate regression was carried out including all outputs from the CFM, together with 

several climatic variables derived by MAR, and SAM (Marshall, 2003) in order to determine the 

most important controlling variables in lake coverage on GVIIS. Due to the number of variables, 

a backwards selection method was selected for the model. This involved the successive removal 

of variables from the regression model in a process of elimination. The statistic used for 

comparing outputs was the adjusted R2 value rather than R2 as adjusted R2 penalizes regressions 

with large numbers of variables, thus minimizing noise fitting. Each iteration of the model 

involved the removal of a single non-significant (p<0.05) variable judged by the individual 90 
significance value in the output. From this, variables were progressively removed until the 

adjusted R2 value started to decrease upon removal of further variables. Hence, the remaining 

variables, the combination of which being determined as significant in impacting lake coverage, 

were identified as: summer total melt, November FAC, summer mean SAT, and mean annual 

SAM. 

 To identify which of these remaining variables had the greatest individual impact on lake 

coverage, individual regression analyses were then carried out for each variable versus lake 

coverage. Specifically, we carried out this analysis on summer total melt, NFAC, summer mean 

SAT, mean annual SAM and both summer and winter accumulation as a result of their 

contribution to FAC. Due to the impact of these variables on FAC, we found that FAC from the 100 
same year was less important than maintained FAC depth. Thus, accumulation was also needed 

for understanding the development of SGLs. 
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Figure S7. Scatter plots of each identified important climatic variable versus lake coverage. (a) 

shows melt, (b) shows temperature, (c) shows SAM magnitude, (d) shows NFAC, (e) shows 

summer accumulation, (f) shows winter accumulation. Temperatures were derived from the AWS 

data while all other variables are determined from MAR and the CFM. 

                  
         
        

  

  

  

  

  

   

   

   

             

 
 
 
 
  

  
 
 
 
  

 
 

             

                    

         

        

  

  

  

  

  

   

   

   

         

 
 
 
 
  

  
 
 
 
  

 
 

                

                     

         

         

  

  

  

  

  

   

   

   

         

 
 
 
 
  

  
 
 
 
  

 
 

                        

                    

         

         

  

  

  

  

  

   

   

   

             
 
 
 
 
  

  
 
 
 
  

 
 

                             

                     

         

         

  

  

  

  

  

   

   

   

                 

 
 
 
 
  

  
 
 
 
  

 
 

                           

                    

          

        

  

  

  

  

  

   

   

   

                   

 
 
 
 
  

  
 
 
 
  

 
 

                           

      

      

      


