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Abstract. In cold regions, ice-jam events result in severe flooding due to a rapid rise in water levels upstream of the 10 

jam. These floods threaten human safety and damage properties and infrastructures as the floods resulting from ice-11 

jams are sudden. Hence, ice-jam prediction tools can give an early warning to increase response time and minimize 12 

the possible corresponding damages. However, ice-jam prediction has always been a challenging problem as there is 13 

no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological 14 

conditions happen, a few hours to a few days before the event. Ice-jam prediction problem can be considered as a 15 

binary multivariate time-series classification. Deep learning techniques have been widely used for time-series 16 

classification in many fields such as finance, engineering, weather forecasting, and medicine. In this research, we 17 

successfully applied Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and combined 18 

Convolutional-Long Short-Term Memory (CNN-LSTM) networks for ice-jam prediction for 150 rivers in Quebec. 19 

The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along with the corresponding 20 

jam or no-jam events are used as the inputs to the models. We hold out 10% of the data for testing. And we applied 21 

100 re-shuffling and splitting iterations with 80 % of the remaining data for training and 20% for validation. The 22 

results show that the CNN-LSTM model yields the best results in the validation and testing with F1 scores of 0.82 and 23 

0.92, respectively. This demonstrates that CNN and LSTM models are complementary, and a combination of them 24 

further improves classification. 25 

1 Introduction 26 
Predicting ice-jam events gives an early warning of possible flooding, but there is no analytical solution to predict 27 

these events due to the complex interactions between involved hydro-meteorological variables (e.g., temperature, 28 

precipitation, snow depth, and solar radiation). To date, a small number of empirical and statistical prediction methods 29 

such as threshold methods, multi-regression models, logistic regression models, and discriminant function analysis 30 

have been developed for ice jams (Barnes-Svarney and Montz, 1985; Mahabir et al., 2006; Massie et al., 2002; White, 31 

2003; White and Daly, 2002, January; Zhao et al., 2012). However, these methods are site-specific with a high rate of 32 

false-positive errors (White, 2003). The numerical models developed for ice-jam prediction (e.g., ICEJAM (Flato and 33 

Gerard, 1986, cf.; Carson et al., 2011), RIVJAM (Beltaos, 1993), HEC-RAS (Brunner, 2002), ICESIM (Carson et al., 34 

2001 and 2003), and RIVICE (Lindenschmidt, 2017)) show limitations in predicting ice-jam occurrence. This is 35 

because mathematical formulations in these models are complex which need many parameters that are often 36 

unavailable as they are challenging to measure in ice conditions. Hence, many simplifications corresponding to these 37 
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parameters may degrade model accuracy (Shouyu & Honglan, 2005). A detailed overview of the previous models for 38 

ice-jam prediction based on hydro-meteorological data are presented in Madaeni et al. (2020).  39 

Prediction of ice-jam occurrence can be considered as a binary multivariate time-series classification (TSC) problem 40 

when the time series of various hydro-meteorological variables (explained later) can be used to classify jam or no jam 41 

events. Time-series classification (particularly multivariate) has been widely used in various fields, including 42 

biomedical engineering, clinical prediction, human activity recognition, weather forecasting, and finance. Multivariate 43 

time-series provide more patterns and improve classification performance compared to univariate time-series (Zheng 44 

et al., 2016). Time-series classification is one of the most challenging problems in data mining and machine learning.  45 

Most existing TSC methods are feature-based, distance-based, or ensemble methods (Cui et al., 2016). Feature 46 

extraction is challenging due to the difficulty of handcrafting useful features to capture intrinsic characteristics from 47 

time-series data (Karim et al., 2019; Zheng et al., 2014, June). Hence, distance-based methods work better in TSC 48 

(Zheng et al., 2014, June). Among the hundreds of methods developed for TSC, the leading classifier with the best 49 

performance was ensemble nearest neighbor with dynamic time warping (DTW) for many years (Fawaz et al., 2019, 50 

July; Karim et al., 2019).  51 

In the k-nearest neighbors (KNN) classifier, the given test instance is classified by a majority vote of its k closest 52 

neighbors in the training data. The KNN classifier needs all the data to make a prediction which requires high memory. 53 

Hence, it is computationally expensive and could be slow if the database is large, and sensitive to irrelevant features 54 

and the scale of the data. Furthermore, the number of neighbors to include in the algorithm should be carefully selected. 55 

The KNN classifier is very challenging to be used for multivariate TSC. The dynamic time warping is a more robust 56 

alternative for Euclidean distance (the most widely used time-series distance measure) to measure the similarity 57 

between two given time series by searching for an optimal alignment (minimum distance) between them (Zheng et 58 

al., 2016). However, the combined KNN with DTW is time-consuming and inefficient for long multivariate time-59 

series (Lin et al., 2012; Zheng et al., 2014, June). The traditional classification and classic data mining algorithms 60 

developed for TSC have high computational complexity or low prediction accuracy. This is due to the size and inherent 61 

complexity of time series, seasonality, noise, and feature correlation (Lin et al., 2012). 62 

There are some machine learning methods available for TSC such as KNN and support vector machine (SVM). 63 

However, the focus of this research is on the deep learning models that have greatly impacted sequence classification 64 

problems and they can also be used for multivariate TSC with good performance. Deep learning methods are able to 65 

consider two-dimensionality in multivariate time-series and their deeper architecture could further improve the 66 

classification especially for complex problems, which is why their results are more accurate and robust than other 67 

methods (Wu et al., 2018a, April). However, they are more time consuming and difficult to interpret. 68 

Deep learning is a type of neural networks that uses multiple layers where nonlinear transformation is used to extract  69 

higher-level features from the input data. Although deep learning in recent years showed promising performance in 70 

various fields such as image and speech recognition, document classification, and natural language processing, only a 71 

few studies employed deep learning for TSC (Gu et al., 2018; Fawaz et al., 2019, July). Various studies show that 72 

deep neural networks significantly outperform the ensemble nearest neighbor with DTW (Fawaz et al., 2019, July). 73 

The main benefit of deep learning networks is automatic feature-extraction, which reduces the need for expert 74 
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knowledge of the field and removes engineering bias in the classification task (Fawaz et al., 2019) as the probabilistic 75 

decision (e.g., classification) is taken by the network. 76 

The most widely used deep neural networks for TSC are Multi-Layer Perceptron (MLP; i.e., fully connected deep 77 

neural networks), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM). The application 78 

of CNNs for TSC has recently become more and more popular, and different types of CNN are being developed with 79 

superior accuracy for this purpose (e.g., Cui et al., 2016). Zheng et al. (2014, June) and Zheng et al. (2016) introduce 80 

a Multi-Channels Deep Convolutional Neural Network (MC-DCNN) for multivariate TSC, where each variable (i.e., 81 

univariate time series) is trained individually to extract features and finally concatenated using an MLP to perform 82 

classification (Fig. 1). They showed that their model achieves a state-of-the-art performance both in efficiency and 83 

accuracy on a challenging dataset. The drawback of their model and similar architectures (e.g., Devineau et al., 2018, 84 

May) is that they do not capture the correlation between variables as the feature extraction is carried out separately for 85 

each variable.  86 

 87 

Figure 1. A 2-stages MC-DCNN architecture for activity classification. This architecture consists of three channels input, 88 
two filter layers, two pooling layers, and two fully-connected layers (after Zheng et al., 2014, June). 89 

Brunel et al. (2019) present CNNs adapted for TSC in cosmology using 1D filters to extract features from each channel 90 

over time and a 1D convolution in depth to capture the correlation between the channels. They compared the results 91 

from LSTMs with CNNs, which shows that CNNs give better results than LSTMs. Nevertheless, both deep learning 92 

approaches are very promising. 93 

The combination of CNNs and LSTM units has already yielded state-of-the-art results in problems requiring 94 

classification of temporal information such as human activity recognition (Li et al., 2017; Mutegeki and Han, 2020, 95 
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February), text classification (Luan and Lin, 2019;  March, She and Zhang, 2018, December;  Umer et al., 2020), 96 

video classification ( Lu et al., 2018 and Wu et al., 2015, October), sentiment analysis (Ombabi et al., 2020;  Sosa, 97 

2017; Wang et al., 2016, August;  Wang et al., 2019),  typhoon formation forecasting (Chen et al.,2019), and 98 

arrhythmia diagnosis (Oh et al., 2018). In this architecture, convolutional operations capture features and LSTMs 99 

capture time dependencies on extracted features. Ordóñez and Roggen (2016) propose a deep convolutional LSTM 100 

model (DeepConvLSTM) for activity recognition (Fig. 2). Their results are compared to the results from standard 101 

feedforward units showing that DeepConvLSTM reaches a higher F1 score and better decision boundaries for 102 

classification. Furthermore, they noticed that the LSTM model gives promising results with relatively small datasets. 103 

Furthermore, LSTMs present a better performance in capturing longer temporal dynamics, whereas the convolution 104 

filters can only capture the temporal dependencies dynamics within the length of the filter.  105 

 106 

Figure 2. The architecture of the DeepConvLSTM framework for activity recognition (after Ordóñez and Roggen, 2016). 107 

This project is a part of a project called DAVE, which aims to develop a tool to provide regional ice jam watches and 108 

warnings, based on the integration of three aspects: the current conditions of the ice cover; hydro-meteorological 109 

patterns associated with breakup ice jams; and channel predisposition to ice-jam formation. The outputs of the previous 110 

tasks will be used to develop an ice-jam monitoring and warning module and transfer the knowledge gained to end-111 

users to better manage the risk of ice jams. 112 

The objective of this research is to develop deep learning models to predict breakup ice-jam events to be used as an 113 

early warning system of possible flooding. While most TSC research in deep learning is performed on 1D channels 114 

(Hatami et al., 2018, April), we propose deep learning frameworks for multivariate TSC for ice-jam prediction. 115 

Through our comprehensive literature review, we noticed that CNN (e.g., Brunel et al., 2019; Cui et al., 2016; 116 

Devineau et al., 2018, June; Kashiparekh, 2019, July; Nosratabadi et al., 2020;Yan et al., 2020; Yang et al., 2015, 117 

June; Yi et al., 2017; Zheng et al., 2016), LSTM (e.g., Fischer and Krauss, 2018; Lipton et al., 2015; Nosratabadi et 118 

al., 2020; Torres et al., 2021), and a combined CNN-LSTM (e.g., Karim et al., 2o17; Livieris et al., 2020; Ordóñez 119 

and Roggen, 2016; Sainath et al., 2015, April; Xingjian et al., 2015) have been widely used  for TSC. There are 120 

numerous applications of CNN, LSTM, and their hybrid versions applied in hydrology (Althoff et al., 2021; Apaydin 121 

et al., 2020; Barzegar et al., 2021, 2020; Kratzert et al., 2018; Wunsch et al., 2020; Zhang et al., 2018). Although deep 122 

learning methods seem to be promising to address the requirements of ice-jam predictions, none of these methods yet 123 

have been explored for ice jam prediction.  124 
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Hence, we developed three deep learning models; a CNN, an LSTM, and a combined CNN-LSTM for ice-jam 125 

predictions and compared the results. The previous studies show that these models show good capabilities in capturing 126 

features and the correlation between features (through convolution units) and time dependencies (through memory 127 

units) that will be later used for TSC. The combined CNN-LSTM can reduce errors by compensating for the internal 128 

weaknesses of each model. In the CNN-LSTM model, CNNs capture features, then the LSTMs give the time 129 

dependencies on the captured features.  130 

Furthermore, we also developed some machine learning methods as simpler methods for ice-jam prediction. And their 131 

results are compared with results from the developed deep learning models. 132 

2 Materials and Methods 133 

2.1 Data and study area 134 

It is known that specific hydro-meteorological conditions lead to ice-jam occurrence (Turcotte and Morse, 2015, 135 

August and White, 2003). For instance, breakup ice jams occur when a period of intense cold is followed by a rapid 136 

peak discharge resulting from spring rainfall and snowmelt runoff (Massie et al., 2002). The period of intense cold 137 

can be represented by the changes in Accumulated Freezing Degree Days (AFDD). The sudden spring runoff increase 138 

is not often available at the jam location and can be represented by liquid precipitation and snow depth some days 139 

before ice-jam occurrence (Zhao et al., 2012). Prowse and Bonsal (2004) and Prowse et al. (2007) evaluate various 140 

hydroclimatic explanations for river ice freeze-up and breakup, concluding that shortwave radiation is the most critical 141 

factor influencing the mechanical strength of ice and consequently the possibility of breakup ice jams to occur. 142 

Turcotte and Morse (2015, August) explain that Accumulated Thawing Degree Day (ATDD), an indicator of warming 143 

periods, partially covers the effect of shortwave radiation.  In the previous studies of ice-jam and breakup predictions, 144 

discharge and changes in discharge, water level and changes in water level, AFDD, ATDD, precipitation, solar 145 

radiation, heat budget, and snowmelt or snowpack are the most readily used variables (Madaeni et al., 2020).  146 

The inputs we used in this study are historical ice-jam or no ice-jam occurrence (Fig. 3) as well as hydro-147 

meteorological variables including liquid precipitation (mm), min and max temperature (°C), AFDD (from August 148 

1st; °C), ATDD (from January 1st; °C), snow depth (cm) and net radiation (W m-2) in 150 rivers in Quebec. The net 149 

solar radiation, the total energy available to influence the climate, is calculated as the difference between incoming 150 

and outgoing energy. If the median temperature is greater than 1, the precipitation is considered liquid precipitation. 151 

The statistics of hydro-meteorological data used in the models are presented in Table 1. The source, time period, and 152 

spatial resolution of the input variables are shown in Table 2.  153 

Ice-jam database is provided by the Quebec Ministry of Public Security (MSPQ; Données Québec, 2021) for 150 154 

rivers in Quebec, mainly in the St. Lawrence basin. The database comes from the digital or paper event reports by 155 

local authorities under the jurisdiction of the MSPQ from 1985 to 2014. Moreover, some other data of this database 156 

are provided by the field observations from the Vigilance / Flood application from 2013 to 2019. It contains 995 157 

recorded jam events that are not validated and contain many inaccuracies, mainly in the toponymy of the rivers, 158 

location, dating, and the redundancy of jam events.  159 



6 

 

The names of the watercourse of several recorded jams are not given or completely wrong or affected by a typo or an 160 

abbreviation. The toponymy of the rivers was corrected using the National Hydrographic Network (NHN; National 161 

Hydrographic Network - Natural Resources Canada (NRCan)), the Geobase of the Quebec hydrographic network 162 

(National Hydro Network - NHN - GeoBase Series - Natural Resources Canada), and the Toporama Web map service 163 

(The Atlas of Canada - Toporama - Natural Resources Canada) of the Sector of Earth Sciences.  164 

Several ice jams are placed on the banks at a small distance (less than 20 m) from the polygon of the river. In this 165 

case, the location of the ice jam is moved inside the river polygon. In other cases, ice-jam point is posed further on the 166 

flooded shore at a distance between 20 and 200 m. This has been corrected based on images with very high spatial 167 

resolution, the sinuosity and the narrowing of the river, the history of ice jams at the site in question, and the press 168 

archives. In addition, some ice jams were placed too far from the mentioned river due to wrong recorded coordinates 169 

in the database. A single-digit correction in longitude or latitude returned the jam to its exact location. There are certain 170 

cases where the date of jam formation is verified by searching the press archives, notably when the date of formation 171 

is missing or several jams with the same dates and close locations in a section of a river are present. 172 

The ice jam database contains many duplicates. This redundancy can be due to merging two data sources, the double 173 

entry during ice-jam monitoring, or recording an ice jam for several days. The duplicates are removed from the 174 

database. The corrected ice-jam database contains 850 jams for 150 rivers, mainly in southern Quebec (Fig. 3). The 175 

ice jams formed in November and December (freeze-up jams) are removed to only include breakup jams (from January 176 

15th) in the modelling as these two types of jams are formed due to different processes. The final breakup ice-jam 177 

database that used in this study includes 504 jam events.  178 
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 179 

Figure 3. Study area and historic ice-jam locations recorded in Quebec from 1985-2017. 180 

Table 1. Statistics of hydro-meteorological variables used in the models. 181 

Statistics 

Liquid P 

(mm) 

Tmin 

(°C) 

Tmax 

(°C) 

Net radiation (W m-

2) 

ATDD 

(°C) 

AFDD 

(°C) 

Snowdepth 

(cm)  

min 0.00 -40.00 -25.97 -67.77 0.00 -2109.33 0.00 

max 50.87 12.05 27.48 222.69 280.82 -35.41 121.86 

average 1.04 -9.41 0.98 59.75 8.83 -898.48 15.99 

median 0.00 -7.73 1.68 59.41 1.27 -890.74 11.50 

 182 
Table 2. Source, duration, and spatial resolution of hydro-meteorological data used in the models. 183 

Data Source Duration Spatial 

resolution 

Min and Max temperature* Daily Surface Weather Data (Daymet; Thornton et al., 2020) 1979-2019 1 km 

Liquid precipitation Canadian Precipitation Analysis (CaPA; Mahfouf et al., 

2007) 

2002-2019 10-15km 

Liquid precipitation North American Regional Reanalysis (NARR; Mesinger et 

al., 2006) 

1979-2001 30 km 

Infrared radiation emitted by 

the atmosphere 

North American Regional Reanalysis (NARR) 1979-2019 30 km 

Infrared radiation emitted 

from the surface 

North American Regional Reanalysis (NARR) 1979-2019 30 km 

Snow depth  North American Regional Reanalysis (NARR) 1979-2019 30 km 

* The average was used to derive the AFDD and the ATDD.  184 
  185 
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2.2 Machine learning models for TSC 186 

The common machine learning techniques that have been used for TSC are SVM (Rodríguez and Alonso, 2004; Xing 187 

and Keogh, 2010), KNN (Li et al., 2013; Xing and Keogh, 2010), decision tree (DT; Brunello et al., 2019; Jović et al., 188 

2012, August), and multilayer perceptron (MLP; del Campo et al., 2021; Nanopoulos et al., 2001). For more 189 

information about these machine learning models refer to the mentioned literature above. We do not explain these 190 

models and their applications in TSC, as they are not the focus of this study.  191 

We developed the mentioned machine learning methods and compared their results with the results of deep learning 192 

models. After some trials and errors, the parameters that are changed from the default values for each machine learning 193 

model are as follows. We developed an SVM with a polynomial kernel with a degree of 5 that can distinguish curved 194 

or nonlinear input space. The KNN is used with 3 neighbors used for classification. The decision tree model is applied 195 

with all the default values. The shallow MLP is used with ‘lbfgs’ solver (which can converge faster and perform better 196 

for small datasets), alpha of 1e-5, and 3 layers with 7 neurons in each layer.  197 

2.3 Deep learning models for TSC 198 

The most common and popular deep neural networks for TSC are MLPs, CNNs, and LSTMs (Brownlee, 2018; and 199 

Torres et al., 2021). Despite their power, however, MLP has limitations that each input (i.e., time-series element) and 200 

output are treated independently, which means that the temporal or space information is lost (Lipton et al., 2015). 201 

Hence, an MLP needs some temporal information in the input data to model sequential data such as time series 202 

(Ordóñez and Roggen, 2016). In this regard, Recurrent Neural Networks (RNNs) are specifically adapted to sequence 203 

data through the direct connections between individual layers (Jozefowicz et al., 2015). Recurrent Neural Networks 204 

perform the same repeating function with a straightforward structure, e.g., a single tanh (hyperbolic tangent) layer, for 205 

every input of data (xt), while all the inputs are related to each other with their hidden internal state, which allows it 206 

to learn the temporal dynamics of sequential data (Fig. 4).  207 

 208 

Figure 4. An RNN with a single tanh layer, where A is a chunk of the neural network, x is input data, and h is output data. 209 

Recurrent Neural Networks were rarely used in TSC due to their significant problems. Recurrent Neural Networks 210 

mainly predict output for each time-series element, they are sensitive to the first examples seen, and it is also 211 

challenging to capture long-term dependencies due to vanishing gradients, exploding gradients, and their complex 212 

dynamics (Devineau et al., 2018, June; Fawaz et al., 2019). 213 

Long short-term memory RNNs are developed to improve the performance of RNNs by integrating a memory to 214 

model long-term dependencies in time-series problems (Brunel et al., 2019; Karim et al., 2019). Long short-term 215 
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memory networks do not have the problem of exploding gradients. The LSTMs have four interacting neural network 216 

layers in a very special way (Fig. 5). An LSTM has three sigmoid (σ) layers to control how much of each component 217 

should be let through by outputting numbers between zero and one. The input to an LSTM goes through three gates 218 

(“forget”, “input”, and “output gates”) that control the operation performed on each LSTM block (Ordóñez and 219 

Roggen, 2016). The first step is the “forget gate” layer that gets the output of the previous block (ht−1), the input for 220 

the current block (Xt), and the memory of the previous block (Ct-1) and gives a number between 0 and 1 for each 221 

number in the cell state (Ct−1; Olah, 2015). The second step is called the “input gate” with two parts, a sigmoid layer 222 

that decides which values to be updated and a tanh layer that creates new candidate values for the cell state. These two 223 

new and old memories will then be combined and control how much the new memory should influence the old 224 

memory. The last step (output gate) gives the output by applying a sigmoid layer deciding how much new cell memory 225 

goes to output, and multiply it by tanh applied to the cell state (giving values between −1 and 1).  226 

 227 

Figure 5. Structure of LSTM block with four interacting layers. 228 

Recently, convolutional neural networks challenged the assumption that RNNs (e.g., LSTMs) have the best 229 

performance when working with sequences. The CNNs show state-of-the-art performance in sequential data such as 230 

speech recognition and sentence classification, similar to TSC (Fawaz et al., 2019).  231 

The CNNs are the most widely used deep learning methods in TSC problems (Fawaz et al., 2019). They learn spatial 232 

features from raw input time series using filters (Fawaz et al., 2019). The CNNs are robust and need a relatively small 233 

amount of training time comparing with RNNs or MLPs. They work best for extracting local information and reducing 234 

the complexity of the model.  235 

A CNN is a kind of neural network with at least one convolutional (or filter) layer. A CNN usually involves several 236 

convolutional layers, activation functions, and pooling layers for feature extraction following by dense layers (or 237 

MLP) as a classifier (Devineau et al., 2018, June). The reason to use a sequence of filters is to learn various features 238 

from time series for TSC.  A convolutional layer consists of a set of learnable filters that compute dot products between 239 

local regions in the input and corresponding weights. With high-dimensional inputs, it is impractical to connect 240 

neurons to all neurons in the previous layer. Therefore, each neuron in CNNs is connected to only a local region of 241 

the input, namely the receptive field, which equals the filter size (Fig. 6). This feature reduces the number of 242 

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
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parameters by limiting the number of connections between neurons in different layers. The input is first convolved 243 

with a learned filter, and then an element-wise nonlinear activation function is applied to the convolved results (Gu et 244 

al., 2018). The pooling layer performs a downsampling operation such as maximum or average, reducing the spatial 245 

dimension. One of the most powerful features of CNNs is called weight or parameter sharing, where all neurons share 246 

filters (weights) in a particular feature map (Fawaz et al., 2019) to reduce the number of parameters.  247 

 248 

Figure 6. A convolution layer structure including two sets of filters. 249 

 250 

2.4 Model libraries  251 

In an Anaconda (Analytics, C., 2016) environment, Python is implemented to develop CNN, LSTM, and CNN-LSTM 252 

networks for TSC. To build and train networks, the networks are implemented in Theano (Bergstra et al., 2010, June) 253 

using the Lasagne (Dieleman et al., 2015) library. The other core libraries used for importing, preprocessing, training 254 

data, and visualization of results are Pandas (Reback et al., 2020), NumPy (Harris et al., 2020), Scikit-Learn 255 

(Pedregosa et al., 2011), and Matplotlib.PyLab (Hunter, J. D., 2007). Spyder (Raybaut, 2009) package of Anaconda 256 

is utilized as an interface, or the command window can be used without any interface.   257 

2.5 Preprocessing 258 

The data is comprised of variables with varying scales, and the machine learning algorithms can benefit from rescaling 259 

the variables to all have the same scale. Scikit-learn (Pedregosa et al., 2011) is a free library for machine learning in 260 

Python that can be used to preprocess data. We examined Scikit-learn MinMaxScaler (scaling each variable between 261 

0 and 1), Normalizer (scaling individual samples to the unit norm), and StandardScaler (transforming to zero mean 262 

and unit variance separately for each feature). The results show that MinMaxScaler (Eq. (1)) leads to the most accurate 263 

results. The scaling of validation data is done with min and max from train data. 264 

Xscaled  =  
X − X.min

X.max − X.min
                                                                                                                                        (1) 265 

For each jam or no jam event, we used 15 days of information before the event to predict the event on the 16th day. 266 

We generate a balanced dataset with the same number of jam and no-jam events (1008 small sequences totally), 267 

preventing the model from becoming biased to jam or no-jam events. The hydro-meteorological data related to no-268 

jam events are constructed by extracting data from the reaches of no-jam records. To examine models’ generalization, 269 
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we hold out 10% of data for testing and 80 % and 20 % of remaining data for training and validation, respectively. 270 

We used ShuffleSplit subroutine from the Scikit-learn library, where the database was randomly sampled during each 271 

re-shuffling and splitting iteration to generate training and validation sets. We applied 100 re-shuffling and splitting 272 

iterations for training and validation. There are 726, 181, and 101 small sequences with the size of (16, 7), 16 days of 273 

data for the seven variables; for training, validation, and test, respectively.  274 

2.6 Training  275 

Training a deep neural network with an excellent generalization to new unseen inputs is challenging. As a benchmark, 276 

a CNN model with the parameters and layers similar to previous studies (e.g., Ordóñez and Roggen, 2016) is 277 

developed. The model shows underfitting or overfitting with various architectures and parameters. To overcome 278 

underfitting, deeper models and more nodes in each layer are beneficial; however, overfitting is more challenging to 279 

overcome. Ice-jam dataset for Quebec contains 1008 balanced sequence instances (with a length of 16), which is small 280 

for deep learning. The deep learning models often tend to overfit small datasets by memorizing inputs rather than 281 

training, as a small dataset may not appropriately describe the relationship between input and output spaces. 282 

2.6.1 Overcome overfitting 283 

There are various methods to tackle the problem of overfitting, including acquiring more data, data augmentation (e.g., 284 

cropping, rotating, and noise injection), dropout (Srivastava et al., 2014), early stopping, batch normalization (Ioffe 285 

and Szegedy, 2015, June), and regularization. Acquiring more data is not possible with ice-jam records. We added the 286 

Gaussian noise layer (from the Lasagne library), where the noise values are Gaussian-distributed with zero-mean and 287 

a standard deviation of 0.1 to the input. The noise layers applied to the CNN and LSTM models significantly overcome 288 

the overfitting problem through data augmentation. However, the performance of the CNN-LSTM model dramatically 289 

deteriorates, including a noise layer (Fig. 7). Adding a noise layer to other layers does not improve any of the 290 

developed models for ice-jam prediction. 291 

 292 

Figure 7. Train and validation errors over epochs for CNN-LSTM model with a noise layer. 293 

Early stopping is another efficient method that halts the training procedure where further training would decrease 294 

training loss, while validation loss starts to increase. Neural networks solve an optimization problem that requires a 295 

loss function to calculate the model error. The loss function is similar to an objective function for process-based 296 

hydrological models. Among the developed models, only LSTM needs early stopping at 40 epoch (Fig. 8). More 297 
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explanations about the other methods that are used in this study to overcome overfitting (e.g., batch normalization, 298 

and L2 regularization) can be found in the Appendix.  299 

 300 

Figure 8. Train and validation errors over epochs for an LSTM model showing overfitting after 40 epochs. 301 

2.6.2 Model Hyperparameters  302 

Finding hyperparameter values in deep learning has been challenging due to the complex architecture of deep learning 303 

models and a large number of parameters (Garbin et al., 2020). To find the best model architecture, we study the 304 

performance of models with different layers and parameters such as number of noise, batch normalization, 305 

convolutional, pooling, LSTM, dropout, and dense layers, as well as different pooling sizes and strides, different batch 306 

sizes, various scaling of data (standardization and normalization), various filter sizes, number of units in LSTM and 307 

dense layers, the type of the activation functions, regularization and learning rates, weight decay and number of filters 308 

in convolutional layers. We also applied various combinations of these layers and parameters. The hyperparameters 309 

are optimized through manual trial and error searches as grid search experiments suffer from poor coverage in 310 

dimensions (Bergstra and Bengio, 2012) and manual experiments are much easier and more interpretable in 311 

investigating the effect of one hyperparameter of interest. The optimized hyperparameters are presented in Table 3. 312 

The most important parameters of the models are explained below and for more information about other parameters 313 

readers are referred to the Appendix. 314 

Table 3. Common values and selected values for different parameters of the models. 315 

Parameter 

Common 

values Selected value 

Mini-batch size 16, 32, 64 16 

Number of convolution filters 32, 64, 128 128 

Filter size 3, 5, 7 (5,1) and (5,3) 

Number of LSTM units 32, 64, 128 128 

Number of dense layer units 16, 32, 128, 256 32 

Momentum in SGD   0.5, 0.99, 0.9 0.9 

 316 
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2.6.2.1 Number of layers 317 

The depth is related to the sequence length (Devineau et al., 2018, May), as deeper networks need more data to provide 318 

better generalization (Fawaz et al., 2019, July). In the previous studies of CNNs, there are usually one, two, or three 319 

convolution stages (Zheng et al., 2014, June). We tried different numbers of CNN, LSTM, and dense layers and 320 

selected three, two, and two such layers, respectively, as the sequence length in this study is small (16), and we could 321 

not improve the model performance by merely adding more depth. 322 

2.6.2.2 Number and size of convolution filters 323 

Data with more classes need more filters and longer time series need longer filters to capture longer patterns and 324 

consequently to produce accurate results (Fawaz et al., 2019, July). However, longer filters significantly increase the 325 

number of parameters and potential for overfitting small datasets, while a small filter size risks poor performance. We 326 

finally selected two convolutional layers with 1-D filters of (5, 1) and stride of (1, 1) to capture temporal variation for 327 

each variable separately. Furthermore, one convolutional layer with 2-D filters of size (5, 3) and stride of (1, 1) is then 328 

used to capture the correlation between variables via depth-wise convolution of input time-series. A big stride might 329 

cause the model to miss valuable data used in predicting and smoothing out the noise in the time series. The layers in 330 

CNNs have a bias for each channel, sharing across all positions in each channel. 331 

2.6.2.4 Adaptive learning rates 332 

The adaptive learning rate decreases the learning rate and consequently weights over each epoch. We tried different 333 

base learning and decay rates for each model and found that the learning rate significantly impacts the model 334 

performance. Finally, we chose a base learning rate of 0.1, 0.01, and 0.001 for LSTM, CNN, and CNN-LSTM, 335 

respectively. A decay rate of 0.8 was used for CNN and CNN-LSTM, while for the LSTM model, this rate was 0.95. 336 

Table 4 shows the adaptive learning rates for CNN, LSTM, and CNN-LSTM calculated using Eq. (2) for each epoch. 337 

adaptive learning rate = 𝑏𝑎𝑠𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×  𝑑𝑒𝑐𝑎𝑦𝑒𝑝𝑜𝑐ℎ                                                                                   (2) 338 

The experiments show that the learning rate is the most critical parameter influencing the model performance. A small 339 

learning rate can cause the loss function to get stuck in local minima, and a large learning rate can result in oscillations 340 

around global minima without reaching it. 341 

Our CNN-LSTM model is deeper than the other two models, and deeper models are more prone to a vanishing gradient 342 

problem. To overcome the vanishing gradients, it is recommended that lower learning rates, e.g., lower than 1e-4, be 343 

used. Interestingly, we found that our CNN-LSTM model works better with lower learning rates than the other two 344 

models.  345 

 346 

Table 4. The adaptive learning rate for 50 epochs. 347 

  Learning rate 

Epochs CNN  
CNN-

LSTM 
LSTM 

1 0.008 8.00E-04 0.095 
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2 0.006 6.40E-04 0.09 

3 0.005 5.12E-04 0.086 

4 0.004 4.10E-04 0.081 

. .   . 

. .   . 

40 1.30E-06 1.33E-07 0.013 

. .   - 

50 1.40E-07 1.43E-08 - 

 348 

                                                                                                                 349 

2.6.5 Model evaluation 350 

The network on the validation set is evaluated after each epoch during training to monitor the training progress. During 351 

validation, all non-deterministic layers are switched to deterministic. For instance, noise layers are disabled, and the 352 

update step of the parameters is not performed.  353 

The classification accuracy cannot appropriately represent the model performance for unbalanced datasets, as the 354 

model can show a high accuracy by biasing towards the majority class in the dataset (Ordóñez and Roggen, 2016). 355 

While we built a balanced dataset (with the same number of jam and no jam events), randomly selecting test data and 356 

shuffling the inputs, and splitting data into train and validation sets can result in a slightly unbalanced dataset. In our 357 

case, the number of jams and no jams for train and validation and test sets is presented in Table 5. Therefore, the F1 358 

score (Eq. (3)), which considers each class equally important, is used to measure the accuracy of binary classification. 359 

The F1 score, as a weighted average of the precision (Eq. (4)) and recall (Eq. (5)), has the best and worst scores of 1 360 

and 0, respectively. In Eqs. 7 and 8, TP, FP, and FN are true positive, false positive, and false negative, respectively. 361 

Table 5. The number of jam and no jam events in train and validation and test datasets. 362 

  
Train and 

validation Test 

Jam 456 48 

No jam 451 53 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                                               (3) 363 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                     (4) 364 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                         (5) 365 

Although the model accuracy is usually used to examine the performance of deep learning models, the model size 366 

(i.e., number of parameters) provides a second metric, which represents required memory and calculations, to be 367 

compared among models with the same accuracy (Garbin et al., 2020). 368 

After training the model, the well-trained network parameters are saved to a file and are later used for testing the 369 

network generalization using a test dataset, which is not seen during training and validation. 370 

https://en.wikipedia.org/wiki/Binary_classification
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2.7 Architecture of models 371 

The architectures of CNN, LSTM, and CNN-LSTM models that are finally selected are presented in Figs. 9, 10, and 372 

11, respectively. The layers, their output shapes, and their number of parameters are presented in Tables 6, 7, and 8 373 

for CNN, LSTM, and CNN-LSTM models, respectively. 374 

The CNN models often include pooling layers to reduce data complexity and dimensionality. However, it is not always 375 

necessary that every convolutional layer is followed by a pooling layer in the time-series domain (Ordóñez and 376 

Roggen, 2016). For instance, Fawaz et al. (2019, July) do not apply any pooling layers in their models for TSC. We 377 

tried max-pooling layers after different convolutional layers in CNN and CNN-LSTM networks and found that a 378 

pooling layer following only the last convolutional layer improves the performance of both models. This can be due 379 

to subsampling the time series and using time series with a length of 16 that reduces the need for reducing 380 

dimensionality. 381 

 382 

 383 

Figure 9. The architecture of the CNN model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).  384 

 385 
Figure 10. The architecture of the LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016). 386 

  387 

Figure 11. The architecture of the CNN-LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).  388 

Table 6. The layers, their output shapes, and their number of parameters for the CNN model. 389 

Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 
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GaussianNoise (16, 1, 16, 7) 0 

Conv2D (16, 128, 16, 7) 640 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 81920 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 245888 

MaxPool2D  (16, 128, 5, 2) 0 

Dense (16, 32) 40992 

Dense (16, 32) 1056 

Softmax (16, 2) 66 

 390 
Table 7. The layers, their output shapes, and their number of parameters for the LSTM model. 391 

Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 

GaussianNoise (16, 1, 16, 7) 0 

Dimshuffle (16, 16, 1, 7) 0 

BatchNorm (16, 16, 1, 7) 64 

LSTM (16, 16, 128) 70272 

BatchNorm (16, 16, 128) 64 

Nonlinearity (16, 16, 128) 0 

LSTM (16, 16, 128) 132224 

Reshape  (256, 128) 0 

Dense (256, 32) 4128 

Dense (256, 32) 1056 

Softmax (256, 2) 66 

Reshape (16, 16, 2) 0 

Slice (16, 2) 0 

 392 
Table 8. The layers, their output shapes, and their number of parameters for the CNN-LSTM model. 393 

Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 

Conv2D  (16, 128, 16, 7) 640 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 81920 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 245888 

MaxPool2D (16, 128, 5, 2) 0 
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Dimshuffle (16, 5, 128, 2) 0 

BatchNorm (16, 5, 128, 2) 20 

LSTM (16, 5, 128) 197760 

BatchNorm (16, 5, 128) 20 

Nonlinearity (16, 5, 128) 0 

LSTM (16, 5, 128) 132224 

Reshape (80, 128) 0 

Dense (80, 32) 4128 

Dense (80, 32) 1056 

Softmax (80, 2) 66 

Reshape (16, 5, 2) 0 

Slice (16, 2) 0 

 394 

3 Results and Discussion  395 

3.1 Weight initialization 396 

Among the various types of methods available in Lasagne for weight initialization, the GLOROT uniform (i.e., Xavier; 397 

Glorot and Bengio, 2010, March) and He initializations (He et al., 2015), the most popular initialization techniques, 398 

are used to set the initial random weights in convolutional layers. The results reveal that these methods yield almost 399 

the same F1 scores. However, the histograms of F1 scores reveal that GLOROT uniform yields slightly better results 400 

(Fig. 12). 401 

 402 

Figure 12. Histograms of F1 score for CNN using He (left) and GLOROT uniform (right) weight initialization with 100 403 
random train-validation splits. 404 

3.2 Model evaluation 405 

3.2.1 Learning curves and F1 scores  406 

Line plots of the loss (i.e., learning curves), which are loss over each epoch, are widely used to examine the 407 

performance of models in machine learning. Furthermore, line plots clearly indicate common learning problems, such 408 

as underfitting or overfitting. The learning curves for CNN, LSTM, and CNN-LSTM models are presented in Fig. 13. 409 
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The LSTM model starts to overfit at epoch 40, so an early stopping is conducted. CNN-LSTM performs better than 410 

the other two models, as its training loss is the lowest and is lower than its validation loss. Histograms of F1 scores 411 

(Fig. 14 and Table 9) show that CNN-LSTM outperforms the other two models since it results in the highest average 412 

and the highest minimum F1-scores for validation (0.82 and 0.75, respectively). Figure 13 shows that the training 413 

error of CNN is lower than that of LSTM, which means that CNN trained better than LSTM model. However, it is not 414 

true for the validation error. The reason that the validation error is less than the training error in the LSTM model can 415 

be the employment of regularization methods as LSTM models are often harder to regularize, agreeing with previous 416 

studies (e.g., Devineau et al., 2018, June).  417 

The LSTM network is validated better than the CNN model since its average and minimum F1 scores for validation 418 

are better than the CNN model (by 1 % and 32 %, respectively), and also LSTM yielded no F1 scores below 0.74 (Fig. 419 

14 and Table 9).  420 

As shown in Fig. 13, training loss is higher than validation loss in some of the results. There are some reasons 421 

explaining that. Regularization reduces the validation loss at the expense of increasing training loss. The regularization 422 

techniques such as noise layers are only applied during training, but not during validation resulting in more smooth 423 

and usually better functions in validation. There is no noise layer in CNN-LSTM model that may cause a lower training 424 

error than validation error. However, other regularization methods such as L2 regularization are used in all the models, 425 

including the CNN-LSTM model.  426 

Furthermore, the other issue is that batch normalization uses the mean and variance of each batch in training, whereas, 427 

in validation, it uses the mean and variance of the whole training dataset. Plus, training loss is averaged over each 428 

epoch, while validation losses are calculated after each epoch once the current training epoch is completed. Hence, 429 

the training loss includes error calculations with fewer updates.  430 

Among the developed machine learning models, SVM shows the best validation performance (Figure 15 and Table 431 

10). However, F1 scores of deep learning models are much higher than those of machine learning models with an 432 

average of 6% higher F1 score resulted from CNN-LSTM model compared to the SVM model (Tables 9 and 10). 433 

  434 

   
Figure 13. Train and validation errors over epochs for CNN (left), LSTM (middle), and 

CNN-LSTM (right) models with 100 random train-validation splits. 
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 435 

 436 

Table 9. F1 scores of validation for CNN, LSTM, and CNN-LSTM models with 100 random train-validation splits. 437 

 Models F1 score 

 mean max min 

CNN 0.80 0.88 0.42 

LSTM 0.81 0.87 0.74 

CNN-LSTM 0.82 0.88 0.75 

 438 
Table 10. F1 scores of validation for SVM, DT, and KNN and MLP models with 100 random train-validation splits. 439 

Models F1 score 

  mean max min 

SVM 0.76 0.82 0.69 

DT 0.74 0.80 0.67 

    
Figure 14. Histograms of F1 scores of validation for CNN (left), LSTM (middle), and 

CNN-LSTM (right) models with 100 random train-validation splits. 

 

 

    
 

 

Figure 15. Histograms of F1 scores of validation for SVM (top left), DT (top middle), KNN (top right), and MLP 

(bottom left) models with 100 random train-validation splits. 
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KNN 0.75 0.84 0.68 

MLP 0.75 0.83 0.68 

3.2.2 Number of parameters and run time 440 

The total number of parameters in CNN, LSTM, and CNN-LSTM networks are 371586, 207874, and 664746, 441 

respectively. The best performance has resulted from CNN-LSTM with the highest number of parameters. Even 442 

though the number of parameters for the LSTM model is less than CNN, the LSTM model shows better validation 443 

performance. Furthermore, the number of parameters in the CNN-LSTM model is much higher than the two other 444 

models, but the computation time is not much higher. All three models take less than 24 hours to train with 100 shuffle 445 

splits for training and validation. The models are run on a CPU with four cores, 3.4 GHz clock speed, and 12 GB 446 

RAM.  447 

For all the machine learning models, it took a couple of minutes to train with 100 shuffle splits for training and 448 

validation. Although, the training time for deep learning models is much higher than that of machine learning models, 449 

the much better performance of deep learning models justifies their application in our cases.  450 

3.3 Order of input variables 451 

It is not clear that whether the order of input variables in the input file might influence multivariate TSC or not when 452 

using 2-D filters and 2-D max-pooling layers. In the benchmark, we randomly used this order from left to right: 453 

precipitation, minimum temperature, maximum temperature, net radiation, ATDD, AFDD, and snow depth. We 454 

randomly changed this order and applied the new order: snow depth, maximum temperature, precipitation, AFDD, net 455 

radiation, minimum temperature, and ATDD. Both models yielded the same average and minimum F1 scores, whereas 456 

the maximum F1 score from the order in the benchmark model (0.88) is higher than that of the second-order (0.86). 457 

Therefore, it can be concluded that the order does not significantly impact the results. 458 

3.4 Testing 459 

To examine the ability of the models to generalize to new unseen data, we randomly set aside 10% of data from 460 

training and validation for all the developed deep learning and machine learning models. We trained a CNN, an LSTM, 461 

and a CNN-LSTM model, then the trained parameters are saved, and finally, the well-trained parameters are utilized 462 

for testing. We trained an SVM, a DT, a KNN, and an MLP model and the models are saved and later used for testing. 463 

The test dataset is almost a balanced dataset with 101 samples with the size of (16, 7), including 48 jams and 53 no 464 

jams. 465 

The results of the test models show that CNN-LSTM model represent the best F1 score of 0.92 (Table 11). Tables 9 466 

and 11 show that although LSTM has slightly better validation performance, CNN and LSTM models performed the 467 

same in testing.  468 

The results of machine learning models for testing presented in Table 12 indicate that among the machine learning 469 

models KNN yields the best results with F1 scores of 78%. Tables 11 and 12 declare that deep learning models work 470 
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much better than machine learning models for testing with 14% comparing CNN-LSTM with KNN as the best deep 471 

learning and machine learning models, respectively. 472 

 473 

Table 11. Test F1 scores for LSTM, CNN, and CNN-LSTM models. 474 

Models F1 score 

CNN 0.80 

LSTM 0.80 

CNN-LSTM 0.92 

 475 

 476 
Table 12. Test F1 scores for SVM, DT, and KNN and MLP models. 477 

Models F1 score 

SVM 0.75 

DT 0.71 

KNN 0.78 

MLP 0.70 

 478 

3.5 Model comparison 479 

Multiple combined classifiers can be considered for pattern recognition problems to reduce errors as different 480 

classifiers can cover internal weaknesses of each other (Parvin et al., 2011). The combined classifier may be less 481 

accurate than the most accurate classifier. However, the accuracy of the combined model is always higher than the 482 

average accuracy of individual models. Combining two models improved our results compared to convolution-only 483 

or LSTM-only networks in both training and testing, supporting the previous studies (e.g., Sainath et al., 2015). It can 484 

be because the CNN-LSTM model incorporates both the temporal dependency of each variable by using LSTM 485 

networks and the correlation between variables through CNN models. The combined CNN-LSTM model efficiently 486 

benefit from automatic feature learning by CNN plus the native support for time series by LSTM. 487 

Although LSTM performed slightly better than CNN in validation, these models showed the same performance in 488 

testing. The CNN is able to partially include both temporal dependency and the correlation between variables by using 489 

1D and 2D filters, respectively. Although the LSTM is unable to incorporate the correlations between variables, it 490 

gives promising results with relatively small dataset and captures longer temporal dynamics, while the CNN only 491 

captures temporal dynamics within the length of its filters.  492 

Even though our training data in supervised ice-jam prediction is small, the results reveal that deep learning techniques 493 

can give accurate results, which agrees with a previous study conducted by Ordóñez and Roggen (2016) in activity 494 

recognition. The excellent performance of CNN and CNN-LSTM models may be partially due to the characteristic of 495 

CNN that decreases the total number of parameters which does training with limited training data easier (Gao et al., 496 

2016, May). However, our models will be improved in the future by a larger dataset. 497 

Among the developed machine learning models, SVM showed the best performance in validation, whereas KNN 498 

worked the best in testing. However, the performance of deep learning models is much better than machine learning 499 
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models in both validation and testing. The machine learning models do not consider correlations between variables. 500 

However, it is not the only reason that deep learning models worked better than machine learning models. As the 501 

LSTM also does not consider correlations between variables but worked better than machine learning models. Some 502 

characteristics of developed deep learning models can explain their better performance compared to machine learning 503 

models. For instance, deep learning models perform well for the problems with complex-nonlinear dependencies, time 504 

dependencies, and multivariate inputs.  505 

The developed CNN-LSTM model can be used for future predictions of ice jams in Quebec to provide early warning 506 

of possible floods in the area by using historic hydro-meteorological variables and their predictions for some days in 507 

advance. 508 

3.6 Discussion on the interpretability of deep learning models 509 

Even though the developed deep learning models performed pretty well in predicting ice jams in Quebec, the 510 

interpretability of the results with respect to the physical processes of the ice jam is still essential. It is because although 511 

deep learning models have achieved superior performance in various tasks, these really complicated models with a 512 

large number of parameters might exhibit unexpected behaviours (Samek et al., 2017 & Zhang et al., 2021). This is 513 

because the real-world environment is still much more complex. Furthermore, the models may learn some spurious 514 

correlations in the data and make correct predictions with the ‘wrong’ reason (Samek and Müller, 2019). Hence, 515 

interpretability is especially important in some real-world applications like flood and ice-jam predictions where an 516 

error may cause catastrophic results. Also, interpretability can be used to extract novel domain knowledge and hidden 517 

laws of nature in the research fields with limited domain knowledge (Alipanahi et al., 2015) like ice-jam prediction.  518 

However, the nested non-linear structure and the “black box” nature of deep neural networks make interpretability of 519 

their underlying mechanisms and their decisions a significant challenge (Montavon et al., 2018, Zhang et al., 2021 520 

and Wojtas and Chen, 2020). That is why, interpretability of deep neural networks still remains a young and emerging 521 

field of research. Nevertheless, there are various methods available to facilitate understanding of decisions made by a 522 

deep learning model such as feature importance ranking, sensitivity analysis, layer-wise relevance propagation, and 523 

the global surrogate model. However, the interpretability of developed deep learning models for ice-jam prediction is 524 

beyond the scope of this study and it will be investigated in our future works. 525 

3.7 Model transferability 526 

The transferability of a model between river basins is highly desirable but has not yet been achieved because most 527 

river ice-jam models are site specific (Mahabir et al., 2007). The developed models in this study can be used to predict 528 

future ice jams some days before the event not only for Quebec but also for eastern parts of Ontario and western New 529 

Brunswick. For other locations, the developed models can be transferred via re-training and a small amount of fine-530 

tuning using labeled instances, rather than building from scratch. It is because the logic in the model may be 531 

transferable to the other sites with small modifications. To transfer a model from one river basin to another, historic 532 

records of ice jams and equivalent hydro-meteorological variables (e.g., precipitation, temperature, and snow depth) 533 

as inputs to the model must be available at each site.  534 

4 Conclusion 535 
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The main finding from this project is that all the developed deep models performed pretty well and performed much 536 

better than the developed machine learning models for ice-jam prediction in Quebec. The comparison of results show 537 

that the CNN-LSTM model is superior to the CNN-only and LSTM-only networks in both validation and testing 538 

accuracy, though the LSTM and CNN models demonstrate quite good performance. 539 

To our best knowledge, this study is the first study introducing these deep learning models to the problem of ice-jam 540 

prediction. The developed models are promising to be used to predict future ice jams in Quebec and in other river 541 

basins in Canada with re-training and a small amount of fine-tuning. 542 

The developed models do not apply to freeze-up jams that occur in early winter and are based on different processes 543 

than breakup jams. We studied only breakup ice jams as usually they result in flooding and are more dangerous than 544 

freeze-up jams.  Furthermore, there is a lack of data availability for freeze-up ice jams in Quebec and only 89 records 545 

of freeze-up jams are available which is too small. 546 

The main limitation of this study is data availability as recorded ice jams are small which causes deep learning models 547 

to easily overfit to small number of data. Another limitation of the presented work is the lack of interpretability of the 548 

results with respect to the physical characteristics of the ice jam. This is a topic of future research and our next step is 549 

to explore that.  550 

The hydro-meteorological variables are not the only drivers of ice-jam formation. The geomorphological indicators 551 

that control the formation of ice jams include the river slope, sinuosity, a barrier such as an island or a bridge, 552 

narrowing of the channel, and confluence of rivers. In the future, a geospatial model using deep learning will be 553 

developed to examine the impacts of these geospatial parameters on ice-jam formation. 554 
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