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Abstract. Modeling air transport through the entire ice sheet column
:::
firn

:::::::
column

::
of

:::::
polar

:::
ice

::::::
sheets is needed to interpret

climate archives. To this end, different regressions were proposed
:::
have

:::::
been

::::::::
proposed

::
in

:::
the

::::
past

:
to estimate the effective

coefficient of diffusion and permeability of firn. Such
:::::
These regressions are often valid for specific depth or porosity ranges

and were little evaluated as data of these propertiesare scarce
::::
only.

:::::
Also,

::::
they

::::::::
constitute

::
a

:::::
source

:::
of

::::::::
uncertain

::
as

::::::::::
evaluations

::::
have

::::
been

::::::
limited

:::
by

:::
the

::::
lack

::
of

::::::
reliable

::::
data

::
of

::::
firn

:::::::
transport

:::::::::
properties. To contribute with a new dataset, this study presents5

the effective coefficient of diffusion and the permeability at Dome C and Lock In, Antarctica, from the near-surface to the

close-off (23 to 133 m depth). Also, microstructure is characterized based on density, specific surface area, closed porosity

ratio, connectivity index and structural anisotropy through the correlation lengths. All properties were estimated based on

pore-scale computations on 3D tomographic images of firn samples. Normalized diffusion coefficient ranges from 1.9 × 10−1

to 8.3 × 10−5 and permeability ranges from 1.2 × 10−9 to 1.1 × 10−12 m2, for densities between 565 and 888 kg m−3. No or10

little anisotropy is reported. Next, we investigate the relationship of the transport properties with density over the firn density

range
::::
(550

:
-
:::
850

::
kg

:::::
m−3)

:
as well as over the entire density range encountered in ice sheets by including snow data

::::
(100

:
-
:::
850

:::
kg

::::
m−3)

:::
by

::::::::
extending

:::
the

:::::::
datasets

::::
with

:::::::
transport

:::::::::
properties

::
of

:::::
alpine

:::
and

:::::::
artificial

:::::
snow

::::
from

:::::::
previous

::::::
studies. Classical analytical

models and regressions from literature are evaluated
:::::
against

:::
the

::::::::
estimates

:::::
from

:::::::::
pore-scale

:::::::::
simulations. For firn(550 - 850 kg

m−3), good agreements are found for permeability and diffusion coefficient with the regressions based on the open porosityof15

Freitag et al. (2002) and Adolph and Albert (2014)
:::
two

:::::::
existing

::::::::::
regressions

::
of

:::
the

::::::::
literature

:::::
based

:::
on

:::::
open

:::::::
porosity, despite

the rather different site conditions (Greenland). Over the entire 100 - 850 kg m−3 density range, permeability is accurately

reproduced by the Carman-Kozeny and Self-Consistent (spherical bi-composite) model when expressed in terms of a rescaled

porosity φres = (φ−φoff)/(1−φoff) to account for pore closure, with
:::::
where φoff :

is
:
the close-off porosity. For the normalized

diffusion coefficient, none of the evaluated formulas were satisfactory so we propose a new regression based on the rescaled20

porosity that reads D/Dair = (φres)
1.61.
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1 Introduction

Atmospheric air circulates through the interconnected pores of snow and firn down to the firn-ice transition where pores close.

Air entrapped in the closed pores of ice preserved
:::::::
preserves

:
past atmospheric air, from couple of thousands to few

::::::::
thousands

::
to

millions of years old, providing invaluable data on past Earth’s environment (e.g. Petit et al., 1999; Lüthi et al., 2008; Loulergue25

et al., 2008; Yan et al., 2019). As gas transport from the surface is slow, air in the open pores of firn can be as old as several

decades up to thousand
:::::::
hundreds

:
of years (Schwander et al., 1988; Battle et al., 1996; Kaspers et al., 2004). Among others

::::
other

:
challenges, interpreting firn and ice data with respect to past Earth’s conditions and events requires modeling of the air

transport processes through the entire snow-firn-ice column (e.g. Trudinger et al., 1997; Rommelaere et al., 1997; Goujon et al.,

2003; Severinghaus and Battle, 2006; Hörhold, 2006; Courville et al., 2007; Witrant et al., 2012; Buizert et al., 2012; Stevens30

et al., 2020). Two of the important properties for gas transport in snow and firn are the effective coefficient of diffusion and the

intrinsic permeability.

The effective diffusion coefficient tensor D (m2 s−1) describes the molecular diffusion of a given gas through a layer of snow

or firn, which is a dominant transport process taking place throughout the snow-firn column til
::::
until

:
the close-off (Schwander

and Stauffer, 1984; Sowers et al., 1992). Defined in a tensorial way, the diffusion coefficient links the gas density gradient35

∇ρg (kg m−3 m−1) and the diffusion flux per unit area J (kg m−2 s−1) through the Fick’s law J=−D∇ρg . The intrinsic

permeability tensor K (m2) controls air advection through snow or firn forced by air pressure differences, typically caused

by wind at the surface (windpumping) (Colbeck, 1989; Waddington et al., 1996; Kawamura et al., 2006). Permeability links

the air pressure gradient ∇p (Pa m−1) and the discharge per unit area q (m s−1) through the Darcy’s law q=−(1/µ)K∇p,

where µ is the dynamic viscosity of the fluid (kg m−1 s−1). In contrast to molecular diffusion, air advection is not always40

present in snow and firn and, if so, affects mostly their uppermost meters (Albert, 1996; Albert and Shultz, 2002; Albert et al.,

2004). Effective diffusion coefficient and permeability depend on density and open porosity at first order, but also on other

microstructural parameters of snow and firn such as pore morphology.

The effective coefficient of diffusion and the permeability of snow and firn were investigated at numerous sites of ice

sheets and glaciers (e.g. Schwander, 1989; Fabre et al., 2000; Albert et al., 2000; Albert and Shultz, 2002; Freitag et al.,45

2002; Goujon et al., 2003; Rick and Albert, 2004; Hörhold et al., 2009; Courville et al., 2010; Adolph and Albert, 2013,

2014; Sommers et al., 2017). Some come along with a characterization of the microstructure based on 3D images from serial

sections (e.g. Rick and Albert, 2004; Freitag et al., 2002) or micro-tomography (e.g. Hörhold et al., 2009; Courville et al.,

2010; Adolph and Albert, 2014). Different parameterizations of the properties were suggested (e.g. Schwander et al., 1988;

Fabre et al., 2000; Witrant et al., 2012; Adolph and Albert, 2014), including the ones shown in Table 1. Adolph and Albert50

(2014) compared different parameterizations of diffusion coefficient and permeability against their measurements at Summit,

Greenland. Stevens (2018) compared profiles of effective coefficient of diffusion and δ15N predicted by 6 different param-

eterizations at NEEM, Greenland and South Pole, Antarctica. Only few
::::
Few parameterizations are based on measurements

or modeling over the entire firn column (Adolph and Albert, 2014), limiting their range of validity (Tab. 1). Especially, it

is
:
It
::

is
:::::::::

especially
:
crucial to describe well air transport properties

::::
well

:
in the lock-in zone from the beginning of the pore55
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closure to the close-off. These parameterizations require the knowledge of the evolution
:::::::::::
relationships of the closed poros-

ity with depth (and/or density). Such a prediction is still poorly restricted and only limited parameterizations are available

(Schwander, 1989; Goujon et al., 2003; Severinghaus and Battle, 2006; Mitchell et al., 2015; Schaller et al., 2017), which add

on uncertainties
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schwander, 1989; Goujon et al., 2003; Severinghaus and Battle, 2006; Mitchell et al., 2015; ?)

:
,
:::::
which

:::::
adds

::::::::::
uncertainties

::
to
::::

the
:::::::::
estimation

::
of

:::::::::
properties, as shown by a comparison of parameterizations of closed porosity at Lock In60

and Vostok, Antarctica by Fourteau et al. (2019). Finally, some conclusions from the above mentioned studies are that param-

eterizations of transport properties are strongly site-dependent, which might indicate that regression based on open porosity

or porosity alone is not sufficient and that there is a more complex relationship with microstructure or other environmental

parameters (Courville et al., 2007; Adolph and Albert, 2014; Keegan et al., 2019).

In the present study, we provide new datasets of the effective coefficient of diffusion and permeability from the near-surface65

to the close-off for 2 sites in Antarctica, Dome C and Lock In(plus few data of Vostok)
:
.
::::::::
Properties

::
of
::

a
:::
firn

:::::::
sample

::::
from

:::
80

::
m

:::::
depth

::
at

:::::::
Vostok,

:::::::::
Antarctica,

:::
are

::::
also

:::::::::
presented

:::
for

::::::::
additional

:::::::::::
comparisons. Estimates are based on computations on

:::
3D

high-resolution tomographic images of microstructure, as used in many snow studies (e.g. Zermatten et al., 2011; Calonne

et al., 2012, 2014b) and in a few firn studies (Freitag et al., 2002; Courville et al., 2010; Fourteau et al., 2019). 3D-image based

computations provide the
:::
The 3D tensor of the properties , allowing

:
is

:::::::
obtained

::::
and

:::::
allows

:
to assess the anisotropy of properties70

and compare lateral to vertical gas transport. A variety of parameter to characterize firn microstructure was also estimated from

images
:
In

:::::::
addition

:::
to

:::::::
transport

:::::::::
properties,

::
a

::::::
variety

::
of

:::::::::
parameters

::
to

:::::::::::
characterize

::
the

::::
firn

::::::::::::
microstructure

::
is

::::::::
computed

:::::
from

:::
the

::::::
images

:::::::
(density,

::::::
specific

:::::::
surface

::::
area,

:::::
closed

:::::::
porosity

:::::
ratio,

::::::::::
connectivity

:::::
index

:::
and

::::::::
structural

:::::::::
anisotropy

:::::::
through

:::
the

:::::::::
correlation

::::::
lengths). Further, we investigate the relationship of the effective coefficient of diffusion and permeability with density in the

firn density range (550 - 850 kg m−3), as well as in the entire density range encountered in ice sheet (100 - 850 kg m−3) by75

including data from seasonal snow images
::
of

::::::::
transport

::::::::
properties

::
of

::::::
alpine

:::
and

:::::::
artificial

:::::
snow from previous studies. Classical

analytical models based on simplified microstructures as well as regressions from previous firn studies are evaluated against

our results. A new regression is proposed to estimate the diffusion coefficient in the whole density range.

2 Methods

2.1 3D images80

This study is based on a set of 62 3D images of snow, firn or bubbly ice , as used
:::
and

::::::
bubbly

:::
ice

:::
that

::::
were

:::::::::
previously

::::::::
analyzed in

Calonne et al. (2019). 27 images are samples of firn or bubbly ice from three locations in Antarctica: Dome C, near Concordia

Station (75◦6’S, 123◦21’E), Lock In, located at 136 km away from Concordia Station (74◦8.310’S, 126◦9.510’E), and Vostok.

These samples were extracted from ice cores collected during previous expeditions (Coléou and Barnola, 2001; Gautier et al.,

2016; Burr et al., 2018) at depths ranging from 23 to 133 m and show different levels of densification til
:::
until

:
the close-off.85

:::::
Mean

:::::
annual

::::::::::
temperature

::::
and

::::
mean

::::::
annual

:::::::::::
accumulation

::::
rate

:::
are

::
of

:::::
-55◦C

:::
and

:::
2.5

:::
cm

::::
yr−1

::
at

:::::
Dome

:::
C,

::
of

::::::::
-53.15◦C

:::
and

:::
4.5

:::
cm

::::
yr−1

::
at

::::
Lock

:::
In,

:::
and

::
of

::::::
-57◦C

:::
and

:::
2.2

:::
cm

::::
yr−1

::
at

::::::
Vostok

:::::::::::::::::::::::::::::::::::::
(from Burr et al., 2018, and references within)

:
. 35 images are samples

of snow, covering the main snow types, either collected in the field or obtained from experiments under controlled conditions
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in
:
a
:
cold-laboratory (Coléou et al., 2001; Flin et al., 2004, 2011; Calonne et al., 2014a). The 3D images are binary images

(air or ice) of resolutions between 5 and 15 µm and of dimensions between 2.53 mm3 and 7
::
6.72 × 25 mm3. Computations of90

properties were performed on cubic representative elementary volumes
::::::
images

:
of size between 2.53 and 103 mm3 for snow

and of size 7
::
6.73 mm3 for firn.

:::::
These

:::::
image

:::::::::
correspond

::
to

:::::::
volumes

:::::
equal

::
or

::::::
bigger

::::
than

:::
the

:::::::::::
representative

::::::::::
elementary

:::::::
volumes

::::::::
estimated

:::
for

:::::::::::
permeability,

:::::
which

::
is

:::
the

:::::::
property

::::
that

:::::::
requires

::
the

::::::
largest

:::::::
volume

::::::
among

:::
the

::::
other

:::::::::
properties

::::::::
computed

::
in

::::
this

::::
paper

:::::::::::::::::::::::::::::::::::::::
(Kanit et al., 2003; Calonne et al., 2012, 2014a)

:
.
::::::::::
Estimations

::
of

:::
the

:::::::::::
representative

::::::::::
elementary

:::::::
volumes

:::
for

:::::::::::
permeability

::::
were

:::::::::
performed

::
on

:::::::
selected

::::::
images

:::::::::
following

::::::::::::::::::
Calonne et al. (2011)

::
by

:::::::::
computing

:::
the

:::::::
property

::::
over

::::::::::
subvolumes

::
of

:::::::::
increasing95

::::
sizes.

:
More information on the samples and 3D images can be found in Calonne et al. (2019).

2.2 Effective coefficient of diffusion and intrinsic permeability

The 3D tensor of the effective coefficient of diffusion D (m2 s−1) and of the intrinsic permeability K (m2) were computed

on the set of 3D images of firn. Properties
::::::::
Computed

:::::::::
properties from the images of snow are from the previous studies of

Calonne et al. (2012) and Calonne et al. (2014b). A
::::::::::::
comprehensive

::::::::::
description

::
of

:::
the

:::::::::::
computation

::::::
method

::::
can

::
be

::::::
found

::
in100

:::::::::::::::::
Calonne et al. (2012)

:::
for

:::
the

::::::::::
permeability

::::
and

::
in

:::::::::::::::::::
Calonne et al. (2014a)

::
for

:::
the

::::::::
diffusion

:::::::::
coefficient.

::::::
Briefly,

::
a specific bound-

ary value problem, describing vapor diffusion or air flow through the porous medium and arising from a homogenization

technique (Auriault et al., 2009; Calonne et al., 2015), is solved on representative elementary volumes of the images using

the software GeoDict (GeoDict from Math2Market GmbH, Germany, https://www.geodict.com)
::::
based

:::
on

:::
the

::::
finite

:::::::::
difference

::::::
method, applying periodic boundary conditions on the external boundaries. The effective diffusion coefficient was computed105

with an artificial diffusion coefficient of gas in free air set to Dair = 1 m2 s−1. In this study, we present the normalized values

of the effective diffusion D/Dair (dimensionless). These normalized values can be multiplied by the diffusion coefficient of

the gas of interest in free air to get the physical, non-normalized values of effective diffusion coefficient of this gas in snow or

firn (for example, the diffusion coefficient of vapor in free air, that is 2.036× 10−5 m2 s−1 at -10◦C (Massman, 1998), could

be used to get the effective diffusion coefficient of vapor). As the non-diagonal terms of the tensor D and K are negligible,110

we consider only the diagonal terms, i.e. seen as the eigenvalues of the tensors (the image axes x, y and z are the principal

directions of the microstructure, z being along the direction of gravity). Besides, the tensors are transversely isotropic as the

components in x are very similar to the ones in y. In the following, D and K refer to the averages of the diagonal terms of D

and K, respectively. Dz and Kz refer to the vertical components and Dxy and Kxy refer to the mean horizontal components

where Dxy = (Dx+Dy)/2 and Kxy = (Kx+Ky)/2. Finally, the anisotropy of the properties is characterized based on the115

anisotropy ratio A(D) =Dz/Dxy and A(K) =Kz/Kxy (e.g. Calonne et al., 2014a).

2.3 Microstructural parameters

The density ρ (kg m−3) was computed from 3D images by a standard voxel counting algorithm using an ice density ρi = 917

kg m−3 (ice density variations with temperature were neglected in this study). Porosity corresponds to φ= 1− ρ/ρi and is

the sum of the open porosity φop and of the closed porosity. In the following, density and porosity at the close-off depth are120

referred as ρoff and φoff , respectively. The close-off depth is the depth at which pores are fully isolated from the surface.
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To characterize the
:::
The

:
connectivity of the pore space , we used the

:
is

:::::::::::
characterized

:::::::
through

:::
the

::::::::
classical

::::::::::::
closed-to-total

:::::::
porosity

::::
ratio

::::
(CP)

::
as

::::
well

::
as

::
the

:
connectivity index (CI)proposed by Burr et al. (2018) ,

:::::::
recently

:::::::::
introduced

::
by

:::::::::::::::
Burr et al. (2018)

::
as

::
an

:::::::::
alternative

::::::::
parameter

::
to
:::::::
predict

::
the

::::::::
close-off

:::::
depth

:::
and

:::::::
density.

:::::
The

::::::::::::
closed-to-total

:::::::
porosity

::::
ratio

::
is

:::::::
obtained

:::
by

:::::::
dividing

::
the

:::::
total

::::::
volume

:::
of

::::::
closed

:::::
pores

::
by

::::
the

::::
total

:::::::
volume

::
of

::::::
pores,

::::
both

::::::::::
determined

::
by

::::::::
counting

::::::
voxels

:::
on

:::
the

:::
3D

:::::::
images.

:::
Its125

::::::::
estimation

::
is
::::::::::

challenged
:::
by

:::
the

:::::::
cut-pore

::::::
effect

:::
that

:::
is

:::
the

::::::::::
uncertainty

::::::
related

::
to

:::
the

::::::
closed

:::
or

::::
open

::::::
status

::
of

:::
cut

:::::
pores

:::
at

::
the

:::::::
volume

::::::::::
boundaries.

::::
Cut

:::::
pores

::::
were

::::
not

:::::::::
considered

::::
here

:::::
when

::::::::
counting

::::::
closed

:::::
pores.

::::
The

::::::::::::
closed-to-total

:::::::
porosity

:::::
ratio

:
is
::::::::
sensitive

::
to

:::
the

::::::
sample

::::
size

:::::
such

::
as

::
it

::
is

::::::::::::
underestimated

:::::
when

:::::::::
evaluated

::
on

:::::::
samples

::::
that

:::
are

:::
too

:::::
small

:::::::::::::::
(Burr et al., 2018)

:
.

:::
The

:::::::::::
connectivity

:::::
index

::
is defined as the ratio between the

::::::
volume

::
of

:::
the

:
largest pore and the total volume of pores. CI

:::
The

::::::::::
connectivity

:::::
index

:
is 100 % when the porosity is fully open and 0 % when pores are closed. This index allows to describe130

more accurately the pore closure in firn and bubbly ice than the classical
::::::::
decreases

::
as

:::::
pores

::::::
shrink

:::
and

:::::
close.

::::
For

::::::
bubbly

:::
ice

:::::
where

::
all

:::::
pores

:::
are

::::::
closed

:::
and

::
of
:::::::::::::

approximately
::::
equal

:::::::
volume,

::::
this

:::::
index

:::::
would

::::
tend

::
to

::
1
::::
over

:::
the

::::::
bubble

:::::::
number.

::::::
Unlike

:::
the

closed-to-total porosity ratio, the latter being sensitive to the
::::::::::
connectivity

:::::
index

:::::::::
estimation

::::
does

:::
not

:::
rely

:::
on

:::
the

::::::::::
assumption

::
of

::
the

:::::
pore

:::::
status

:::::
(open

::
or

::::::
closed)

::::
and

::
is

:::::::::
practically

::::::::::
independent

::
of

:
sample size (Burr et al., 2018). The closed-to-total porosity

ratio (CP) is obtained by dividing the total volume of closed pores by the total volume of pores, both estimated on 3D images135

by counting voxels following (Burr et al., 2018)
:
A
:::::::::::::
comprehensive

:::::::
analysis

::::
and

:::::::::
comparison

:::
of

::::
both

:::
CI

:::
and

:::
CP

::::::::::
parameters

::
at

::::
Lock

::
In

::::
and

:::::
Dome

::
C

:::
can

:::
be

:::::
found

::
in

::::::::::::::
Burr et al. (2018).

The correlation lengths lcx , lcy , and lcz (mm) were used as a characteristic length of the microstructure in the x, y, and z

direction, respectively. The two-point correlation (a.k.a. covariance) functions for the air phase S2(rβ) were computed on the

3D images, with rβ a vector oriented along the coordinate axes β = (x, y, z) of length |rβ |= rβ that ranges from 0 to the140

image size in the β direction with increments of 1 pixel size (Torquato, 2002). The correlation lengths were then determined

by fitting the two-point correlations with an exponential equation of form S2(rβ) = (φ−φ2)exp(−rβ/lcβ )+φ2, where φ is

the porosity (Löwe et al., 2013; Calonne et al., 2014a). The anisotropy ratio A(lc) = lcz/lcxy , where lcxy = (lcx + lcy )/2, was

used to describe the geometrical anisotropy of the microstructure.

The specific surface area of snow (SSA) describes the total surface area of the air–ice interface per unit mass (m2 kg−1) and145

was computed from 3-D images using a stereological method (Flin et al., 2011). Providing a characteristic length of the ice

grains, the equivalent sphere radius r (mm) is related to SSA by r = 3/(SSA× ρi) (e.g. Grenfell and Warren, 1999; Painter

et al., 2006).

3 Results and discussion

3.1 Properties at Dome C and Lock In150

We present the transport properties and microstructure of firn at Dome C and Lock In (Fig. 1). Firn microstructure is gradually

getting denser and coarser with depth: density and SSA evolves
:::::
evolve

:
from 565 to 888 kg m−3 and from 2.89 to 0.43

m2 kg−3
::

−1, respectively, between 23 and 133 m depth. Whereas the evolution rate is similar at both sites, Lock In shows

systematically lower values of density and higher values of SSA compared to Dome C at a given depth. For comparison, the

5



Figure 1. Evolution of firn properties with depth: density, specific surface area, closed-to-total porosity ratio, connectivity index, averaged

permeability, and averaged effective coefficient of diffusion (from left to right). Dashed lines show the close-off depth at Dome C
::::
(dark

::::
grey)

and Lock In , as given in
::::
(light

::::
grey)

::::
from

:
Burr et al. (2018). Circle symbols indicate values of permeability and effective diffusion equal

to zero. Square symbols show a Lock In sample (106 m depth) with horizontal components of the transport properties equal to zero and

correspond thus to the values of the vertical component only.

microstructure of the sample from Vostok at 80 m depth is also shown and has a density of 774 kg m−3 and a SSA of 1.5 m2155

kg−3
::

−1, matching the property profile of Lock In. Air pores start to close from a depth of around 80 m, where the closed-

porosity ratio (CP) and the connectivity index (CI) start deviating from the value
:::::
values of 0 and 100 %, respectively. Again,

differences in the pore closure are found between both sites, Dome C showing an earlier onset of pore closure than Lock In.

The close-off is thus reached at a depth of 99.3 m at Dome C and, deeper, at 108.3 m at Lock In (Burr et al., 2018). The

connectivity index reaches values close to 0 % at these close-off depths and below. In contrast, the
:::
The closed-to-total porosity160

ratio keeps on decreasing below the close-off depth, reaching 74% at 133 m at Dome C and 60 % at 120 m at Lock In. A more

detailed description of the firn microstructure and pore closure at those sites is provided in Burr et al. (2018).

As the pore space shrinks, transport properties decrease with depth, reaching zero values near the close-off depth. At Dome

C, the averaged values of normalized diffusion coefficient range from 1.9 ×10−1 at 23 m depth to 6.2 ×10−4 at 91 m depth,

and are equal to zero at 95 m depth and below (5 samples; circle symbols). At Lock In, values range from 5.1 ×10−2 at 66 m165

depth to 8.3 ×10−5 at 106 m depth, and are equal to zero at 108 m and below (5 samples; circle symbols). A coefficient of 1.6

×10−2 is found at Vostok at 80 m depth. Regarding permeability, averaged values at Dome C range from 1.2 ×10−9 m2 at 23

m depth to 1.4 ×10−11 m2 at 91 m depth, and are equal to zero below. At Lock In, values range from 2.4 ×10−10 m2 at 66

m depth to 1.1 ×10−12 m2 at 106 m depth, and are equal to zero below. The Vostok sample shows a value of 6.6 ×10−11 m2

at 80 m depth. The small systematic shift in values between Lock In and Dome is also found in the transport properties: Lock170
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In shows overall higher values of diffusion coefficient and permeability than Dome C for given depths. Finally, relating the

transport properties to the parameters of pore closure in the lock-in zone, we can see that the transport properties reach zero at

or just before the close-off depths (dashed lines in Fig. 1). The zone of zero transport is characterized by connectivity indexes

between 11 and 1 %, reflecting little to no connected pore space. In contrast, the closed-to-total porosity ratio still increases

largely from 15 and 73 % , indicating than even after the
:::
and

::::
does

::::
not

:::::
reach

:::
100

:::
%,

:::::::::
indicating

::::::::::
erroneously

:::
the

:::::::
presence

:::
of175

::::
open

:::::
pores

::::
after

:::
the

:
close-off , open pores are still present,

:::
and even down to 133 m depth, which does not seem consistent

with zero transport.
:
.
::::
This

:::::::::::::
underestimation

::
of

:::
the

::::::::::::
closed-to-total

:::::::
porosity

:::::
ratio

:::::::
certainly

::::::
comes

::::
from

:::
the

:::::::
cut-pore

:::::
effect

::::::
which

:
is
::::::
related

:::
to

:::
the

::::::
surface

::
to

:::::::
volume

::::
ratio

:::
and

::::
also

::
to
:::

the
:::::::

sample
:::
size

::::::
which

:::::
effect

::::
was

:::::::
reported

:::
by

::::::::::::::
Burr et al. (2018)

:
.
:
It
::::::

might

::::::
indicate

::::
that

:::
the

:::::::
volumes

:::::
used

::
for

::::::::::::
computations

:::
are

:::
too

:::::
small

::
to

:::::
allow

::
a

::::::
correct

:::::::
estimate

::
of

:::
the

::::::::::::
closed-to-total

:::::::
porosity

:::::
ratio

:::
and

:::::
would

:::::::
require

:
a
:::::::::
correction

::::::
(e.g. ?).

:
180

3.2 Relationship with density

Next, we study the evolution
::::::::::
relationships

:
of the two transport properties with density. Figure 2 includes the simulations on

snow samples to study the relationship over the entire snow-firn density range (102 - 888 kg m−3). Figure 3 focuses on firn

samples only (565 - 888 kg m−3). Both figures show dimensionless permeability values, i.e. permeability values K divided

by the
::::::
squared

:
equivalent sphere radius r = 3/(SSA× ρi) to the square

::::::::::::::::::
r2 = (3/(SSA× ρi))2. This allows to account for185

the dependency of permeability with a characteristic length of the microstructure (e.g. Boutin and Geindreau, 2010). The

horizontal and vertical component of properties is shown by the T-shaped symbols
:::::::
symbols

::
in

::::
both

::::::
figures

:::
are

:::
our

:::::::::
computed

:::::::
property

:::::
values

::::
and

:::
the

:::
tips

:::
and

:::::::::
horizontal

::::
bars

:::::::
indicate

:::
the

::::::
vertical

::::
and

::::::::
horizontal

::::::::::
component

::
of

:::
the

:::::::
property,

::::::::::
respectively.

Values of the transport properties evolve within several orders of magnitude over the entire density range (Fig. 2). Averaged

values of dimensionless permeability range from 0.9 for the lightest snow sample (PP) to 2 × 10−3 for the densest one190

(MF), cover the range 10−4 to 10−7 for the firn samples, and equal zero-value for the densest firn samples below the close-

off. Zero values are shown for samples of densities above 830 kg m−3 at Dome C and for densities above 850 kg m−3 at

Lock In. For the diffusion coefficients, averaged values range from 0.75 to 0.17 in snow, from 10−2 to 10−5 for firn above

the close-off, and zero values below. Overall, the figures highlight the strong dependency of diffusion and permeability to

density (and to SSA for permeability) with rather well-aligned, little scattered evolution
::::::::::
relationships. In contrast to the linear195

evolution
::::
trend

:
observed for snow (Calonne et al., 2012), the effective diffusion coefficient of firn shows rather an exponential

evolution
::::::::::
relationships

:
with density. Both properties see their values drop when getting near to the close-off density. For

example, between 813 and 844 kg m−3, the averaged values of diffusion coefficient drop from 2.2 ×10−3 to 8.3 ×10−5 and

the normalized permeability from 2.4 ×10−6 to 8.6 ×10−8. No significant differences are found between sites: they show

similar property-density relationship
:::::::::::
relationships, in contrast with

::
to the shift observed in the property-depth relationship as200

described above (Fig. 1).
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3.3 Anisotropy

The anisotropy ratios of both transport properties, A(D) and A(K), and their link with the microstructure are presented in

Figure 4. Overall, anisotropy ratios in firn range between 0.8 and 2.3 for the permeability and between 0.04 and 8.2 for the

diffusion coefficient, which correspond to wide ranges compared to the range 0.8 - 1.6 observed for snow. However, looking205

at the evolution
::::::::::
relationships

:
of the anisotropy ratio with density (Fig. 4a and 4c), we see that the extreme values are found

in the narrow density range 800-840 kg m−3, i.e. near the close-off. Those extremes
::::::
extreme

:
values are reached by dividing

very small values of vertical components over horizontal components of the property tensors (e.g. for Lock In at 103 m depth,

Dxy= 1.11 × 10−4 and Dz= 9.18 × 10−4, leading to A(D) = 8.23). As these anisotropy ratios concern very small values of

properties, they do not lead to significant impact in terms of gas transport. Most interestingly, in the range 550 - 750 kg m−3,210

anisotropy ratiosA(D) andA(K) of firn are comprised between 1 and 1.33 (6 samples). These values are consistent with data

of Freitag et al. (2002), who observed a slight anisotropy of both properties in Summit, Greenland, between 16 and 57 m depth.

Finally, when looking at the evolution at
:::::::::
concerning

:
Dome C especially, it seems that anisotropy ratio tends to decrease with

depth, in the range 550 - 750 kg m−3, although more data would be needed for this observation to be significant.

Regarding the geometric anisotropy of the firn samples, the ratios A(lc) are rather moderate and do not exceed 0.91 and215

1.19, in agreement with anisotropies reported by Burr et al. (2018), and do not show a significant trend with depth or density.

Considering all firn samples, no clear relationship is found for firn between the physical anisotropy A(D) and A(K) and the

structural anisotropy A(lc). Looking at the 6 firn samples of density below 750 kg m−3, a positive correlation can however

be found, following roughly the trend observed in snow, but being less significant given the too few samples. Additional firn

samples in the range 550-750 kg m−3 would be needed to fully investigate the evolution
::::::
change of anisotropy ratios with depth220

and their relationships.

3.4 Comparison to models

Here we evaluate two common models based on simplified microstructures against our data: the self-consistent model for

bi-composite spherical inclusions (SCbi) and the Carman-Kozeny model (CK), as described in Table 1. In the SCbi scheme,

the medium consists of a bi-composite spherical pattern made of an internal spherical grain and an external fluid shell that225

ensures fluid connectivity whatever the porosity value (Boutin, 2000). The SCbi scheme can be used to provide estimates of

effective diffusion coefficient (SCD
bi) and estimates of permeability (SCK

bi). The Carman-Kozeny model provides permeability

estimates by describing the medium as a bundle of capillarity tubes of equal length (Bear, 1972). Also, for comparison, we

show the formulas that provided the best agreements with the snow data (Calonne et al., 2012, 2014b): the self-consistent

model of diffusion coefficient (SC), which is based on a
::
an

:
assemblage of spherical particles of air embedded in a homogeneous230

equivalent medium whose effective diffusion is the unknown to be calculated (Auriault et al., 2009), and the parameterization

of snow permeability (Calonne 2012). These two formulas are however not suited for firn. All the above mentioned models

require the knowledge of density and, for permeability, of a characteristic length of the microstructure, taken here as the

equivalent sphere radius r of ice grains.
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Name Formula Validity range; Comments

Permeability

CK K = (4r2×φ3)/(180(1−φ)2) 0< φ < 1; Carman-Kozeny estimates, (Bear, 1972).

SCK
bi K = r2/(3β2)× [−1+ (2+3β5)/(β(3+

2β5))] with β = (1−φ)1/3

0< φ < 1; Self-Consistent estimates for bi-composite spherical

inclusions (Boutin, 2000).

Freitag 2002 K = 10−7.7m2φ3.4
op with m= 1.5 0.04< φ < 0.5; from pore-scale simulations on samples from 16

to 57 m depth in North Greenland (Freitag et al., 2002).

Adolph 2014 K = 10−7.29m2φ3.71
op with m= 1.5 0.07< φ < 0.62; from measurements on samples from the top

85 m depth at Summit (Greenland) (Adolph and Albert, 2014)

Calonne 2012 K = 3r2 exp(−0.013ρ) 0.4< φ < 0.9; from pore-scale simulations on seasonal snow

samples (Calonne et al., 2012).

Normalized diffusion coefficient

SC D/Dair = (3φ− 1)/2 1/3< φ; Self-Consistent estimates for spherical inclusions (Au-

riault et al., 2009).

SCD
bi D/Dair = 2φ/(3−φ) 0< φ < 1; Self-Consistent estimates for bi-composite spherical

inclusions (Boutin, 2000).

Eq. (2) D/Dair = ((φ−φoff)/(1−φoff))
1.61 0< φ < 1; from pore-scale simulations of this study.

Schwander 1988 D/Dair = 1.7×φop− 0.2 0.13< φ < 0.5; from measurements on samples from 2 to 64 m

depth at Siple (Antarctica) (Schwander et al., 1988).

Fabre 2000 D/Dair = 1.92×φop− 0.23 0.15< φ < 0.4; from measurements on samples from Col du

Dome (French Alps) and Vostok (Antarctica) (Fabre et al., 2000).

Freitag 2002 D/Dair = φ2.1
op 0.04< φ < 0.5; from pore-scale simulations on samples at 16,

45 and 57 m depth at North Greenland (Freitag et al., 2002).

Adolph 2014 D/Dair = φ1.5
op 0.07< φ < 0.62; from measurements on samples from the top

85 m depth at Summit (Greenland) (Adolph and Albert, 2014).

Fourteau 2019 D/Dair = φ2.9
op φ < 0.2; from pore-scale simulations on samples from about 80

to 110 m depth at Lock In (Antarctica) (Fourteau et al., 2019).

Table 1. Description of the analytical models and regressions of permeability and normalized diffusion coefficient for comparison with our

datasets.

Model estimates as a function of density are shown in Figure 2 and 3. Taking the models in their original forms (solid235

lines), none of them succeed to reproduce permeability and effective diffusion coefficient throughout the density range, as they

perform badly in
::
for

:
firn. This is due to the fact that the models assume that the entire pore space corresponds to open porosity.

Zero values of both properties are consequently reached when the porosity is null. To account for pore closure and the fact

that a portion of pores is actually not accessible to gas transport, we introduce a parameter φres that corresponds to a rescaled
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Name R2 [-] MAE [m2 or -] RMSE [m2 or -]

Permeability

over the entire density range

SCK
bi,res 0.78 4.60 ×10−10 8.05 ×10−10

CKres 0.91 2.74 ×10−10 5.23 ×10−10

over the firn density range

SCK
bi,res -0.34 1.40 ×10−10 3.86 ×10−10

CKres 0.17 1.08 ×10−10 3.04 ×10−10

Freitag 2002 0.87 0.43 ×10−10 1.23 ×10−10

Adolph 2014 -0.58 1.22 ×10−10 4.20 ×10−10

Normalized diffusion coefficient

over the entire density range

SCD
bi,res 0.96 4.3 ×10−2 5.1 ×10−2

Eq. (2) 0.99 1.43 ×10−2 2.2 ×10−2

over the firn density range

SCD
bi,res 0.37 2.7 ×10−2 3.5 ×10−2

Eq. (2) 0.99 0.3 ×10−2 0.5 ×10−2

Freitag 2002 0.91 0.7 ×10−2 1.3 ×10−2

Adolph 2014 0.41 2.6 ×10−2 3.4 ×10−2

Fourteau 2019 0.42 1.4 ×10−2 3.3 ×10−2

Schwander 1988 -10.1 12 ×10−2 15 ×10−2

Fabre 2000 -14.0 14 ×10−2 17 ×10−2

Table 2. Correlation of determination R2, mean absolute error MAE, and root mean squared error RMSE values obtained between predicted

values from models or regressions and true values, being the data computed on 3D images, for permeability and effective coefficient of

diffusion, obtained when considering all samples and firn samples only. MAE and RMSE are indicators of the average difference of the

modeled values with respect to the true data. RMSE has a higher weight on outliers than MAE, which treats all differences equally. In

addition to the average difference between modeled and true data, R2 also indicates how well the model describes the trend seen in the true

data (R2 values close to 1 indicate that average differences between model and truth are small and that the true data are equally scattered

around the model across the full range).

porosity, defined such as φres = 0 at the close-off porosity φ= φoff and φres = 1 at φ= 1, and reads240

φres = (φ−φoff)/(1−φoff) (1)

A close-off density value of ρoff = 845 kg m−3 (close-off porosity φoff of 0.078) was taken for all sites, based on our con-

nectivity parameters (Fig. 5). Evolution
:::::::::::
Relationships

:
of φres with density is shown in the sub-figure of Figure 2. φres equals

0.89 at a porosity of 0.9 (90 kg m−3), 0.24 at a porosity of 0.3 (640 kg m−3), and 0.02 at a porosity of 0.1 (825 kg m−3).
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Accounting for pore closure through φres instead of the open porosity, as classically done for firn property predictive formulas,245

it is not necessary to introduce an additional relationship to estimate the open porosity from the total porosity, as the one by

Schwander (1989) (Eq. 3) for example. Classical models developed for porous media, which do not include open porosity, can

then be used for firn by simply replacing the total porosity by the proposed rescaled one.

The CK and SCbi models were modified such as the rescaled porosity φres replaces the porosity term φ in the formulas.

These models refer to CKres and SCbi,res in the following. Results are showed
:::::
shown

:
by dashed lines in Figure 2 and 3.250

This modification significantly improves the modeling of effective diffusion coefficient and permeability, especially in the pore

closure zone. To quantify the model performance, Table 2 presents the coefficient of determination R2, the mean absolute

error MAE, and the root mean squared error RMSE. Permeability is overall well described by the CKres and SCK
bi,res model,

throughout the density range (over 9 decades), with MAE and RMSE comprised between 2 and 8 ×10−10 m2. Looking in

more details
::::
more

::::::
closely, the CKres model performs slightly better, being slightly closer to our data especially for light snow255

below 200 kg m−3 (R2 of 0.9 for the CKres estimates against 0.78 for the SCK
bi,res estimates). For the diffusion coefficient,

even with the proposed adjustment, the SCD
bi,res model overestimates values throughout the density range and especially for

the higher densities (R2= 0.96 for all samples and 0.38 for firn samples).

To provide a satisfactory estimates of diffusion coefficient, we applied a regression of the form ((φ−φoff)/(1−φoff))
a = φares

to our entire dataset of snow and firn. Here again, we used the proposed rescaled porosity to account for pore closure, and not260

the open porosity as many previous regressions (see Sec. 3.5). We obtained the following regression:

D/Dair = ((φ−φoff)/(1−φoff))
1.61 = (φres)

1.61 (2)

This regression, shown in red lines in Figure 2 and 3, provides estimates with a MAE of 0.014 in the entire density and of

0.0027 in firn (R2 = 0.99 for all samples and for firn samples).

3.5 Comparison to regressions from previous firn studies265

Figure 5 allows comparing
:::::::
compares

:
the computed data at Dome C and Lock In with regressions from the studies of Fabre et al.

(2000), Freitag et al. (2002), Adolph and Albert (2014), and Fourteau et al. (2019), as described in Table 1. These regressions

were derived from measurements or pore-scale simulations on firn samples from Antarctica and Greenland, as well as on a few

Alpine specimens. They are all based on the open porosity, which we estimated here with the commonly-used regression of

Schwander (1989):270

φop = φ(1− exp[75(ρ/ρoff − 1)]) (3)

taking ρoff = 845 kg m−3. The open porosity fraction derived from the open porosity φop from regression of Schwander 1989

(φop/φ× 100) and from the closed-to-total-porosity ratio (100 - CP) are compared in Figure 5, together with the connectivity

index CI. In the following comparisons, the performance of the evaluated regressions depends also on the quality of the

Schwander regression (Schwander, 1989), as it was used to estimate the required open porosity. Note that, when taking the275

open porosity values provided by the computed CP ratio, the regression performances are worse than when taking the regression
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of Schwander 1989, as the CP ratio seems to overestimate the fraction of open pore space (Burr et al., 2018), which leads to

poorer performances.

Permeability
::::::
Overall,

:::::::::::
permeability

:
predicted by the regressions of Freitag 2002 and Adolph 2014 match overall well our

data
:::
our

::::
data

::::
well. Errors from those regressions are comparable to the ones obtained with the tuned CKres and SCK

bi,res280

models (Tab. 2). The regression of Freitag 2002 performs the best, with MAE and RSME values being about half of the ones

shown by the models and the other regressions for firn. Concerning effective coefficient of diffusion, regressions of form φnop

reproduce more closely the evolution
::::::::::
relationships

:
with density compared to regressions of form aφop+b, as the one proposed

by Schwander 1988 and Fabre 2000. These latter regressions overestimate largely the data within 550 and 750 kg m−3 (MAE

and RSME between 12 and 17 ×10−2); above, they fail to reproduce the diffusion coefficient drop at the correct density. Here285

again, the formula of Freitag 2002 performs best with MAE and RMSE of 0.7×10−2 and 1.3×10−2, respectively, performing

closely to our proposed regression (R2 = 0.91 versus R2 = 0.99) and better than the SCD
bi,res (R2 = 0.91 versus R2 = 0.37),

in the firn density range. The regression of Adolph 2014 and Fourteau 2019 reproduce well the general trend of diffusivity-

density relationship but overestimate and underestimate the data overall, respectively. A very good match is however found

with the regression of Fourteau 2019 in the 800 - 850 kg m−3 density range, where the property drop near the close-off is290

well reproduced. The good agreement in this density range is consistent with the fact that the regression of Fourteau 2019 was

derived from data from Lock In, as in this study, for firn of density above 740 kg m−3.

4 Conclusions

In this study, we present the effective coefficient of diffusion and permeability at Dome C and Lock In, Antarctica, from

near-surface to close-off (23 to 133 m depth). Properties were computed on high resolution 3D tomographic images of firn295

samples collected in the field. Microstructural parameters, including density, specific surface area SSA, correlation length,

structural anisotropy, closed-to-total porosity ratio, and connectivity index, were also estimated. The normalized diffusion

coefficient ranges from 1.9×10−1 to 8.3×10−5 and permeability from 1.2×10−9 to 1.1×10−12 m2, decreasing with depth.

Density varies between 565 and 888 kg m−3 and SSA from 2.9 to 0.4 m2 kg−1, from top to bottom of the firn columns.

Between both sites, the evolution
::::::::::
relationships

:
of transport properties with depth follows a similar trend but is shifted in depth.300

Effective coefficient of diffusion and permeability are systematically slightly higher at Lock In than Dome C, for given depths.

They reach zero value below 95 m at Dome C against
:::
yet

:::::
below

:
108 m at Lock In. This can be related to differences in firn

microstructure between both sites (Burr et al., 2018): denser and coarser firn is found at Dome C for given depths, the onset of

pore closure appears earlier at Dome C, and the close-off is reached at 99 m at Dome C and 108 m at Lock In.

The relationship of the transport properties with density was further investigated within the firn density range as well as in305

the entire 100 - 900 kg m−3 range by including simulations on seasonal snow samples. The relationship of permeability with

SSA was also accounted
::::::::
considered

:
by analyzing the dimensionless permeability, i.e. the permeability divided by the equivalent

sphere radius to the square. Over the full density range, transport properties evolve within several orders of magnitude, covering

10−1 to 10−7 m2 for dimensionless permeability and 10−1 to 10−5 for the normalized diffusion coefficient. Little scattered
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evolution
::::::
scatter, without variability linked to sites, is reported over the entire density range, highlighting the strong dependency310

of transport properties with density (and SSA for permeability).

For firn (550 - 917
:::
850 kg m−3), we report very good agreement with the regression of Freitag 2002

::::::::::::::::
Freitag et al. (2002) and,

in a lesser way, with Adolph and Albert (2014) for both diffusion coefficient and permeability, although their dataset
:::::::
datasets

originate from different environments (Greenland versus Antarctica here). In the narrow range of 800 to 850 kg m−3, near the

close-off, the drop of diffusivity with density observed in our data is closely reproduced by the regression from Fourteau 2019315

that is based on data from Lock In.

Looking at the entire range of density (100 - 917 kg m−3), permeability is overall well predicted by the Carman-Kozeny

and the Self-Consistent (spherical bi-composite) models when modified to account for the pore closure. To do so, the total

porosity φ was simply replaced by a rescaled porosity φres defined as φres = (φ−φoff)/(1−φoff), with φoff the close-off

porosity. We specifically choose to account for pore closure through such a rescaled porosity instead of the commonly-used320

open porosity. The advantages are that (1) there is no need of an additional predictive formula, as required to estimate the open

porosity, which limits uncertainties, and (2) any models developed for porous media which do not include open porosity can

be used by doing this simple replacement. For the diffusion coefficient, none of the evaluated models or regressions provide

satisfactory estimates over the entire density range. We thus propose a new regression based on the rescaled porosity that reads

D/Dair = (φres)
1.61.325

Finally, as polar snow in the range 100 - 550 kg m−3 can differ significantly from seasonal snow in the same density range, it

would be interesting to analyze polar snow and firn between 0 and 25 m depth, thus complementing the present dataset. Further

studies should also be undertaken to derive transport properties at other sites and evaluate the proposed regression and models

in different environments.
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Figure 2. Dimensionless permeability and normalized diffusion coefficient of snow and firn versus density: computations on the 3D images

("T" symbols) and analytical models
:::::
(lines). The proposed regression Eq. 2 is also shown. The sub-caption shows the evolution of the rescaled

porosity φres (Eq. 1) compared to the total porosity φ with density. Snow types correspond to the ICSSG (Fierz et al., 2009): precipitation

particles (PP), decomposed and fragmented particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar (DH), and melt forms

(MF). The vertical blue lines at 845 kg m−3 indicate the close-off density.
:::
The

:::::::::
sub-caption

:::::
shows

:::
the

:::::::::
relationships

::
of

:::
the

::::::
rescaled

:::::::
porosity

:::
φres::::

(Eq.
:
1)
::::::::

compared
::
to

:::
the

:::
total

:::::::
porosity

:
φ
::::
with

::::::
density.
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Figure 3. Dimensionless permeability and normalized diffusion coefficient of firn versus density: computations on the 3D images ("T"

symbols) and analytical models (lines). The proposed regression Eq. 2 is also shown. The vertical blue lines at 845 kg m−3 indicate the

close-off density.
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Figure 4. Relationships of the anisotropy ratio of the permeability tensor A(K) (top) and of the diffusion coefficient tensor A(D) (bottom)

with density and structural anisotropy A(lc). The arrows indicate a value of A(D) of 8.2 at a density 832 kg m−3 for a firn sample from

Lock In.
::::

Dotted
::::
lines

::::::
indicate

:::
1:1

::::
lines.
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Figure 5. Top and middle: permeability and normalized diffusion coefficient of firn versus density: computations ("T" symbols) and regres-

sions from literature (lines). Bottom: evolution with density of the open porosity fraction based on the closed-to-total porosity fraction CP

and based on the open porosity from Schwander 1989, as well as of the connectivity index CI. The vertical blue lines at 845 kg m−3 indicate

the close-off density.
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