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Abstract. Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes 

snow cover an important variable in climate models. Monitoring snow water equivalent (SWE) at continental scale is only 

possible from satellites, yet substantial uncertainties have been reported in NH SWE estimates. A recent bias-correction method 

significantly reduces the uncertainty of NH SWE estimation, which enables a more reliable analysis of the climate models’ 

ability to describe the snow cover. We have intercompared the CMIP6 (Coupled Model Intercomparison Project Phase 6) and 10 

satellite-based NH SWE estimates north of 40° N for the period 1982-2014, and analyzed with a regression approach whether 

temperature (T) and precipitation (P) could explain the differences in SWE. We analyzed separately SWE in winter and SWE 

change rate in spring. The SnowCCI SWE data are based on satellite passive microwave radiometer data and in situ data. The 

analysis shows that CMIP6 models tend to overestimate SWE, however, large variability exists between models. In winter, P 

is the dominant factor causing SWE discrepancies especially in the northern and coastal regions. This is in line with the 15 

expectation that even too cold temperatures cannot cause too high SWE without precipitation. T contributes to SWE biases 

mainly in regions, where T is close to 0℃ in winter. In spring, the importance of T in explaining the snowmelt rate 

discrepancies increases. This is to be expected, because the increase in T is the main factor that causes snow to melt as spring 

progresses. Furthermore, it is obvious from the results that biases in T or P can not explain all model biases either in SWE in 

winter or in the snowmelt rate in spring. Other factors, such as deficiencies in model parameterizations  and possibly biases in 20 

the observational datasets, also contribute to SWE discrepancies. In particular, linear regression suggests that when the biases 

in T and P are eliminated, the models generally overestimate the snowmelt rate in spring. 

1 Introduction 

Seasonal snow cover of the Northern Hemisphere (NH) is an important factor of the global climate system. The seasonal snow 

cover greatly influences surface albedo and, thus, the Earth’s energy balance (Callaghan et al., 2011; Flanner et al., 2011; Qu 25 

and Hall, 2005; Trenberth and Fasullo, 2009). This makes snow cover an important variable in climate models (Derksen and 

Brown, 2012; Loth et al., 1993). Additionally, snow cover significantly affects the hydrological cycle at high latitudes and in 

mountainous regions (Barnett et al., 2005; Bormann et al., 2018; Callaghan et al., 2011; Douville et al., 2002). In winter, snow 

cover stores large amounts of fresh water, which limits water availability. In spring and summer, warming temperatures melt 
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the snowpack, releasing water as runoff. In some areas, snow is the largest freshwater storage, and about one sixth of the 30 

world’s population is dependent on meltwater from snow (Barnett et al., 2005; Hall et al., 2008).  

 

Melting snow is also a major source for hydropower (Callaghan et al., 2011; Magnusson et al., 2020). Due to the global 

warming, the melting season begins earlier, with the timing of streamflow peaks also becoming earlier (Kundzewicz et al., 

2008). In addition, changes in snow cover affect the intensity of spring streamflow, as an increasing proportion of winter 35 

precipitation is rain instead of snow (Callaghan et al., 2011; Cohen et al., 2015; Dong et al., 2020; Kundzewicz et al., 2008). 

Thus, changes in snow cover affecting the hydrological cycle can cause regional water shortages and affect hydropower 

production. 

 

SWE (snow water equivalent) is the amount of water contained in the snowpack (in units of kg m-2), or equivalently, the height 40 

of the water layer (in units of mm) that would result from melting the whole snowpack instantaneously (Fierz et al., 2009). 

Recent studies show negative trends in global SWE (Bormann et al., 2018; Derksen and Brown, 2012; Essery et al., 2020; 

Hernández‐Henríquez et al., 2015; Mortimer et al., 2020; Mudryk et al., 2017), but significant spatial variability exists: North 

America shows clear negative trends in observed SWE, while negative trends are less pronounced in Eurasia (Kunkel et al., 

2016; Pulliainen et al., 2020). At mid-latitudes, SWE is more sensitive to warming than at high latitudes (Brown and Mote, 45 

2009). Although the overall SWE trends are negative, there are also regions where SWE is observed and projected to increase: 

SWE will most likely increase in northern Siberia and northern Canada (Brown and Mote, 2009; Park et al., 2012; Räisänen, 

2008). Trends in seasonal snow also vary seasonally: the seasonal snow in spring is especially sensitive to warming and the 

observed snow cover trends are clearly negative in both Eurasia and North America (Derksen and Brown, 2012; Essery et al., 

2020; Hernández‐Henríquez et al., 2015). In winter, the observed trends are less pronounced: early winter shows even slightly 50 

positive trends in both Eurasia and North America, while the mid-winter shows no significant trends (Hernández‐Henríquez 

et al., 2015). 

 

Monitoring SWE at continental scale is only possible from satellites, yet substantial uncertainties have been reported in 

satellite-based NH SWE estimates (Bormann et al., 2018; Mudryk et al., 2015). However, our knowledge of the NH SWE has 55 

recently improved considerably, with new bias corrections which reduce the uncertainty of the SWE estimate integrated over 

NH from 33% to 7.4% (Pulliainen et al., 2020). With more accurate and reliable satellite-based SWE estimates, a comparison 

with the modeled SWE will also provide a more reliable analysis of the models’ ability to describe the distribution of seasonal 

snow. 

 60 

Due to the reasons described above, it is crucial that seasonal snow is accurately described in climate models, to properly 

predict the cryospheric state in future climate. However, previous studies have shown that climate models have had difficulties 

in correctly reproducing the seasonal snow and its recent trends (Brutel-Vuilmet et al., 2013; Derksen and Brown, 2012; 
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Henderson et al., 2018; Santolaria‑Otín and Zolina, 2020; Thackeray et al., 2016). Therefore, it is important to study how the 

new CMIP6 (Coupled Model Intercomparison Project Phase 6) climate models can describe the seasonal snow, and where the 65 

uncertainties and discrepancies arise.  

 

The current paper focuses on the climatological distribution of SWE in CMIP6 models. To our knowledge, only one previous 

study has compared SWE in CMIP6 models with satellite-based data: Mudryk et al. (2020) compared SWE estimates between 

CMIP6 models and several observational datasets. They found that the models tend to overestimate SWE. The difference 70 

increases in spring and is smallest in autumn and early winter. Additionally, they studied the connection between SWE and 

temperature, but did not consider temperature and precipitation together. However, they stated that a coordinated analysis of 

temperature and precipitation is needed to determine SWE trend drivers. Therefore, in the present study, we consider, for the 

first time, the role of both temperature and precipitation for SWE differences between CMIP6 climate models and a satellite-

based dataset. Specifically, the main goals of this study are (1) to intercompare the CMIP6 and satellite-based SWE estimates 75 

and (2) to analyze whether temperature and precipitation could explain the differences in SWE. 

2 Data and Methods 

The data of this study consist of CMIP6 climate model data (Table 1) and observational and reanalysis data (Table 2). For 

CMIP6, we used monthly mean data from those models that had horizontal resolution equal to or higher than 100 km and for 

which either historical or esm-hist simulations were available for download in April 2020. A total of ten models fulfilled these 80 

criteria. The historical and esm-hist simulations extend from 1850 to 2014. In historical simulations, the CO2 concentrations 

are prescribed, whereas in esm-hist simulations, the models calculate the atmospheric CO2 concentration interactively based 

on prescribed CO2 fluxes (Eyring et al., 2016). We only used relatively high-resolution models (50 or 100 km), as coarser 

resolutions would differ too much from the resolution of the observational datasets, making the comparison more problematic. 

In this study, we used three variables from CMIP6 models: SWE (variable “snw”, unit kg m-2), surface air temperature (“tas”, 85 

unit Kelvin), and precipitation (“pr”, unit kg m-2 s-1). The number of ensemble members available for the chosen models varies 

between 1 and 16. For simplicity, we only consider the first member of each model ensemble (r1i1p1f1) in this study. A brief 

analysis showed that the differences between different ensemble members for the same model were generally smaller compared 

to inter-model differences. 

 90 

ESA CCI-Snow "SnowCCI" (European Space Agency Climate Change Initiative, Snow) data are based on satellite passive 

microwave radiometer data and in situ data (Luojus et al., 2021; Pulliainen et al., 2020). The SnowCCI algorithm combines 

microwave brightness temperature (Tb) data, observed by satellite instruments, with ground-based snow depth measurements 

from the global network of synoptic weather stations (Luojus et al., 2021). The SWE estimation algorithm is based on the 

difference in Tb between two frequencies (37 and 19 GHz). The ground beneath the snowpack emits microwaves, which 95 
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propagate through the snowpack, being partially absorbed during the process. The low-frequency and high-frequency signals 

attenuate differently as they propagate through the snowpack, which makes the difference in Tb a good indicator for estimating 

SWE (Cagnati et al., 2004). The attenuation is affected by snow depth, snow grain size, and snow density. The high-frequency 

signal attenuates more as it propagates through a deep, dense, large-grained snowpack compared to the low-frequency signal. 

Thus, a large difference between high and low frequency signals indicates a high SWE (Kelly et al., 2003). The original 100 

SnowCCI algorithm combines Tb differences with in situ snow depth observations, which considerably improves SWE 

estimation relative to a satellite-only retrieval (Pulliainen, 2006; Takala et al., 2011). 

 

Table 1: CMIP6 models used in this study. 

Institution Model Experiment ID Reference 

Beijing Climate Center (BCC) BCC-CSM2-MR 
historical Wu et al. (2018a) 

esm-hist Wu et al. (2018b) 

National Center for Atmospheric 

Research (NCAR) 

CESM2 historical Danabasoglu (2019a) 

CESM2-WACCM historical Danabasoglu (2019b) 

EC-Earth-Consortium 
EC-Earth3 historical EC-Earth (2019a) 

EC-Earth3-Veg historical EC-Earth (2019b) 

Geophysical Fluid Dynamics 

Laboratory (NOAA-GFDL) 

GFDL-CM4 historical Guo et al. (2018) 

GFDL-ESM4 
historical Krasting et al. (2018a) 

esm-hist Krasting et al. (2018b) 

Max Planck Institute for 

Meteorology (MPI-M) 
MPI-ESM1-2-HR historical Jungclaus et al. (2019) 

Meteorological Research Institute 

(MRI) 
MRI-ESM2-0 historical Yukimoto et al. (2019) 

Seoul National University (SNU) SAM0-UNICON historical Park & Shin (2019) 

 105 

A recent bias-correction method combines the original SnowCCI data with extensive ground-based snow course SWE 

measurements, which significantly reduces the uncertainty of NH SWE estimation (Pulliainen et al., 2020). The method 

decreases the uncertainty of hemisphere-mean SWE estimation from 33% to 7.4%. The bias-corrected SnowCCI data are 

mapped to a 25 km EASE‐Grid and are available from year 1979. The data cover non-mountainous regions, and glaciers and 

ice sheets are excluded. The original SnowCCI data are available around the year, while bias-corrected SnowCCI data are only 110 

available from February to May. Despite limitations in its temporal coverage, we have used the bias-corrected data in this 

study. We chose to do this because the bias-correction method significantly reduced the uncertainty making the data more 

accurate, which, in turn, makes the comparison with the models also more accurate and reliable.  
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Additionally, we used GPCC (Global Precipitation Climatology Centre) Version 2018 precipitation (P) data (Schneider et al., 115 

2018) and MERRA-2 (The Modern-Era Retrospective analysis for Research and Applications, Version 2) temperature (T) data 

(Gelaro et al., 2017; GMAO, 2015). GPCC is a monthly precipitation product based on data from rain gauge stations, and the 

data are available on a 0.5-degree global grid from 1891 to the present (Schneider et al., 2018). The product agrees well with 

other precipitation products (Behrangi et al., 2016). The unit of CMIP6 precipitation data is kg m-2 s-1, whereas the unit of 

GPCC data is mm month-1, so we converted the CMIP6 data to monthly values (kg m-2 month-1) to make the units of the 120 

datasets equivalent to each other. 

 

MERRA-2 is a NASA (National Aeronautics and Space Administration) atmospheric reanalysis, and it is available from year 

1980. The spatial resolution of the data is 0.625°×0.5° (Gelaro et al., 2017). In this study, we have used the monthly mean 2 m 

air temperature product, which agrees well with observations in the arctic and the mean values show very small biases. 125 

MERRA-2 daily temperature tends to have a cool daytime bias and warm nighttime bias (Bosilovich et al., 2015; Draper et 

al., 2018). However, this is not a major issue for our study because we use the monthly mean product. In addition, MERRA-2 

seems to underestimate global warming trends in the last years of our study period (Gelaro et al., 2017; Simmons et al., 2017). 

 

Table 2: Observational and reanalysis datasets used in this study. 130 

Dataset Variable, unit Resolution Reference 

SnowCCI Snow water equivalent (SWE), mm 25 km × 25 km, monthly Luojus et al. (2021) 

GPCC Precipitation (P), mm month-1 0.5° × 0.5°, monthly Schneider et al. (2018) 

MERRA-2 2 m air temperature (T), Kelvin 0.5° × 0.625°, monthly 
Gelaro et al. (2017) 

GMAO (2015) 

 

 

We used the nearest neighbor method to resample CMIP6, MERRA-2 and GPCC data to the 25‐km equal‐area projection. The 

SnowCCI data are only available for non-alpine regions, so we filtered out the corresponding grid cells from other datasets as 

well. The difference between each model and observation was calculated by subtracting the observation value from the model 135 

value, i.e. model minus observation. We compared the differences grid cell by grid cell. Our study covered land areas north of 

40° N and years between 1982 and 2014. In this study, we mainly concentrated on snow-covered areas, i.e. grid cells where 

SWE > 10 kg m-2. We have also filtered out grid cells with modeled SWE above 1000 kg m-2, as those values greatly exceed 

observed SWE (Stuefer et al., 2013). 

 140 
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We focus the analysis on two seasons: winter and spring. For the winter season, we consider only the SWE in February, since 

bias-corrected SnowCCI data are only available from February to May. We studied through linear regression analysis, how 

the difference in SWE in February between the models and the observations depends on the difference in precipitation (P) and 

temperature (T), averaged over the three preceding months from November to January: 

 145 

∆SWE = β
T
∆Tcum + β

P
∆Pcum + C                                                                                 (1) 

 

where Pcum and Tcum are the precipitation and temperature summed over November-January, βP and βT are the regression 

coefficients and C is the constant. Here, as well as in Eq. (2) below, Δ refers to the difference between the modeled value 

(defined for each year separately) and the observed climatological value (averaged over the whole period considered). We 150 

used the climatological average for the observations because climate models cannot be expected to correctly simulate the 

weather conditions of individual years. Thus, the regression coefficients βP and βT depend only on the modeled interannual 

variations. The equations are presented in more detail in Appendix A. 

 

For the spring season, we considered the monthly changes in SWE from February to March, from March to April, and from 155 

April to May. We defined the SWE change rate (SWEchange) as the difference in SWE between each month and the previous 

month. Positive values indicate an increase in SWE from one month to the next, and negative values a decrease. The model-

minus-observation difference in SWEchange was then regressed against the monthly difference in precipitation and temperature: 

 

∆SWEchange = β
T
∆T + β

P
∆P + C          (2) 160 

 

For example, when considering SWEchange from February to March, we used P and T for March. We pooled together the values 

of ΔSWEchange, ΔP and ΔT for the whole spring period (February through May) to determine the regression parameters βP and 

βT and C. The equations are presented in more detail in Appendix A. 

 165 

We included only snow-covered grid cells (SWE > 10 kg m-2) in the analysis and calculated the linear regressions only for 

grid cells with at least four values available during the study period. We calculated the linear regressions for the whole study 

period 1982-2014, and separately for three shorter periods: 1982-1991, 1992-2001 and 2002-2014. 

 

By substituting into Eqs. (1) and (2) the mean differences between the models and observations, it is possible to split the model 170 

biases in SWE into three components: the contribution of P (PC), the contribution of T (TC), and the contribution of other 

factors. For SWE in winter, PC and TC are: 
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PC = β
P
 ∆Pcum,mean           (3) 

TC = β
T
 ∆Tcum,mean           (4) 175 

 

Correspondingly, for SWEchange in spring, PC and TC are: 

 

PC = β
P
 ∆Pmean            (5) 

TC = β
T
 ∆Tmean            (6) 180 

 

The third component in both winter and spring is the residual term, which is the constant from the regression equation (1) or 

(2). This is the contribution of other factors, including for example, inaccuracies in observational datasets and model 

parameterizations related to, for example, snow and surface energy budget. The residual (R) gives an estimate for the SWE 

bias that would remain if P and T were simulated correctly in the model. 185 

3 Results 

Figure 1 shows as an example the mean SWE of all CMIP6 models and SnowCCI, and ∆SWE (CMIP6-SnowCCI) in April 

during 1982-2014. The corresponding figures for precipitation and temperature are in the supplementary material (Fig. S1). 

The SWE distribution has a large spatial variability: the highest values exceed 240 kg m-2 in both multi-model mean and 

SnowCCI, and these values are found in northeastern Canada, around the Rocky Mountains, in Scandinavia, and in some parts 190 

of Siberia. Although the SWE distribution is similar for the multi-model mean and SnowCCI, the models overestimate SWE 

in several regions, which are mostly located in the northern parts of the study area: in northeastern Canada, northeastern Siberia, 

and Eurasia around 90° E. In the southern parts of the study area, the multi-model mean mainly underestimates SWE. 

 

Figure 2 shows the monthly SWE sum of the whole study area separately for each model (grey lines), for multi-model ensemble 195 

mean (red markers) and for SnowCCI (blue markers). The blue shaded area illustrates the 7.4% uncertainty range of SnowCCI 

SWE estimate. There is a large variability between the models. In February, March, and April, the modeled SWE vary by a 

factor of two, and in May, even by a factor of three. The variability between models is notably larger than the uncertainty range 

of SnowCCI SWE estimate. Models reach highest SWE in March, which is consistent with observations. Overall, most models 

overestimate the monthly SWE sum, and the CMIP6 multi-model ensemble mean is higher in every month except for a few 200 

years in May. While a few models underestimate the SWE sum especially in May, the majority of models overestimate the 

SWE sum in every month. 
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Figure 1: Mean SWE in April for the CMIP6 multi-model ensemble mean (left), SnowCCI (middle) and the difference CMIP6-205 
SnowCCI (right) for the period 1982-2014. 

 

Figure 2: Monthly SWE sum over the entire study area in February, March, April, and May separately for each CMIP6 model (grey 

lines), for the CMIP6 multi-model ensemble mean (red markers) and for SnowCCI (blue markers). The blue shaded area indicates 

the 7.4% uncertainty range of the SnowCCI data. 210 
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Figure 3: Mean difference in SWE (ΔSWE, model minus observation) in snow-covered areas between each CMIP6 model and 

SnowCCI in February 1982-2014. 

3.1 SWE in winter 

Figure 3 shows the mean difference in SWE in snow-covered areas between each model and SnowCCI in February for the 215 

entire study period 1982-2014. Large variability exists between the models. The areal-mean difference between the models 

and SnowCCI varies from about -7 kg m-2 to over 40 kg m-2. However, the largest negative and positive differences are well 

concentrated in the same areas in all models. Overall, the models tend to overestimate the SWE in the northern parts of the 

study area, but also in southern Siberia. The negative differences, in turn, occur mostly in the south and especially on the 
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coastal areas of North America. In some models, there are negative differences also in the middle parts of Eurasia. The CESM2 220 

and CESM2-WACCM models show the largest overestimations. For both models, the difference is very high in large regions 

in northern parts of North America and Eurasia. The BCC-CSM2-MR and SAM0-UNICON models also show large positive 

differences, which are concentrated in the same areas, although, the differences are clearly smaller than for the CESM2 and 

CESM2-WACCM models. In other models, the areal-mean differences are closer to 0 kg m-2, however, regional differences 

exist. Overall, the GFDL models are the most consistent with the SnowCCI data. 225 

 

Figure 4: Mean difference in Pcum (ΔPcum, model minus observation) in snow-covered areas between each CMIP6 model and GPCC 

in winter 1982-2014. The dots indicate areas where the models either overestimate both SWE and P or underestimate both SWE 

and P. 
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Figure 4 shows the mean difference in monthly Pcum in snow-covered areas between each model and GPCC in winter for the 

entire study period 1982-2014. The dots indicate areas where models either overestimate both SWE and Pcum or underestimate 

both SWE and Pcum, i.e. the areas where differences in Pcum could logically explain the discrepancies in SWE. Overall, all 

models overestimate precipitation in winter. The largest overestimations are mainly in southern regions and in coastal areas. 230 

There are small areas where underestimation occurs, especially in Eurasia around 90° E. In every model, there are large dotted 

regions where models overestimate or underestimate both SWE and Pcum. These regions are mostly in the northern parts of the 

study area, whereas in the south, there are more areas where SWE and Pcum discrepancies are more often not consistent with 

each other. 

Figure 5: Mean difference in T (ΔT, model minus observation) in snow-covered areas between each CMIP6 model and MERRA-2 235 
in winter 1982-2014. We show ΔT (ΔTcum divided by 3) instead of ΔTcum so that the values are more intuitive and easier to interpret.  

The dots indicate areas where models simulate either too high SWE and too low T or too low SWE and too high T. 
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Figure 5 shows the mean difference in monthly mean T in snow-covered areas between each model and MERRA-2 in winter 

for the entire study period 1982-2014. We show ΔT (ΔTcum divided by 3) instead of ΔTcum so that the values are more intuitive 240 

and easier to interpret. The differences are mostly positive; however, regional and inter-model variability exists. The CESM2 

and CESM2-WACCM models generally simulate too warm temperatures and the largest positive differences are in the northern 

parts of the study area. The GFDL, MPI-ESM1-2-HR and MRI-ESM2-0 models simulate too warm temperatures in the north, 

while the SAM0-UNICON model, in turn, simulates too cold temperatures in the north. The BCC-CSM2-MR, EC-Earth3 and 

EC-Earth3-Veg models are the most consistent with the MERRA-2 data. In every model, there are large dotted areas where 245 

the signs of biases for T and SWE are opposite, indicating that biases in T might explain biases in SWE. However, in these 

areas, the differences are mainly quite small.  

 

The contributions to differences in SWE (ΔSWE) due to precipitation biases (PC), temperature biases (TC) and other factors 

(residual R) are quantified using the regression equations (1), (3) and (4). To summarize their relative importance, Figure 6 250 

shows the areal-means of the absolute values of ΔSWE, PC, TC, and R. The CESM2 and CESM2-WACCM models show 

largest ΔSWE, whereas in other models, ΔSWE is clearly smaller. In all models, the contribution of P on ΔSWE is clearly 

larger than the contribution of T. However, the residual is also typically large, indicating that P and T cannot explain the SWE 

biases alone. This implies that observational uncertainty or model structural factors play a considerable part in the observed 

SWE differences. The variability in these parameters between the decadal subperiods and the full three-decade analysis period 255 

was slight, indicating consistent behavior across time in both models and observations. 

 

Figure 7 shows the spatial distribution of the contributions of P and T and the residual for each model for the entire study 

period 1982-2014. The regression parameters R2, βP and βT are shown in the supplementary material (Figure S2). Also, the 

contributions of P and T and the residual calculated for the shorter time periods are in the supplementary material (Figures S3-260 

S5). Fig. 7 shows that overall, the contribution of P is larger than the contribution of T, as Fig. 6 already indicated. P contributes 

to ΔSWE especially over northern and coastal regions, with fairly similar patterns for all models considered. The regression 

coefficient βP also shows large values (βP ≈ 1) especially in the northern and middle parts of both continents (Fig. S2), with 

relatively small inter-model variations. This is consistent with the expectation that in cold regions, an increase of precipitation 

translates into a similar increase in SWE. 265 

 

The contribution of T is mostly very weak (Fig. 7); however, for some models, T shows stronger contribution especially over 

western parts of Eurasia and over northeastern Canada. The regression coefficient βT is mostly negative or very close to zero 

(Fig. S2). The negative correlation is strongest in Europe and southern parts of North America and Eurasia. In these regions, 

the temperature is close to 0 ℃ in winter, which makes temperature an important driver of the SWE. Northern Canada and 270 

Siberia, in turn, show areas with positive correlation, meaning that warmer temperatures cause higher SWE. Studies have 
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shown that when the temperature rises due to climate change, the winter precipitation will also increase (Brown and Mote, 

2009; Park et al., 2012; Räisänen, 2008). In the south, warming temperatures will shift winter precipitation from snow to rain. 

In the north, in turn, temperature will stay below 0 ℃ despite the warming, which will lead to an increase in snowfall in coldest 

regions of NH, and therefore, to an increase in SWE. This phenomenon is most likely seen here as well; warmer temperatures 275 

in the models will increase winter precipitation, resulting in too high SWE in the models. It should be noted that since Eq. (1) 

treats ΔTcum and ΔPcum as independent variables, a positive correlation between the variables means that their contributions to 

ΔSWE cannot be fully separated. 

 

The residual shows large spatial and inter-model variability (Fig. 7). Especially for the CESM2 and CESM2-WACCM models, 280 

the residual shows very large positive values. These large positive residuals are mainly concentrated in the same areas where 

the models clearly overestimate SWE (Fig. 3). This indicates that, for these models, the large SWE differences in these areas 

are mainly caused by some other factors than P or T. For other models, the residual shows both positive and negative values 

across the study area.  

 285 

 

Figure 6: The areal-means of the absolute values of ΔSWE, PC, TC, and residual R calculated for the entire study period 1982-2014 

(left column, shaded with grey) and for three shorter time periods (1982-1991, 1992-2001, and 2002-2014) for each model in winter. 

The size of the square indicates the absolute value of ΔSWE of that time period and model, and the color of the square indicates the 

absolute value of PC, TC, and R. 290 
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Figure 7: Spatial distribution of the P contribution, the T contribution, and the residual for each model in winter 1982-2014. 
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Figure 8: Mean difference in the monthly SWE change (ΔSWEchange, model minus observation) in spring between each CMIP6 model 

and SnowCCI for the period 1982-2014. 295 

3.2 Monthly SWE change in spring 

Figure 8 shows the mean difference in monthly SWE change (ΔSWEchange) in spring between each model and SnowCCI for 

the whole study period 1982-2014. Positive ΔSWEchange means that snow melts more slowly in the models compared to 

SnowCCI, and negative ΔSWEchange indicates that snow melts faster in models, respectively. The areal-mean ΔSWEchange is 

mainly negative in every model, which means that snow melts generally faster in the models compared to SnowCCI. However, 300 

there is a large spatial variability in every model and inter-model variability is also large. In the CESM2 and CESM2-WACCM 
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models, three areas show distinctly positive ΔSWEchange: northeastern Canada, northern Siberia, and eastern Siberia. In all these 

areas, the SWE difference in February (Fig. 3) was already clearly positive, meaning that these models greatly overestimate 

SWE in these areas also in spring. The EC-Earth3 and EC-Earth3-Veg models show clear positive ΔSWEchange in northeastern 

Canada but also in Eurasia. The area with positive differences in Eurasia is very extensive and differs notably from the other 305 

models. The SAM0-UNICON model also shows positive values in northern Siberia. The GFDL and MPI-ESM1-2-HR models, 

in turn, show large areas with negative ΔSWEchange in northern Canada and in eastern parts of Siberia, which differs from the 

other models. Overall, the model-minus-observation differences in SWE change rate in spring (Fig. 8) show larger inter-model 

variations than the corresponding differences in SWE in February (Fig. 3). 

 310 

Figure 9: Mean difference in P (ΔP, model minus observation) in snow-covered areas between each model and GPCC in spring 

1982-2014. The dots indicate areas where models either overestimate both SWEchange and P or underestimate both SWEchange and P. 
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Figure 9 shows the mean difference in P over snow-covered areas between each model and GPCC in spring for the entire study 

period 1982-2014. As in winter (Fig. 4), models on average overestimate precipitation in spring as well. The largest 315 

overestimations occur mainly in southern regions and in coastal areas.  The regions with mutually biases in P and SWEchange 

show large inter-model variability, and they are less extensive than in winter (Fig. 4). This indicates that precipitation is not as 

important factor in spring than it is in winter.  

 

Figure 10: Mean difference in T (ΔT, model minus observation) in snow-covered areas between each CMIP6 model and MERRA-2 320 
in spring 1982-2014. The dots indicate areas where models simulate either too positive SWEchange and too low T or too negative 

SWEchange and too high T. 
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Figure 10 shows the mean difference in T in snow-covered areas between each model and MERRA-2 in spring for the entire 

study period 1982-2014. There is a large spatial variability within each model but also the variability between models is very 325 

clear. The BCC-CSM2-MR, GFDL-ESM4, MPI-ESM1-2-HR and MRI-ESM2-0 models show a warm bias in the northern 

parts of the study area, whereas SAM0-UNICON shows a cold bias in the same area. The EC-Earth3 and EC-Earth3-Veg 

models, in turn, have a cold bias in eastern Eurasia near 60° N, which clearly differs from the other models. The sizes and 

locations of the dotted areas (i.e., areas with mutually consistent biases in T and SWEchange) vary greatly between models. 

Especially in the GFDL-CM4 model, the size of these areas is small, while in most of the models, the dots cover majority of 330 

the study area. Furthermore, in those regions where the biases in T and SWEchange are consistent in spring, the cold or warm 

temperature biases are typically relatively large, when compared with the corresponding biases in winter  (Fig. 5). This 

indicates that biases in T are more important driver of biases in SWE in spring than in winter. 

 

Figure 11 summarizes the areal-means of the absolute values of ΔSWEchange, the contribution of P (PC), the contribution of T 335 

(TC), and the contribution of other factors (the residual R). In all models, the residual is larger than PC or TC. This suggests that 

overall, the biases in snow melt rate in spring are dominated by other factors than T or P. The contributions of P and T are 

quite similar in magnitude but varies between models. The EC-Earth3 model stands out from the other models, as TC is larger 

than in the other models. None of the variables shows a large dependence on the period considered. 

 340 

Figure 12 shows the spatial distribution of the contributions of P and T and the residual for each model for the entire study 

period 1982-2014. The regression parameters R2, βP and βT are displayed in the supplementary material (Figure S6). Also, the 

contributions of P and T and residual calculated for the shorter time periods are in the supplementary material (Figures S7-

S9). P contributes to ΔSWEchange mostly in Alaska and northern Siberia, but the effect varies between models. Furthermore, 

even though T showed clear warm and cold biases in many areas (Fig. 10), the contribution of T is mostly quite weak, because 345 

of the small regression coefficient βT (Fig. S6). However, exceptions exist; especially, the EC-Earth3 and EC-Earth3-Veg 

models stand out, as in Eurasia, there is a large area where a negative bias in T (Fig. 10) contributes substantially to a positive 

bias in SWEchange (Fig. 8). Also, for the CESM2 and GFDL-ESM4 models, T shows a stronger contribution over northern parts 

of North America. Overall, however, the contributions of both P and T are small compared to the residual R, which is consistent 

with Fig. 11. This indicates that other factors than T or P are the dominant drivers for the SWEchange discrepancies. The residual 350 

is mostly negative in all the models, which means that snow would melt too fast in the models, if T and P were simulated 

correctly. This issue is discussed further in Sect. 4. 
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Figure 11: The areal-means of absolute values of ΔSWEchange, PC, TC, and residual R calculated for the entire study period 1982-

2014 (left column, shaded with grey) and for three shorter time periods (1982-1991, 1992-2001, and 2002-2014) for each model in 355 
spring. The size of the square indicates the mean absolute value of ΔSWEchange of that time period and model, and the color of the 

square indicates the mean absolute value of PC, TC, and R. 

4 Discussion 

We have evaluated NH SWE in CMIP6 models with satellite-based SnowCCI data for the period 1982-2014. While SWE in 

CMIP6 models has been previously studied by Mudryk et al. (2020), this is to our knowledge the first study to analyze CMIP6 360 

SWE together with temperature and precipitation. In addition, the recent bias-correction method has significantly narrowed 

down the confidence limits of the NH SWE estimate, which makes the comparison more accurate and provides a more reliable 

analysis of the models’ ability to describe the snow cover. The continuous development of climate models is crucial, so that 

the changing climate can be simulated as reliably as possible.  

 365 

The analysis shows that CMIP6 models overestimate SWE with a few exceptions (Fig. 2), which is consistent with the previous 

study (Mudryk et al., 2020). The overestimation of SWE was also observed in CMIP5 models (Santolaria‑Otín and Zolina, 

2020). The NH SWE sum reaches its peak value in March, but the peak values are overestimated by most of the models. As 

the spring advances, the variability between models increases, and some of the models clearly overestimate the SWE in May.  
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 370 

Figure 12: Spatial distribution of the P contribution, the T contribution, and the residual for each model in spring 1982-2014. 
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In some models, in turn, snow melts faster than in the observations and they underestimate SWE in late spring. This is also 

shown in Fig. 3 and 8: in winter, the differences in SWE are mainly positive (Fig. 3), while in spring, there are large differences 

in snow melt rates between the models (Fig. 8). 

 375 

In this study, we have analyzed whether differences in T and P between models and observations could explain the 

corresponding differences in SWE. The analysis focused, on one hand, on the SWE in February and, on the other hand, on the 

SWE change rate (SWEchange) during the spring from February to May. Using linear regression, model biases in SWE (ΔSWE) 

and SWEchange (ΔSWEchange) were divided into three components: the contribution of P, the contribution of T and the 

contribution of other factors.  380 

 

In winter, the models mostly overestimate SWE (Fig. 3), but spatial and inter-model variability exists. The overestimations are 

mostly concentrated in the same areas in all models, but the magnitude varies greatly between the models. The models also 

overestimate precipitation in winter (Fig. 4), suggesting that overestimated SWE is caused by the overestimated P. The 

regression coefficient βP also shows very clear correlation between ΔSWE and ΔPcum (Fig. S2). Therefore, P clearly contributes 385 

to ΔSWE, whereas the contribution of T is substantially smaller (Fig. 7). This result is consistent with the expectation that 

precipitation is needed to initiate the snow cover. In other words, even too cold temperatures cannot cause too high SWE 

without precipitation. The link between ΔTcum and ΔSWE is strongest in the warmest regions of the study area (Fig. 7 and S2). 

Especially in the coldest regions, where T is well below 0 ℃, variations in T do not significantly affect the amount of snow 

on the ground. In regions where T is closer to 0 ℃ in winter, T plays a more significant role and has a greater impact on SWE. 390 

This physically reasonable behavior suggests that climate models might be able to simulate SWE trends in the warming climate 

correctly, even if SWE itself is not reproduced accurately. 

 

In spring, ΔSWEchange and ΔT show quite similar patterns in many models (Fig. 8 and 10), which indicates that biases in T 

affect the biases in SWEchange. This result is to be expected because the increase in T is the main factor that causes snow to 395 

melt in spring. A relationship between temperature and snow cover in spring has also been observed in CMIP5 models (Brutel-

Vuilmet et al., 2013; Mudryk et al., 2017). The CMIP5 models have been found to underestimate the observed trend towards 

a reduced snow cover extent due to an underestimation of the spring warming trend (Brutel-Vuilmet et al., 2013).  

 

Even though ΔSWEchange and ΔT are quite consistent with each other, the contribution of T is not very strong (Fig. 12), because 400 

the regression coefficient βT is small (Fig. S6). Several factors can weaken the regression coefficient βT. The analysis shows 

that in spring, the relationship between ΔT and ΔSWEchange is strongest in western parts of Eurasia and in southern parts of 

North America (Fig. S6). These are regions with the earliest snow melt onset. In these areas, T is the dominant factor causing 

snow to melt throughout the spring season. In the northernmost parts of the study area, the melt season begins later, so that 

early spring still belongs to the snow accumulation season. As a result, P may still be the dominant factor influencing 405 
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ΔSWEchange in early spring, and T will become a more significant factor later in the spring. This can reduce the correlation and 

affect the linear regression parameters in the northern parts of the study area. Additionally, if SWE in winter is simulated 

incorrectly, this can affect the melt rates in spring, as there can be too little or too much snow that can melt. 

 

In both winter and spring, the residual term R of the regressions is also significant (Figs. 6, 7, 11 and 12). This means that the 410 

model biases in SWE in winter and SWEchange in spring cannot be entirely explained by the biases in P and T, but other factors 

also contribute to these biases. These factors may include inaccuracy in the model parameterizations related to snow and 

surface energy budget, but also inaccuracy in the observational datasets. 

 

The residual term R is particularly pronounced in spring, when it is typically larger than either the contribution of P or T. 415 

Interestingly, the residual is mostly negative (Fig. 12). The negative residual means that if P and T were simulated correctly in 

the models, snow would melt too fast in spring. While understanding the origins of this bias would be worth a separate study, 

a previous study with ECHAM5 (Räisänen et al. 2014) is of interest here. ECHAM5 is a predecessor of the atmospheric part 

of MPI-ESM1-2-HR, for which the residual R in Fig. 12 is especially strongly negative. This is consistent with the finding that 

in ECHAM5 snow melted generally too fast in spring, despite a cold bias in T (Räisänen et al. 2014). A major factor for this 420 

was that T was not calculated separately for snow-covered and snow-free parts of the grid cell. Because of that, T was not able 

to rise above 0 ℃ if there was snow left in the grid cell, and, therefore, a too large fraction of the available energy was used in 

melting the snow (Räisänen et al., 2014). The parameterization of the surface albedo is another factor that may influence the 

snowmelt rate in spring. A too low (or high) surface albedo would speed up (or delay) the snowmelt. As a detail, the only 

region in which MPI-ESM1-2-HR displays a positive residual in Fig. 12 is southeastern Siberia. In this very region, ECHAM5 425 

featured delayed snowmelt, related to overly high albedo in the presence of vegetation over snow (Räisänen et al. 2014). While 

the specific mechanisms leading to too fast snow melt might differ in different models, the example of ECHAM5 highlights 

the importance of the treatment of surface energy budget in the presence of snow. 

 

All the observational datasets have uncertainties that can also affect the results. With the bias-correction method, SWE data is 430 

more accurate than before, but the uncertainty in hemisphere-mean values is still 7.4%. There are also uncertainties associated 

with the GPCC and MERRA-2 datasets that can cause errors in the differences between models and observations; for example, 

MERRA-2 underestimates global warming trends in the last years of our study period compared to other reanalyses (Gelaro et 

al., 2017; Simmons et al., 2017). Snow cover in spring is especially sensitive to warming (Hernández‐Henríquez et al., 2015) 

and, therefore, the uncertainties in MERRA-2 can affect the results especially in spring. 435 
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5 Conclusions 

We have intercompared NH SWE estimates between CMIP6 models and satellite-based SnowCCI data, and studied whether 

differences in precipitation (P) or temperature (T) between models and observations could explain the differences in SWE. 

Our study covered land areas north of 40°N and years between 1982 and 2014. We analyzed separately the SWE in winter (in 

February) and the SWE change rate in spring (SWEchange from February to May). Using regression analysis, we divided the 440 

difference in SWE between model and observation (ΔSWE and ΔSWEchange, model minus observation) into three components: 

the contribution of P, the contribution of T and the contribution of other factors, such as deficiencies in model parameterizations 

or inaccuracies in the observational datasets. The main findings in our study are as follows: 

 

• The models generally overestimate SWE, but large variability exists between models. The largest overestimations 445 

occur mainly in the northernmost parts of both Eurasia and North America. In winter, the overestimated SWE is 

mainly concentrated in the same areas in every model, but the magnitude differs between the models. In spring, the 

snow melt rates vary clearly between the models. 

• In winter, the differences in SWE can be explained mostly with differences in P. The contribution of T is clearly 

smaller than that of P. This is in line with the expected results, as even too cold temperatures cannot cause too high 450 

SWE without precipitation. However, other factors contribute to SWE discrepancies as well. 

• In spring, T and P explain partly the differences between modeled and observed SWEchange. Especially cold or warm 

biases often co-occur with large SWEchange differences, but large spatial and inter-model variability exists. The 

importance of T in explaining SWEchange discrepancies during spring is to be expected, because the increase in T is 

the main factor that causes snow to melt as spring progresses. Yet it should be noted that the contribution of other 455 

factors, such as observation uncertainty or deficiencies in model parameterizations, is more significant in spring than 

in winter. 

 

Overall, the study showed that the models still need to be improved to accurately describe SWE. However, the analysis also 

showed that there is a link between T and SWE, especially in the warmer regions of the study area, suggesting that climate 460 

models may be able to simulate SWE trends in a warming climate correctly, even if SWE itself is not accurately reproduced. 

Uncertainties in the observational data also cause uncertainties in the analysis, so by improving the observational data, we can 

study the models’ ability to describe the snow cover more reliably and, thus, further improve the models. 

Appendix A: The equations for calculating the differences between models and observations and the linear regressions 

The steps for calculating the differences in SWE, T and P between models and observations, and subsequently the linear 465 

regressions in winter are as follows: 
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1. We calculated cumulative T (Tcum) and P (Pcum) from November to January for each model and for the observational datasets: 

Tcum, model=TNov+TDec+TJan           (A1) 

Tcum, obs=TNov+TDec+TJan            (A2) 470 

Pcum, model=PNov+PDec+PJan            (A3) 

Pcum, obs=PNov+PDec+PJan            (A4) 

 

2. We calculated the difference in cumulative T (ΔTcum) and P (ΔPcum) between each model and observations: 

∆Tcum=Tcum, model-Tcum, obs            (A5) 475 

∆Pcum,=Pcum, model-Pcum, obs            (A6) 

 

3. We calculated the difference in SWE (ΔSWE) in February between each model and SnowCCI: 

∆SWE=SWE model-SWE obs           (A7) 

 480 

4. We calculated the linear regression for the differences using the ordinary least squares method: 

∆SWE = β
T
∆Tcum + β

P
∆Pcum + C           (A8) 

where βT and βP are the regression coefficients, and C is the constant. 

 

The steps for calculating the differences in SWEchange, T and P between models and observations, and subsequently the linear 485 

regressions in spring are as follows: 

 

1. We calculated monthly change in SWE (SWEchange) for each model and for SnowCCI: 

SWEchange,1=SWEMar-SWE Feb           (A9) 

SWEchange,2=SWEApr-SWE Mar            (A10) 490 

SWEchange,3=SWEMay-SWE Apr           (A11) 

 

2. We calculated the differences in monthly SWEchange (ΔSWEchange) between each model and SnowCCI: 

∆SWEchange=SWEchange,1,model-SWE change,1,obs         (A12) 

∆SWEchange=SWEchange,1,model-SWE change,1,obs         (A13) 495 

∆SWEchange=SWEchange,1,model-SWE change,1,obs         (A14) 

 

3. We calculated the differences in T (ΔT) and P (ΔP) between each model and the observations in March, April, and May: 

∆T=TMar,model-TMar,obs             (A15) 
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∆T=TApr,model-TApr,obs             (A16) 500 

∆T=TMay,model-TMay,obs             (A17) 

∆P=PMar,model-PMar,obs             (A18) 

∆P=PApr,model-PApr,obs             (A19) 

∆P=PMay,model-PMay,obs             (A20) 

 505 

3. We pooled together the values of ΔSWEchange, ΔP and ΔT for the whole spring period (February through May) and calculated 

the linear regression for the differences using the ordinary least squares method: 

∆SWEchange = β
T
∆T + β

P
∆P + C           (A21) 

where βT and βP are the regression coefficients, and C is the constant. 
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