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Abstract.

on a river surface causes resistance to water flow, which increases upstream water levels. Ice with a higher degree of roughness
cause increased flow resistance and therefore even higher upstream water levels. Aerial images collected via Remotely Piloted
Aircraft (RPA) were processed with Structure from Motion photogrammetry to create a Digital Elevation Model (DEM) and
then produce quantitative measurements of surface ice roughness. Images and surface ice roughness values were collected
over two years on the Dauphin River in Manitoba, Canada. It was hypothesized that surface ice roughness would be indicative
of subsurface feughﬂe%—?hel Whypothe51s was tested through-a-comparison-of-ice-roughness-determined

es-by comparing RPA-measured surface
&ggl;gbwm predicted by the Nezhikhovskiy equation—The-Nezhikhovskiy-equationis-a-widely-used-empirieal
W@WM%% thickness.

Various statistical metrics were used to represent the roughness height of the DEMs. Strong trends were identified in the com-

parison of i vie- RPA-measured ice

surface roughness to subsurface ice roughness values predicted by the Nezhikhovskiy equation, as well as with comparisons
to ice thickness. The standard deviation and 1nter-quart11e range of eb%efveekfeﬂghﬂe%ﬂaetghf%w&%rou hness heights were

determined to be the most representative roug

ak-statistical metrics and several properties
of the DEMs of fluvial ice covers were calculated and observed. No DEMs were found to be normally distributed. k-means
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This first attempt at
using RPA-derived measurements of surface ice roughness to estimate river ice flow resistance is shown to have considerable
otential, and will hopefully be verified and improved upon by subsequent measurements on a wide variety of rivers and ice

covers. Other-appheations-of RPA-photogrammetry-for-the-charaeterizatton-ef fluvialHee-covers-are-propesed:

1 Introduction

The consequences of ice on the flow regimes of rivers in cold climates can be dramatic, sometimes leading to loss of life
and damage to infrastructure. In-stream infrastructure such as bridge piers, hydraulic control structures, and hydro-electric
generating stations are subject to immense forces due to river ice; which is a critical factor in the design of such structures.
Understanding fluvial ice roughness is a critical step in better understanding the evolution and hydraulic impacts of fluvial
ice covers. Currently, fluvial ice roughness is either estimated through empirical means, such as the Nezhikhovskiy (1964)
equation, or through complex and expensive methods, such as hydraulic modelling. Direct measurements can also be made
(Buffin-Belanger et al., 2015; Crance and Frothingham, 2008), or roughness can be inferred from a measured velocity profile
(Gerard and Andres, 1984). However, these direct measurement methods require personnel to conduct work on ice covers,
which are frequently unsafe, and therefore limits the types of ice covers that can be studied.

The surface roughness of sea ice and land ice (typically glaciers) has been more extensively researched (Fitzpatrick et al.,
2019; Dammann et al., 2018; Yitayew et al., 2018) than that of fluvial ice covers. This discrepancy is due in part to the scale
of the these ice sheets, which allows for high-altitude remote sensing from manned aircraft using LiDAR and imagery and
satellites using synthetic-aperture radar (Dammann et al., 2018). The size and thickness of these ice formations also makes
in-situ measurements generally more feasible from a safety perspective. The goal of obtaining roughness data for glaciers and
sea ice surfaces often relates to the determination of aerodynamic roughness length, an important parameter in the estimation of
heat fluxes (Fitzpatrick et al., 2019), although Dammann et al. (2018) evaluated sea ice roughness for the use of transportation
planning.

An obvious solution to making-the-studying-improve the safety of fluvial ice eevers-safer-cover studies is through the use
of aerial vehicles. Helicopters, small fixed-wing aircraft, and satellites have long been used for the study of earth surface phe-
nomena. All are prohibitively expensive to be solely dedicated to the study of fluvial ice covers, and none can produce images
of sufficient resolution for surface roughness studies. Recently, Remotely Piloted Aircraft (RPA) have become much more
accessible, inexpensive, and reliable. Coupled with high-resolution image-stabilized digital cameras, they offer the opportunity
to document and study otherwise inaccessible areas at a fraction of the cost of any other method. Structure-from-motion pho-
togrammetry has been used extensively with-to process RPA-acquired digital photos (RPA-Photogrammetry) (Colomina and
Molina, 2014). The evaluation of surface roughness has also been studied using RPA-Photogrammetry on land surfaces (Kirby,

1991) and non-fluvial ice surfaces (Dammann et al., 2018; Chudley et al., 2019).

Fhis-Although qualitative assessments of river ice roughness have been made based on visual observation, and quantitative
estimates have been made through hydraulic modelling efforts, to date there has been no reliable means of quantitativel
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assessing river ice roughness over a large area. This study uses RPA-Photogrammetry to address this need, and provides the
first detailed description of the non-uniform three-dimensional roughness of a river ice surface. This research hypothesized that
the surface ice roughness of a newly-frozen fluvial ice cover is indicative of stbsurfaceroughnessthe subsurface ice roughness
of the same cover. The basis of this theory stems from field observations of ice mechanics on the Dauphin River, as observed by
Wazney et al. (2018). Smooth, thermally-grown ice was observed to have a smooth texture both at the top and bottom of the ice
cover. Ice pans that flowed downstream and met an obstruction were observed to stack in a fashion that presumably had similar
surface and subsurface roughness. When the external forces acting on the ice cover overcame its internal strength, the ice would
consolidate, becoming thicker and noticeably rougher on the top surface. Even though direct measurements of the underside of

the ice cover were not possible, increases in water level upstream indicated that an increase in flow resistance from a rougher
bottom of ice was likely. Subsurface ice roughness investigations have been conducted on mature ice covers (Beltaos, 2013;

Buffin-Belanger et al., 2015; Crance and Frothingham, 2008). It is likely that subsurface ice roughness measurements taken

well after freeze-up will under-predict peak ice roughness due to flow-smoothening of the subsurface ever-time—ice over time

by flowing water. While the surface and subsurface of an ice cover are subject to very different external forces, the hypothesis
that the roughness of the ice cover at the surface is proportional to the subsurface roughness focuses on newly-formed ice
covers. Given past experience with this river system. it is expected that the surface and subsurface ice roughness values will
not appreciably change within one week of ice cover formation.

The objectives of this study are as follows:

— Evaluate the capabilities of a consumer-grade RPA coupled with a professional photogrammetry software package for
the measurement of surface roughness of fluvial ice covers

— Present quantitative metrics of surface ice roughness measurements for a range of river ice roughness conditions

— Test the hypothesis that the surface ice roughness of a newly-frozen fluvial ice cover is indicative of the subsurface ice
roughness of the same cover

To the authors’ knowledge, no investigations of surface or subsurface ice roughness have been conducted on newly-frozen

fluvial ice covers.

attempt at using RPA-photogrammetry for the purposes of ice roughness measurements. Since the scope of this work was
limited to a single study site, any conclusions drawn from this work would benefit from further evaluation at other study sites.

2 Background
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2.1 Field Site Description

The Dauphin River is located approximately 250 km Nerth-north of the city of Winnipeg, in Manitoba, Canada, as shown

upstream (Lake St. Martininto-Lake-Winnipegthrough-) o downstream (Lake Winnipeg). The prefix of each site (DRLL)
stands for Dauphin River Levelogger, indicating a site which has equipment for continuous water level monitoring. A Water
Survey of Canada (WSC) gauge station (05LMO006) is located ~ 100 m downstream of site DRLLO3, which logs water surface

The Dauphin River is 52 kitemetres-tkm)-of channel—The-channel-kilometres long, and has steep, shallow banks that range
between 110 - 160 meters (m) wide. The surficial geology of the area is composed of till with erratics, boulders, cobbles,
and gravels observed throughout the channel. The most upstream 40 km of channel (Upper Dauphin River) has a mild slope
(0.029%) and is meandering. The bed composition of the Upper Dauphin River was observed to be primarily silt. The most
downstream 12 km of channel (Lower Dauphin River) transitions into a well-defined riffle-pool system with a relatively higher
slope (0.16%). Riffle sections in the Lower Dauphin River were observed to have a gravel-bed with some boulders and erratics.
Pool sections were observed to be silt bottomed. During winter ice formation, dramatic ice consolidation events, jams, and

flooding have been reported by Wazney et al. (2018) on the Lower Dauphin River. Lake Winnipeg water levels can have a

significant effect on the most downstream 2 km of this reach which is typically where the largest toe of the ice jam would form.

22 Flow Resistance

Surface roughness is an important parameter in the prediction of fluid flow along solid boundaries. This roughness creates
drag along fluid boundary layers, generating the logarithmic fluid velocity distribution observed in open channel hydraulics.

Rougher surfaces have been shown to exhibit greater flow resistance; however, it is not straightforward to quantify non-uniform
three-dimensional roughness elements. Nikuradse (1950) helped develop the concept of roughness height through equivalent

sand grain roughness representing the roughness-height of sand reughened-particles fixed to the inside of pipes. More recently,
an extensive discussion of methods used to represent the roughness of a heterogeneous three-dimensional surface layer from
a surface profile was provided in Gadelmawla et al. (2002). Many of these methods involve statistical analysis of the entire
sample, or some subset (i.e. the-peaks, valleys, etc.). Gomez (1993) used the difference between peaks and a locally-derived av-
erage bed surface for the investigation of gravel-bed roughness. Nikora et al. (1998) assumed-theirrecorded surface data derived
from natural gravel point-barseenstituted-arandom-field, and found that the second-order moment of the frequency distribution

yielded a suitable estimate of roughness height when compared to the-Welman-method—The-Wolman-method-is-a-widely-use
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Figure 1. Key map of study location

¢ S is-tength—in-situ field measurements. Aberle and Nikora (2006) also investigated
higher-order statistics, but confirmed the use of sample standard deviation (SD) as an appropriate representation of gravel-bed
roughness height. For non-normal data, the inter-quartile range (IQR) is a more suitable representation of the spread of the

data.

For hydraulie-applications;-conversion-of roughness-height-values-to-uniform flow conditions, Manning’s equation is used to

relate the discharge in an open water or ice-covered channel to the water level. Flow resistance in this equation is introduced
using Manning’s nis-desired—A—, which can be estimated from the roughness height of the channel boundary (in addition
to many other modes of flow resistance that are outside the scope of the current study). Equation 1 shows a widely-used

quantitative method of estimating Manning’s n from roughness height measurements-was-(D[m]) measurements proposed by
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Strickler (1923).

n=~c,D6 (1)

Fluvial ice formation has a significant impact on the roughness characteristics of Northern rivers. Perhaps-the-mesteconsequential

orm—of-fuvta o 1 o 9 e—mav-b ormed-once—the 9 ha b ome-supe ooled;—and-the-flow by

i i e - - . After generation, frazil ice will be transported downstream
and either flocculate and rise to the surface to form pans of ice, or attach to the channel bottom forming anchor ice (Bisaillon
and Bergeron, 2009). At this stage pans are very low density and mechanically weak (Beltaos, 2013). Frazil pans will then be
transported further downstream. Depending on their length of travel and weather conditions, the portion of the pan exposed to
air may freeze and thicken adding strength. Finally, pans may jam against an obstacle such as an established ice cover.

Ice covers increase hydraulic resistance in fluvial systems by replacing the relatively friction-free air-water boundary with
a rougher ice-water boundary. This expands the wetted perimeter of the channel, and if the ice cover completely bridges the
channel, may or may not pressurize flow. The added source of roughness and constriction of flow results in upstream staging

(Beltaos, 2013). As with estimates of channel boundary roughness, ice roughness can also be judged qualitatively based on

general observations, with some success. The Nezhikhovskiy (1964) equation is widely-used-for-this-purpese;-a widely used

emperical formula which provides a quantitative estimate of ice roughness, in the form of Manning’s n, as illustrated in
Equation 2;-where-, In this equation n; is the Manning’s reughness-of-then of the underside of the ice cover and ¢;[m] is

the eever-ice thickness in m. In both cases, the subscript i refers to parameters related to ice.

n; ~ 0.0252In(t;) +0.0706 2)

This relationship is based on measurements conducted on rivers in Russia several decades ago and it has served well as an
estimation tool for engineering applications. Using more complex data, Equation 1 was adapted by Beltaos (2013) for use in

the estimation of the roughness of newly-formed ice jams, resulting in Equation 3.

n; ~0.095D2RY/3 3)

The value given for ¢, = 0.095 has been determined to be representative for ice jams. Additionally, the inclusion of the
hydraulic radius R[m] accounts for the fact that the roughness elements of ice jams are often of such magnitude as to increase
relative roughness to the point where it has significant impact on the hydraulic radius. This relationship is only valid for
newly-formed ice jams—Immediately—; immediately after formation, the ice is subject to shear forces from the water flowing

underneath, which slowly smoothens the sub-surface of the ice cover (Ashton, 1986).
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2.3 Remotely Piloted Aircraft Photogrammetr

RPAs equipped with high-resolution digital cameras have been used extensively in the collection of near-surface photographic
and topographic data Colomina and Watts. They are smaller and more cost-effective than conventional aircraft allowing for
much more versatile data collection. Compared to manual surveying methods they can collect a greater volume of data in
less time and greatly reduce risk to personnel. For the purposes of topographic data collection, the current common practice
is to further process images collected with an RPA are-subsegquently processed-using-someform-of photogrammetry—using

Structure from Motion (SfM) photogrammetry Fraser. SfM photogrammetry is a technique which infers three-dimensional
structure from a series of overlapping, offset two-dimensional images Westoby. Niethammer et al. (2012) used this method

to monitor the progression of the Super-Sauze landslide, a task too dangerous to monitor manually. Eisenbeiss et al. (2005)
employed RPA-photogrammetry to document the layout of ancient ruins in Peru-Completing-this-task-, which, if done manually
would have risked the integrity of the site. Hamshaw et al. (2019) found use for RPAs in the monitoring of river-bank erosion.

RPAs were even used by Alfredsen et al. (2018) in the mapping of river ice in Norway.

Doming errors are most prominent when all images are taken from a parallel axis (Eltner and Schneider, 2015) . In the case of

RPA-photogrammetry, this is when the camera angle is set to 0° tilt, however, some distortion is also caused by the shape of the
camera lens. Most advanced software packages used to produce DEMs from photogrammetry data include a self-calibration
process that develops a model of the distortion caused by the lens of the camera. Eltner et al. (2016) makes the distinction
between local surface quality and more systematic errors such as doming, relating these two categories to the precision and

accuracy of the DEM, respectively.

3 Methodology

Five field sites were selected in this study, their relative location along the bed profile of the Lower Dauphin River is illustrated
in Figure 2. Data were gathered during the winter months of 2017 - 2019. A relatively smooth, unconsolidated ice cover has
been observed to form at DRLLO3b in all previous study years, due to i’s-its low bed slope (0.029%). Sites DRLLO5 and
DRLLO6 exhibited substantial ice dynamics, as they are within the higher gradient (0.16%) portion of the Lower Dauphin
River (Wazney et al., 2019). Sites DRLL08 and DRLL0O8a had much milder water surface slopes, due to the backwater effect
from Lake Winnipeg. The toe of an ice jam has formed in previous years near sites DRLL0O8a and DRLLOS8. These sites were
selected in an effort to compare the efficacy of the RPA-photogrammetry method on different ice conditions, and to determine

if the methods can distinguish roughness differences between sites.
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Figure 2. Channel bed profile of the Lower Dauphin River, with selected study locations, flow 86 m®/s

3.1 Field Methods

3.1.1 Photogrammetry

Remote monitoring of weather conditions informed the selection of field visit dates, with most data collected less than one week
after the onset of ice formation on the study sites. Ten 1 m? high-visibility medium-density fiberboard targets were distributed

on the grounded ice near the left bank of each site, and on snow near Provincial Road (PR) 513. A typical layout of targets
is shown in Figure 3, which illustrates how the targets are placed exclusively on the left bank of the river. The targets were
chustered-grouped in this way since the right bank was inaccessible. Ideally, the targets would have been evenly distributed
across the entire study area (Alfredsen et al., 2018; Gini et al., 2013). In Section 3.1.3, the effects of target distribution on DEM
accuracy are tested.

After targets were placed, their centres were surveyed using a Leica Viva GS14® survey-grade Real-Time Kinematic (RTK)
Global Navigation Satellite System (GNSS) base-and-rover system, which is typically observed to have an in-field reported
horizontal error of =~ 2 c¢cm, and a vertical error of ~ 3 cm. The Canadian Geodetic Vertical Datum of 2013 (CGVD2013)
geoid was used in the recording of all surveyed elevations. Localization was assessed using a Manitoba Infrastructure (MI)
benchmark located near DRLLO3, and verified using the Natural Resources of Canada Canadian Spatial Reference System
Precise Point Positioning (CSRS-PPP) service. Further benchmarks were established using the CSRS-PPP and“leap-frogging”
to further benchmarks. In the 2019-2020 season, some RPA flights were completed without targets, to allow for more flights to
be completed during the field visit. A comparison between the representative metrics calculated from a DEM with and without

geo-rectification is presented in Section 4.1.
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Figure 3. Typical target distribution

Once all field personnel had finished active tasks, the RPA was launched, and field staff remained stationary for the duration
of the RPA flight. A DJI Phantom 4 Professional® RPA was flown at an approximate altitude of 30 m, with overlapping photos
taken every 10 m, at a 0° or 20° camera tilt. The on-board 20 mega-pixel-megapixel camera had an 84° field of view with a 1
inch CMOS sensor. The RPA flight transected the river and included PR 513 and forest on the left and right bank. The RPA was
flown only if wind speeds measured by a hand-held digital anemometer were less than 36 kiloemetresperhour{km/h)y—Fuarther;
. Since light conditions could drastically impact the quality of images taken:-, the RPA was flown only during daytime and
during clear, or lightly overcast conditions. Typical capture dimensions of an RPA flight were 90 m in the stream wise ordinate,

and 230 m across the river.

During the 2019-2020 field season, the RPA mission planning application Pix4Dcapture® was used to plan and automate

RPA flights over study areas. This greatly reduced the required flight time, and produced similar, if not better photo coverage.
3.1.2 Hydraulic Parameters

Water pressure was recorded every eight minutes at the study sites using Solinst Levelogger® Edge 3001 M5 pressure transduc-
ers, and accompanying nearby Solinst Barologger ® Edge 3001. The listed accuracy of these devices is + 0.003 m and + 0.05
kPa respectively. These instruments were installed before the ice season began (typically October), removed for download and

maintenance after the end of the ice season (typically April/May), and were then subsequently re-installed for summer obser-
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vations. During installation, the water surface was surveyed for use in post processing to determine the absolute water surface
elevation of the observations in meters above sea level (masl). Additionally, the observed barometric pressure, converted to

its equivalent depth of water, was subtracted from the pressure observations. The observed water level and previously mea-

sured channel bathymetry were used to estimate hydraulic radius at each of the study sites using a one-dimensional at-a-station
hydraulic model based on Manning’s equation.

During the 2019-2020 field season, holes were drilled in the ice cover at safe locations to determine ice thickness; however,
not all locations allowed such convenient means of measurement, Ice thickness measurements of a rough, consolidating ice
cover are impossible to conduct, so indirect measurement procedures were necessary, depending on the local conditions. In
some cases, ice thicknesses were estimated through visual observation and photographs taken by stationary trail cameras, when
it was clear that the ice cover was comprised of one or two layers of ice pans of known dimension. For highly consolidated
thick ice covers, mid-winter RTK surveys were conducted to measure top of ice along the Lower Dauphin River. Lateral ice
transects were conducted at locations where ice became grounded. The previously surveyed ground elevations were subtracted
from these top of grounded ice measurements to provide estimates of ice thickness. Late in the winter (typically February)
after a stable ice cover had formed, an-ice-elevationsurvey-was-undertaken—Using-the-base-and-roversystem;-the-a top of ice
elevation wassurveyed-atong-the length-of the-survey was undertaken along the Lower Dauphin River using the base-and-rover
system. Truncated transects of ice thickness were also surveyed at locations where ground elevation had previously been
surveyed. A transect was performed at site DRLL0O6 and DRLLOS, but not at DRLLOS, due to safety concerns. During the
2019-2020 field season holes were drilled in the ice cover at safe locations, and following established safe work procedures,

to determine ice thickness.

3.1.3 Field Accuracy Tests

There was a need to quantify the impact of the ground-control-targets-being-clusteredrequired ground control grouping on the
left bank of the study area. The field methods described in Section 3.1.1 were repeated at River’s Edge Nursery in La Barriere,

Manitoba. A fully dry land study area of equivalent size to typical study areas flown at the Dauphin River was delineated, and
15 targets were distributed. The targets were conceptually grouped into three areas: typical, middle, and end. The “typical”
group represented a target distribution that was generally produced during field work at the Dauphin River sites. The “middle”
and “end” target groups were supplemental, which would be added or subtracted from the photogrammetry analysis to test
their respective impacts on DEM accuracy. The distribution of targets in the study area is represented in Figure 4. Finally, after
the RPA flight was conducted, 10 independent and unmarked locations were captured by RTK-GNSS survey as a check for

accuracy in subsequent data analysis.
3.2 Laboratory Methods

3.2.1 Photogrammetry

10



The photogrammetry processing software selected for this study was PhotoScan Professional® from AgiSoft LLCuses-the

(AN _meth

265 study. Gini et al. (2013) compared their custom research-grade photogrammetry algorithms to results obtained from Pix4UAV
Desktop® and PhotoScan Professional®. Their findings suggested that these commercial packages performed similarly to their
software, with PhotoScan Professional® performing somewhat better than Pix4UAV Desktop®. PhotoScan Professional® is

also considered to be a relatively fully-featured and complex (Eltner and Schneider, 2015) tool as compared to other options;

270 Images were imported into PhotoScan Professional®, and aligned to create a sparse point cloud of tie points. Where targets
were used, they were identified in all images containing them, and their coordinates were imported to provide geo-rectification
of the resultant point cloud. A dense point cloud was then generated, followed by a DEM. An example point cloud consisting

of ~ 15 million points and corresponding DEM are shown in Figures 5 and 6.
3.2.2 Accuracy Testing

275 The impact of placing all control points on enly-ene-bank-an extreme end of the study area was tested through a detailed

trial on an open field. Groups of targets were used as input to the photogrammetry software and the resultant DEMs were

Figure 4. Accuracy test experimental set up, a) typical, b) middle, c) end

11



Figure 5. Example point cloud, DRLL06 2018-11-21

220 m 230 m 0 10 20 m
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Figure 6. Example DEM, DRLL06 2018-11-21

compared to the 10 independent survey points. The DEM generated using all available targets was assumed to be the most
correct representation of the land surface, against which all other target groupings were compared. A maximum acceptable
vertical difference of 0.03 m between the DEMs and the independent survey points was adopted. This value was chosen based
280 on the typical error observed in the data gathered by the RTK GNSS base-and-rover system. This system was the limiting
factor for accuracy in this study since it was the tool which informs the absolute spatial position of all field equipment. The
following target scenarios were tested: “all points” utilizing all ground control targets, “typical points” using all the targets

identified in the “typical” subset, “three points” using a subset of three targets from the “typical” subset, and “two points”

12
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using a subset of two targets from the “typical” subset. In the two and three point tests, the most spatially distributed targets
within the “typical” subset were selected. An additional test was required to determine if systemic errors were introduced in
DEMs generated without the use of geo-rectification targets. Fhe-data—This scenario is referred to as the “no points” case.
Data collected at site DRLL0O6 on 2019-11-13 was prepared with and without the inclusion of control point data. A maximum

acceptable percent error of 5% was adopted to evaluate the results of this test.
3.2.3 Roughness Characterization

To avoid unwanted influences in the surface slope and texture, a 50 m? sub-sample from the center of the river was taken,
which excluded all overbank objects and sections of the ice cover that were near to the bank. Additionally, a three-dimensional
plane-of-best fit Linear Model (LM) was found for each sample, and then subtracted from the surface data. The goal of this
was to normalize each data set, setting the average surface elevation to 0, and removing the river slope from the sample data.
Gadelmawla et al. (2002) noted that the average surface elevation is the most commonly used, and most sensible reference
standard from which to assess roughness height. By shifting the elevation data down to a base elevation of 0, and removing
unwanted patterns, each data point was transformed from an elevation to a roughness height.

A two-dimensional Fast Fourier Transform (FFT) was then applied to each sub-sample, with the goal of filtering the input
data and removing other surface trends beyond those addressed with the plane-of-best-fit. The combination of the LM and
FFT adjustment and filtering process will be referred to as LMFFT. Though an analysis of dominant frequencies it was found
that the lowest frequencies (< 1 m~1) had the largest amplitudes, while the highest frequency signals (> 5 m~!) had the

lowest amplitudes. A typi

—A-with a low-pass filter-value of 0.08 m
was-generally found to produce the best results. The high-pass component of the filter was adjusted foreach-image;to-ensure

large-trends—were-removed—The-through extensive iterative visual analysis of the image. High-pass cutoff values which were

too aggressive caused obvious edge distortion, while values which were too conservative caused insufficient trend removal.
The chosen high-pass wavelength cut-off values for all images ranged from 70 m to 70.5 m. Figure 7 e-and-d-a and b show the

DEM before and after the application of this filter.

A representative value of roughness height was required
from each data set for further analysis and comparison. Based on a review of relevant literature in the fields of photogramme-
try, fluvial geomorphology, and roughness characterization, various statistical methods for roughness height characterization
were considered, and several were chosen for further consideration in this study (Table 1). The data-weregrouped-into-three

acoriac_tha fi hainotheRaw’’d shich-w ha catof DEM-4 o

byv—the RPA

the-seeondis-full two-dimensional processed roughness height data, hereafter referred to as the—~Generaldata—which-was-alt

13
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i
to_create a second dataset that was comprised of only peak values of roughness height. This dataset, called LMFFT-peaks,
was developed by extracting peak roughness heights using a three-dimensional implementation of the "peakpick” algorithm
(Weber) available in the R programming language.

%WMMWMMWWWWW
using the LMFTT-full and LMFTT-peaks data sets, the corresponding hydraulic radius for each site was determined using a
simple one-dimensional hydraulic model based on Manning’s equation. The model used the observed water level, estimated
ice thickness, surveyed channel cross section -and-and an assumed specific gravity of ice of 0.916. Equation 3 was then used

to calculate the RPA-measured ice surface Manning’s n for each site.

In addition to numerical characterization of roughness, qualitative classification of roughness type was undertaken using k-
means clustermg, which is the most eemmeﬂly-&seéggrpvrggws/g@glustermg approach (Jain, 2010). The data-usedfor-input

input data were: IQR and kurtosis of the LMFFT-full and LMFFT-peaks
data, and median of the peakdata—&ﬁékuﬁesr&eﬂhegeﬂefa}aﬂdﬁeakdafaLMFFT- eaks data. Mean and median of the general
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Table 1. Selected statistical methedsmetrics used to quantify RPA-measured ice surface roughness

Method Data Group Reference

Generat
IQR Aberle and Nikora (2006)
LMFFT-full

General
SD Aberle and Nikora (2006)
LMFFT-full

Peaks
Minimum Peak Value Gadelmawla et al. (2002)

LMFFT-peaks
Peaks
Maximum Peak Value Gadelmawla et al. (2002)
LMFFT-peaks
Peaks
Average of Peaks Gadelmawla et al. (2002), Gomez (1993)
LMFFT-peaks
" Peaks
84™ Percentile of Peaks Beltaos (2013)
LMFFT-peaks

LMﬁIiIV@lLdata were excluded since they were set to O through the hﬂeafﬂdjﬂsﬁﬂeﬂfﬂﬂdFeﬂﬂe%aﬁa%s—fPheme&freﬁfhe
sisSLMFFT process. Interestingly, the
kurtosis was found to be a more useful metric for this analysis than the mean, standard deviation, or skewness. Since it is-was

used in the computation of kurtosis, SD and skewness sas-were removed from both data sets. The data were then mean-centred

340 and the optimal number of clusters was determined using the average silhouette method. The Euclidean distance formula was

used in determination of the k-means clustering.

3.2.4 Roughness Comparison

345 were compared to Manning’s n {Nez:
values computed using the commonly used Nezhikhovskiy equation (Equation 2), since it has been found to make reasonable
redictions of flow resistance of the underside of an ice cover. A similar comparison between RPA-measured ice surface

350 thickness was also made. This was undertaken since ice thickness is the sole input parameter of the Nezhikhovskiy retationship;
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355

360

365

370

375

380

s-equation, and could perhaps provide another perspective on the data. A linear
regression was computed for the data in each plot. The quality of regressions were evaluated using the correlation coefficient
(R?5), F-statistic (F), p value (p), and root-mean square error (RMSE) values. The p value corresponds to the probability that

the data show a significant trend through random chance, and not an actual relationship. The criteria for significance in the p
value was set to a < 0.05. In-the-ease-of the Nez—n-comparison-a-one-to-one-line-was-alse-plotted-on-the-chart;-and- RMSE

was-to-evatuate-the-error-between-the sixplotied-metriesin-each-schemeThe I value is a component of the p value, and is
another method of testing the significance of a linear regression when compared to its critical value Iy, Which is calculated
in Section 5.2. The validity of using linear regression modelling with these data was evaluated by testing the normality of
residuals using the Shapiro-Wilk test for normality (p > 0.05). This test was selected due to it’s-its wide usage in data analysis
and i’s-its superior power to many other widely-used normality tests (Razali and Wah, 2011). Q-Q plots of residuals were used

to confirmed the test statistics.

4 Results
4.1 RPA Performance

The RPA chosen for this study ;the DJ-Phantom4-Prefessional®performed well during all field visits in various weather
and cloud conditions. In extreme cold (-20°C and below) the RPA performed all functions well, although the battery life was
reduced by approximately 50%. Additionally;—itIt was found that the RPA had to be powered on in a warm area, such as the
heated cab of the field vehicle. Once powered on, it could then be placed outside for normal operations.
RPA-Photogrammetry performed very well across a variety of scenarios in the land-based field accuracy tests. The worst
observed DEM accuracy was found in the “two points” scenario with an average vertical difference of 6.30 m calculated
between the DEM and the 10 independently surveyed test points. The “three points”, “typical points”, and “all points” scenarios
all had the same average vertical difference of 0.03 m. These three scenarios were all within the acceptable vertical difference
criteria of 0.03 m identified in Section 3.2.2. The maximum error of the DEM was determined to be the sum of the expected
vertical accuracy of the RTK-GNSS unit, 0.03 m, and the observed vertical difference difference between the DEMs and
surveyed locations, 0.03 m, for a total expected error of 0.06 m. The results of the test-“no points” test case, which sought to

determine if a lack of geo-rectification targets introduces systemic errors into the DEM data, are presented in Table 2.
4.2 Dauphin River Results

During the 2018-2019 and 2019-2020 field seasons, the Dauphin River experienced much lower flows than those observed
in the previous few years. The mean seasonal flow between November and March for each season was 74 and 90 m?/s for
2018-2019 and 2019-2020 respectively, compared to 178 and 195 m?/s in 2016-2017 and 2017-2018 respectively, although in

prior years lower flows were noted. This resulted in notably thinner ice covers, more thermal ice growth, and less extensive ice
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Table 2. Percent and absolute difference between various statistical metrics computed from geo-rectified and non geo-rectified (“no points”

DEMs produced from data collected and site DRLLO6 on 2019-11-13

Max:
Min: Median IQR SD Skew. Kurt.

Mean

Absolute 0.12-m <0.0l m <0.0l m <0.0l m 0.02 0.08
<0.0l m
Percent 4-43-<1 6 2 2 5 2

jamming than was reported by Wazney et al. (2018). The average values of observed ice thickness reduced from 2.9 m at site

DRLLO5 and DRLLO06 in 2017-2018 to 1.8 m and 0.8 m in 2018-2019 and 2019-2020, respectively.
4.2.1 Statistical Properties of Ice Roughness Height Distributions

Several different forms of ice roughness were observed in DEMs produced using RPA-photogrammetry. Figure 8 illustrates
three different ice roughness forms observed at a single site, and their appearance in cross section along the indicated transects.
The “rough” form of ice roughness was classified visually as any type of ice formed by the accretion and consolidation of

r broken pieces of border ice.
The “smooth” form of ice roughness was classified as ice that appeared to have formed under quiescent conditions, from a

frazil pans, but-wi stve-secondary 1ORS; s-eoheren mMpress idges

combination of transported and thermally-grown ice that did not consolidate. Ice which exhibited pressure ridges on otherwise
smooth ice was termed “ridged”.

Two samples were observed to contain ridged ice, both of which occurred at site DRLLO08a, on the dates 11/23/2017 and

11/23/2019. Ridged ice presented a unique situation for the evaluation of ice roughness based on surface ice characteristics.

In thefluvial setting-the-relationship-between-the-sea ice, it is generally the case that the height of an observed pressure ridge
above the ice cover (sail) s-and-is less than the depth to which the ridge extends below the ice cover (keel) —In-sea-ice-the

DPRELO8a-on-the-dates1+/23/2017-and—1H/26/2019—These-samples—_(Johnston) . In the fluvial setting this relationship is
unknown, potentially complicating the hypothesis of this work. Therefore, samples exhibiting pressure ridge formations were
discarded from subsequent analysis—comparisons between calculated ice roughness and k-means clustering. However, these
data were retained for the general discussion of surface ice roughness characteristics found in Section 5.3.

a a Sa O StO B WO—Sa PICS—W ODS veato—-aiSptay g
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Cluster analysis was conducted using k-means clustering. The optimal number of clusters was found to be two using average

silhouette analysis. Table 3 illustrates the grouping of clusters in the data. The within cluster sum of squares was found to be
3.44 and 11.96 for clusters 1 and 2 respectively.

5 Discussion

5.1 Accuracy of the RPA-photogrammetry Method for Fluvial Ice Analysis

Generally;—The results of the dry-land RPA-photogrammetry accuracy test showed that if three or more targets were used,

vertical differences of no more than 0.03 m were observed between resultant DEMs and independently surveyed points. This
amount of vertical difference was deemed acceptable when compared to the maximum acceptable vertical difference of 0.03
m established in Section 3.2.2. No excessive tilt was observed in DEMs as a result of elustering-grouping targets on one side of

the study area. AgiSoft PhotoScan Professional® appeared to be able to find an adequate number of tie point between images

principally comprised of snow.

As described in Eltner et al. (2016) systemic errors causing deficiencies in DEM accuracy differ from local-scale errors

causing deficiencies in DEM precision. Systemic errors include those incurred by improper sampling technique and by limi-
tations in the analysis. These errors were largely assumed to have been handled to the extent that is possible in this research
by the automated processes in AgiSoft PhotoScan Professional®. Eltner and Schneider (2015) found that AgiSoft PhotoScan
Professional® also performed well in reproducing the texture of complex natural surfaces. Direct comparisons could not be
made in this research between the naturally occurring ice surfaces and the RPA-photogrammetry reproductions. However, the
magnitude of such results as the maximum ice peak value matched visual observations and field notes. The accuracy test per-
formed at the La Barrier field site confirmed that with appropriate ground control points this method could accurately reproduce
snow-covered land surfaces. It also showed that the method could precisely reproduce features of the same order of magnitude

as the chunks of ice expected to be measured on the Dauphin River.

with-Comparison of geo-rectified and non-geo-rectified DEMs yielded deviations for most metrics well within the 5% thresh-

old. The medianhad-percent-differences—percent difference of the median was greater than 5%; however, it’s-its absolute
deviation was < 6:065-0.01 m, which is much less than the maximum vertical error (0.06 m). The-mintmum-value-deviated
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465

470

that geo-rectification

data—set—was not strictly necessary for the analysis of surface ice roughness, since the analysis is principally concerned with
surface variation rather than absolute location and orientation. However, geo-rectification would be necessary for most other
applications of RPA-Photogrammetry of ice surfaces, such as those proposed in Section 5.4.

52 Statistieal P o5 of Jee Surface Rotsl Heiol

5.2 Comparison of Ice Roughness Estimates

It was unclear which statistical metric would produce the most representative value of roughness height for the LMFFT-full and
LMFFT-peak data. Hnitt istributi i i

between—2019-H-12-Since this has not been attempted in the field of fluvial ice research, a total of six potential options for

the calculation of roughness height were selected, and once converted to Manning’s n using Equation 3, compared to the
i Figure 10). A linear
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between-the-two-greupscorresponding statistical parameters are presented in Table 4. The reported F-statistic (F7 4), has 1 and
4 degrees of freedom for the numerator and denominator, respectively. Using the significance value of o < 0.05 established in

Section 3.2.4, a value of F.,.;; of 0.0045 was found. Values of F} reater than this value indicate a significant relationship.

IQR Kurt. Med. IQR Kurt. 84 Perc.
) —)— ) ) —(— —m)— PREEO6 /212048 Figure 9 highlights the fact that the Nezhikhovskiy predicted

subsurface ice Manning’s n was generally greater than the RPA-measured values, and plotted over a fairly narrow range. Most
RPA-derived roughness values did not fall on the 16-12-3.91-0623-0.085-67031DRELO6-2/20/2019-:1 612-5810220.07
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and-medeled-values——where-applieableline, indicating that the RPA-measured ice surface Manning’s n was not identical to
the values predicted using a common empirical relationship. It should be noted, however, that ice covers with relatively high
RPA-measured surface ice Manning’s n had high Nezhikhovskiy predicted subsurface ice Manning’s n and vice versa.

5.2.1 NezRPA-measured ice surface Manning’s n vs. —Nezhikhovskiy predicted subsurface ice Manning’s nin-Figure

)

value of 0.0045 in all cases. All metrics illustrated strong correlation with high R? values and low RMSE. The SD and IQR
5 5 sidering the -/ value of the dincar regressions Ahe JOR-had the-highestvalue - The performed

the best of all metrics with the highest R? values, and lowest p <
in-this-eomparisonand RMSE results. These results indicate the the ice roughness values derived from RPA-photogrammetry

closely-mateh-were proportional to roughness values predicted using the Nezhikhovskiy relationshipequation.

5.2.2 ‘TFhiekness—RPA-measured ice surface Manning’s n vs. ice thickness

Since the only input parameter for the Nezhikhovskiy relationship-equation is ice thickness, Figure-O-suggests—relationship

RPA-measured ice surface Manning’s n values were compared directly to their associated ice thickness measurements (and
estimates) as shown in Figure 10. All metrics of roughness height taken from the DEMs were found to generate RPA-measured

ice surface Manning’s i

were strongly correlated with ice thickness. The corresponding regression statistics are reported in Table 4. Al-metries-showed
a-strong-positive relationship-with-iee-thickness-The #QR-The IQR and SD again performed the best with the highest R? value

and lowest RMSE, although all metrics performed exceptionally well. The p statistic shews-showed that all relationships were
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significant (o < 0.05)in-this-eemparison, and the F 4 statistic exceeded the F....;; value of 0.0045 in all cases. Further research
would be required to determine if this relationship may be used to estimate ice thickness based on observed surface roughness.

5.3 Statistical Properties of Ice Surface Roughness Heights

All observations at site DRLLO6 were found to belong to cluster “17, while observations at site DRLLO3b, DRLLOS, DRLLOS,
and DRILO8a belonged to cluster 27 The cluster results were enforced by observations taken at the time of sample collection.
The samples were broadly separated into two groups corresponding to the visual extent of “rough” or “smooth” ice, as defined
earlier in this section. Samples in cluster 17 were observed to be rough, while samples in cluster “2” were observed to be
smooth. Considering the SD of the LMFFT-full data, which was the best performing metric in Section 5.2, Table 5 provides the
minimum, mean, and maximum values of the sites within each identified cluster. Cluster “17, the “rough” cluster, corresponded
to ice surfaces with higher SD values, while cluster “27, the “smooth” cluster has lower SD values. The range of values are
mutually exclusive, indicating a strong divide between the two groups.

For each site, the LMFTT-full data as well as the LMETT-peaks data subset were analysed in detail. Figure 11 presents
typical examples of rough, smooth, and ridged ice. The rough and smooth samples corresponded to sites from each of the
rough and smooth clusters. The ridged samples were those identified in Section 4.2.1. To the authors’ knowledge this is the
first time that roughness of a river ice cover’s surface has been quantified in such detail. The LMFTT-full histograms were
observed to have distributions that appeared Gaussian in a qualitative sense, as shown in Figure 11. Despite the appearance, all
distributions failed the Shapiro-Wilk normality test, with p << 0.05, using a randomized sub-sample (= 5000 points) of the
data. Considering the distribution of peak values only, all sites exhibited clearly non-normal distributions, heavily biased to the
extreme left of the chart. This was interpreted to mean that the majority of peaks were small compared to the maximum peak
values.

It was noted that the rough and smooth samples differed primarily in the width and height of their distributions. The rough
samples tended to have wider distributions with a lower peak count, while the smooth distributions had a higher peak count
and a narrower distribution of roughness heights. The distributions of peak roughness height also differed, with the rough
samples having more larger peaks than the smooth samples. The ridged samples exhibited more irregular distributions than the
rough or smooth cases, but were more similar to rough distributions in being wider and having lower peak counts than smooth

distributions,

5.4 Alternative Uses for RPA-Photogrammetry

A common problem in river ice elevation surveys is the selection of a single, representative value to define the average ice
surface elevation in a given area, especially when the ice cover is quite rough. Itis up to the ebserver-practitioner to use their best
judgement to visually select a single representative point to survey while walking along the river bank, and the simple choice
of resting the survey rod on the top of a piece of ice or the bottom of that same piece of ice will cause the local ice elevation
measurement to vary considerably. During massive ice jam events, this field task is dangerous, and frequently impossible. The

above research shows that RPA-photogrammetry can be used to accurately survey ice areas for the purpose of observing local

22



570

575

580

585

590

595

600

topography, with much lower risks to field personnel than traditional ice surveying methods. Once a geo-rectified DEM has

been established, a representative ice elevation value of the entire rough ice surface can be determined using HnearmodeHing:

the LM approach introduced in Section 3.2.3.
This analysis could be extended to examine shear walls, and determine maximum ice elevation of a freeze-up jam, after the

fact.

6 Conclusions

The research presented in this paper-work has developed novel methods for the capture and analysis of fluvial ice surface
roughness-and-the-analysis-of-the resultant-high-reselution—elevation and roughness data. Through field trials and controlled
land-based experiments, it was determined that RPA-photogrammetry produced an accurate digital representation of rough or
smooth ice covers, with a maximum vertical error of 0.06 m if using three or more ground control points over a 200 m by 100 m
area. For the sole purpose of roughness characterization, it was determined that geo-rectification were-was unnecessary using

our equipment. The relatively inexpensive consumer-grade RPA was able to operate in harsh winter field conditions, with an

approximately 50% reduced battery life. Using-this-novel-high-resotution-data;-For the first time in the river ice engineering
field, the top-of-ice surface roughness has been quantified in detail using high resolution RPA-photogrammetry. A combination
of linear processing and Fourier filtering were proposed, and bulk statistical properties ineluding-SD;-skewness;kurtosis;-and
1QR—~were-eateulatedfor-two-classifieations-of-tee-eovers—of the ice roughness samples have been computed. Histograms of
different ice types have been presented for the first time, and k-means clustering analysis has identified two distinct classes
of surface ice roughness. Through evaluation of the statistical properties of the distribution of DEM heights observed via
RPA-photogrammetry, several interesting patterns were found. All distributions were found to be non-normal, when evaluated
with the Shapiro-Wilk normality test, however they display a qualitatively normal appearance.

The hypothesis of this research, that the surface roughness of a newly-frozen fluvial ice cover is indicative of subsurface
roughness was tested. When comparing the
through-RPA-phetogrammetrylNezhikhovskiy predicted values to the RPA-measured values, all roughness height metrics pro-
duced significant relationships, many with R? > 0.9. In this comparison the FQR-I -IQR and SD had the lowest p vatue-and
values, highest R?

though the RPA-measured ice surface Manning’s n was not equivalent to Nezhikhovskiy predicted subsurface ice Manning’s n,
the correlations were strong enough to suggest that as RPA-measured surface ice roughness increases, 5o to does the subsurface
ice roughness.

Pesitive-Very strong positive correlation was observed between surface-the RPA-measured surface ice roughness and ice
thickness across all tested metrics. Once again the 1QR-performed-the-best-SD and IQR of the roughness height DEM were
found to be the best metrics for roughness height, with the highest R? and lowest RMSE and p values(0:992,<-0-00+-and
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0-00+-respectively). This relationship provides-a-basis-for-alink-between-surface-also supports the hypothesis that surface ice
roughness is related to subsurface ice roughness, since the data show that RPA-measured ice surface roughness increases with
ice thickness and a widely-used empirical formula predicts the same relationship. Future work should focus on increasing the
number of field observations taken using these methods, across a wider range of ice roughness values and sub-surfacefee

groupsrespeetivetyon different rivers of various size and flow conditions.

The methods presented in this research can conceivably be applied to further uses in the field of fluvial ice monitoring. Fhe

For example, the high-resolution DEMs produced by this method

by-using-RPA-photogrammetry-can be used to determine a more representative plane-of-best-fit-for-a-spot measurement of
ice elevation—Shear-, which has the potential to significantly increase the accuracy of river ice jam profile plots. This could
potentially improve ice jam numerical model development since model performance is consistently evaluated by comparing
simulated jam profiles to measured ice jam profiles. Furthermore, shear walls may be captured and analysed in their entirety,

even immediately after, or during break-up. This research also presents a possible link between surface ice roughness and

ice thickness, which may provide for a method of estimating ice thickness using RPA-photogrammetry. The use of RPA-
photogrammetry for the monitoring of fluvial ice covers offers a quicker, safer, and cheaper alternative to any previous method

of high-resolution topographic data collection, and it’s-its applications are open for development.
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Table 4. Performance statistics of applied linear models*RA
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