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Abstract. Remote sensing data are a crucial tool for monitoring climatological changes and glacier response in areas inaccessi-

ble for in situ measurements. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST)

product provides temperature data for remote glaciated areas where weather stations are sparse or absent, such as the St. Elias

Mountains (Yukon, Canada). However, MODIS LSTs in the St. Elias Mountains have been found in prior studies to show an

offset from available weather station measurements, the source of which is unknown. Here, we show that the MODIS offset5

likely results from the occurrence of near-surface temperature inversions rather than from the MODIS sensor’s large footprint

size or from poorly constrained snow emissivity values used in LST calculations. We find that an offset in remote sensing

temperatures is present not only in MODIS LST products, but also in Advanced Spaceborne Thermal Emissions Radiometer

(ASTER) and Landsat temperature products, both of which have a much smaller footprint (90-120 m) than MODIS (1 km).

In all three datasets, the offset was most pronounced in the winter (mean offset >8°C), and least pronounced in the spring10

and summer (mean offset <2°C). We also find this enhanced seasonal offset in MODIS brightness temperatures, before the

incorporation of snow surface emissivity into the LST calculation. Finally, we find the MODIS LST offset to be consistent in

magnitude and seasonal distribution with modeled temperature inversions, and to be most pronounced under conditions that fa-

cilitate near-surface inversions, namely low incoming solar radiation and wind speeds, at study sites Icefield Divide (60.68°N,

139.78°W, 2,603 m a.s.l) and Eclipse Icefield (60.84°N, 139.84°W, 3,017 m a.s.l.). Although these results do not preclude15

errors in the MODIS sensor or LST algorithm, they demonstrate that efforts to convert MODIS LSTs to an air temperature

measurement should focus on understanding near-surface physical processes. In the absence of a conversion from surface to

air temperature based on physical principles, we apply a statistical conversion, enabling the use of mean annual MODIS LSTs

to qualitatively and quantitatively examine temperatures in the St. Elias Mountains and their relationship to melt and mass

balance.20
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1 Introduction

In recent decades, the high latitudes (>60°) have warmed at a more rapid rate than the rest of the planet, with impacts extending

to distant lower latitude regions (Winton, 2006; Serreze and Barry, 2011; You et al., 2021). In particular, the loss of high-

latitude glaciers has reduced the Earth’s albedo (which can further accelerate warming) and contributed to global sea level

rise (Budyko, 1969; Lian and Cess, 1977; Serreze and Barry, 2011; Zemp et al., 2019; Hugonnet et al., 2021). The St. Elias25

mountains are situated on the border of Alaska and the Yukon in a region experiencing pronounced warming and glacier mass

loss compared to the rest of the high latitudes (Farinotti et al., 2019; Zemp et al., 2019; Hugonnet et al., 2021). Alaskan

glaciers alone have contributed over 25% of observed sea level rise to date, the largest contribution of any one glaciated region,

excluding the Greenland and Antarctic Ice Sheets (Zemp et al., 2019; Hugonnet et al., 2021). Additionally, Alaskan glaciers are

losing mass at some of the highest rates globally (−66.7 Gt yr−1), and therefore remain pertinent to projections of global sea30

level rise (Hugonnet et al., 2021). The greater North Pacific cordillera (high elevation sectors of Alaska and neighboring parts

of the Yukon and British Columbia) contains over 40 mm of global sea level rise potential in a combination of large icefields

and small alpine glaciers, making widespread monitoring of glacier mass in the region a worthwhile endeavor (Farinotti et al.,

2019).

Because of the influence of atmospheric temperature on surface energy balance via downward longwave radiation and sen-35

sible heat transfer, glacier mass loss is largely associated with atmospheric warming (Cuffey and Paterson, 2010). In order to

better predict the impacts of projected atmospheric warming, we need to monitor temperature change and glacier response.

However, due to the inaccessibility of many high-latitude regions for in situ measurements, our understanding of the re-

gion’s climatic behavior relies heavily on remote sensing products, such as Moderate Resolution Imaging Spectroradiometer

(MODIS) land surface temperatures (LSTs). Temperatures derived using remote sensing techniques are definitionally not mea-40

sured directly. Instead, they are inferred from measurements taken by satellite sensors of the energy emitted by the earth’s

surface. A variety of temperature products can be obtained using remote sensing methods, including the final surface tempera-

ture product, as well as "brightness temperature", or the temperature of a perfect blackbody emitter under the same conditions.

In contrast, temperatures measured in situ are directly measured using instruments onsite, and can be measured for both the

earth’s surface and the air above it. Surface temperatures measured in situ provide important validation for remote sensing45

surface temperatures such as MODIS LSTs. However, because of a lack of in situ surface temperature data in our study region,

unless otherwise stated, all in situ temperatures used here refer to the air 2 m above the land surface. Our study is therefore not

a standard validation of the MODIS LST product, but rather an evaluation of its use in conjunction with in situ air temperatures

to characterize the near-surface temperature conditions of the St. Elias region.

MODIS LSTs are a valuable tool for monitoring climate in remote regions because they provide more than two decades50

(2000-present) of near-daily imagery under clear-sky conditions. However, MODIS LSTs have been observed to be lower

than in situ surface and air temperatures at a number of snow- and ice-covered sites. For example, at Summit, Greenland,

2008-2009 MODIS LSTs were an average of 5.5°C lower than coincident 2 m air temperatures, amounting to an ∼3°C offset

in the MODIS LSTs once the difference between surface and air temperatures was accounted for (Koenig and Hall, 2010).
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Figure 1. Study sites Eclipse and Divide (yellow triangles) and nearby weather station locations at Burwash Landing (orange circle) and

Haines Junction (blue circle).

Likewise, in Svalbard, wintertime MODIS LSTs from a snow-covered permafrost site showed a cold offset of 1.5°C to 6°C55

(mean = 3°C) relative to in situ surface temperatures (Westermann et al., 2012), and MODIS LSTs from the Austfonna ice cap

during 2004-2011 showed a cold offset relative to both in situ surface (RMSE = 5.3°C) and air (RMSE = 6.2°C) temperatures

(Østby et al., 2014). In this study, we focus on an observed cold offset in MODIS LSTs from automated weather station (AWS)

temperatures in the glaciated Upper Kaskawulsh-Donjek region of the St. Elias Mountains (Yukon, Canada; hereafter referred

to as "St. Elias"). In this region, average daily MODIS LSTs have been shown to be colder than downscaled and observed air60

temperatures by 5–7°C when snow cover was >90% (Williamson et al., 2017).

Remote sensing temperature products are especially useful for relating glacier behavior and mass balance to climatological

changes in rugged alpine regions where glaciers tend to be at higher elevations than most nearby weather stations. Our study

sites in the St. Elias are located above 2,500 m a.s.l., while nearby Environment and Climate Change Canada weather stations

are located at 610 m a.s.l. (Haines Junction) and 806 m a.s.l. (Burwash Landing; Fig. 1). Lower elevation sites are in contact65

with different air masses and are sensitive to different sources of variability than their high elevation counterparts, so data from

these stations are not necessarily representative of climatic behavior at glaciated alpine sites (McConnell, 2019). In particular,

low elevation sites are primarily sensitive to local climate, while higher elevation sites are sensitive to atmospheric circulation

patterns on a large spatial scale (e.g. Alaska Range-central tropical Pacific teleconnections; Winski et al., 2018). Additionally,

low-elevation weather stations likely underestimate the warming experienced at nearby higher elevation sites. Modeling studies70

(Chen et al., 2003; Giorgi et al., 1997) predict that warming rates increase with elevation. Although not a universal phenomenon
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(Ohmura, 2012), elevation-enhanced warming has been observed in a number of alpine mountain ranges including the St. Elias

and greater North Pacific cordillera (Williamson et al., 2020; Diaz et al., 2014; Pepin et al., 2015; Rangwala and Miller, 2012).

Because we lack paired in situ surface and air temperature measurements in the St. Elias, it is not clear whether the MODIS

LST offset in the region results from the instrumentation and algorithm used to produce MODIS LSTs or whether it is a real75

temperature difference between the air and surface. Unlike weather stations, which measure air temperature at a point typically

2 m above the surface, MODIS LSTs record the temperature of the surface itself across a 1 km2 grid cell. Although air

temperature and surface temperature are closely related, they are distinct and their response to the same forcing can differ (Jin

and Dickinson, 2010). Cold offsets in MODIS LSTs at Summit, Greenland have been attributed to near-surface temperature

inversions, which occur when the surface is colder than the air directly above it (Adolph et al., 2018). Near-surface temperature80

inversions develop over glaciated regions when heat transfer from the surface to the air occurs as a result of an energy imbalance

at the surface-air interface (Adolph et al., 2018). Such energy imbalances can occur under low incoming solar radiation, when

upward longward radiation emitted by the earth’s surface may exceed downwelling energy fluxes (Adolph et al., 2018). Snow

surfaces often have a high emissivity (0.949-0.997 in the 10.5-12.5 µm range; Hori et al., 2006) relative to the atmosphere,

which has been observed to be as low as 0.4, depending on water vapor content (Herrero and Polo, 2012). This difference85

in emissivities requires the snow surface to cool relative to the air above as it equilibrates (Hudson and Brandt, 2005). One

hypothesis for the offset in MODIS LSTs in the St. Elias is the presence of near-surface temperature inversions similar to those

observed at Summit, Greenland. However, unlike the interiors of large ice sheets, alpine environments are characterized by

heterogeneity in surface type, elevation, aspect, incline, wind scouring, and shading (note the many ridges and nunataks shown

in Fig. 2), all of which affect surface energy balance. Conditions from Summit, Greenland therefore cannot be used to infer90

near-surface temperature inversions in the St. Elias, and to our knowledge, such inversions have not to date been observed in

other alpine regions. Here, we use the term "inversion" specifically in reference to temperature inversions within 2 m of the

land surface ("near-surface"). We both evaluate the plausibility of near-surface temperature inversions in the St. Elias and test

two alternative hypotheses to explain the offset in MODIS LSTs in the region.

First, the LST offset could result from the large (1 x 1 km) footprint (grid cell) of the MODIS sensor. The heterogeneity95

of the St. Elias’ environment (surface type, elevation, aspect, incline, wind scouring, shading) may not be well represented

by the average temperature value of a MODIS grid cell. A second cause of the LST offset could be incorrect definition of

emissivity values used to calculate MODIS LSTs from brightness temperatures. Since snow does not emit radiation uniformly,

emissivity is not uniform across snow surface types, particularly in locations such as the St. Elias icefields, where compaction

processes and surface melt occur heterogeneously over the variable terrain (Hori et al., 2006; Hulley et al., 2014; Shea and100

Jamieson, 2011). Therefore, the icefields undergo disparate changes in emissivity over hours to days, meaning that identifying

a single representative emissivity value is challenging. Employing too high an emissivity value in the calculation of LST would

result in too low a surface temperature. Finally, during the production of MODIS LSTs, clouds and blowing snow can produce

low temperatures if they are erroneously categorized as the land surface (Westermann et al., 2012). Without accurate cloud

masking, offsets in MODIS LSTs have been previously observed at Summit, Greenland in both summer (∼3°C; Koenig and105

Hall, 2010) and winter (∼5°C; Shuman et al., 2014). However, the cloud mask has since been updated to address this problem
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Figure 2. MODIS (orange box), ASTER (green box), and Landsat (pink box) footprints at Eclipse and Divide ice core and AWS sites. a)

Upper Kaskawulsh-Donjek area containing Eclipse and Divide sites, b) Eclipse ice core (red dot) and AWS (red diamond) sites, c) Divide

ice core (blue dot) and AWS (blue diamond) sites. Dashed lines in panel (a) show extents of panels (b) and (c). Both the Divide AWS sensors

(Campbell 107F and HOBO-S-THB-M008) were located at the Divide AWS site. Both the Eclipse AWS and iButton sensor were located at

the Eclipse AWS site. Background imagery from Landsat 8 on June 30, 2017.

(Yao et al., 2020). Additionally, higher air temperatures tend to occur under cloudy conditions, and previous work in the St.

Elias indicates that MODIS LSTs over warm (>0°C) surfaces are an average of <2°C (Walsh and Chapman, 1998; Williamson

et al., 2013). We therefore do not address the MODIS cloud mask in this study.

Our goal in this study is to determine whether the dominant source of the offset in MODIS LSTs from AWS temperatures at110

glaciated sites in the heterogeneous alpine environment of the St. Elias arises from (a) the large spatial footprint of the MODIS

sensor in highly heterogeneous alpine terrain, (b) poorly constrained snow emissivity values, or (c) a real temperature difference

between the surface and air due to near-surface temperature inversions. Since prior work has been unable to fully evaluate the

MODIS cold offset in alpine environments due to data limitations, the relative importance of competing hypotheses is unknown.

Additionally, near-surface temperature inversions have to date only been studied on the major ice sheets, and their applicability115

to alpine environments remains untested. Here, we use two decades of overlapping MODIS and AWS measurements from the

St. Elias to resolve some of these uncertainties and develop a surface-to-air conversion factor for use in similar environments

that lack AWS data. Although MODIS LSTs can be a useful complement to in situ air temperatures, the two cannot be directly

compared and physical differences between the two must be accounted for when using them together. The AWS record from the

St. Elias is, to our knowledge, the longest such record from a glaciated high alpine area in Alaska and the surrounding region.120

This work is therefore novel in its pairing of a uniquely long AWS temperature record with MODIS LSTs in an understudied

system (glaciated high alpine regions) where we often rely solely on remote sensing data for temperature information, as well

as in a location with severe consequences in terms of ice mass loss.
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Table 1. Temperatures used in this study. Type refers to air or surface temperature. Technique refers to the instrumentation or method of

measurement. Unknown values are left blank.

Name Type Technique Footprint Product/instrument Uncertainty

Divide AWS Air In situ Point measurement Campbell 107F ± 0.2 ◦C

HOBO S-THB-M008 12-bit

sensor
± 0.21 ◦C

Eclipse AWS Air In situ Point measurement

iButton Air In situ Point measurement
Maxim Integrated iButton Data

Logger DS1922L
± 0.5 ◦C

MODIS LST Surface
Remote

sensing
1 km MYD21

ASTER surface

temperature
Surface

Remote

sensing
90 m AST_08

MODIS BT Surface
Remote

sensing
1 km MODTBGA_006

ASTER BT Surface
Remote

sensing
90 m

Calculated from ASTL1T

following Ndossi and Avdan

(2016)

Landsat BT Surface
Remote

sensing

Resampled from 100 m to 30 m

(Landsat 8)
LC08

Resampled from 120 m to 30 m

(Landsat 5, 7)
LE07, LT05

2 Methods

2.1 Study sites and in situ air temperature data125

In situ and MODIS temperature data were collected at study sites Eclipse Icefield (60.84° N, 139.84° W, 3,017 m a.s.l.;

hereafter referred to as “Eclipse”), and Icefield Divide (60.68° N, 139.78° W, 2,603 m a.s.l.; hereafter referred to as “Divide”;

Fig. 1) in the St. Elias Mountains. Instrumentation for both remote sensing and in situ temperatures used here is discussed

below. A summary of the temperatures used in this study is shown in Table 1. Surface melt is present but limited at both sites,

which are situated in the accumulation zone. Surface melt at these sites does not result in standing surface water, but rather130

saturates or percolates below the surface, limiting its effect on surface albedo. Observed early melt season (May/June) surface

conditions were a fairly soft and flat snow surface with no sastrugi, drifting, or other surface features.

In situ temperatures at Divide were obtained from two adjacent AWS located on small nunataks, the first of which used a

Campbell 107F temperature probe (± 0.2°C) housed inside a solar radiation shield, which recorded hourly readings from 2002-

2015. The second AWS was located ∼300 m from the first, and recorded hourly temperatures with a HOBO S-THB-M008135
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Figure 3. Temporal coverage of datasets used in this study. Time periods covered are 1984-present (LS5 TM, LS7 ETM+ and LS8 OLI-TIRS;

together referred to as "Landsat"), 2001-present (ASTER), 2002-present (Divide HOBO S-THB-M008 and Divide Campbell 107F; together

referred to as "Divide AWS"), 2002-present (MODIS), 2005-2007 (Eclipse weather station), and 2016-2017 (Eclipse iButton). The Eclipse

weather station and iButton are together referred to "Eclipse AWS".

12-bit sensor (± 0.21°C) housed inside a solar radiation shield from 2009-present (Fig. 3). Both sensors collected temperature

data as hourly averages of 5 minute sampling intervals (Williamson et al., 2020). In the window where the two sensors at Divide

overlap, we use the HOBO S-THB-M008 12-bit sensor because it provides contemporary solar radiation, relative humidity,

wind speed, and pressure data. Both sensors at Divide were located ∼2 m above the surface. The height of sensors above the

surface changed with snow accumulation; however, accumulation on nunataks at Divide is typically limited by intense wind140

scouring so the sensor height above the surface remains relatively constant over time. Available temperature data at Eclipse

are lower quality than at Divide, with limited temporal coverage and sensors not up to World Meteorological Organization

standards. We therefore focus on data from Divide, but include available data from Eclipse with the caveat that results are

less robust. Around 88% of the temperature data used in this study came from Divide. Additionally our examination of other

meteorological variables and our surface energy balance calculations are all performed with data from Divide.145

Temperatures at Eclipse were obtained from an AWS from 2005-2007, and a Maxim Integrated iButton Data Logger

DS1922L (± 0.5°C) from 21 May 2016 to 17 May 2017, both located on or near a bedrock outcrop ∼3 km from the site

of an ice core drilled at Eclipse in 2016 (Fig. 3). The AWS recorded hourly averages of 5 minute sampling intervals using

digital sensors housed in a passively vented radiation shield at a height of approximately 2 m (Williamson et al., 2020). The

iButton recorded temperatures at 3-hour intervals and was placed inside an unvented clear plastic container shielded with rocks.150

Because data is so limited at Eclipse, we combine the AWS and iButton datasets for maximum coverage at the site. We refer

to both the Divide AWS and the combined Eclipse iButton and AWS data as "AWS" for the remainder of this paper.
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2.2 MODIS LST data

In this assessment of possible sources for the MODIS LST offset, we use the MODIS MYD21 LST product. The MOD21

and MYD21 (together referred to as MxD21) products dynamically retrieve emissivity values for each grid cell, rather than155

assigning them based on land cover as was done for the MxD11 products previously examined (Williamson et al., 2017;

McConnell, 2019), and have been shown to correct for MxD11 cold offsets over barren, but not glaciated, surfaces (Hulley,

2017; Li et al., 2020; Yao et al., 2020). MOD21 LSTs were not included in this study as the product was discontinued due to

an optical crosstalk issue in the infrared bands (Hulley, 2017), therefore we focus solely on MYD21 LST data.

Our goal is to determine the dominant source of the offset in MODIS LSTs at glaciated sites in the St. Elias. Because the160

Eclipse and Divide AWS are located on nunataks, we test for the LST offset using MODIS data encompassing adjacent ice

core sites∼3 km from each AWS location, thereby excluding the dark nunatak surface from the MODIS grid cell and focusing

on the ice surface (Fig. 2). We compute the difference in MODIS LST between the ice core site grid cell (containing only ice)

and the AWS site grid cell (containing ice and rock) to determine whether the inclusion of the nunatak has a discernible effect

on the MODIS LST.165

MODIS LST data were obtained for the period 2000-2020 (https://lpdaacsvc.cr.usgs.gov/appeears/) for dates with minimal

cloud cover between the hours of 12:00 and 13:00 (local solar time), when viewing angle is < 30°, to mitigate the effect of

viewing angle on temperature and emissivity. At Divide, 742 MODIS images spanning 2002-2020 were analyzed. Seasonally,

203 images were acquired in spring (MAM), 169 in summer (JJA), 188 in fall (SON), and 182 in winter (DJF). At Eclipse,100

MODIS images were analyzed: 87 spanning June 2005 through June 2007 and 13 spanning November 2016 through February170

2017. Each MODIS image was paired with the closest hourly measurement available in the AWS data. MODIS LSTs were

subtracted from the nearest hourly in situ air temperature measurement to calculate their offset from in situ temperatures.

A small number of summer MODIS LST offset results were skewed by air temperatures well above 0°C (30 dates with air

temperature > 4°C, 5 dates with air temperature >8°C), as the snow surface cannot warm above freezing without melting.

Removing these data reduced the temporal coverage of the summer MODIS LST offset data, but had no effect on the seasonal175

distribution of the cold offset.

2.3 Sensor footprint size

To test if the LST offset is a result of the MODIS sensor’s large footprint, we calculate the offset of both ASTER (90 m footprint)

and MODIS (1 km footprint) surface temperatures from AWS measurements and then compare the magnitude of the offsets.

We use only ASTER and MODIS images from the 12:00-13:00 window that had paired AWS data in this comparison. ASTER180

kinetic temperature data (AST08, https://search.earthdata.nasa.gov/search) for 2001-2020 were manually filtered to remove

dates with cloud cover or inconsistency in their time of acquisition, resulting in 33 ASTER images coincident with MODIS

imagery at Divide, and 15 at Eclipse. The seasonal distribution of acquired ASTER imagery is heavily skewed, with only

three images available during winter months and none during spring. While Landsat also has a smaller footprint than MODIS
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(100-120 m), Landsat surface temperatures remain under development (as of July 2021) and were therefore not included in185

this study.

2.4 Snow surface emissivity

To test if the MODIS LST offset is a result of poorly constrained snow emissivity values, we assess whether the prominent

wintertime offset in MODIS LSTs is also present in MODIS brightness temperatures prior to the incorporation of snow sur-

face emissivity. MODIS brightness temperatures (https://lpdaacsvc.cr.usgs.gov/appeears/) were extracted, and their offset from190

AWS temperatures was calculated. We also examine ASTER and Landsat brightness temperatures because of their higher spa-

tial resolution (90 m for ASTER, 100-120 m for Landsat). ASTER brightness temperatures were obtained from TIR imagery

(https://search.earthdata.nasa.gov/search; using the methods of Ndossi and Avdan 2016). Landsat top of atmosphere brightness

temperature imagery (https://earthexplorer.usgs.gov/) was visually examined for cloud cover, and cloud-free grid cells were

extracted for analysis using QGIS.195

Additionally, we compare the MODIS LST offset with snow accumulation data from Divide. The Divide accumulation

record was obtained using a Campbell Scientific SR50 ultrasonic snow depth sounder instrument. The instrument provided

twice-daily readings of its distance from the snow surface at the Icefield Discovery Camp during the period spanning 2003-

2012, corrected for the variability in speed of sound with air temperature.

2.5 Near-surface temperature inversions200

To test whether the MODIS LST offset reflects pervasive near-surface temperature inversions, we examine whether the offset

is more pronounced under conditions that facilitate near-surface inversions, namely low levels of incoming solar radiation and

low wind speeds. Low solar radiation gives rise to near-surface inversions, but it can be counterbalanced if wind speeds are

high enough to disturb thermal stratification (Adolph et al., 2018). During one study in Greenland (at Summit), no inversions

greater than 2°C were observed in the 2 m above the snow surface when incoming solar radiation was above 600 Wm−2 or wind205

speed was greater than approximately 7 ms−1 (Adolph et al., 2018). In another study across 22 sites in Greenland, maximum

temperature inversions were observed at wind speeds of 3-5 ms−1 (Nielsen-Englyst et al., 2019). We compare differences

between AWS and MODIS LST data to wind speed and solar radiation data obtained from the Divide AWS. We transform

LST offsets, wind speed, and solar radiation data to approximately normal distributions using a box-cox transformation and

normalize each dataset around zero. We then perform linear regressions on LST offsets vs. wind speed, LST offsets vs. solar210

radiation, and LST offsets vs. wind speed under low (<400 Wm−2) levels of solar radiation.

We compare the magnitude of the LST offset to wind speed and solar radiation data obtained from the Divide AWS. To test

if a near-surface temperature inversion could occur under surface conditions at Divide and Eclipse, we compare differences in

AWS and MODIS temperatures to surface temperatures calculated with the following simple energy balance model. The net

surface energy balance (EN ) can be expressed by:215

EN = ES ↓+ES ↑+EL ↓+EL ↑+EG +EH +EE +EP (1)
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where ES ↓ is the downward shortwave radiation, ES ↑ is the reflected shortwave radiation, EL ↓ is the downward longwave

radiation, EL ↑ is the upward emitted longwave radiation, EG is the subsurface energy flux, EH and EE are the turbulent

sensible and latent heat fluxes, and EP is the heat flux associated with liquid precipitation that subsequently freezes (Cuffey

and Paterson 2010). We focus on the radiative fluxes (ES ↓, ES ↑, EL ↓, and EL ↑), as our goal is simply to determine whether220

observed temperature differences are physically plausible, and not to produce a precise energy balance model. We ignore EG

because it is often small relative to both radiative and turbulent fluxes, and several studies (e.g. Brock and Arnold, 2000;

Hock and Noetzli, 1997, Favier et al., 2004) have validated energy models in which it is omitted (Hock and Holmgren, 1996;

Pellicciotti et al., 2009; Yang et al., 2021). Subsurface energy fluxes have been found to represent only 1-2% of the total heat

flux on glacier surfaces (Giesen et al., 2008; Yang et al., 2011). We ignore EP , as rainfall has not been observed in the St. Elias225

icefields. We also ignore turbulent fluxes, as they are both difficult to calculate and unnecessary for our purposes of evaluating

the physical plausibility of observed temperature differences. LST offsets observed in this study are most prominent under low

wind speed conditions, when turbulent fluxes are unlikely to be a dominant component of the surface energy balance. Ignoring

turbulent fluxes, we can still calculate an upper bound for temperature inversion strength under site conditions at Divide and

Eclipse. After applying our simplifying assumptions, equation 1 becomes:230

EN ≈ ES ↓+ES ↑+EL ↓+EL ↑ (2)

We assume a net surface energy balance of EN = 0. EL ↑ is the energy emitted by the earth’s surface and can be described by:

EL ↑= εsσTs
4 (3)

where εs is surface emissivity, σ is the Stefan-Boltzmann constant, and Ts is surface temperature (Cuffey and Paterson, 2010).235

Expressing EL ↑ in terms of its components, and rearranging to solve for surface temperature, we obtain:

Ts ≈
(
EL ↓+ES ↓ (1−α)

εsσ

)0.25

(4)

where α is surface albedo. We acquire downward shortwave radiation from the Divide AWS. We calculate downward longwave

radiation as follows, using 2 m air temperature (Ta) from Divide and atmospheric emissivity (εa) from the ERA5 reanalysis

product:240

EL ↓= σεaTa
4 (5)

We use only the derived emissivity from the ERA5 product, rather than the total downward radiation in order to use measured

values (in situ 2 m air temperature) where possible. ERA5 outputs have a spatial resolution of 31 km; data are available every

six hours from 2002-2019 (Hersbach et al., 2020). Atmospheric emissivity increases with increasing surface vapor pressure

(Staley and Jurica, 1972). Our atmospheric emissivity values ranged from ∼0.48 to 1. Atmospheric emissivity measured over245

the Sierra Nevada (Spain) from 2005-2011 ranged from ∼0.4-1 (Herrero and Polo, 2012). Prior work in the St. Elias has

demonstrated issues with MODIS albedo values arising from confusion between snow and cloud cover (Williamson et al.,
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2016). We therefore avoided using the MODIS albedo product to eliminate this unnecessary source of uncertainty. Instead,

we use a surface albedo of 0.742, which was the mean albedo measured at Divide during August, 2015 (Williamson et al.,

2016). We use end-member snow emissivity values of εs = 0.95 and εs = 0.99 (Hori et al., 2006). The MODIS emissivity250

values for the days sampled in this study range from 0.930 to 0.988. The range of emissivity values is similar in all seasons,

so we consider distinguishing by season unnecessary for our simple model. The distribution of emissivity values is skewed

toward higher values, so we consider the 0.95 value from Hori et al. (2006) a reasonable choice for our lower emissivity bound.

We assign a value of 0°C to all surface temperatures calculated to be above 0°C because a snow surface cannot exceed this

temperature without melting.255

2.6 MODIS LSTs and melt

To evaluate whether MODIS LSTs can be used in conjunction with in situ air temperatures to examine the conditions associated

with surface melt, we compare interannual trends between the two and reconcile the difference between MODIS LSTs and AWS

temperatures using a simple linear regression. We are interested in interannual trends since interpretation of paleo records often

occurs on interannual timescales. We therefore calculate the mean annual value for both MODIS LSTs and AWS temperatures.260

Because we calculate annual means rather than examine individual MODIS LST and AWS temperature pairs, we use all

available MODIS LSTs and AWS temperatures, rather than only the subset of dates for which we have both. We fit a linear

model to mean annual MODIS LSTs and AWS temperatures using the MATLAB function fitlm(), taking the AWS temperature

to be the response variable. We then use the coefficients from this linear fit model to generate a set of converted mean annual

MODIS LSTs (LSTconverted =−3.73+0.44LST ). The RMSE of our linear fit is 1.9°C, and the interannual variability spans265

a range of 5.3°C.

3 Results

3.1 MODIS LSTs at Divide ice core and AWS sites

MODIS data at the Divide AWS nunatak and adjacent ice core site have a median temperature difference of 0.8°C and in-

terquartile range of 2.0 °C (Table 2). The difference between the two sites shows greater variability in the fall (IQR = 3.2°C)270

and winter (IQR = 4.0°C) than in the spring (IQR = 0.7°C) and summer (IQR = 1.8°C), with the ice core site tending to be

slightly colder in the winter (median temperature difference of -0.5°C), but warmer in the spring (Mdn = 1.0°C), summer (Mdn

= 1.3°C) and fall (Mdn = 0.3°C; Fig. 4).

3.2 Seasonal distribution of the MODIS LST offset

In comparing MODIS LSTs with AWS temperatures at Divide and Eclipse, we find the MODIS LSTs to be slightly lower that275

coincident AWS temperatures, with the offset to be greatest during the fall and winter (Fig. 5; Table 3). We report a warmer

surface as a positive difference and a colder surface as a negative difference. The difference between AWS temperatures and
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Table 2. Median differences between MODIS LSTs at the Divide ice core and AWS sites, median MODIS LST offsets by season at Divide

and Eclipse, median MODIS brightness temperature (BT) offsets by season at Divide and Eclipse, and median calculated temperature

inversions with surface emissivities of 0.95 and 0.99. Differences between MODIS LSTs at the ice core site and AWS site are reported as

ice core site − AWS site (°C). All offsets are reported as MODIS − AWS (°C). Brightness temperatures for bands 31 and 32 are averaged

together. Inversions are reported as negative values.

Ice Core Site − AWS Site (°C) MODIS LST − AWS (°C) MODIS BT − AWS (°C) Tsurface −Tair(°C)

Season Divide Divide Eclipse Divide Eclipse εs = 0.95 εs = 0.99

Spring (MAM) 0.3 −0.7 −1.7 −1.7 −2.8 8.0 7.5

Summer (JJA) 1.3 −1.0 −1.1 −2.4 −2.5 0.7 0.7

Fall (SON) 0.3 −4.4 −5.2 −5.6 −5.7 2.3 1.0

Winter (DJF) −0.5 −8.4 −8.9 −9.4 −9.4 −7.1 −9.7

Table 3. Results for Wilcoxon rank sum tests between seasonal MODIS LST offsets at Divide (a) and Eclipse (b). Bolded cells indicate a

more pronounced cold offset in the column season, italicized cells indicate a more pronounced cold offset in the row season, and standard

font cells indicate no significant difference between the seasons.

(a)

DIVIDE Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 0.81 z = 9.85 z = 13.41

p > 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 0.81 z = 8.80 z = 12.35

p > 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 9.85 z = 8.80 z = 5.53

p < 0.05 p < 0.05 p < 0.05

Winter (DJF)
z = 13.41 z = 12.35 z = 5.53

p < 0.05 p < 0.05 p < 0.05

(b)

ECLIPSE Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 1.11 z = 2.62 z = 3.59

p > 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 1.11 z = 3.73 z = 4.39

p > 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 2.62 z = 3.73 z = 1.15

p < 0.05 p < 0.05 p > 0.05

Winter (DJF)
z = 3.59 z = 4.39 z = 1.15

p < 0.05 p < 0.05 p > 0.05
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Figure 4. Differences between MODIS LSTs at Divide ice core and AWS sites. Shaded notched areas indicate the 95% confidence interval

for the median temperature difference. Horizontal dashed line indicates where MODIS LSTs at the ice core site and AWS site are equivalent.

Figure 5. MODIS LST vs. air temperatures (AWS) at Divide (blue) and Eclipse (orange). The dashed line indicates where MODIS LST and

AWS temperatures are equivalent.

MODIS LSTs at Divide are larger in the fall (Mdn = −4.4°C) and winter (Mdn = −8.4°C) than in the spring (Mdn = −0.7°C)

and summer (Mdn = −1.0°C; Table 2). Winter LST offsets are significantly larger than those in spring, summer, and fall. Fall

LST offsets are significantly larger than those in spring and summer. Differences between AWS temperatures and MODIS280

LSTs at Eclipse are also larger in the fall (Mdn = −5.2°C) and winter (Mdn = −8.9°C) than in the spring (Mdn = −1.7°C)

and summer (Mdn = −1.1°C). Fall and winter LST offsets do not differ significantly from each other in magnitude. Fall LST
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Figure 6. Differences between remote sensing surface temperatures and AWS measurements at Divide and Eclipse. Horizontal dashed line

indicates where remote sensing temperatures and AWS temperatures are equivalent. Temperature products from both MODIS (a) and ASTER

(b) show a cold offset relative to AWS temperatures. Shaded notched areas indicate the 95% confidence interval for the median temperature

difference.

offsets are significantly larger than those during spring and summer. Winter LST offsets are likewise significantly larger than

those during spring and summer.

3.3 Sensor footprint size285

In comparing MODIS (1 km) and ASTER (90 m) surface temperatures, we find that they both show an offset relative to AWS

measurements at Divide, with the MODIS offset (Mdn = −2.9°C) being significantly smaller than the ASTER offset (Mdn =

−6.3°C; Fig. 6). In all seasons, observed MODIS offsets vary by more than 10°C, with the range of winter values being greatest

at 35.6°C at Divide and 25.1°C at Eclipse. No ASTER temperatures were produced coincident with MODIS LSTs during the

winter, and only three during the spring so we were unable to bin ASTER data by season. Only one ASTER temperature was290

produced coincident with MODIS LSTs at Eclipse.

3.4 Snow surface emissivity

In comparing MODIS temperature products before and after the incorporation of snow surface emissivity, MODIS brightness

temperatures in bands 31 and 32 (prior to the incorporation of snow emissivity) show similar offset patterns as the LST products

(after the incorporation of snow emissivity), with the cold offset being most prominent in fall and winter (Table 2, Table 4, Fig.295

7). At Divide, winter offsets across both bands (Mdn = −9.4°C) are significantly larger than those in spring (Mdn = −1.7°C),

summer (Mdn = −2.4°C), and fall (Mdn = −5.6°C). Fall offsets are significantly larger than those in spring and summer. At

Eclipse, fall (Mdn = −5.7°C) and winter (Mdn = −9.4°C) offsets do not differ significantly from each other in magnitude.
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Table 4. Results for Wilcoxon rank sum tests between seasonal MODIS brightness temperature offsets from AWS temperatures at Divide (a)

and Eclipse (b). Brightness temperatures for bands 31 and 32 are averaged together. Bolded cells indicate a more pronounced cold offset in

the column season, italicized cells indicate a more pronounced cold offset in the row season, and standard font cells indicate no significant

difference between the seasons.

(a)

DIVIDE Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 3.60 z = 13.39 z = 19.09

p < 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 3.60 z = 10.20 z = 16.70

p < 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 13.39 z = 10.20 z = 8.63

p < 0.05 p < 0.05 p < 0.05

Winter (DJF)
z = 19.09 z = 16.70 z = 8.63

p < 0.05 p < 0.05 p < 0.05

(b)

ECLIPSE Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 0.95 z = 3.25 z = 4.70

p > 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 0.95 z = 4.57 z = 5.83

p > 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 3.25 z = 4.57 z = 1.77

p < 0.05 p < 0.05 p > 0.05

Winter (DJF)
z = 4.70 z = 5.83 z = 1.77

p < 0.05 p < 0.05 p > 0.05

Fall offsets are significantly larger than those during spring (Mdn = −2.8°C) and summer (Mdn = −2.5°C). Winter offsets are

likewise significantly larger than those during spring and summer.300

Landsat brightness temperatures at Divide also show a pattern of greater offset from AWS temperatures in the fall (Mdn =

−4.2°C) and winter (Mdn = −12.1°C) than in the spring (Mdn = −1.3°C) and summer (Mdn = −2.7°C). Winter offsets are

significantly larger than those in spring, summer, and fall. Fall offsets are significantly larger than those in spring and summer.

Regarding emissivity changes associated with snowfall events, we find no relationship either between the LST offset and

individual snowfall events or between the LST offset and the total accumulation each month, the percent of days with accumu-305

lation each month, or the mean days between accumulation each month. We also find no relationship between the LST offset

and days since last accumulation.
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Figure 7. Offsets of MODIS surface temperatures, MODIS Band 31 brightness temperatures and MODIS Band 32 brightness tempera-

tures from AWS measurements at Divide and Eclipse. Horizontal dashed lines indicate where MODIS temperatures and AWS temperatures

are equivalent. At Divide, spring and summer offsets are smaller in the final surface temperatures than in brightness temperatures (95%

confidence interval); fall and winter offsets no difference between final surface temperatures and brightness temperatures (95% confidence

interval). Surface and brightness temperatures show no significant difference from each other at Eclipse in any season due to smaller sample

sizes.

3.5 Near-surface temperature inversions

Similar to findings at Summit, Greenland (Adolph et al., 2018), the MODIS LST offset in the St. Elias is most pronounced

under conditions that facilitate near-surface temperature inversions, namely low wind speeds and low levels of incoming solar310

radiation (Fig. 8). The magnitude of the offset correlates weakly with wind speed (r2 = 0.02, p < 0.05) and more strongly

with solar radiation (r2 = 0.35, p < 0.05; Fig. 9). Nearly all (97%) MODIS LST offsets in excess of 10°C are coincident

with solar radiation lower than 430 Wm−2. An overwhelming majority (95%) of MODIS LST offsets in excess of 10°C are

coincident with wind speeds lower than 40 kmh−1. Comparing these findings with modeled results, we find that modeled

temperature inversions are also strongest in the winter. Modeled surface temperatures show a more pronounced offset from 2315

m air temperatures in winter than in spring, summer, and fall (Table 5). The observed median MODIS LST offset is 8.4°C

in the winter and 1.0°C in the summer (Table 2). Our simple energy balance model predicts a median temperature inversion

of 4.8°C (εs = 0.95) and 7.4°C (εs = 0.99) in the winter, and no inversion in the summer (Fig. 10). In the winter, modeled

inversion strength varies by up to 60°C. In the summer, these data show a much narrower spread because of our 0°C cap on

surface temperatures. The diurnal surface temperature offset cycle is more pronounced in the summer than in the winter, with320

the greatest offset occurring during nighttime hours, justifying the decision to limit MODIS LSTs to midday image collection

(Fig. 11; Tables 6, 7).
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Figure 8. Comparison of the MODIS LST offset (MODIS-AWS) with measured solar radiation and wind speed at Divide. The MODIS LSTs

show the most pronounced cold offset at low levels of solar radiation (shown by marker color) and low wind speeds. Horizontal dashed line

marks all locations where MODIS = AWS.

3.6 MODIS LSTs and melt

Interannual trends in MODIS LSTs agree well with those in AWS temperatures (r2 = 0 : 23 and p < 0.05; Fig. 12). Our simple

linear regression (LSTconverted =−3.73+0.44LST ) reconciles the difference between mean annual MODIS LSTs and AWS325

temperatures (mean error of 0.0 ± 1.8°C) for individual years.

4 Discussion

4.1 MODIS LSTs at Divide ice core and AWS sites

MODIS LSTs at the ice core site do not tend to be colder than at the AWS site except during the winter. The inclusion of

the warmer nunatak surface in the MODIS grid cell at the AWS site fails to provide a compelling explanation for the colder330

wintertime LSTs at the ice core site, given that more of the rock surface would likely have snow cover during the winter. The

colder wintertime LSTs at the ice core site may contribute to the MODIS LST offset from in situ temperature measurements

examined in this study. However, this contribution is too small (median = -0.5°C) to explain the magnitude of the MODIS LST

offset at the Divide ice core site (median = -8.4°C). In the spring, summer, and fall, the LSTs at the ice core site tend to be

slightly warmer than at the AWS site. Results here may therefore underestimate the magnitude of the MODIS LST offset from335

AWS temperatures in these seasons.
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Figure 9. Linear regressions of the normalized MODIS LST offset vs. solar radiation (a) wind speed (b), wind speed under low (< 400

Wm−2) solar radiation conditions (c), and boxplots of solar radiation (d) and wind speed (e) by season. The magnitude of the MODIS LST

offset is more strongly related to solar radiation than to wind speed. Dashed red lines in regression plots indicate the 95% confidence interval

around the regression line. Notches and shading in boxplots indicate the upper and lower bounds of each season’s median value of solar

radiation or wind speed at the 95% confidence interval.

4.2 Sensor footprint size

Despite ASTER’s smaller footprint and the homogeneity of surface type within its grid cell relative to that within the MODIS

grid cell, the LST offset persists in ASTER data (Fig. 6). The LST offset in ASTER data indicates that MODIS LSTs do

not display an offset from AWS temperatures simply because they are mean temperatures over square kilometer grid cells340

rather than point measurements. Additionally, AWS temperatures at Divide and Eclipse show good coherence, with a mean

temperature difference between the sites of 0.9 ± 2.0°C, despite the two sites being 30 km apart and over 400 m of elevation

difference between them. At its most extreme, the temperature difference measured by weather stations between the two sites

reaches ∼8°C. Although 8°C is notable, the fact that it is on the upper extreme of temperature disparities over 30 km and

400 m of elevation demonstrates that averaging temperatures over a single square kilometer is unlikely to routinely produce345
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Table 5. Results for Wilcoxon rank sum tests between modeled temperature inversions by season. Inversions (Tsurface −Tair) were cal-

culated from ERA5 and Divide AWS data. Bolded cells indicate a larger inversion in the column season, italicized cells indicate a larger

inversion in the row season, and standard font cells indicate no significant difference between the seasons.

(a)

ε = 0.95 Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 27.84 z = 17.41 z = 21.81

p < 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 27.84 z = 9.95 z = 10.75

p < 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 17.41 z = 9.95 z = 11.82

p < 0.05 p < 0.05 p < 0.05

Winter (DJF)
z = 21.81 z = 10.75 z = 11.82

p < 0.05 p < 0.05 p < 0.05

(b)

ε = 0.99 Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

Spring (MAM)
z = 26.81 z = 18.76 z = 23.96

p < 0.5 p < 0.5 p < 0.5

Summer (JJA)
z = 26.81 z = 5.62 z = 15.38

p < 0.05 p < 0.05 p < 0.05

Fall (SON)
z = 18.76 z = 5.62 z = 13.29

p < 0.05 p < 0.05 p < 0.05

Winter (DJF)
z = 23.96 z = 15.38 z = 13.29

p < 0.05 p < 0.05 p < 0.05

an offset of similar magnitude in wintertime MODIS LSTs (Mdn = −8.4°C at Divide, Mdn = −8.9°C at Eclipse). MODIS’

footprint size is thus not the dominant source of the offset in its LSTs.

4.3 Snow surface emissivity

We find similar seasonal distributions of offset from AWS temperatures in MODIS LSTs and MODIS brightness temperatures,

suggesting that the preferential fall and winter offset is not introduced by the conversion from brightness temperature to surface350

temperature or the emissivity values used in this conversion (Fig. 7). Moreover, Landsat brightness temperatures also show a

pattern of greater offset from AWS temperatures in the fall and winter. The observed cold offset in MODIS LSTs is therefore

not unique to the MYD21 product or even the MODIS sensor. Unfortunately, due to the limited availability of ASTER data,

too few images exist to examine any seasonal pattern.
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Figure 10. Seasonal differences between surface and 2 m air temperatures calculated from ERA5 and Divide AWS data. All data are for time

12:00 to control for diurnal effects. Shaded notched areas in panel (b) indicate the 95% confidence interval for the median temperature differ-

ence. Horizontal dashed line in panel (b) indicates where surface temperatures and air temperatures are equivalent. All surface temperatures

> 0°C were assigned a value of 0°C.

While results here show that poorly constrained emissivity values do not introduce the cold offset, they may exacerbate it.355

Applying an accurate emissivity correction to MODIS brightness temperatures should bring the resultant surface temperatures

closer to AWS measurements. At Divide, MODIS surface temperatures are ∼60% closer to AWS measurements than MODIS

brightness temperatures during spring and summer (significant at the 95% confidence interval, Fig. 7). During the fall and

winter, however, there is no significant difference between the median offsets in MODIS brightness and surface temperatures

(95% confidence interval), suggesting that emissivity values during these seasons may contribute to the offset in resultant360

surface temperatures. At Eclipse, the median offset between MODIS LSTs and AWS temperatures does not differ from that

between MODIS brightness and AWS temperatures in any season (95% confidence interval). However, Eclipse imagery was

limited (20-30 samples per season at Eclipse vs. 169-203 samples per season at Divide), so a robust analysis could not be

completed.
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Figure 11. Diurnal differences between surface and 2 m air temperatures calculated from ERA5 and Divide AWS data. Summer (JJA) and

winter (DJF) data are shown separately to control for seasonal effects. Shaded notched areas indicate the 95% confidence interval for the

median temperature difference. Horizontal dashed lines indicate where surface temperatures and air temperatures are equivalent. All surface

temperatures > 0°C were assigned a value of 0°C.

Figure 12. AWS temperatures, MODIS LSTs, and MODIS LSTs converted to air temperatures at Divide. Unconverted MODIS LSTs (dashed

orange line) show a prominent offset from AWS measurements, but overall agreement in years of high vs. low temperatures. MODIS LSTs

converted to air temperatures by applying a simple linear regression (solid orange line) show much closer agreement with AWS temperatures

(solid blue line). All temperatures are mean annual values.

Emissivity values may be especially poorly known under winter conditions because of rapidly changing snow surface char-365

acteristics during and after snowfall events, resulting in the seasonal difference in outcome of the LST algorithm as seen at

Divide. Emissivity increases with surface melt, and decreases with increasing particle size and density, which can occur due

21



Table 6. Results for Wilcoxon rank sum tests between modeled temperature inversions at hours 00:00, 06:00, 12:00, and 18:00 during the

summer using an emissivity value of ε= 0.95 (a) and ε= 0.99 (b). Inversions (Tsurface −Tair) were calculated from ERA5 and Divide

AWS data. Bolded cells indicate a larger inversion in the column hour, italicized cells indicate a larger inversion in the row hour, and standard

font cells indicate no significant difference between the hours.

(a)

ε = 0.95 00:00 06:00 12:00 18:00

00:00
z = 16.77 z = 22.04 z = 18.73

p < 0.5 p < 0.5 p < 0.5

06:00
z = 16.77 z = 3.89 z = 0.71

p < 0.05 p < 0.05 p > 0.05

12:00
z = 22.04 z = 3.89 z = 3.46

p < 0.05 p < 0.05 p < 0.05

18:00
z = 18.74 z = 0.71 z = 3.46

p < 0.05 p > 0.05 p < 0.05

(b)

ε = 0.99 00:00 06:00 12:00 18:00

00:00
z = 19.30 z = 28.52 z = 23.48

p < 0.5 p < 0.5 p < 0.5

06:00
z = 19.30 z = 8.47 z = 3.00

p < 0.05 p < 0.05 p < 0.05

12:00
z = 28.52 z = 8.47 z = 6.09

p < 0.05 p < 0.05 p < 0.05

18:00
z = 23.48 z = 3.00 z = 6.09

p < 0.05 p < 0.05 p < 0.05

to either packing or welding of grains as the snow surface evolves following a snowfall event (Salisbury et al., 1994). In the

10.5-12.5 µm wavelength range (MODIS bands 31 and 32), emissivity can vary from 0.949 to 0.997 depending on the surface

type (fine dendrite snow, medium granular snow, coarse grain snow, sun crust, and bare ice), with lower emissivity values370

for coarse grain snow and ice than for fine dendrite snow (Wan and Zhang, 1999; Hori et al., 2006). At Divide, summertime

emissivity changes are likely dominated by alteration of the surface snow by melt, while wintertime emissivity changes are

likely dominated by snow surface evolution following snowfall, which occurs more frequently in the winter. The relative mag-

nitude of summer and winter emissivity changes are unknown and may result in the seasonal difference in outcome of the LST

algorithm. However, given the low temporal resolution of the MODIS data relative to the Divide accumulation record (1 image375

per day vs. 1 sample per hour), we find no relationship between the LST offset and snow accumulation at Divide. Additional

sampling is needed to fully evaluate this relationship.
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Table 7. Results for Wilcoxon rank sum tests between modeled temperature inversions at hours 00:00, 06:00, 12:00, and 18:00 during the

winter using an emissivity value of ε= 0.95 (a) and ε= 0.99 (b). Inversions (Tsurface−Tair) were calculated from ERA5 and Divide AWS

data. Bolded cells indicate a larger inversion in the column hour, italicized cells indicate a larger inversion in the row hour, and standard font

cells indicate no significant difference between the hours.

(a)

ε = 0.95 00:00 06:00 12:00 18:00

00:00
z = 0.14 z = 10.48 z = 0.45

p > 0.5 p < 0.5 p > 0.5

06:00
z = 0.14 z = 10.70 z = 0.34

p > 0.05 p < 0.05 p > 0.05

12:00
z = 10.48 z = 10.70 z = 10.85

p < 0.05 p < 0.05 p < 0.05

18:00
z = 0.45 z = 0.34 z = 10.85

p > 0.05 p > 0.05 p < 0.05

(b)

ε = 0.99 00:00 06:00 12:00 18:00

00:00
z = 0.14 z = 10.46 z = 0.45

p > 0.5 p < 0.5 p > 0.5

06:00
z = 0.14 z = 10.69 z = 0.34

p > 0.05 p < 0.05 p > 0.05

12:00
z = 10.46 z = 10.69 z = 10.84

p < 0.05 p < 0.05 p < 0.05

18:00
z = 0.45 z = 0.34 z = 10.84

p > 0.05 p > 0.05 p < 0.05

4.4 Near-surface temperature inversions

The similarity in MODIS brightness and surface temperature offsets from air temperatures in fall in winter may be also related

to more frequent near-surface temperature inversions during those months. Results showing that the MODIS LST offset is380

highly correlated with the level of solar radiation supports the hypothesis that a near-surface temperature inversion is the

primary driver of the observed offset. Incoming solar radiation is lowest in the fall and winter, when the offset is greatest,

and therefore may be a root control on the seasonal nature of the cold offset. Low wind speeds maintain existing near-surface

inversions; however, solar radiation is the primary control on inversion development, providing an explanation for the weaker

correlation between the LST offset and wind speed. Observed wintertime MODIS LSTs show a median offset of greater385

than 8°C at both Divide and Eclipse (Table 2). Results from the simple energy balance model support these observations,
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predicting a median wintertime temperature inversion of 4.8°C (εs = 0.95) and 7.4°C (εs = 0.99). However, wintertime near-

surface temperature inversions have been observed at other glaciated sites (where both air and surface temperatures have been

measured in situ), but with smaller magnitudes than the MODIS LST offset and predicted inversions at Divide and Eclipse.

Surface temperatures at the South Pole during the winter of 2001 were a median of 1.3°C lower than 2 m air temperatures390

under clear sky conditions (Hudson and Brandt, 2005). Likewise, surface temperatures at Summit, Greenland were 1.5± 0.2°C

lower than 2 m air temperatures during the winter of 2008–2009 (Koenig and Hall, 2010). The smaller magnitude of surface-air

temperature offsets at Summit, Greenland and the South Pole relative to our study sites may be due to a stronger influence of

turbulent fluxes at Summit, Greenland and the South Pole or to variations in albedo, as both turbulent fluxes and surface albedo

can be strong controls on surface energy balance (Braithwaite and Olesen, 1990; Oerlemans, 1991; Ebrahimi and Marshall,395

2016).

In comparing the magnitude of the summer LST offset here (JJA Mdn =−1.0°C), to prior studies, the offsets presented

here are smaller than previously observed summer MODIS LST offsets in the St. Elias (5–7°C, Williamson et al. 2017).

However, these prior LSTs were daily averages of maximum and minimum values, with most of the offset being attributed to

the inclusion of minimum LSTs (Williamson et al., 2017). In contrast, this study uses a single daily LST value and coincident400

AWS measurements acquired between 12:00 and 13:00 (local solar time), when surface and air temperatures are near their

maximum, thereby eliminating the effects of any diurnal cycle on observed LST offsets. Our modeled temperature inversions

show a diurnal cycle, which is more dramatic in the summer than the winter because of the greater difference between incoming

solar radiation during the day and night, and is likely responsible for the higher magnitude of the previously observed summer

LST offsets (Fig. 11; Tables 6, 7). The magnitude of the summer LST offset at Eclipse and Divide is in closer agreement with405

temperature inversions observed at Summit, Greenland, where 2 m air and surface temperatures have been contemporaneously

measured in situ. During June–July 2015, Summit, Greenland surface temperatures were 0.32 to 2.4°C lower than 2 m air

temperatures (Adolph et al., 2018). At three northern Alaska sites, summer clear-sky surface temperatures were higher than

corresponding 2 m air temperatures (Barrow and Atqasuk in 2010, and Olitok Point in 2014; (Good, 2016). In contrast to

sites in Greenland and the St. Elias, these northern Alaskan sites are characterized by seasonal snow cover. Sites with seasonal410

snow cover present challenges for interpretation because they experience surface melt and a drastic change in surface type

over the course of the melt season. Across glaciated areas, sites in the accumulation zone have been found to have the weakest

near-surface inversions during the summer, while sites in the ablation zone have been found to have the strongest near-surface

inversions during the summer, likely because of the change in surface type with over the melt season (Nielsen-Englyst et al.,

2019).415

Results from the simple energy balance model predict no summertime inversion at all, with surface temperatures being a me-

dian of 0.8°C higher than 2 m air temperatures. The dip in modeled summer temperature inversions (Fig. 10) is the result of our

0°C surface temperature cap, which is a simplistic numerical correction for unrealistically high summer surface temperatures

over 0°C. Because the 0°C cap is applied after the calculation of surface temperatures and does not address the mechanisms

of inversion development, the distinction between capped temperatures slightly over 0°C and uncapped temperatures slightly420
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below 0°C is somewhat arbitrary. We therefore focus on the magnitudes and seasonal patterns of calculated inversions during

summer and winter rather than during the shoulder seasons where the temperature cap likely biases our results.

Discrepancies between modeled temperature inversions and observed LST offsets likely arise from variations in albedo,

which has a strong control on surface energy balance (Oerlemans, 1991; Ebrahimi and Marshall, 2016). We use an albedo

value of α= 0.742, but albedo values from α= 0.661–0.831 have been measured at Divide (Williamson et al., 2016). Using425

an albedo of α= 0.661 and an emissivity of εs = 0.95, modeled summer surface temperatures are a median of 38.7°C higher

than 2 m air temperatures prior to applying the 0°C surface temperature cap. Modeled winter surface temperatures are a

median of 2.2°C lower than 2 m air temperatures. Using an albedo of α= 0.831 and an emissivity of εs = 0.95, modeled

summer surface temperatures are a median of 17.2°C higher than 2 m air temperatures, and winter surface temperatures are a

median of 8.4°C lower than 2 m air temperatures. Our albedo value of α= 0.742, measured in August when the snow can be430

relatively dirty, may be an underestimate during parts of the year when debris is more limited.

Additionally, we do not take turbulent fluxes into account in modeled surface temperatures. Turbulent fluxes serve to dis-

mantle inversions, so we interpret modeled temperature differences to represent an upper bound of expected inversion strength.

Overall, the uncertainty in albedo and omission of turbulent fluxes in our modeling lead to wide uncertainty in calculated

surface temperatures and inversion strength. However, our simplistic approach is sufficient to explore the physical plausibility435

of near-surface temperature inversions in the St. Elias. Results suggest that near-surface inversions are plausible at Divide and

Eclipse and may account for most of the observed offset in MODIS LSTs. To our knowledge, results here provide the first

evidence for near-surface temperature inversions in a heterogeneous alpine environment, as well as the first exploration of

their seasonal and diurnal signals in such an environment. We recommend continued work to understand near-surface thermal

processes in these complex regions, including obtaining in situ air and surface temperatures to validate these results.440

4.5 MODIS LSTs and melt

Despite some uncertainty about the exact mechanism for the MODIS offset, and the lack of a conversion to air temperatures

based on physical principles, MODIS LSTs can still shed light on the question of surface melt and mass balance in the North

Pacific, as the offset is relatively minor during the summer melt season (Table 2). Surface melt correlates with air temperatures,

largely because of increased longwave atmospheric radiation (an important source of energy for melt) with higher temperatures445

(Ohmura, 2001; Cuffey and Paterson, 2010). Higher air temperatures tend to occur under cloudy conditions when no MODIS

imagery is available (Walsh and Chapman, 1998). MODIS LSTs may therefore be inadequate for examining temperature

conditions associated with individual extreme melt events. However, MODIS LSTs still have utility when examining melt on

interannual timescales.

Various methods have been used to convert MODIS LSTs to air temperatures, including advanced statistical and modeling450

frameworks (e.g. Hengl et al., 2012; Benali et al., 2012; Emamifar et al., 2013; Zhu et al., 2013; Janatian et al., 2017; Zhang

et al., 2016; Hooker et al., 2018; Zhang et al., 2018; Zhang et al., 2021). Our simple linear regression effectively converts

MODIS LSTs to air temperatures and enabling their use for both qualitative and quantitative applications related to glacier

melt and mass balance on annual timescales.
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We recommend converting mean annual MODIS LSTs to air temperatures and using these in conjunction with regional455

glacier mass balance data to track current temperature changes and glacier response on a broad scale. We also recommend

using converted mean annual MODIS LSTs in the interpretation of refrozen melt archived in ice cores drilled at sites without

long in situ temperature records. Qualitatively, MODIS LSTs (converted or unconverted) can be used to evaluate whether years

of high surface temperatures correspond to years of high amounts of melt in the ice core record. If they do, converted LSTs

can be used to quantitatively describe the relationship between air temperature and archived melt, enabling the use of refrozen460

melt as a temperature proxy.

5 Conclusions

Remote sensing is a powerful tool to obtain information about surface conditions at inaccessible locations; however, oftentimes

these measurements need calibration and validation. Here we investigated an observed offset in MODIS LSTs from AWS air

temperatures in the St. Elias Mountains (Yukon, Canada), and found the offset to be most pronounced in the fall and winter. We465

tested three hypotheses for the origin of the offset: (a) the large spatial footprint of the MODIS sensor in highly heterogeneous

alpine terrain, (b) poorly constrained snow emissivity values, and (c) a real temperature difference between the surface and air

due to near-surface temperature inversions. We found that the MODIS sensor’s large footprint does not account for the offset

in its LSTs. Even in highly heterogeneous alpine terrain, the spatial coherence of temperatures across study sites in the region

makes it doubtful that offsets from AWS temperatures in excess of 10°C could be regularly obtained by averaging temperature470

across a single square kilometer to produce the MODIS LST. Moreover, surface temperatures from the ASTER sensor, which

has a footprint of 90 m as compared to MODIS’ 1 km footprint, still exhibit an offset relative to AWS measurements. The

MODIS LST offset is therefore not simply an error arising from the spatial resolution of MODIS data. We also found that

poorly constrained snow emissivity values fail to account for the MODIS LST offset; a pronounced fall and winter offset

between MODIS brightness temperatures and AWS temperatures is present even prior to the incorporation of snow surface475

emissivity. However, poorly constrained fall and winter snow emissivity values may exacerbate an existing offset, particularly

after snowfall events, when emissivity is likely to change rapidly due to settling and compaction processes. In short, emissivity

values are not responsible for the production of the MODIS LST offset, but their role in amplifying it remains unknown.

We found that the physical conditions (low wind speeds, low levels of incoming solar radiation) associated with greater

MODIS LST offsets at Eclipse and Divide are consistent with near-surface temperature inversions measured over Greenland480

(Adolph et al., 2018). In modeling near-surface temperature inversions, we found observed MODIS LST offsets to be within

the range of expected inversions based on Divide AWS and ERA5 reanalysis data, supporting the hypothesis that the MODIS

LST offset is representative of a physical difference between the properties measured by MODIS (surface temperature) and

weather stations (air temperature) rather than the instrumentation or algorithm used to calculate LSTs. Our results provide,

to our knowledge, the first evidence for near-surface temperature inversions in a heterogenous alpine environment. Although485

results do not preclude errors in the MODIS sensor or the LST algorithm, they indicate that near-surface inversions require

consideration when estimating the surface energy balance of rapidly changing glaciated alpine regions.
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Finally, we show that interannual patterns in MODIS LSTs are in good agreement with those of AWS temperature measure-

ments in an alpine environment at Eclipse and Divide. On annual timeframes, we were able to convert MODIS LSTs to air

temperatures consistent with AWS measurements by applying a linear conversion LSTconverted =−3.73+0.44LST . While490

winter and fall LST offsets remain larger than those in spring and summer, the established conversion factor enables a more

accurate assessment of melt conditions year to year in alpine environments. This work provides a step forward in using remote

sensing imagery to expand in situ records and thus provide insight into past and present temperature changes in the St. Elias

Mountains and broader North Pacific region.
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