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Abstract. Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes 

snow cover an important variable in climate models. Previously, substantial uncertainties have been reported in NH snow 

water equivalent (SWE) estimates. A recent bias-correction method significantly reduces the uncertainty of NH SWE 

estimation, which enables a more reliable analysis of the climate models’ ability to describe the snow cover. We have 

intercompared NH SWE estimates between CMIP6 (Coupled Model Intercomparison Project Phase 6) models and observation-10 

based SWE reference data north of 40° N for the period 1982-2014 and analyzed with a regression approach whether model 

biases in temperature (T) and precipitation (P) could explain the model biases in SWE. We analyzed separately SWE in winter 

and SWE change rate in spring. For SWE reference data, we used bias-corrected SnowCCI data for non-mountainous regions 

and the mean of Brown, MERRA-2 and Crocus v7 data for the mountainous regions. The SnowCCI SWE data are based on 

satellite passive microwave radiometer data and in situ snow depth data. The analysis shows that CMIP6 models tend to 15 

overestimate SWE, however, large variability exists between models. In winter, P is the dominant factor causing SWE 

discrepancies especially in the northern and coastal regions. T contributes to SWE biases mainly in regions, where T is close 

to 0℃ in winter. In spring, the importance of T in explaining the snowmelt rate discrepancies increases. This is to be expected, 

because the increase in T is the main factor that causes snow to melt as spring progresses. Furthermore, it is obvious from the 

results that biases in T or P cannot explain all model biases either in SWE in winter or in the snowmelt rate in spring. Other 20 

factors, such as deficiencies in model parameterizations and possibly biases in the observational datasets, also contribute to 

SWE discrepancies. In particular, linear regression suggests that when the biases in T and P are eliminated, the models 

generally overestimate the snowmelt rate in spring. 

1 Introduction 

Seasonal snow cover of the Northern Hemisphere (NH) is an important factor of the global climate system. The seasonal snow 25 

cover greatly influences surface albedo and, thus, the Earth’s energy balance (Callaghan et al., 2011; Flanner et al., 2011; Qu 

and Hall, 2005; Trenberth and Fasullo, 2009). This makes snow cover an important variable in climate models (Derksen and 

Brown, 2012; Loth et al., 1993). Additionally, snow cover significantly affects the hydrological cycle at high latitudes and in 

mountainous regions (Barnett et al., 2005; Bormann et al., 2018; Callaghan et al., 2011; Douville et al., 2002). In winter, snow 
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cover stores large amounts of fresh water, which limits water availability. In spring and summer, warming temperatures melt 30 

the snowpack, releasing water as runoff. In some areas, snow is the largest freshwater storage, and about one sixth of the 

world’s population is dependent on meltwater from snow (Barnett et al., 2005; Hall et al., 2008).  

 

Melting snow is also a major source for hydropower (Callaghan et al., 2011; Magnusson et al., 2020). Due to the global 

warming, the melting season begins earlier, with the timing of streamflow peaks also becoming earlier (Kundzewicz et al., 35 

2008). In addition, changes in snow cover affect the intensity of spring streamflow, as an increasing proportion of winter 

precipitation is rain instead of snow (Callaghan et al., 2011; Cohen et al., 2015; Dong et al., 2020; Kundzewicz et al., 2008). 

Thus, changes in snow cover affecting the hydrological cycle can cause regional water shortages and affect hydropower 

production. 

 40 

SWE (snow water equivalent) is the amount of water contained in the snowpack (in units of kg m-2), or equivalently, the height 

of the water layer (in units of mm) that would result from melting the whole snowpack instantaneously (Fierz et al., 2009). 

Recent studies show negative trends in global SWE (Bormann et al., 2018; Derksen and Brown, 2012; Essery et al., 2020; 

Hernández‐Henríquez et al., 2015; Mortimer et al., 2020; Mudryk et al., 2017), but significant spatial variability exists: North 

America shows clear negative trends in observed SWE, while negative trends are less pronounced in Eurasia (Kunkel et al., 45 

2016; Pulliainen et al., 2020). At mid-latitudes, SWE is more sensitive to warming than at high latitudes (Brown and Mote, 

2009). Although the overall SWE trends are negative, there are also regions where SWE is observed and projected to increase: 

SWE will most likely increase in northern Siberia and northern Canada, which largely results from the increased atmospheric 

moisture holding capacity (Brown and Mote, 2009; Park et al., 2012; Räisänen, 2008). Trends in snow cover also vary 

seasonally: the seasonal snow in spring is especially sensitive to warming due to the strong surface albedo feedback and the 50 

observed snow cover trends in spring are clearly negative in both Eurasia and North America (Derksen and Brown, 2012; 

Essery et al., 2020; Hernández‐Henríquez et al., 2015). In winter, the observed trends are less pronounced: early winter from 

October to December shows even slightly positive trends in both Eurasia and North America, while in January and February, 

there are no significant trends (Hernández‐Henríquez et al., 2015). 

 55 

Observing SWE at continental scale is only possible from satellites, but also model and reanalysis products provide gridded 

SWE estimates which have been widely used in hydrological and climate research (e.g., Huning and AghaKouchak, 2020; 

Mortimer et al., 2020; Mudryk et al., 2020). Previously, substantial uncertainties have been reported in the NH SWE estimates 

(Bormann et al., 2018; Mudryk et al., 2015). However, our knowledge of the NH SWE has recently improved considerably 

with new bias corrections which reduce the uncertainty of the SWE estimate integrated over NH from 33% to 7.4% (Pulliainen 60 

et al., 2020). The bias-correction method, for example, considerably improves SWE estimates in the moderate and deep SWE 

range (Pulliainen et al., 2020), which has previously caused underestimation in SWE estimates (Cho et al., 2020). However, 

limitations still exist: the bias-correction method cannot be applied in mountainous regions due to the lack of snow course 
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measurements and the large SWE variability in complex terrain (Pulliainen et al., 2020). Even though the area of mountainous 

regions is limited, these regions store a considerable portion of seasonal snow (Kim et al., 2021). For observation-based 65 

datasets, the bias-correction method mostly increases SWE, and it is therefore likely that without bias-correction or alternative 

approaches where estimates are corrected using in situ data, SWE in mountainous areas is underestimated (Pulliainen et al., 

2020; Wrzesien et al., 2018). 

 

Previous studies have shown that climate models have had difficulties in correctly reproducing the seasonal snow and its recent 70 

trends (Brutel-Vuilmet et al., 2013; Derksen and Brown, 2012; Henderson et al., 2018; Santolaria‑Otín and Zolina, 2020; 

Thackeray et al., 2016). However, there are clear improvements from CMIP5 to CMIP6. The snow cover extent is better 

described in CMIP6 than in CMIP5 models (Mudryk et al., 2020; Zhu et al., 2021). The snow cover fraction is underestimated 

in both CMIP5 and CMIP6 multi-model ensemble means, but the biases are clearly smaller in CMIP6 than in CMIP5 (Zhu et 

al., 2021). SWE, in turn, is biased high in both CMIP5 and CMIP6, and the peak SWE is also overestimated in almost all 75 

models (Mudryk et al., 2020). The model biases also vary seasonally; the snow cover fraction is best described in the period 

from January to March in CMIP6 models (Zhu et al., 2021), whereas the SWE bias is smallest in autumn and early winter and 

increases in spring (Mudryk et al., 2020). Both CMIP5 and CMIP6 models are mostly able to reproduce the observed negative 

trend in snow cover area, but there are uncertainties in the magnitude of the trend (Mudryk et al., 2020; Zhu et al., 2021). The 

CMIP5 models are able to better capture the trend in snow cover extent than the trend in SWE (Santolaria‑Otín and Zolina, 80 

2020).  

 

Due to the reasons described above, it is crucial that seasonal snow is accurately described in climate models, to properly 

predict the state of the cryosphere in future climate. Therefore, it is important to study how the new CMIP6 climate models 

can describe the seasonal snow, and where the uncertainties and discrepancies arise. The current paper focuses on the 85 

climatological distribution of SWE in CMIP6 models. To our knowledge, only one previous study has evaluated NH SWE in 

CMIP6 models: Mudryk et al. (2020) compared SWE estimates between CMIP6 models and several observational datasets. 

Additionally, they studied the connection between SWE and temperature, but did not consider temperature and precipitation 

together. However, they stated that a coordinated analysis of temperature and precipitation is needed to determine SWE trend 

drivers. In general, simulated trends of SWE can be considered more reliable if the current climatological distribution of SWE 90 

is simulated accurately. Therefore, in the present study, we consider, for the first time, the role of both temperature and 

precipitation for SWE biases in CMIP6 climate models. Specifically, the main goals of this study are (1) to intercompare the 

CMIP6 and observation-based SWE estimates and (2) to analyze whether temperature and precipitation biases could explain 

the SWE biases. 

 95 
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Table 1: CMIP6 models used in this study. 

Nominal resolution Institution Model Experiment ID Reference 

100 km 

Beijing Climate Center (BCC) BCC-CSM2-MR 
historical Wu et al. (2018a) 

esm-hist Wu et al. (2018b) 

National Center for Atmospheric 

Research (NCAR) 

CESM2 historical Danabasoglu (2019a) 

CESM2-WACCM historical Danabasoglu (2019b) 

Lawrence Livermore National Laboratory 

(LLNL) 
E3SM-1-0 historical Bader et al. (2019) 

EC-Earth-Consortium 

EC-Earth3 historical EC-Earth (2019a) 

EC-Earth3-AerChem historical EC-Earth (2020a) 

EC-Earth3-CC esm-hist EC-Earth (2021) 

EC-Earth3-Veg historical EC-Earth (2019b) 

Geophysical Fluid Dynamics Laboratory 

(NOAA-GFDL) 

GFDL-CM4 historical Guo et al. (2018) 

GFDL-ESM4 
historical Krasting et al. (2018a) 

esm-hist Krasting et al. (2018b) 

Max Planck Institute for Meteorology 

(MPI-M) 
MPI-ESM1-2-HR historical Jungclaus et al. (2019) 

Meteorological Research Institute (MRI) MRI-ESM2-0 historical Yukimoto et al. (2019) 

Norwegian Climate Consortium (NCC) NorESM2-MM historical Seland et al. (2019a) 

Seoul National University (SNU) SAM0-UNICON historical Park and Shin (2019) 

Research Center for Environmental 

Changes, Academia Sinica (AS-RCEC) 
TaiESM1 historical Lee and Liang (2020) 

250 km 

Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) 

ACCESS-CM2 historical Dix et a. (2019) 

ACCESS-ESM1-5 
historical Ziehn et al. (2019a) 

esm-hist Ziehn et al. (2019b) 

Alfred Wegener Institute (AWI) AWI-ESM-1-1-LR historical Danek et al. (2020) 

Beijing Climate Center (BCC) BCC-ESM1 historical Zhang et al (2018) 

National Center for Atmospheric 

Research (NCAR) 

CESM2-WACCM-

FV2 
historical Danabasoglu (2019c) 

EC-Earth-Consortium EC-Earth3-Veg-LR historical EC-Earth (2020b) 

Goddard Institute for Space Studies 

GISS-E2-1-G historical NASA/GISS (2018) 

GISS-E2-1-G-CC esm-hist NASA/GISS (2019a) 

GISS-E2-1-H historical NASA/GISS (2019b) 

Institut Pierre Simon Laplace 

IPSL-CM5A2-INCA historical Boucher et al. (2020) 

IPSL-CM6A-LR historical Boucher et al. (2018) 

IPSL-CM6A-LR-

INCA 
historical Boucher et al. (2021) 

Japan Agency for Marine-Earth Science 

and Technology (JAMSTEC) 
MIROC6 historical 

Tatebe and Watanabe 

(2018) 

Max Planck Institute for Meteorology 

(MPI-M) 

MPI-ESM-1-2-HAM historical Neubauer et al. (2019) 

MPI-ESM1-2-LR 
historical Wieners et al (2019a) 

esm-hist Wieners et al (2019b) 

Norwegian Climate Consortium (NCC) NorESM2-LM 
historical Bentsen et al. (2019) 

esm-hist Seland et al. (2019b) 

500 km 

Canadian Centre for Climate Modelling 

and Analysis, Environment and Climate 

Change Canada 

CanESM5 
historical Swart et al. (2019a) 

esm-hist Swart et al. (2019b) 
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2 Data 100 

2.1 CMIP6 model data 

The data of this study consist of CMIP6 climate model data (Table 1) and observational and reanalysis data (Table 2). For 

CMIP6, we used monthly mean data from those models for which either historical or esm-hist simulations were available for 

download in August 2021. The historical and esm-hist simulations extend from 1850 to 2014. In historical simulations, the 

CO2 concentrations are prescribed, whereas in esm-hist simulations, the models calculate the atmospheric CO2 concentration 105 

interactively based on prescribed CO2 fluxes (Eyring et al., 2016). In this study, we used three variables from CMIP6 models: 

SWE (variable “snw”, unit kg m-2), surface air temperature (“tas”, unit Kelvin), and precipitation (“pr”, unit kg m-2 s-1). 

Altogether, there are 17 high-resolution models (100 km) and 21 low-resolution models (250-500 km) in Table 1. We have 

evaluated the SWE sum over the entire study area for every model but performed the subsequent detailed analysis only for the 

high-resolution (100 km) models. We decided to leave the models with coarser resolution out of the analysis, as coarser 110 

resolution would differ too much from the resolution of the observational datasets, making the comparison more problematic. 

The number of ensemble members available for the chosen models varies between 1 and 16. For simplicity, we only consider 

the first member of each model ensemble (r1i1p1f1) in this study. A brief analysis showed that the differences between 

different ensemble members for the same model were generally smaller compared to intermodel differences. Figure S1 in the 

Supplementary material shows all realizations of three different models (CESM2, MPI-ESM1-2-HR, and EC-Earth3), which 115 

were chosen in this figure due to a high number of realizations. The figure illustrates that internal variability of each model is 

smaller than the intermodel variability. 

 

Table 2: Observational and reanalysis datasets used in this study. 

Variable, unit Dataset Resolution Reference 

Snow water equivalent 

(SWE), mm 

SnowCCI 25 km × 25 km, monthly Luojus et al. (2021) 

Brown 0.75° × 0.75°, monthly Brown et al. (2020) 

Crocus v7 0.5° × 0.5°, monthly Brun et al. (2013) 

MERRA-2 0.5° × 0.625°, monthly 
Gelaro et al. (2017) 

GMAO (2015a) 

Precipitation (P),  

mm month-1 
GPCC V2018 0.5° × 0.5°, monthly Schneider et al. (2018) 

2 m air temperature (T), 

Kelvin 
MERRA-2 0.5° × 0.625°, monthly 

Gelaro et al. (2017) 

GMAO (2015b) 

Forest cover fraction, % 
ESA CCI Land Cover time-

series v2.0.7 
300 m × 300 m, monthly ESA (2017) 

 120 
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2.2 Observational and reanalysis data 

For SWE reference data, we have used ESA CCI-Snow "SnowCCI" (European Space Agency Climate Change Initiative, 

Snow) data for the non-mountainous regions, and MERRA-2 (The Modern-Era Retrospective analysis for Research and 

Applications, Version 2; Gelaro et al., 2017; GMAO, 2015a), Brown (Brown et al., 2003) and Crocus v7 (Brun et al., 2013) 125 

data for the mountainous regions. SnowCCI data, which is the same product as the GlobSnow v3 SWE product (except 

provided in geographical latitude/longitude grid for easier comparison with climate model data), are based on satellite passive 

microwave radiometer data and in situ data (Luojus et al., 2021; Pulliainen et al., 2020). The SnowCCI algorithm combines 

microwave brightness temperature (Tb) data, observed by satellite instruments, with ground-based snow depth measurements 

from the global network of synoptic weather stations (Luojus et al., 2021). The SWE estimation algorithm is based on the 130 

difference in Tb between two frequencies (37 and 19 GHz). The ground beneath the snowpack emits microwaves, which 

propagate through the snowpack, being partially absorbed during the process. The low-frequency and high-frequency signals 

attenuate differently as they propagate through the snowpack, which makes the difference in Tb a good indicator for estimating 

SWE (Cagnati et al., 2004). The attenuation is affected by snow depth, snow grain size, and snow density. The high-frequency 

signal attenuates more than the low-frequency signal when it propagates through the snowpack, especially for a deep, dense, 135 

and large-grained snowpack. Thus, a large difference between high and low frequency signals indicates a high SWE (Kelly et 

al., 2003). The SnowCCI approach combines Tb differences with in situ snow depth observations, which considerably 

improves SWE estimation relative to a satellite-only retrieval (Pulliainen, 2006; Takala et al., 2011). 

 

A recent bias-correction method combines the original SnowCCI data with extensive ground-based snow course SWE 140 

measurements, which significantly reduces the uncertainty of NH SWE estimation (Pulliainen et al., 2020). The method 

decreases the uncertainty of hemisphere-mean SWE estimation from 33% to 7.4%. The bias-corrected SnowCCI data are 

mapped to a 25 km EASE‐Grid and are available from 1979. Mountainous regions, glaciers, and ice sheets are excluded from 

the data. The original SnowCCI data are available around the year, while bias-corrected SnowCCI data are only available from 

February to May. Despite limitations in its temporal coverage, we have used the bias-corrected data in this study. We chose to 145 

do this as the bias-correction method significantly reduced the uncertainty and made the observational data more accurate, 

which, in turn, makes the comparison with the models far more meaningful.  

 

As the bias-corrected SnowCCI data are only available for non-mountainous grid cells, we have used an average of the 

MERRA-2, Brown and Crocus v7 SWE products for the mountainous regions. MERRA-2 is a NASA (National Aeronautics 150 

and Space Administration) atmospheric reanalysis, and it is available from year 1980. The spatial resolution of the data is 

0.625°×0.5° (Gelaro et al., 2017). From MERRA-2, we have used the SWE product (Gelaro et al., 2017; GMAO, 2015a). 

Brown SWE product, in turn, uses a simple snow scheme driven by ERA-Interim reanalysis (Brown et al., 2003). For the third 

SWE dataset, we have used Crocus version 7 product, which is a physical snow model driven by ERA-Interim reanalysis (Brun 
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et al., 2013). Both MERRA-2 and Crocus v7 tend to slightly overestimate SWE under 150 kg m-2 and underestimate SWE 155 

over 150 kg m-2 (Mortimer et al., 2020). 

 

For precipitation (P) and temperature (T) reference data, we used GPCC (Global Precipitation Climatology Centre) Version 

2018 precipitation data (Schneider et al., 2018) and MERRA-2 temperature data (Gelaro et al., 2017; GMAO, 2015b). GPCC 

is a monthly precipitation product based on data from rain gauge stations, and the data are available on a 0.5-degree global 160 

grid from 1891 to the present (Schneider et al., 2018). The product agrees well with other precipitation products (Behrangi et 

al., 2016; Sun et al., 2018). All precipitation data are presented here in units of kg m-2 month-1 which is equivalent to 

mm month-1. 

 

For T reference data, we have used the monthly mean 2 m air temperature product, which agrees well with observations in the 165 

Arctic (Gelaro et al., 2017; Simmons et al., 2017) and the mean values show very small biases (Bosilovich et al., 2015). 

MERRA-2 daily temperature tends to have a cool daytime bias and a warm nighttime bias (Bosilovich et al., 2015; Draper et 

al., 2018). However, this is not a major issue for our study because we use the monthly mean product. In addition, MERRA-2 

seems to underestimate global warming trends in the last years of our study period (Gelaro et al., 2017; Simmons et al., 2017). 

Additionally, we used the ESA CCI Land Cover time-series v2.0.7 (ESA, 2017) to study the effect of forest cover on the 170 

results. 

 

3 Methods 

We used the nearest neighbor method to resample CMIP6, Brown, Crocus v7, MERRA-2 and GPCC data to the 25‐km equal‐

area projection. The fractional forest cover was calculated from the higher-resolution ESA CCI Land Cover time-series as the 175 

fraction of forest cover grid cells of all cells within each 25‐km × 25‐km grid area. The bias-corrected SnowCCI data are 

available only for non-mountainous regions. Therefore, we used the bias-corrected SnowCCI data for the non-mountainous 

regions, and for the grid cells that were defined as mountainous in SnowCCI data, we used the mean SWE of the Brown, 

MERRA-2 and Crocus v7 datasets. The complex terrain causes uncertainties in SWE estimates but averaging over multiple 

products can improve the accuracy (Mortimer et al., 2020). We calculated the model biases by subtracting the observation 180 

value from the model value, i.e. model minus observation, and compared the biases grid cell by grid cell. Our study covered 

land areas north of 40° N and years between 1982 and 2014. In this study, we mainly concentrated on snow-covered areas, i.e. 

grid cells where SWE > 10 kg m-2. The snow-covered area was computed individually for each model and for each month. We 

have also filtered out grid cells with modeled SWE above 2000 kg m-2, as those values greatly exceed observed SWE (Stuefer 

et al., 2013). 185 
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We focus the analysis on two seasons: winter and spring. For the winter season, we consider only the SWE in February, since 

bias-corrected SnowCCI data are only available from February to May. We studied through linear regression analysis, how 

the SWE bias in February depends on the precipitation (P) bias and temperature (T) biases, summed over the three preceding 

months from November to January: 190 

 

∆SWE = β
T
∆Tcum + β

P
∆Pcum + C                                                                                 (1) 

 

where Pcum and Tcum are the precipitation and temperature summed over November-January, βP and βT are the regression 

coefficients and C is the constant. Here, as well as in Eq. (2) below, Δ refers to the model bias, i.e. the difference between the 195 

modeled value (defined for each year separately) and the observed climatological value (averaged over the whole period 

considered). We used the climatological average for the observations because climate models cannot be expected to correctly 

simulate the weather conditions of individual years. Thus, the regression coefficients βP and βT depend only on the modeled 

interannual variations. The equations are presented in more detail in Appendix A. 

 200 

For the spring season, we considered the monthly changes in SWE from February to March, from March to April, and from 

April to May. We defined the SWE change rate (SWEchange) as the difference in SWE between each month and the previous 

month. Positive values indicate an increase in SWE from one month to the next, and negative values a decrease. The model-

minus-observation difference ΔSWEchange (i.e., the model bias) was then regressed against the monthly precipitation and 

temperature biases: 205 

 

∆SWEchange = β
T
∆T + β

P
∆P + C          (2) 

 

For example, when considering SWEchange from February to March, we used P and T for March. We pooled together the values 

of ΔSWEchange, ΔP and ΔT for the whole spring period (February through May) to determine the regression parameters βP and 210 

βT and C. The equations are presented in more detail in Appendix A. 

 

We included only snow-covered grid cells (SWE > 10 kg m-2) in the analysis and calculated the linear regressions only for 

grid cells with at least four values available during the study period. We calculated the linear regressions for the whole study 

period 1982-2014, and separately for three shorter periods: 1982-1991, 1992-2001 and 2002-2014. 215 

 

By substituting into Eqs. (1) and (2) the mean model biases, it is possible to split the model SWE biases into three components: 

the contribution of P (PC), the contribution of T (TC), and the contribution of other factors. For SWE in winter, PC and TC are: 
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PC = β
P
 ∆Pcum,mean           (3) 220 

TC = β
T
 ∆Tcum,mean           (4) 

 

Correspondingly, for SWEchange in spring, PC and TC are: 

 

PC = β
P
 ∆Pmean            (5) 225 

TC = β
T
 ∆Tmean            (6) 

 

The third component in both winter and spring is the residual term, which is the constant from the regression equation (1) or 

(2). This is the contribution of other factors, including for example, inaccuracies in observational datasets and model 

parameterizations related to, for example, snow and surface energy budget. The residual (R) gives an estimate for the SWE 230 

bias that would remain if P and T were simulated correctly in the model. 

 

 

Figure 1. Mean SWE in April for the CMIP6 high-resolution (100 km) multi-model ensemble mean (left), and the SWE reference 

data (middle) and the model SWE bias (right) for the period 1982-2014. 235 

4 Results 

Figure 1 shows as an example the mean SWE of all CMIP6 high-resolution (100 km) models, the mean of SWE reference 

data, and ∆SWE (CMIP6 – SWE reference) in April during 1982-2014. The corresponding figures for precipitation and 

temperature are in the supplementary material (Fig. S2). The SWE distribution has a large spatial variability: the highest values 
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exceed 240 kg m-2 in both multi-model mean and SWE reference data, and these values are found in northeastern Canada, 240 

around the Rocky Mountains, in Scandinavia, and in some parts of Siberia. Although the SWE distribution is similar for the 

multi-model mean and SWE reference data, the models overestimate SWE in several regions, which are mostly located in the 

northern parts of the study area: in northeastern Canada, northeastern Siberia, and Eurasia around 90° E. In the southern parts 

of the study area, the multi-model mean mainly underestimates SWE. 

 245 

 

Figure 2. Monthly SWE sum over the entire study area in February, March, April, and May separately for each high-resolution 

(100 km) CMIP6 model (grey dashed lines), for each low-resolution (> 100 km) CMIP6 model (thin solid lines), for the high-

resolution CMIP6 multi-model ensemble mean (red markers), for the low-resolution CMIP6 multi-model ensemble mean (purple 

markers) and for the SWE reference data (blue markers). The blue shaded area indicates the 7.4% uncertainty range of the SWE 250 
reference data. 

 

The monthly SWE sum of the whole study area varies considerably between the models. (Fig. 2). In February, March, and 

April, the modeled SWE (solid and dashed grey lines) vary by a factor of two, and in May, even by a factor of three. The 
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variability between models is notably larger than the uncertainty range of the SWE reference estimate (blue markers). The 255 

low-resolution models (thin grey lines) do not significantly differ from the high-resolution models (dashed lines); the SWE 

sum is mostly in the same range in both resolution groups. Also, the mean values for both high-resolution (red markers) and 

low-resolution (purple markers) models are very close to each other. However, there are two low-resolution models that show 

very high SWE sum values in every month, which are clear outliers. These outliers are “GISS-E2-1-G historical” and “GISS-

E2-1-G-CC esm-hist” and we have found that the anomalous values are due to a very high SWE in the mountainous areas. All 260 

models reach highest SWE in March, which is consistent with observations. Overall, most models overestimate the monthly 

SWE sum, and the CMIP6 multi-model ensemble mean is higher than the SWE reference data in every month. While a few 

models underestimate the SWE sum especially in May, the majority of models overestimate the SWE sum in every month. We 

have performed the following detailed analysis only for the high-resolution models. In addition, since the results for the 

different model versions for each institute tend to be rather similar, only one model version for each of the 10 institutes are 265 

shown in the figures. Figures including all 17 high-resolution model versions are provided in the Supplementary material. 

 

 

Figure 3. The mean model bias in SWE (ΔSWE, model minus observation) in snow-covered areas in February 1982-2014. 
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4.1 SWE in winter 270 

The mean SWE bias in February shows large spatial variability within each model but also varies much between the models 

(Figs. 3 and S3). The areal-mean model bias varies from about -8 kg m-2 to 40 kg m-2. However, the largest negative and 

positive biases are well concentrated in the same areas in all models. Overall, the models tend to overestimate the SWE in the 

northern parts of the study area, but also in southern Siberia. The negative biases, in turn, occur mostly in the south and 

especially on the coastal areas of North America. In some models, there are negative biases also in the middle parts of Eurasia. 275 

Large biases also occur over Rocky Mountains in every model, but the sign of the bias varies. The CESM2 and NorESM2-

MM models show the largest overestimations. For both models, the bias is very high in large regions in northern parts of North 

America and Eurasia. In these areas the relative bias is typically 150-200%. The BCC-CSM2-MR, E3SM-1-0 and SAM0-

UNICON models also show large positive biases, which are concentrated in the same areas, although, the biases are clearly 

smaller than for the CESM2 and NorESM2-MM models. In other models, the areal-mean biases are closer to 0 kg m-2, however, 280 

regional differences exist. Overall, the GFDL models are the most consistent with the SWE reference data during February. 

 

 

Figure 4. The mean model bias in Pcum (ΔPcum, model minus observation) in snow-covered areas from November to January 1982-

2014. The dots indicate areas where the models either overestimate both SWE and P or underestimate both SWE and P. 285 
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Figure 5. The mean model bias in T (ΔT, model minus observation) in snow-covered areas from November to January 1982-2014. 

We show ΔT (ΔTcum divided by 3) instead of ΔTcum so that the values are more intuitive and easier to interpret. The dots indicate 

areas with either cold bias and positive SWE bias or warm bias and negative SWE bias, i.e., the areas where T bias could logically 

explain the SWE bias. 290 

 

All models overestimate NH extratropical precipitation from November to January (Figs. 4 and S4). The largest 

overestimations are mainly in southern regions and in coastal areas. There are small areas where underestimation occurs, 

especially in Eurasia around 90° E. In every model, there are large regions where Pcum bias could logically explain the SWE 

bias (marked with dots), i.e. areas where models overestimate or underestimate both SWE and Pcum. These regions are mostly 295 

in the northern parts of the study area, whereas in the south, there are more areas where SWE and Pcum discrepancies are more 

often not consistent with each other. 

 

For model T biases, the values are mostly positive; however, regional and intermodel variability exists (Figs. 5 and S5). We 

show ΔT (ΔTcum divided by 3) instead of ΔTcum so that the values are more intuitive and easier to interpret. The CESM2 and 300 

E3SM-1-0 models generally simulate too warm temperatures, and the largest positive biases are in the northern parts of the 

study area. The GFDL, MPI-ESM1-2-HR and MRI-ESM2-0 models simulate too warm temperatures in the north, while the 

SAM0-UNICON and TaiESM1 models, in turn, simulate too cold temperatures in the north. The BCC-CSM2-MR and EC-
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Earth3 models are the most consistent with the MERRA-2 data. In every model, there are large areas where the signs of biases 

for T and SWE are opposite (marked with dots), indicating that biases in T might explain biases in SWE. However, in these 305 

areas, the biases are mainly quite small.  

 

The contributions to SWE biases (ΔSWE) due to precipitation biases (PC), temperature biases (TC) and other factors (residual 

R) are quantified using the regression equations (1), (3) and (4). To summarize their relative importance, Figs. 6 and S6 show 

the areal-means of the absolute values of ΔSWE, PC, TC, and R. The mean ΔSWE varies from under 30 kg m-2 in the GFDL-310 

CM4 model to around 50 kg m-2 in the CESM2 and NorESM2-MM models. In all models, the contribution of P on ΔSWE is 

clearly larger than the contribution of T. However, the residual is also typically large, indicating that P and T cannot explain 

the SWE biases alone. This implies that observational uncertainty or model structural factors, such as parameterizations related 

to the surface energy budget or hydrology, play a considerable part in the observed SWE biases. We studied the terms’ 

statistical significance by using the t-test and found that all the terms (PC, TC, and R) are significantly different from zero at 315 

the 99% confidence level. The variability in these parameters between the decadal subperiods and the full three-decade analysis 

period was slight, indicating consistent behavior across time in both models and observations. 

 

 

Figure 6. The areal-means of the absolute values of ΔSWE, PC, TC, and residual R calculated for the entire study period 1982-2014 320 
(left column, shaded with grey) and for three shorter time periods (1982-1991, 1992-2001, and 2002-2014) for each model in winter. 

The size of the square indicates the absolute value of ΔSWE of that time period and model, and the color of the square indicates the 

absolute value of PC, TC, and R. 
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Figure 7. Spatial distribution of the P contribution, the T contribution, and the residual for each model in winter 1982-2014. 325 
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Figures 7 and S7 show the spatial distribution of the contributions of P and T and the residual for each model for the entire 

study period 1982-2014. The spatial distribution of R2, βP and βT are shown in the supplementary material (Fig. S8). Also, the 

contributions of P and T and the residual calculated for the shorter time periods are in the supplementary material (Figs. S9-

S11). Figure 7 shows that overall, the contribution of P is larger than the contribution of T, as Fig. 6 already indicated. P 

contributes to ΔSWE especially over northern and coastal regions, with fairly similar patterns for all models considered. The 330 

regression coefficient βP also shows large values (βP ≈ 1) especially in the northern and middle parts of both continents (Fig. 

S8), with relatively small intermodel variations. This is consistent with the expectation that in cold regions, an increase of 

precipitation translates into a similar increase in SWE. 

 

The contribution of T is mostly very weak (Fig. 7); however, for some models, T shows stronger contribution especially over 335 

western parts of Eurasia and over northeastern Canada. The regression coefficient βT is mostly negative or very close to zero 

(Fig. S8). The negative correlation is strongest in Europe and southern parts of North America and Eurasia. In these regions, 

the temperature is close to 0 ℃ in winter, which makes temperature an important driver of the SWE. Northern Canada and 

Siberia, in turn, show areas with positive correlation, meaning that warmer temperatures cause higher SWE. Studies have 

shown that when the temperature rises due to climate change, the winter precipitation will also increase (Brown and Mote, 340 

2009; Park et al., 2012; Räisänen, 2008). In the south, warming temperatures will shift winter precipitation from snow to rain. 

In the north, in turn, temperature will stay below 0 ℃ despite the warming, which will lead to an increase in snowfall in the 

coldest regions of NH, and therefore, to an increase in SWE. This phenomenon is most likely seen here as well; warmer 

temperatures in the models will increase winter precipitation, resulting in too high SWE in the models. In fact, this exposes a 

limitation of the regression Eq. (1): it treats ΔTcum and ΔPcum as independent variables, which is not fully realistic. When these 345 

variables are correlated, their contributions to ΔSWE cannot be fully separated.  

 

The residual shows large spatial and intermodel variability (Fig. 7). Especially for the CESM2 and NorESM2-MM models, 

the residual shows very large positive values. These large positive residuals are mainly concentrated in the same areas where 

the models clearly overestimate SWE (Fig. 3). This indicates that, for these models, the large SWE biases in these areas are 350 

mainly caused by some other factors than P or T. For other models, the residual shows both positive and negative values across 

the study area. The possible factors causing the large residual term are discussed in more detail in Sect. 5.2. 

4.2 Monthly SWE change in spring 

Figures 8 and S13 show the mean bias in monthly SWE change (ΔSWEchange) in spring in the snow-covered areas for the whole 

study period 1982-2014. A figure showing the SWE change rate of multi-model mean, SWE reference data and bias in multi-355 

model mean is in the Supplementary material (Fig. S12). Positive ΔSWEchange means that there is less snowmelt in the models 

compared to the SWE reference data, and negative ΔSWEchange indicates that snow melts faster in models, respectively. The 

areal-mean ΔSWEchange is mainly negative in every model, which means that snow melts generally faster in the models 
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compared to the SWE reference data. However, there is a large spatial variability in every model and the intermodel variability 

is also large. In the CESM2 and NorESM2-MM models, three areas show distinctly positive ΔSWEchange: northeastern Canada, 360 

northern Siberia, and eastern Siberia. In all these areas, the SWE bias in February (Fig. 3) was already clearly positive, meaning 

that these models greatly overestimate SWE in these areas also in spring. The EC-Earth3 model shows clear positive 

ΔSWEchange in northeastern Canada but also in Eurasia. The area with positive biases in Eurasia is very extensive and differs 

notably from the other models. The EC-Earth3 model has been found to drastically overestimate the snow cover extent as well 

(Mudryk et al., 2020). The SAM0-UNICON and TaiESM1 models also show positive values in northern Siberia. The GFDL 365 

and MPI-ESM1-2-HR models, in turn, show large areas with negative ΔSWEchange in northern Canada and in eastern parts of 

Siberia, which differs from the other models. Overall, the model biases in SWE change rate in spring (Fig. 8) show larger 

intermodel variations than the corresponding biases in SWE in February (Fig. 3). 

 

 370 

Figure 8. The mean model bias in the monthly SWE change (ΔSWEchange, model minus observation) in spring for the period 1982-

2014. 

 

As in winter (Fig. 4), models on average overestimate precipitation in spring as well (Figs. 9 and S14). The largest 

overestimations occur mainly in southern regions and in coastal areas. The regions with mutual biases in P and SWEchange 375 
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(marked with dots) show large intermodel variability, and they are less extensive than in winter (Fig. 4). This indicates that 

precipitation is not as important factor in spring as it is in winter.  

 

The mean T bias in spring shows a large spatial variability within each model but also the variability between models is very 

clear (Figs. 10 and S15). The BCC-CSM2-MR, E3SM-1-0, MPI-ESM1-2-HR, and MRI-ESM2-0 models show a warm bias 380 

in the northern parts of the study area, whereas the SAM0-UNICON and TaiESM1 models show a cold bias in the same area. 

The EC-Earth3 model, in turn, has a cold bias in eastern Eurasia near 60° N, which clearly differs from the other models. These 

areas also exhibited less snowmelt than the SWE reference data, which indicates that the bias in snow melt rate can be caused 

by the bias in T. The sizes and locations of the areas with mutually consistent biases in T and SWEchange (marked with dots) 

vary greatly between models. Especially in the GFDL-CM4 model, the size of these areas is small, while in most of the models, 385 

the dots cover the majority of the study area. Furthermore, in those regions where the biases in T and SWEchange are consistent 

in spring, the cold or warm temperature biases are typically relatively large, when compared with the corresponding biases in 

winter (Fig. 5). This indicates that biases in T are a more important driver of biases in SWE in spring than in winter. 

 

 390 

Figure 9. The mean model bias in P (ΔP, model minus observation) in snow-covered areas in spring 1982-2014. The dots indicate 

areas where models either overestimate both SWEchange and P or underestimate both SWEchange and P. 
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Figure 10. The mean model bias in T (ΔT, model minus observation) in snow-covered areas in spring 1982-2014. The dots indicate 

areas with either cold bias and positive SWE bias or warm bias and negative SWE bias, i.e., the areas where T bias could logically 395 
explain the SWE bias. 

 

Figures 11 and S16 summarize the areal-means of the absolute values of ΔSWEchange, the contribution of P (PC), the contribution 

of T (TC), and the contribution of other factors (the residual R). The contributions of P and T are quite similar in magnitude in 

almost all the models. None of the variables shows a large dependence on the period considered. The EC-Earth3 model stands 400 

out from the other models, as TC is larger than in the other models. The large contribution of T in ΔSWEchange was already seen 

in Figs. 8 and 10, as the spatial distribution of the biases were similar. This also suggests that the overestimated snow cover 

extent in the EC-Earth3 model (Mudryk et al., 2020) might be at least partly due to the cold bias. In all models, the residual is 

larger than PC or TC. This indicates that overall, the biases in snow melt rate in spring are dominated by other factors than T or 

P. These factors will be further discussed in Sect. 5.2. We also studied the terms’ statistical significance by using the t-test. 405 

Even though the contributions of T and P are considerably smaller than the residual term, all the terms (PC, TC, and R) are 

significantly different from zero at the 99% confidence level.  
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Figure 11. The areal-means of absolute values of ΔSWEchange, PC, TC, and residual R calculated for the entire study period 1982-2014 410 
(left column, shaded with grey) and for three shorter time periods (1982-1991, 1992-2001, and 2002-2014) for each model in spring. 

The size of the square indicates the mean absolute value of ΔSWEchange of that time period and model, and the color of the square 

indicates the mean absolute value of PC, TC, and R. 

 

Figures 12 and S17 show the spatial distribution of the contributions of P and T and the residual for each model for the entire 415 

study period 1982-2014. The spatial distribution of R2, βP and βT are displayed in the supplementary material (Fig. S18). Also, 

the contributions of P and T and residual calculated for the shorter time periods are in the supplementary material (Figs. S19-

S21). P contributes to ΔSWEchange mostly in Alaska and northern Siberia, but the effect varies between models. Furthermore, 

even though T showed clear warm and cold biases in many areas (Fig. 10), the contribution of T is mostly quite weak, because 

of the small regression coefficient βT (Fig. S6). However, exceptions exist; especially, the EC-Earth3 and EC-Earth3-Veg 420 

models stand out, as in Eurasia, there is a large area where a negative bias in T (Fig. 10) contributes substantially to a positive 

bias in SWEchange (Fig. 8). Also, for the CESM2 and GFDL-ESM4 models, T shows a stronger contribution over northern parts 

of North America. Overall, however, the contributions of both P and T are small compared to the residual R, which is consistent 

with Fig. 11. This indicates that other factors than T or P are the dominant drivers for the SWEchange discrepancies. The residual 

is mostly negative in all the models, which means that snow would melt too fast in the models, if T and P were simulated 425 

correctly. This issue is discussed further in Sect. 5.2. 
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Figure 12. Spatial distribution of the P contribution, the T contribution, and the residual for each model in spring 1982-2014. 430 
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5 Discussion 

The analysis shows that CMIP6 models overestimate the total SWE mass over the entire study area with a few exceptions (Fig. 

2), which is consistent with the previous study (Mudryk et al., 2020). The overestimation of SWE was also observed in CMIP5 

models (Mudryk et al., 2020; Santolaria‑Otín and Zolina, 2020). The NH SWE sum reaches its peak value in March, but the 

peak values are overestimated by most of the models. As the spring advances, the variability between models increases, and 435 

some of the models clearly overestimate the SWE in May. In some models, in turn, snow melts faster than in the observations 

and they underestimate SWE in late spring. This is also shown in Figs. 3 and 8: in winter, the SWE biases are mainly positive 

(Fig. 3), while in spring, there are large differences in snow melt rates between the models (Fig. 8). 

5.1 The contribution of P and T to the SWE bias 

In winter, the models mostly overestimate SWE (Fig. 3), but spatial and intermodel variability exists. The overestimations are 440 

mostly concentrated in the same areas in all models, but the magnitude varies greatly between the models. The models also 

overestimate precipitation in winter (Fig. 4), suggesting that overestimated SWE is caused by the overestimated P. The 

regression coefficient βP also shows very clear correlation between ΔSWE and ΔPcum (Fig. S8). Therefore, P clearly contributes 

to the SWE bias, whereas the contribution of T is substantially smaller (Fig. 7). This result is consistent with the expectation 

that precipitation is needed to initiate the snow cover. In other words, even too cold temperatures cannot cause too high SWE 445 

without precipitation. Also, studies have shown that both the P bias (Zamani et al., 2020) and the SWE bias (Mudryk et al., 

2020) have decreased from CMIP5 to CMIP6. This indicates that there is a connection between these variables, which is 

consistent with the results from this study. 

 

The link between ΔTcum and ΔSWE is strongest in the warmest regions of the study area (Figs. 7 and S8). Especially in the 450 

coldest regions, where T is well below 0 ℃, variations in T do not significantly affect the amount of snow on the ground. In 

regions where T is closer to 0 ℃ in winter, T plays a more significant role and has a greater impact on SWE. This physically 

reasonable behavior suggests that climate models might be able to simulate SWE trends in the warming climate correctly, even 

if SWE itself is not reproduced accurately. 

 455 

In spring, ΔSWEchange and ΔT show quite similar patterns in many models (Figs. 8 and 10), which indicates that biases in T 

affect the biases in SWEchange. This result is to be expected because the increase in T is the main factor that causes snow to 

melt in spring. A relationship between temperature and snow cover in spring has also been observed in CMIP5 models (Brutel-

Vuilmet et al., 2013; Mudryk et al., 2017). The CMIP5 models have been found to underestimate the observed trend towards 

a reduced snow cover extent due to an underestimation of the spring warming trend (Brutel-Vuilmet et al., 2013).  460 
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Even though ΔSWEchange and ΔT are quite consistent with each other, the contribution of T is not very strong (Fig. 12), because 

the regression coefficient βT is small (Fig. S18). The only model showing clear contribution of T is EC-Earth3, as there is a 

large area in eastern Eurasia where positive values of ΔSWEchange co-occur with a cold bias. The spatial distribution of the bias 

in SWEchange in the EC-Earth3 model differs considerably from other models (Fig. 8). The model has been found to drastically 465 

overestimate snow cover extent though not so much the SWE (Mudryk et. al. 2020). This suggests that while the positive bias 

in SWEchange (i.e., underestimated snowmelt rate in spring) is related to the cold bias, the cold bias might be maintained by a 

too high surface albedo resulting from overestimated snow cover extent. 

 

Several factors can weaken the regression coefficient βT. The analysis shows that in spring, the relationship between ΔT and 470 

ΔSWEchange is strongest in western parts of Eurasia and in southern parts of North America (Fig. S18). These are regions with 

the earliest snow melt onset. In these areas, T is the dominant factor causing snow to melt throughout the spring season. In the 

northernmost parts of the study area, the melt season begins later, so that early spring still belongs to the snow accumulation 

season. As a result, P may still be the dominant factor influencing ΔSWEchange in early spring, and T will become a more 

significant factor later in the spring. This can reduce the correlation and affect R2, βP and βT in the northern parts of the study 475 

area. Additionally, if SWE in winter is simulated incorrectly, this can affect the melt rates in spring, as there can be too little 

or too much snow that can melt. 

 

5.2 The residual term 

In both winter and spring, the residual term R of the regressions is also significant (Figs. 6, 7, 11 and 12). This means that the 480 

model biases in SWE in winter and SWEchange in spring cannot be entirely explained by the biases in P and T, but other factors 

also contribute to these biases. These factors may include inaccuracy in the model parameterizations related to snow and 

surface energy budget, but also inaccuracy in the observational datasets. 

 

The residual term R is particularly pronounced for the SWE change rate in spring, when it is typically larger than either the 485 

contribution of P or T. Interestingly, the residual is mostly negative (Fig. 12). The negative residual means that if P and T were 

simulated correctly in the models, snow would melt too fast in spring. While understanding the origins of this bias would be 

worth a separate study, a previous study with ECHAM5 (Räisänen et al. 2014) is of interest here. ECHAM5 is a predecessor 

of the atmospheric part of MPI-ESM1-2-HR, for which the residual R in Fig. 12 is especially strongly negative. This is 

consistent with the finding that in ECHAM5 snow melted generally too fast in spring, despite a cold bias in T (Räisänen et al. 490 

2014). A major factor for this was that T was not calculated separately for snow-covered and snow-free parts of the grid cell. 

Because of that, T was not able to rise above 0 ℃ if there was snow left in the grid cell, and, therefore, a too large fraction of 

the available energy was used in melting the snow (Räisänen et al., 2014).  

 



24 

 

The parameterization of the surface albedo is another factor that influences the snowmelt rate. In spring, the surface albedo 495 

feedback is strong and if the albedo is not correctly simulated in the models, it can cause large biases in SWE in spring 

(Thackeray et al., 2018). CMIP5 models have had challenges in simulating correctly the surface albedo on snow-covered land 

(Thackeray et al., 2015). The intermodel variability in surface albedo feedback is large in CMIP5 models (Qu and Hall, 2014; 

Thackeray et al., 2018), and the large variability has been found to persist in CMIP6 models (Thackeray et al., 2021), 

suggesting that there are still large uncertainties in simulating the surface albedo. Specifically, regarding the discussion on 500 

ECHAM5 and MPI-ESM1-2-HR above, the only region in which MPI-ESM1-2-HR displays a positive residual in Fig. 12 is 

southeastern Siberia. In this very region, ECHAM5 featured delayed snowmelt, related to overly high albedo in the presence 

of vegetation over snow (Räisänen et al., 2014). While the specific mechanisms leading to too fast snow melt might differ in 

different models, the example of ECHAM5 highlights the importance of the treatment of surface energy budget in the presence 

of snow. 505 

 

In addition to issues related to the models, uncertainties in the observational data can also affect the residual values. With the 

bias-correction method, SWE data is more accurate than before, but the uncertainty in hemisphere-mean values is still 7.4%. 

In mountainous regions, the complex terrain poses a challenge in the SWE estimation but averaging over multiple products 

can improve the accuracy (Mortimer et al., 2020). There are also uncertainties associated with the GPCC and MERRA-2 510 

datasets that can cause errors in assessing the model biases; for example, MERRA-2 underestimates global warming trends in 

the last years of our study period compared to other reanalyses (Gelaro et al., 2017; Simmons et al., 2017). Snow cover in 

spring is especially sensitive to warming (Hernández‐Henríquez et al., 2015) and, therefore, the uncertainties in MERRA-2 

can affect the results especially in spring. 

 515 

The uncertainties associated with the GPCC precipitation product can be divided into two categories: the systematic measuring 

error and stochastic sampling error (Schneider et al., 2014). The systematic error results from evaporation and from droplets 

and snowflakes being drifted across the gauge funnel. This error almost always causes underestimation of precipitation 

(Schneider et al., 2014). The sampling error, in turn, is caused by the sparse network density of the in situ stations and the error 

increases when the density of the network decreases. A correction method taking into account the weather conditions has been 520 

implemented in the GPCC to improve the P estimate (Schneider et al., 2014). In general, estimating precipitation in high 

latitudes is a challenge. The estimates have improved, but especially regional discrepancies still exist between different 

precipitation products (Behrangi et al., 2016). This causes uncertainties in assessing the model bias and means that the choice 

of the precipitation product may influence the results. 

 525 

We additionally studied the dependency between the residual term and fractional forest cover (Fig. S22), and we did this 

separately for the entire study area and for non-mountainous regions. In the entire study area, the spread of the residual term 

is quite large when the fraction of forest cover is small in both winter and spring. When looking at only the non-mountainous 
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areas, the spread decreases compared to the entire study area, especially in spring. This illustrates that the residual term is 

particularly large in mountainous areas, indicating that in mountainous areas, T or P can only explain a small fraction of SWE 530 

bias, but other factors contribute SWE bias considerably. Also, in mountainous areas, the intermodel variability of the residual 

term is substantial. The complex terrain and large SWE variability make SWE estimates challenging. Also, the original 

resolution of CMIP6 models can be too coarse for accurately describing SWE in mountainous terrain; biases in snow cover 

and snow depth have been found to decrease considerably with downscaled regional climate models in mountainous regions 

(Matiu et al., 2019). Resampling the datasets to a common grid can cause uncertainties in mountainous areas due to the high 535 

topographic variability within a grid cell. 

 

For most models, the residual term in non-mountainous areas in winter depends little on the fractional forest cover, indicating 

that the residual arises from other sources. For the CESM2 and NorESM2-MM models, however, the residual decreases when 

forest cover fraction increases, and this dependency is strikingly similar for these two models. Since CESM2 and NorESM2-540 

MM both employ the CLM5 land surface model (Lawrence et al., 2019), this hints that the large positive SWE residual in 

these models originates from CLM5. Also, a unique feature within CESM2 that may cause high residual values in the coldest 

regions is that the model allows for a very large maximum SWE to enable the simulation of firn production over ice sheets 

(van Kampenhout et al., 2017). Even though our study does not cover ice sheets, this feature may cause positive SWE bias in 

the coldest regions of the study area (e.g. in the northernmost regions of Canada). 545 

 

In spring in non-mountainous areas, the residual of SWEchange depends quasi-systematically on the forest cover fraction. While 

the level of the residual terms varies between the models, the values increase with increasing forest cover fraction in all models. 

The residual varies mostly between -25 and -12 kg m-2 month-1 for open areas, and between -13 and -2 kg m-2 month-1 when 

the forest cover fraction is close to 100%. This leaves room for at least two possible interpretations. On one hand, the larger 550 

intermodel spread of the residual over open areas suggests that problems in snow albedo parameterization (e.g., how to account 

for snow metamorphism, Colbeck, 1982) could be at least partly responsible for the large residual term. Due to the shading 

effect of the canopy (Malle et al., 2019), snow albedo treatment differences in the models should manifest strongest over open 

tundra regions and less so over dense forest cover. On the other hand, the quasi-systematic dependence of the residual on the 

forest cover fraction could also point to some subtle issues in the SWE estimates of the SnowCCI dataset in spring. 555 

 

Overall, the reasons behind the residual term are complex and more detailed model-specific investigations for all participating 

CMIP6 models are beyond the scope of this study. Further analysis would be required in the future to fully understand the 

factors behind the residual term. 
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5 Conclusions 560 

We have intercompared NH SWE estimates between CMIP6 models and observation-based SWE reference data and studied 

whether model biases in precipitation (P) or temperature (T) could explain the SWE model biases. Our study covered land 

areas north of 40°N and years between 1982 and 2014. We analyzed separately the SWE in winter (in February) and the SWE 

change rate in spring (SWEchange from February to May). Using regression analysis, we divided the SWE model bias (ΔSWE 

and ΔSWEchange, model minus observation) into three components: the contribution of P, the contribution of T and the 565 

contribution of other factors, such as deficiencies in model parameterizations or inaccuracies in the observational datasets. The 

main findings in our study are as follows: 

 

• The models generally overestimate SWE, but large variability exists between models. The largest overestimations 

occur mainly in the northernmost parts of both Eurasia and North America. In winter, the overestimated SWE is 570 

mainly concentrated in the same areas in every model, but the magnitude differs between the models. In spring, the 

snow melt rates vary clearly between the models. 

• In winter, the SWE biases can be explained mostly with the P biases. The contribution of T is clearly smaller than 

that of P. This is in line with the expected results, as even too cold temperatures cannot cause too high SWE without 

precipitation. However, other factors contribute to SWE discrepancies as well. 575 

• In spring, T and P explain partly the biases in SWEchange. Especially cold or warm biases often co-occur with large 

SWEchange biases, but large spatial and intermodel variability exists. The importance of T in explaining SWEchange 

discrepancies during spring is to be expected, because the increase in T is the main factor that causes snow to melt as 

spring progresses. Yet it should be noted that the contribution of other factors, such as observation uncertainty or 

deficiencies in model parameterizations, is more significant in spring than in winter. 580 

 

Overall, the study showed that the models still need to be improved to accurately describe SWE. However, the analysis also 

showed that there is a link between T and SWE, especially in the warmer regions of the study area, suggesting that climate 

models may be able to simulate SWE trends in a warming climate correctly, even if SWE itself is not accurately reproduced. 

Uncertainties in the observational data also cause uncertainties in the analysis, so by improving the observational data, we can 585 

study the models’ ability to describe the snow cover more reliably and, thus, further improve the models. 

Appendix A: The equations for calculating the model biases and the linear regressions 

The steps for calculating the model biases in SWE, T and P, and subsequently the linear regressions in winter are as follows: 

 

1. We calculated cumulative T (Tcum) and P (Pcum) from November to January for each model and for the observational datasets: 590 
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Tcum, model=TNov+TDec+TJan           (A1) 

Tcum, obs=TNov+TDec+TJan            (A2) 

Pcum, model=PNov+PDec+PJan            (A3) 

Pcum, obs=PNov+PDec+PJan            (A4) 

 595 

2. We calculated the model bias in cumulative T (ΔTcum) and P (ΔPcum): 

∆Tcum=Tcum, model-Tcum, obs            (A5) 

∆Pcum,=Pcum, model-Pcum, obs            (A6) 

 

3. We calculated the model bias in SWE (ΔSWE) in February: 600 

∆SWE=SWE model-SWE obs           (A7) 

 

4. We calculated the linear regression for the biases using the ordinary least squares method: 

∆SWE = β
T
∆Tcum + β

P
∆Pcum + C           (A8) 

where βT and βP are the regression coefficients, and C is the constant. 605 

 

The steps for calculating the biases in SWEchange, T and P, and subsequently the linear regressions in spring are as follows: 

 

1. We calculated monthly change in SWE (SWEchange) for each model and for the SWE reference data: 

SWEchange,1=SWEMar-SWE Feb           (A9) 610 

SWEchange,2=SWEApr-SWE Mar            (A10) 

SWEchange,3=SWEMay-SWE Apr           (A11) 

 

2. We calculated the model biases in monthly SWEchange (ΔSWEchange): 

∆SWEchange=SWEchange,1,model-SWE change,1,obs         (A12) 615 

∆SWEchange=SWEchange,2,model-SWE change,2,obs         (A13) 

∆SWEchange=SWEchange,3,model-SWE change,3,obs         (A14) 

 

3. We calculated the model biases in T (ΔT) and P (ΔP) in March, April, and May: 

∆T1=TMar,model-TMar,obs             (A15) 620 

∆T2=TApr,model-TApr,obs             (A16) 

∆T3=TMay,model-TMay,obs             (A17) 
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∆P1=PMar,model-PMar,obs             (A18) 

∆P2=PApr,model-PApr,obs             (A19) 

∆P3=PMay,model-PMay,obs             (A20) 625 

 

3. We pooled together the values of ΔSWEchange, ΔP and ΔT for the whole spring period (February through May) and calculated 

the linear regression for the biases using the ordinary least squares method: 

∆SWEchange = β
T
∆T + β

P
∆P + C           (A21) 

where βT and βP are the regression coefficients, and C is the constant. 630 

Data availability 

The CMIP6 model data are available at the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/). The SWE 

products used in this study are available at Globsnow data archive (https://www.globsnow.info/swe/archive_v3.0/). The 

original SnowCCI data and the ESA CCI Land Cover time-series v2.0.7 are available at the ESA CCI data portal 

(https://climate.esa.int/en/odp/). The MERRA-2 data are available at the Modeling and Assimilation Data and Information 635 

Services Center (https://disc.gsfc.nasa.gov/). The GPCC data are available at DWD website 

(https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html).  
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