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Abstract. In cold regions, ice-jam events result in severe flooding due to a rapid rise in water levels upstream of the 10 

jam. These floods threaten human safety and damage properties and infrastructures as the floods resulting from ice-11 

jams are sudden. Hence, the ice-jam prediction tools can give an early warning to increase response time and minimize 12 

the possible corresponding damages. However, the ice-jam prediction has always been a challenging problem as there 13 

is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological 14 

conditions happen, a few hours to a few days before the event. The iceIce-jam prediction problem can be considered 15 

as a binary multivariate time-series classification. Deep learning techniques have been successfully appliedwidely 16 

used for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In 17 

this research, we successfully applied Convolutional Neural Network (CNN, ), Long Short-Term Memory (LSTM,), 18 

and combined CNConvolutional-Long Short-Term Memory (CNN-LSTM) networks for ice-jam prediction for all 19 

the150 rivers in Quebec. The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along 20 

with the corresponding jam or no-jam events are used as the inputs to the models. We hold out 10% of the data for 21 

testing. And we applied 100 re-shuffling and splitting iterations with 80 % of the remaining data for training and 20% 22 

for validation. The results show that the CNCNN-LSTM model yields the best results in the validation and 23 

generalizationtesting with F1 scores of 0.82 and 0.9192, respectively. This demonstrates that CNN and LSTM models 24 

are complementary, and a combination of them further improves classification. 25 

1 Introduction 26 
Predicting ice-jam events gives an early warning of possible flooding, but there is no analytical solution to predict 27 

these events due to the complex interactions between involved hydro-meteorological variables. (e.g., temperature, 28 

precipitation, snow depth, and solar radiation). To date, a small number of empirical and statistical prediction methods 29 

that have been developed (such as threshold methods, multi-regression models, logistic regression models, and 30 

discriminant function analysis) for ice jams have been developed for ice jams (Barnes-Svarney and Montz, 1985; 31 

Mahabir et al., 2006; Massie et al., 2002; White, 2003; White and Daly, 2002, January; Zhao et al., 2012). However, 32 

these methods are site-specific with a high rate of false-positive errors (White, 2003). The numerical models developed 33 

for ice-jam prediction (e.g., ICEJAM (Flato and Gerard, 1986, cf.; Carson et al., 2011), RIVJAM (Beltaos, 1993), 34 

HEC-RAS (Brunner, 2002), ICESIM (Carson et al., 2001 and 2003), and RIVICE (Lindenschmidt, 2017)) show 35 

limitations in predicting ice-jam occurrence. This is because mathematical formulations in these models are complex 36 

which need many parameters that are often unavailable as they are challenging to measure in ice conditions. Hence, 37 
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many simplifications corresponding to these parameters may degrade model accuracy (Shouyu & Honglan, 2005). A 38 

detailed overview of the previous models for ice-jam prediction based on hydro-meteorological data are presented in 39 

Madaeni et al. (2020).  40 

Prediction of ice-jam occurrence can be considered as a binary multivariate time-series classification (TSC) 41 

modelproblem when the time series of various hydro-meteorological variables (explained later) can be used to classify 42 

to jam or no jam events. Time-series classification (particularly multivariate) has been widely used in various fields, 43 

including biomedical engineering, clinical prediction, human activity recognition, weather forecasting, and finance. 44 

Multivariate time-series provide more patterns and improve classification performance compared to univariate time-45 

series (Zheng et al., 2016). Time-series classification is one of the most challenging problems in data mining and 46 

machine learning.  47 

Most existing TSC methods are feature-based, distance-based, or ensemble methods (Cui et al., 2016). Feature 48 

extraction is challenging due to the difficulty of handcrafting useful features to capture intrinsic characteristics from 49 

time-series data (Karim et al., 2019; Zheng et al., 2014, June). Hence, distance-based methods work better in TSC 50 

(Zheng et al., 2014, June). Among the hundreds of methods developed methods for TSC, the leading classifier with 51 

the best performance was ensemble nearest neighbor with dynamic time warping (DTW) for many years (Fawaz et 52 

al., 2019, July; Karim et al., 2019).  53 

In the k-nearest neighbors (kNNKNN) classifier, the given test instance is classified by a majority vote of its k closest 54 

neighbors in the training data. The kNNKNN classifier needs all the data to make a prediction which requires high 55 

memory. Hence, it is computationally expensive and could be slow if the database is large, and sensitive to irrelevant 56 

features and the scale of the data. Furthermore, the number of neighbors to include in the algorithm should be 57 

wiselycarefully selected. The kNNKNN classifier is very challenging to be used for multivariate TSC. The dynamic 58 

time warping is a more robust alternative for Euclidean distance (the most widely used time-series distance measure) 59 

to measure the similarity between two given time series by searching for an optimal alignment (minimum distance) 60 

between them (Zheng et al., 2016). However, the combined kNNKNN with DTW is time-consuming and inefficient 61 

for long multivariate time-series (Lin et al., 2012; Zheng et al., 2014, June). The traditional classification and classic 62 

data mining algorithms developed for TSC have high computational complexity or low prediction accuracy. This is 63 

due to the size and inherent complexity of time series, seasonality, noise, and feature correlation (Lin et al., 2012). 64 

There are some machine learning methods available for TSC such as KNN and support vector machine (SVM). 65 

However, the focus of this research is on the deep learning models that have greatly impacted sequence classification 66 

problems and they can also be used for multivariate TSC with good performance. Deep learning methods are able to 67 

consider two-dimensionality in multivariate time-series and their deeper architecture could further improve the 68 

classification especially for complex problems, which is why their results are more accurate and robust than other 69 

methods (Wu et al., 2018a, April). However, they are more time consuming and difficult to interpret. 70 

Deep learning is a type of neural networknetworks that uses multiple layers ofwhere nonlinear 71 

informationtransformation is used to extract  72 

higher-level features from the input data. Although deep learning in recent years showed promising performance in 73 

various fields such as image and speech recognition, document classification, and natural language processing, only a 74 
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few studies employed deep learning for TSC (Gu et al., 2018; Fawaz et al., 2019, July). Various studies show that 75 

deep neural networks significantly outperform the ensemble nearest neighbor with DTW (Fawaz et al., 2019, July). 76 

The main benefit of deep learning networks is automatic feature-extraction, which reduces the need for expert 77 

knowledge of the field and removes engineering bias in the classification task (Fawaz et al., 2019) as the probabilistic 78 

decision (e.g., classification) is taken by the network. 79 

The most widely used deep neural networks for TSC are Multi-Layer Perceptron (MLP; i.e., fully connected deep 80 

neural networks), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) .  81 

). The application of CNNs for TSC has recently become more and more popular, and different types of CNN are 82 

being developed with superior accuracy performance for this purpose (e.g., Cui et al., 2016). Zheng et al. (2014, June) 83 

and Zheng et al. (2016) introduce a Multi-Channels Deep Convolutional Neural Network (MC-DCNN) for 84 

multivariate TSC, where each variable (i.e., univariate time series) is trained individually to extract features and finally 85 

concatenated using an MLP to perform classification (Fig. 1). Their results showThey showed that their model 86 

achieves a state-of-the-art performance both in efficiency and accuracy on a challenging dataset. The drawback of 87 

their model and similar architectures (e.g., Devineau et al., 2018, May) is that they do not capture the correlation 88 

between variables as the feature extraction is carried out separately for each variable.  89 

 90 

Figure 1. A 2-stages MC-DCNN architecture for activity classification. This architecture consists of three channels input, 91 
two filter layers, two pooling layers, and two fully-connected layers (after Zheng et al., 2014, June). 92 

Brunel et al. (2019) present CNNs adapted for TSC in cosmology using 1D filters to extract features from each channel 93 

over time and a 1D convolution in depth to capture the correlation between the channels. They compared the results 94 
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from LSTMs with CNNs, which shows that CNNs give better results than LSTMs. Nevertheless, both deep learning 95 

approaches are very promising. 96 

The combination of CNNs and LSTM units has already yielded state-of-the-art results in problems requiring 97 

classification of temporal information such as human activity recognition (Li et al., 2017; Mutegeki and Han, 2020, 98 

February), text classification (Luan and Lin, 2019;  March, She and Zhang, 2018, December;  Umer et al., 2020), 99 

video classification ( Lu et al., 2018 and Wu et al., 2015, October), sentiment analysis (Ombabi et al., 2020;  Sosa, 100 

2017; Wang et al., 2016, August;  Wang et al., 2019),  typhoon formation forecasting (Chen et al.,2019), and 101 

arrhythmia diagnosis (Oh et al., 2018). In this architecture, convolutional operations capture features and LSTMs 102 

capture time dependencies on extracted features. Ordóñez and Roggen (2016) propose a deep convolutional LSTM 103 

model (DeepConvLSTM) for activity recognition (Fig. 2). Their results are compared to the results from standard 104 

feedforward units showing that DeepConvLSTM reaches a higher F1 score and better decision boundaries for 105 

classification. Furthermore, they noticed that the LSTM model gives promising results with relatively small datasets. 106 

Furthermore, LSTMs present a better performance in capturing longer temporal dynamics, whereas the convolution 107 

filters can only capture the temporal dependencies dynamics within the length of the filter.  108 

 109 

Figure 2. The architecture of the DeepConvLSTM framework for activity recognition (after Ordóñez and Roggen, 2016). 110 

This project is a part of a project called DAVE, which aims to develop a tool to provide regional ice jam watches and 111 

warnings, based on the integration of three aspects: the current conditions of the ice cover; hydro-meteorological 112 

patterns associated with breakup ice jams; and channel predisposition to ice-jam formation. The outputs of the previous 113 

tasks will be used to develop an ice-jam monitoring and warning module and transfer the knowledge gained to end-114 

users to better manage the risk of ice jams. 115 

The objective of this research is to develop deep learning models to predict breakup ice-jam events to be used as an 116 

early warning system of possible flooding. While most TSC research in deep learning is performed on 1D channels 117 

(Hatami et al., 2018, April), we propose deep learning frameworks for multivariate TSC for ice-jam prediction. The 118 

objective of this research is to develop deep learning models to predict breakup ice-jam events to be used as an early 119 

warning system of possible flooding. Through our comprehensive literature review, we noticed that CNN (e.g., Brunel 120 

et al., Deep2019; Cui et al., 2016; Devineau et al., 2018, June; Kashiparekh, 2019, July; Nosratabadi et al., 2020;Yan 121 

et al., 2020; Yang et al., 2015, June; Yi et al., 2017; Zheng et al., 2016), LSTM (e.g., Fischer and Krauss, 2018; Lipton 122 

et al., 2015; Nosratabadi et al., 2020; Torres et al., 2021), and a combined CNN-LSTM (e.g., Karim et al., 2o17; 123 
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Livieris et al., 2020; Ordóñez and Roggen, 2016; Sainath et al., 2015, April; Xingjian et al., 2015) have been widely 124 

used  for TSC. There are numerous applications of CNN, LSTM, and their hybrid versions applied in hydrology 125 

(Althoff et al., 2021; Apaydin et al., 2020; Barzegar et al., 2021, 2020; Kratzert et al., 2018; Wunsch et al., 2020; 126 

Zhang et al., 2018). Although deep learning methods areseem to be promising to address the requirements of ice-jam 127 

predictions. , none of these methods yet have been explored for ice jam prediction.  128 

Hence, we developed three deep learning models; a CNN, an LSTM, and a combined CN-LSTM (Convolutional-129 

Long Short-Term Memory)CNN-LSTM for ice-jam predictions and compared the results. The previous studies show 130 

that these models show good capabilities in capturing features and the correlation between features (through 131 

convolution units) and time dependencies (through memory units) that will be later used for TSC. The previous studies 132 

show that these models show good capabilities in capturing features and the correlation between features (through 133 

convolution units) and time dependencies (through memory units) that will be later used for TSC. The combined 134 

CNCNN-LSTM can reduce errors by compensating for the internal weaknesses of each model. In the CNCNN-LSTM 135 

model, CNNs capture features, then the LSTMs give the time dependencies on the captured features.  136 

Furthermore, we also developed some machine learning methods as simpler methods for ice-jam prediction. And their 137 

results are compared with results from the developed deep learning models. 138 

2 MaterialMaterials and Methods  139 

2.1 Input dataData and study area 140 

It is known that specific hydro-meteorological conditions lead to ice-jam occurrence (Turcotte and Morse, 2015, 141 

August and White, 2003). For instance, breakup ice jams occur when a period of intense cold is followed by a rapid 142 

peak discharge resulting from spring rainfall and snowmelt runoff (Massie et al., 2002). The period of intense cold 143 

can be represented by the changes in Accumulated Freezing Degree Days (AFDD). The sudden spring runoff increase 144 

is not often available at the jam location and can be represented by liquid precipitation and snow depth some days 145 

before  the ice-jam occurrence (Turcotte and Morse, 2015, August and White, 2003). For instance, breakup ice jams 146 

occur when a period of intense cold is followed by a rapid peak discharge resulting from spring rainfall and snowmelt 147 

runoff (Massie et al., 2002). The period of intense cold can be represented by the changes in Accumulated Freezing 148 

Degree Days (AFDD). The sudden spring runoff increase is not often available at the jam location and can be 149 

represented by liquid precipitation and snow depth some days before the ice-jam occurrence (Zhao et al., 2012). 150 

Prowse and Bonsal (2004) and Prowse et al. (2007) evaluate various hydroclimatic explanations for river ice freeze -151 

up and breakup, concluding that shortwave radiation is the most critical factor influencing the mechanical strength of 152 

ice and consequently the possibility of breakup ice jams to occur. Turcotte and Morse (2015, August) explain that 153 

Accumulated Thawing Degree Day (ATDD), an indicator of warming periods, partially covers the effect of shortwave 154 

radiation.  In the previous studies of ice-jam and breakup predictions, discharge and changes in discharge, water level 155 

and changes in water level, AFDD, ATDD, precipitation, solar radiation, heat budget, and snowmelt or snowpack are 156 

the most readily used variables (Madaeni et al., 2020).  157 

The inputs we used in this study are historical ice-jam or no ice-jam occurrence (Fig. 23) as well as hydro-158 

meteorological variables including liquid precipitation (mm), min and max temperature (°C), AFDD (from August 159 
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1st; °C), ATDD (from January 1st; °C), snow depth (cm) and net radiation (W m-2) in all150 rivers in Quebec. The net 160 

solar radiation, the total energy available to influence the climate, is calculated as the difference between incoming 161 

and outgoing energy. If the median temperature is greater than 1, the precipitation is considered liquid precipitation. 162 

The statistics of hydro-meteorological data used in the models are presented in Table 1. The source, time period, and 163 

spatial resolution of the input variables are presentedshown in Table 1. The “NaN” precipitation values get 0 values2.  164 

TThe iceIce-jam database is provided by the Quebec Ministry of Public Security (MSPQ; Données Québec, 2021) for 165 

150 rivers in Quebec, mainly in the St. Lawrence basin. The database comes from the digital or paper event reports 166 

by local authorities under the jurisdiction of the MSPQ from 1985 to 2014. Moreover, some other data of this database 167 

are provided by the field observations from the Vigilance / Flood application from 2013 to 2019. It contains 995 168 

recorded jam events that are not validated and contain many inaccuracies, mainly in the toponymy of the rivers, 169 

location, dating, and the redundancy of jam events.  170 

The names of the watercourse of several icerecorded jams are not given or completely wrong or affected by a typo or 171 

an abbreviation. The toponymy of the rivers was corrected using the National Hydrographic Network (NHN; National 172 

Hydrographic Network - Natural Resources Canada (NRCan)), the Geobase of the Quebec hydrographic network 173 

(National Hydro Network - NHN - GeoBase Series - Natural Resources Canada), and the Toporama Web map service 174 

(The Atlas of Canada - Toporama - Natural Resources Canada) of the Sector of Earth Sciences.  175 

Several ice jams are placed on the banks at a small distance (less than 20 m) from the polygon of the river. In this 176 

case, the location of the ice jam is moved inside the river polygon. In other cases, the ice-jam point is posed further 177 

on the flooded shore at a distance between 20 and 200 m. This has been corrected based on images with very high 178 

spatial resolution, the sinuosity and the narrowing of the river, the history of ice jams at the site in question , and the 179 

press archives. In addition, some ice jams were placed too far from the mentioned river due to a typo in entering 180 

theirwrong recorded coordinates in the database. A single-digit correction in longitude or latitude returned the jam to 181 

its exact location. There are certain cases where the date of jam formation is verified by searching the press archives, 182 

notably when the date of formation is missing or several jams with the same dates and close locations in a section of 183 

a river are present. 184 

The ice jam database contains many duplicates. This redundancy can be due to merging two data sources,  the double 185 

entry during ice-jam monitoring, or recording an ice jam for several days. The duplicates are removed from the 186 

database. The corrected ice-jam database contains 850 jams for 150 rivers, mainly in southern Quebec (Fig. 3). The 187 

ice jams formed in November and December (freeze-up jams) are removed to only include breakup jams (from January 188 

15th) in the modelling as these two types of jams are formed due to different processes. The final breakup ice-jam 189 

database that used in this study includes 504 jam events.  190 
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 191 

Figure 3. Study area and historic ice-jam locations recorded in Quebec from 1985-2017. 192 

Table 1. HydroStatistics of hydro-meteorological datavariables used asin the input to the modelmodels. 193 

Statistics 

Liquid P 

(mm) 

Tmin 

(°C) 

Tmax 

(°C) 

Net radiation (W m-

2) 

ATDD 

(°C) 

AFDD 

(°C) 

Snowdepth 

(cm)  

min 0.00 -40.00 -25.97 -67.77 0.00 -2109.33 0.00 

max 50.87 12.05 27.48 222.69 280.82 -35.41 121.86 

average 1.04 -9.41 0.98 59.75 8.83 -898.48 15.99 

median 0.00 -7.73 1.68 59.41 1.27 -890.74 11.50 

 194 
Table 2. Source, duration, and spatial resolution of hydro-meteorological data used in the models. 195 

Data Source Duration Spatial 

resolution 

Min and Max temperature* Daily Surface Weather Data (Daymet; Thornton et al., 2020) 1979-2019 1 km 

Liquid precipitation Canadian Precipitation Analysis (CaPA; Mahfouf et al., 

2007) 

2002-2019 10-15km 

Liquid precipitation North American Regional Reanalysis (NARR; Mesinger et 

al., 2006) 

1979-2001 30 km 

Infrared radiation emitted by 

the atmosphere 

North American Regional Reanalysis (NARR) 1979-2019 30 km 

Infrared radiation emitted 

from the surface 

North American Regional Reanalysis (NARR) 1979-2019 30 km 

Snow depth  North American Regional Reanalysis (NARR) 1979-2019 30 km 

* The average was used to derive the AFDD and the ATDD.  196 
  197 
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2.2 Machine learning models for TSC 198 

The common machine learning techniques that have been used for TSC are SVM (Rodríguez and Alonso, 2004; Xing 199 

and Keogh, 2010), KNN (Li et al., 2013; Xing and Keogh, 2010), decision tree (DT; Brunello et al., 2019; Jović et al., 200 

2012, August), and multilayer perceptron (MLP; del Campo et al., 2021; Nanopoulos et al., 2001). For more 201 

information about these machine learning models refer to the mentioned literature above. We do not explain these 202 

models and their applications in TSC, as they are not the focus of this study.  203 

We developed the mentioned machine learning methods and compared their results with the results of deep learning 204 

models. After some trials and errors, the parameters that are changed from the default values for each machine learning 205 

model are as follows. We developed an SVM with a polynomial kernel with a degree of 5 that can distinguish curved 206 

or nonlinear input space. The KNN is used with 3 neighbors used for classification. The decision tree model is applied 207 

with all the default values. The shallow MLP is used with ‘lbfgs’ solver (which can converge faster and perform better 208 

for small datasets), alpha of 1e-5, and 3 layers with 7 neurons in each layer.  209 

2.3 Deep learning models for time-series classification (TSC)TSC 210 

The most common and popular deep neural networks for TSC are MLPMLPs, CNNs, and LSTM.LSTMs (Brownlee, 211 

2018; and Torres et al., 2021). Despite their power, however, MLP has limitations that each input (i.e., time-series 212 

element) and output are treated independently, which means that the temporal or space information is lost (Lipton et 213 

al., 2015). Hence, an MLP needs some temporal information in the input data to model sequential data such as time 214 

series (Ordóñez and Roggen, 2016). In this regard, Recurrent Neural Networks (RNNs) are specifically adapted to 215 

sequence data through the direct connections between individual layers (Jozefowicz et al., 2015). Recurrent Neural 216 

Networks perform the same repeating function with a straightforward structure, e.g., a single tanh (hyperbolic tangent) 217 

layer, for every input of data (xt), while all the inputs are related to each other with their hidden internal state, which 218 

allows it to learn the temporal dynamics of sequential data (Fig. 4).  219 
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 220 

 221 

Figure 4. An RNN with a single tanh layer, where A is a chunk of the neural network, xtx is input data, and hth is output 222 
data (after Olah, 2015).. 223 

Recurrent Neural Networks were rarely used in TSC due to their significant problems. Recurrent Neural Networks 224 

mainly predict output for each time-series element, they are sensitive to the first examples seen, and it is also 225 

challenging to capture long-term dependencies due to vanishing gradients, exploding gradients, and their complex 226 

dynamics (Devineau et al., 2018, June; Fawaz et al., 2019). 227 

Long short-term memory RNNs are developed to improve the performance of RNNs by integrating a memory to 228 

model long-term dependencies in time-series problems (Brunel et al., 2019; Karim et al., 2019).  Long short-term 229 

memory networks do not have the problem of exploding gradients. The LSTMs have four interacting neural network 230 

layers in a very special way (Fig. 5). An LSTM has three gates (sigmoid (σ) layers; σ) to control how much of each 231 

component should be let through by outputting numbers between zero and one. The input to an LSTM goes through 232 

three gates (“forget”, “input”, and “output gates”) that control the operation performed on each LSTM block (Ordóñez 233 

and Roggen, 2016). The first step is the “forget gate” layer that gets the output of the previous block (ht−1), the input 234 

for the current block (Xt), and the memory of the previous block (Ct-1) and gives a number between 0 and 1 for each 235 

number in the cell state (Ct−1; Olah, 2015). The second step is called the “input gate” with two parts, a sigmoid layer 236 

that decides which values to be updated and a tanh layer that creates new candidate values for the cell state. These two 237 

new and old memories will then be combined and control how much the new memory should influence the old 238 

memory. The last step (output gate; step 3 in Fig. 5) gives the output by applying a sigmoid layer deciding how much 239 

new cell memory goes to output, and multiply it by tanh applied to the cell state (giving values between −1 and 1).  240 

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
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 241 

 242 

Figure 5. Structure of LSTM block with four interacting layers (adopted from Olah, 2015).. 243 

Recently, convolutional neural networks challenged the assumption that RNNs (e.g., LSTMs) have the best 244 

performance when working with sequences. Convolutional neural networksThe CNNs show state-of-the-art 245 

performance in sequential data such as speech recognition and sentence classification, similar to TSC (Fawaz et al., 246 

2019).  247 

Convolutional neural networksThe CNNs are the most widely used deep learning methods in TSC problems (Fawaz 248 

et al., 2019). They learn spatial features from raw input time series using filters (Fawaz et al., 2019). Convolutional 249 

neural networksThe CNNs are robust and need a relatively small amount of training time comparing with RNNs or 250 

MLPs. They work best for extracting local information and reducing the complexity of the model.  251 

A CNN is a kind of neural network with at least one convolutional layer (or filter).) layer. A CNN usually involves 252 

several convolutional layers, activation functions, and pooling layers for feature extraction following by dense layers 253 

(or MLP) as a classifier (Devineau et al., 2018, June). The reason to use a sequence of filters is to learn various features 254 

from time series for TSC.  A convolutional layer consists of a set of learnable filters that compute dot products between 255 

local regions in the input and corresponding weights. With high-dimensional inputs, it is impractical to connect 256 

neurons to all neurons in the previous layer. Therefore, each neuron in CNNs is connected to only a local region of 257 
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the input, namely the receptive field, which equals the filter size (Fig. 56). This feature reduces the number of 258 

parameters by limiting the number of connections between neurons in different layers. The input is first convolved 259 

with a learned filter, and then an element-wise nonlinear activation function is applied to the convolved results (Gu et 260 

al., 2018). The pooling layer performs a downsampling operation such as maximum or average, reducing the spatial 261 

dimension (Fig. 6).. One of the most powerful features of CNNs is called weight or parameter sharing, where all 262 

neurons share filters (weights) in a particular feature map (Fawaz et al., 2019) to reduce the number of parameters.  263 

 264 

Figure 6. A convolution layer structure including two sets of filters. 265 

 266 

Figure 6. . A CNN Architecture for image classification (modified from Karpathy, 2017). 
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2.34 Model libraries  267 

In an anacondaAnaconda (Analytics, C., 2016) environment, Python is  implemented to develop CNN, LSTM, and 268 

CNCNN-LSTM networks for TSC. To build and train networks, the networks are implemented in Theano (Bergstra 269 

et al., 2010, June) using the Lasagne (Dieleman et al., 2015) library. The other core libraries used for importing, 270 

preprocessing, training data, and visualization of results are Pandas (Reback et al., 2020), NumPy (Harris et al., 2020), 271 

Scikit-Learn (Pedregosa et al., 2011), and Matplotlib.PyLab (Hunter, J. D., 2007). Spyder (Raybaut, 2009) package 272 

of Anaconda is utilized as an interface, or the command window can be used without any interface.   273 

2.45 Preprocessing 274 

The data is comprised of variables with varying scales, and the machine learning algorithms can benefit from rescaling 275 

the variables to all have the same scale. Scikit-learn (Pedregosa et al., 2011) is a free library for machine learning in 276 

Python that can be used to preprocess data. We examined Scikit-learn MinMaxScaler (scaling each variable between 277 

0 and 1), Normalizer (scaling individual samples to the unit norm), and StandardScaler (transforming to zero mean 278 

and unit variance separately for each feature). The results show that MinMaxScaler (Eq. (1)) worksleads to the best in 279 

our modelsmost accurate results. The scaling of validation data is done with min and max from train data. 280 

Xscaled  =  (
X − X.min

X.max − X.min
) ,

X − X.min

X.max − X.min
                                                                                                                                        (1) 281 

For each jam or no jam event, we used 15 days of information before the event to predict the event on the 16th day. 282 

We generate a balanced dataset with the same number of jam and no-jam events (1008 small sequences totally), 283 

preventing the model from becoming biased to jam or no-jam events. The hydro-meteorological data related to no-284 

jam events are constructed by extracting data from the reaches of no-jam records. To examine models’ generalization, 285 

we hold out 10% of data for testing and 80 % and 20 % of remaining data for training and validation, respectively. 286 

We used ShuffleSplit subroutine from the Scikit-learn library, where the database was randomly sampled during each 287 

re-shuffling and splitting iteration to generate training and validation sets. We applied 100 re-shuffling and splitting 288 

iterations with 80 % of data for training and 20 % for validation. There are 806726, 181, and 202101 small sequences 289 

with the size of (16, 7), 16 days of data for the seven variables; for training and, validation, and test, respectively. To 290 

examine models' generalization, we hold out 30 small sequences for testing and 80 % and 20 % of remaining data for 291 

training and validation, respectively. 292 

2.56 Training  293 

Training a deep neural network with an excellent generalization to new unseen inputs is challenging. As a benchmark, 294 

a CNN model with the parameters and layers similar to previous studies (e.g., Ordóñez and Roggen, 2016) is 295 

developed. The model shows underfitting or overfitting with various architectures and parameters. To overcome 296 

underfitting, deeper models and more nodes in each layer are beneficial; however, overfitting is more challenging to 297 

overcome. The iceIce-jam dataset for Quebec contains 1008 balanced sequence instances (with a length of 16), which 298 

is small, which easily causes the network for deep learning. The deep learning models often tend to memorizeoverfit 299 
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small datasets by memorizing inputs rather than training examples and consequently results in overfitting, as a small 300 

dataset may not appropriately describe the relationship between input and output spaces.  301 

2.56.1 Overcome overfitting 302 

There are various methods to tackle the problem of overfitting, including acquiring more data, data augmentation 303 
(e.g., cropping, rotating, and noise injection), dropout (Srivastava et al., 2014), early stopping, batch normalization 304 
(Ioffe and Szegedy, 2015, June), and regularization. Acquiring more data is not possible with ice-jam records. We added 305 
the Gaussian noise layer (from the Lasagne library), where the noise values are Gaussian-distributed with zero-mean 306 
and a standard deviation of 0.1 to the input. 2.5.1.1 Noise layer 307 

The first approach to overcome overfitting is acquiring more data that is not possible with ice-jam records. Another 308 

popular approach to increase the number of samples is data augmentation, including cropping, rotating, blurring, color 309 

modification, and noise injection in image classification. Data augmentation can act as a regularizer, prevent 310 

overfitting, and improve performance in imbalanced class problems (Wong et al., 2016). However, the application of 311 

data augmentation in deep learning for time series classification still has not been studied thoroughly (Fawaz et al., 312 

2019). To expand the size of the dataset, noise layers, as a simple form of random data augmentation, can be used. 313 

Over the training process, each time an input sample is exposed to the model, the noise layer creates new samples in 314 

the vicinity of the training samples resulting in various input data every time, increases randomness, making the model 315 

less prone to memorize training samples and learns more general features (resulting in better generalization).  316 

We added the Gaussian noise layer (from the Lasagne library), where the noise values are Gaussian-distributed with 317 

zero-mean and a standard deviation of 0.1 to the input. The noise layer is usually added to the input data but can also 318 

be added to other layers.  319 

2.5.1.2 Dropout  320 

The other approach to tackle overfitting is dropout (Srivastava et al., 2014). The dropout, the most successful method 321 

for neural network regularization, randomly sets inputs to zero (Fig. 7). To overcome overfitting and examine the 322 

effectiveness of dropout in our models, the dropout with the recommended rates of 0.1 for the input layer and between 323 

0.5 and 0.8 for hidden layers (Garbin et al., 2020) are applied in different layers of the models.  324 

 325 

Figure 7. A neural network with two hidden layers (left) and a neural network with dropout (right; after Srivastava et al., 326 
2014). 327 
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2.5.1.3 Early stopping 328 

The noise layers applied to the CNN and LSTM models significantly overcome the overfitting problem through data 329 

augmentation. However, the performance of the CNN-LSTM model dramatically deteriorates, including a noise layer 330 

(Fig. 7). Adding a noise layer to other layers does not improve any of the developed models for ice-jam prediction. 331 

 332 

Figure 7. Train and validation errors over epochs for CNN-LSTM model with a noise layer. 333 

Early stopping is another efficient method to tackle overfitting via haltingthat halts the training procedure where 334 

further training would decrease training loss, while validation loss starts to increase.  335 

2.5.1.4 Batch normalization 336 

As explained earlier, the input data is scaled separately for each feature to be between 0 and 1. However, in deep 337 

learning, the distribution of the input of each layer will be changed by updates to all the preceding layers, so-called 338 

internal covariate shift. Hence, hidden layers try to learn to adapt to the new distribution slowing down the training 339 

process. Batch normalization (Ioffe and Szegedy, 2015, June) is a recent method that provides any layer with inputs 340 

of zero mean and unit variance and consequently prevents internal covariate, solves exploding or vanishing gradient 341 

problems, allows the use of higher learning rates, improves the training efficiency, and speeds up the training. Batch 342 

normalization adjusts the value for each batch, results in more noise acting as a regularizer, similar to dropout, and 343 

thus reduces the need for dropout (Garbin et al., 2020). We performedNeural networks solve an optimization problem 344 

that requires a loss function to calculate the model error. The loss function is similar to an objective function for 345 

process-based hydrological models. Among the developed models, only LSTM needs early stopping at 40 epoch (Fig. 346 

8). More explanations about the other methods that are used in this study to overcome overfitting (e.g., batch 347 

normalization over each channel in different layers in our models to find its best locations through trial and error., and 348 

L2 regularization) can be found in the Appendix.  349 
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 350 

Figure 8. Train and validation errors over epochs for an LSTM model showing overfitting after 40 epochs. 351 

2.5.1.5 Regularization 352 

There are two general ways to keep a deep neural network simple and consequently prevent overfitting; through the 353 

number of weights and values of weights. The number of weights can be controlled by the number of layers and nodes 354 

optimized via the grid or random search. A network with large weights can be more complex and unstable as large 355 

weights increase loss gradients exponentially, resulting in exploding gradients that cause massive output changes with 356 

minor changes in the inputs. In turn, the exploding gradients can force the model loss and weights to “NaN” values 357 

(Brownlee, 2017). 358 

The simplest and most common approach to keep the weights small is regularization methods that involve checking 359 

model weights and adding an extra penalty term to the loss function in proportion to the size of weights' size in the 360 

model. The two main methods used to calculate the size of the weights are L1 (the sum of the absolute values of the 361 

weights; Eq. (2)) and L2 or weight decay (the sum of the squared values of the weights; Eq. 3). In Eq. (2) and (3),  𝜆  362 

is a parameter that controls the importance of the regularization, and W is the network parameters. The L1 363 

regularization encourages weights to be 0.0 (causing underfitting) and very few features with non-zero weights, while 364 

L2 regularization forces the weights to be small rather than zero. Hence, L2 can predict more complex patterns when 365 

output is a function of all input features. We used an L2 regularization cost by applying a penalty to the parameters of 366 

all layers in the networks in CNN, LSTM, and CN-LSTM models.  367 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆 ∑ |𝑤𝑖|𝑛
𝑖=1                                                                                                                  (2) 368 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆 ∑ 𝑤𝑖
2𝑛

𝑖=1                                                                                                                   (3) 369 

2.5.2 Architecture Tuning 370 

2.6.2 Model Hyperparameters  371 

Finding hyperparameter values in deep learning has been challenging due to the complex architecture of deep learning 372 

models and a large number of parameters (Garbin et al., 2020). To find the best model architecture, we study the 373 

performance of models with different layers and parameters such as number of noise, batch normalization, 374 

convolutional, pooling, LSTM, dropout, and dense layers, as well as different pooling sizes and strides, different batch 375 

sizes, various scaling of data (standardization and normalization), various filter sizes, number of units in LSTM and 376 
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dense layers, the type of the activation functions, regularization and learning rates, weight decay and number of filters 377 

in convolutional layers. We also applied various combinations of these layers and parameters. The hyperparameters 378 

are optimized through manual trial and error searches as grid search experiments suffer from poor coverage in 379 

dimensions (Bergstra and Bengio, 2012) and manual experiments are much easier and more interpretable in 380 

investigating the effect of one hyperparameter of interest. The optimized hyperparameters are presented in Table 3. 381 

The most important parameters of the models are explained below and for more information about other parameters 382 

readers are referred to the Appendix. 383 

2.5.2.1 Activation function 384 

The activation function adds non-linearity to the network allowing the model to learn more complex relationships 385 

between inputs and outputs (Zheng et al., 2014, June). Each activation function that is used in deep learning has its 386 

advantages and disadvantages, and typical activation functions in deep learning are Rectified Linear Unit (ReLU; Eq. 387 

(4)), sigmoid (Eq. (5)), and hyperbolic tangent (tanh; Eq. (6); Fig. 8; Gu et al., 2018). In deep neural networks, adding 388 

more layers with certain activation functions results in the vanishing gradient problem where the gradients of the loss 389 

function become almost zero, causing difficulties in training. For instance, the sigmoid function maps a large input 390 

space into a small one between 0 and 1. Hence, when the input is very positive or very negative, the sigmoid function 391 

saturates (becomes very flat) and becomes insensitive to small changes in its input, causing the derivatives to disappear 392 

(Goodfellow et al., 2016). Therefore, in backpropagation, small derivatives are multiplied together, causing the 393 

gradient to decrease exponentially, propagating back to the first layer. This causes ineffective updates of weights and 394 

biases of the initial layers and consequently inaccuracy. Some solutions to overcome this problem include using 395 

specific activation functions like ReLU and tanh and using batch normalization layers to prevent the activation 396 

functions from becoming saturated. The ReLU recently drown lots of attention and has been widely used in recent 397 

deep learning models (Gamboa, 2017). The advantage of ReLU over sigmoid and tanh is a better generalization, 398 

making the training faster and simpler. Hence, we investigated the performance of the model with ReLU, sigmoid, or 399 

tanh activation functions in convolutional layers.  400 

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥 (0, 𝑥)                                                                                                                       (4) 401 

𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝒙) =  
𝟏

𝟏+𝒆−𝒙                                                                                                                            Table 3. Common values 402 

and selected values for different parameters of the models. 403 

Parameter 

Common 

values Selected value 

Mini-batch size 16, 32, 64 16 

Number of convolution filters 32, 64, 128 128 

Filter size 3, 5, 7 (5,1) and (5,3) 

Number of LSTM units 32, 64, 128 128 

Number of dense layer units 16, 32, 128, 256 32 

Momentum in SGD   0.5, 0.99, 0.9 0.9 

 404 
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tanh(𝑥) =  
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥                                                                                                                                 (6) 406 

 407 
Figure 8. Illustration of sigmoid, tanh, and ReLU activation functions (after Zheng et al., 2016). 408 

2.5.2.2 Learning rate 409 

To find the minimum cost function, a move in the negative direction of the gradient is required. This movement is 410 

called the “learning rate,” which is the most significant hyperparameter in training a deep neural network. The model 411 

error is calculated, and the errors corresponding to weights updated by the learning rate are backpropagated in the 412 

network. A too-small learning rate needs many updates and epochs, reaching the minimum. On the other hand, a too-413 

large learning rate causes dramatic updates and leads to oscillations in loss over epochs. A good learning rate quickly 414 

reaches the minimum point between 0.1 to 1e-6 on a log scale and can be found through a grid or random search (Fig. 415 

9). 416 

 417 

Figure 9. Too small, good, and too large learning rates from left to right (after Jordan, 2018). 418 

2.5.2.3 Update expression 419 

There are various algorithms to update the trainable parameters at each mini-batch. The parameter updating procedure 420 

includes feedforwarding, backpropagation, and applying gradients. We tried the Stochastic Gradient  Descent (SGD) 421 

with Nesterov momentum, RMSProp, Adadelta, and Adam updates to update the parameters in Lasagne. The SGD 422 

with momentum updates the model weights by adding a momentum so that the overall gradient depends on the current 423 

and previous gradients, causing the weights to move in the previous direction without oscillation. 424 
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2.5.3 Network optimization 425 

Training CNN involves global optimization by defining a loss expression to be minimized overtraining. For the 426 

classification task, the loss function of the models is calculated using categorical cross-entropy between network 427 

outputs and targets (Eq. (7)), where L is the loss, p is the prediction (probability), t is the target, and c is the number 428 

of classes. Then, the mean of the loss is computed over each mini-batch. 429 

𝐿 =  − ∑ 𝑡𝑖  log(𝑝𝑖)𝑐=2
𝑖=1                                                                                                                             (7) 430 

2.5.4 Model evaluation 431 

The network on the validation set is evaluated after each epoch during training to monitor the training progress. During 432 

validation, all non-deterministic layers are switched to deterministic. For instance, noise layers are disabled, and the 433 

update step of the parameters is not performed.  434 

The classification accuracy cannot appropriately represent the model performance for unbalanced datasets, as the 435 

model can show a high accuracy by biasing towards the majority class in the dataset (Ordóñez and Roggen, 2016). 436 

While we built a balanced dataset (with the same number of jam and no jam events), randomly selecting test data and 437 

shuffling the inputs, and splitting data into train and validation sets can result in a slightly unbalanced dataset. In our 438 

case, the number of jams and no jams for train and validation and test sets is presented in Table 2. Therefore, the F1 439 

score (Eq. (8)), which considers each class equally important, is used to measure the binary classification accuracy. 440 

The F1 score, as a weighted average of the precision (Eq. (9)) and recall (Eq. (10)), has the best and worst scores of 1 441 

and 0, respectively. In Eqs. 9 and 10, TP, FP, and FN are true positive, false positive, and false negative, respectively. 442 

Table 2. The number of jam and no jam events in train and validation and test datasets. 443 

  
Train and 

validation Test 

Jam 504 48 

No jam 403 53 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                                               (8) 444 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                     (9) 445 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                        (10) 446 

Although the model accuracy is usually used to examine the performance of deep learning models, the model size 447 

(i.e., number of parameters) provides a second metric, which represents required memory and calculations, to be 448 

compared among models with the same accuracy (Garbin et al., 2020). 449 

After training the model, the well-trained network parameters are saved to a file and are later used for testing the 450 

network generalization using a test dataset, which is not seen during training and validation. 451 
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3 Results and Discussion  452 

3.1 Hyperparameters optimization  453 

3.1.1 Batch size 454 

The inputs and corresponding targets are iterated in mini-batches for training and validation. Batch size significantly 455 

influences the training time (Fawaz et al., 2019, July), and the batch size of 32 is usually used in previous studies. 456 

However, we investigated batch sizes of 16, 32, and 64, and the mini-batches of 16 demonstrate to improve the results 457 

slightly. 458 

3.1.2 Noise layers 459 

The performance of CNN and LSTM models developed for the ice-jam prediction problem is improved by adding a 460 

noise layer to the input, while the CN-LSTM model showed underfitting. Adding a noise layer to other layers does 461 

not improve any of the developed models for ice-jam prediction.   462 

3.1.3 Dropout layer 463 

Adding dropout layers could not improve any developed models. This agrees with previous studies revealing that 464 

dropout does not work well with LSTMs (Zaremba et al., 2014) and CNNs, and dropout layers do not work when 465 

batch size is small (less than 256; Garbin et al., 2020). Furthermore, it is in agreement with Garbin et al. (2020) stating 466 

that utilizing batch normalization layers in a model reduces the need for dropout layers. 467 

3.1.4 Number of layers 468 

The depth is related to the sequence length (Devineau et al., 2018, May), as deeper networks need more data to provide 469 

better generalization (Fawaz et al., 2019, July). In the previous studies of CNNs, there are usually one, two, or three 470 

convolution stages (Zheng et al., 2014, June). We tried different numbers of CNN, LSTM, and dense layers and 471 

selected three, two, and two such layers, respectively, as the sequence length in this study is small (16), and we could 472 

not improve the model performance by merely adding more depth. 473 

3.1.52.6.2.2 Number and size of CNconvolution filters 474 

Fawaz et al. (2019, July) explain the number and length of filters used in CNNs. Data with more classes need more 475 

filters to classify the inputs accurately. Longerand longer time series need longer filters to capture longer patterns and 476 

consequently to produce accurate results. (Fawaz et al., 2019, July). However, longer kernelsfilters significantly 477 

increase the number of parameters and increase the potential for overfitting small datasets, while a small kernelfilter 478 

size risks poor performance. In our models, the optimum number of filters is attained to be 128 by searching among 479 

the typical number of filters (i.e., 32, 64, and 128). The kernel sizes of 3, 5, and 7 are often applied in deep CNNs. We 480 

tried these filter sizes, and the best performance was achieved through usingfinally selected two convolutional layers 481 

with 1-D filters of (5, 1) with theand stride of (1, 1) to capture temporal variation for each variable separately. 482 
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 Furthermore, one convolutional layer with 2-D filters of size (5, 3) with theand stride of (1, 1) is then used to 483 

achievecapture the correlation between variables via depth-wise convolution of input time-series. A big stride might 484 

cause the model to miss valuable data used in predicting and smoothing out the noise in the time series. The layers in 485 

CNNs have a bias for each channel, sharing across all positions in each channel. 486 

3.12.6 Padding  487 

The convolution is applied where the input and the filter overlap. Hence, we pad the input by zeros with half the filter 488 

size on both sides. Using stride of 1 with “Pads = same” (in Lasagne) in the convolutional 2-D layers results in an 489 

output size equal to the input size for each layer.  490 

3.1.7 Activation functions in CN layers 491 

The experiments demonstrate that errors are very high using tanh, whereas ReLU and sigmoid show almost the same 492 

performance. As ReLU performs slightly better than sigmoid, we used ReLU in our models. 493 

3.1.8 Weight initialization 494 

Among the various types of methods available in Lasagne for weight initialization, the GLOROT uniform (i.e., Xavier; 495 

Glorot and Bengio, 2010, March) and He initializations (He et al., 2015), the most popular initialization techniques, 496 

are used to set the initial random weights in convolutional layers. The results reveal that these methods yield almost 497 

the same F1 scores. However, the histograms of F1 scores reveal that GLOROT uniform yields slightly better results 498 

(Fig. 10). 499 

 500 

Figure 10. Histograms of F1 score for CNN using He (left) and GLOROT uniform (right) weight initialization with 100 501 
random train-validation splits. 502 

3.1.9 Number of LSTM units and their activation functions 503 

The optimal number of units in LSTM layers was found through a search over typical numbers of 32, 64, and 128. 504 

We found that 128 units yield the best results in our models. We used the default activation function of tanh in LSTM 505 

layers.  506 
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3.1.10 Dense layer 507 

The dense layers with RecLU functions following by one dense layer with softmax function are applied after the 508 

feature learning and LSTM layers to perform classification. The common number of units in dense layers are 16, 32, 509 

128, and 256. We found that 32 gives the best results in our models. To output the binary classes from the network, 510 

softmax or sigmoid functions can be used. We applied softmax as it gives a probability for each class where their total 511 

sum is one.  512 

3.1.11.2.4 Adaptive learning rates 513 

The adaptive learning rate decreases the learning rate and consequently weights over each epoch. We tried different 514 

base learning and decay rates for each model and found that the learning rate significantly impacts the model 515 

performance. Finally, we chose a base learning rate of 0.1, 0.01, and 0.001 for LSTM, CNN, and CNCNN-LSTM and, 516 

respectively. A decay rate of 0.8 was used for CNN and CNCNN-LSTM, while for the LSTM model, this rate was 517 

0.95. Table 34 shows the adaptive learning rates for CNN, LSTM, and CNCNN-LSTM calculated using Eq. (112) for 518 

each epoch. 519 

adaptive learning rate = 𝑏𝑎𝑠𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×  𝑑𝑒𝑐𝑎𝑦𝑒𝑝𝑜𝑐ℎ                                                                         Eq. (11         520 

(2) 521 

The experiments show that the learning rate is the most critical parameter influencing the model performance. A small 522 

learning rate can cause the costloss function to get stuck in local minima, and a large learning rate can result in 523 

oscillations around global minima without reaching it. 524 

Our CNCNN-LSTM model is deeper than the other two models, and deeper models are more prone to a vanishing 525 

gradient problem. To overcome the vanishing gradients, it is recommended that lower learning rates, e.g., lower than 526 

1e-4,  be used. Interestingly, we found that our CNCNN-LSTM model works better with lower learning rates than the 527 

other two models.  528 

 529 

Table 34. The adaptive learning rate for 50 epochs. 530 

  Learning rate 

Epochs CNN  
CNCNN-

LSTM 
LSTM 

1 0.008 8.00E-04 0.095 

2 0.006 6.40E-04 0.09 

3 0.005 5.12E-04 0.086 

4 0.004 4.10E-04 0.081 

. .   . 

. .   . 

40 1.30E-06 1.33E-07 0.013 

. .   - 

50 1.40E-07 1.43E-08 - 

 531 
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                                                                                                                 532 

2.6.5 Model evaluation 533 

The network on the validation set is evaluated after each epoch during training to monitor the training progress. During 534 

validation, all non-deterministic layers are switched to deterministic. For instance, noise layers are disabled, and the 535 

update step of the parameters is not performed.  536 

The classification accuracy cannot appropriately represent the model performance for unbalanced datasets, as the 537 

model can show a high accuracy by biasing towards the majority class in the dataset (Ordóñez and Roggen, 2016). 538 

While we built a balanced dataset (with the same number of jam and no jam events), randomly selecting test data and 539 

shuffling the inputs, and splitting data into train and validation sets can result in a slightly unbalanced dataset. In our 540 

case, the number of jams and no jams for train and validation and test sets is presented in Table 5. Therefore, the F1 541 

score (Eq. (3)), which considers each class equally important, is used to measure the accuracy of binary classification. 542 

The F1 score, as a weighted average of the precision (Eq. (4)) and recall (Eq. (5)), has the best and worst scores of 1 543 

and 0, respectively. In Eqs. 7 and 8, TP, FP, and FN are true positive, false positive, and false negative, respectively. 544 

Table 5. The number of jam and no jam events in train and validation and test datasets. 545 

  
Train and 

validation Test 

Jam 456 48 

No jam 451 53 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                                               (3) 546 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                     (4) 547 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                         (5) 548 

Although the model accuracy is usually used to examine the performance of deep learning models, the model size 549 

(i.e., number of parameters) provides a second metric, which represents required memory and calculations, to be 550 

compared among models with the same accuracy (Garbin et al., 2020). 551 

After training the model, the well-trained network parameters are saved to a file and are later used for testing the 552 

network generalization using a test dataset, which is not seen during training and validation. 553 

3.1.12 Update expression 554 

We found that SGD with momentum works better than other methods in our cases. The typical values for momentum 555 

are 0.99, 0.9, and 0.5. We applied different values and found that 0.9 gives the best results in our models; this high 556 

momentum results in larger update steps. It is recommended to scale the learning rate by “1 – momentum” for using 557 

the high momentums, which gives 0.1. Interestingly, we already have applied the base learning rate of 0.1 for the 558 

LSTM model chosen through trial and error (as explained earlier); however, smaller values are chosen for CNN and 559 

CN-LSTM networks. 560 
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3.22.7 Architecture of models 561 

The architectures of CNN, LSTM, and CNCNN-LSTM models that are finally selected are presented in Figs. 11, 129, 562 

10, and 1311, respectively. The layers, their output shapes, and their number of parameters are presented in Tables 4, 563 

56, 7, and 68 for CNN, LSTM, and CNCNN-LSTM models, respectively. 564 

The ice-jam dataset for Quebec contains 1008 balanced sequence instances (with a length of 16), which is small for 565 

deep learning. The deep learning models often tend to overfit small datasets by memorizing inputs rather than training. 566 

The noise layers applied to the CNN and LSTM models significantly overcome the overfitting problem through data 567 

augmentation. However, the performance of the CN-LSTM model dramatically deteriorates, including a noise layer 568 

(Fig. 14; showing underfitting). 569 

The CNN models often include pooling layers to reduce data complexity and dimensionality. However, it is not always 570 

necessary that every convolutional layer is followed by a pooling layer in the time-series domain (Ordóñez and 571 

Roggen, 2016). For instance, Fawaz et al. (2019, July) do not apply any pooling layers in their models for TSC. We 572 

tried max-pooling layers after different convolutional layers in CNN and CNCNN-LSTM networks and found that a 573 

pooling layer following only the last convolutional layer improves the performance of both models. This can be due 574 

to subsampling the time series and using time series with a length of 16 that reduces the need for reducing 575 

dimensionality. 576 

 577 

 578 

Figure 119. The architecture of the CNN model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016).  579 

 580 
Figure 1210. The architecture of the LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016). 581 
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  582 

Figure 1311. The architecture of the CNCNN-LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 583 
2016).  584 

Table 46. The layers, their output shapes, and their number of parameters for the CNN model. 585 

Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 

GaussianNoise (16, 1, 16, 7) 0 

Conv2D (16, 128, 16, 7) 640 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 81920 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 245888 

MaxPool2D  (16, 128, 5, 2) 0 

Dense (16, 32) 40992 

Dense (16, 32) 1056 

Softmax (16, 2) 66 

 586 
Table 57. The layers, their output shapes, and their number of parameters for the LSTM model. 587 

Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 

GaussianNoise (16, 1, 16, 7) 0 

Dimshuffle (16, 16, 1, 7) 0 

BatchNorm (16, 16, 1, 7) 64 

LSTM (16, 16, 128) 70272 

BatchNorm (16, 16, 128) 64 

Nonlinearity (16, 16, 128) 0 

LSTM (16, 16, 128) 132224 

Reshape  (256, 128) 0 

Dense (256, 32) 4128 

Dense (256, 32) 1056 

Softmax (256, 2) 66 

Reshape (16, 16, 2) 0 

Slice (16, 2) 0 

 588 
Table 68. The layers, their output shapes, and their number of parameters for the CNCNN-LSTM model. 589 
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Layers Output shape 

Number of 

parameters 

Input (16, 1, 16, 7) 0 

Conv2D  (16, 128, 16, 7) 640 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 81920 

BatchNorm (16, 128, 16, 7) 512 

Nonlinearity (16, 128, 16, 7) 0 

Conv2D (16, 128, 16, 7) 245888 

MaxPool2D (16, 128, 5, 2) 0 

Dimshuffle (16, 5, 128, 2) 0 

BatchNorm (16, 5, 128, 2) 20 

LSTM (16, 5, 128) 197760 

BatchNorm (16, 5, 128) 20 

Nonlinearity (16, 5, 128) 0 

LSTM (16, 5, 128) 132224 

Reshape (80, 128) 0 

Dense (80, 32) 4128 

Dense (80, 32) 1056 

Softmax (80, 2) 66 

Reshape (16, 5, 2) 0 

Slice (16, 2) 0 

 590 

3 Results and Discussion  591 

3.1 Weight initialization 592 

Among the various types of methods available in Lasagne for weight initialization, the GLOROT uniform (i.e., Xavier; 593 

Glorot and Bengio, 2010, March) and He initializations (He et al., 2015), the most popular initialization techniques, 594 

are used to set the initial random weights in convolutional layers. The results reveal that these methods yield almost 595 

the same F1 scores. However, the histograms of F1 scores reveal that GLOROT uniform yields slightly better results 596 

(Fig. 12). 597 
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 598 

Figure 12. Histograms of F1 score for CNN using He (left) and GLOROT uniform (right) weight initialization with 100 599 
random train-validation splits. 600 

 601 

Figure 14. Train and validation errors over epochs for CN-LSTM model with a noise layer. 602 

3.3.2 Model evaluation 603 

LSTM needs only early stopping at 40 epoch among the developed models, as its validation error starts to increase, 604 

while its training error continues to decrease (Fig. 15). Hence, we set the number of epochs to 40 for the LSTM model. 605 

 606 

Figure 15. Train and validation errors over epochs for an LSTM model showing overfitting after 40 epochs. 607 

3.3.2.1 Learning curves and F1 scores  608 

Line plots of the loss (i.e., learning curves), which are loss over each epoch, are widely used to examine the 609 

performance of models in machine learning. Furthermore, line plots clearly indicate common learning problems, such 610 
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as underfitting or overfitting. The learning curves for CNN, LSTM, and CNCNN-LSTM models are presented in Fig. 611 

1613. The LSTM model starts to overfit at epoch 40, so an early stopping is conducted. CNCNN-LSTM performs 612 

better than the other two models, as its training loss is the lowest and is lower than its validation loss. Histograms of 613 

F1 scores (Fig. 1614 and Table 79) show that CNCNN-LSTM outperforms the other two models since it results in the 614 

highest average and the lowesthighest minimum F1-scores for validation (0.82 and 0.75, respectively). Figure 1613 615 

shows that the training error of CNN is lower than that of LSTM, which means that CNN trained better than LSTM 616 

model. However, it is not true for the validation error. The reason that the validation error is less than the training error 617 

in the LSTM model can be the employment of regularization methods as LSTM models are often harder to regularize, 618 

agreeing with previous studies (e.g., Devineau et al., 2018, June).  619 

The LSTM network is valdatedvalidated better than the CNN model since its average and minimum F1 scores for 620 

validation are better than the CNN model (by 1 % and 32 %, respectively), and also LSTM yielded no F1 scores below 621 

0.74 (Fig. 1714 and Table 7). This reveals that LSTM is showing underfitting.9).  622 

As shown in Fig. 1613, training loss is higher than validation loss in some of the results. SomeThere are some reasons 623 

are explaining that. Regularization reduces the validation and testing (i.e., evaluation) loss at the expense of increasing 624 

training loss. The regularization techniques such as noise layers are only applied during training, but not during 625 

evaluationvalidation resulting in more smooth and usually better functions in evaluationvalidation. There is no noise 626 

layer in CNCNN-LSTM model that may causedcause a lower training error than validation error. However, other 627 

regularization methods such as L2 regularization are used in all the models, including the CNCNN-LSTM model.  628 

Furthermore, the other issue is that batch normalization uses the mean and variance of each batch in training, whereas, 629 

in evaluationvalidation, it uses the mean and variance of the whole training dataset. Plus, training loss is averaged 630 

over each epoch, while evaluationvalidation losses are calculated after each epoch once the current training epoch is 631 

completed. Hence, the training loss includes error calculations with fewer updates.  632 

Among the developed machine learning models, SVM shows the best validation performance (Figure 15 and 633 

  634 

  

  
Figure 1613. Train and validation errors over epochs for CNN (left), LSTM (middle), and 

CNCNN-LSTM (right) models with 100 random train-validation splits. 

 

 

Formatted: Not Highlight



 

28 

 

 635 

Table 10). However, F1 scores of deep learning models are much higher than those of machine learning models with 636 

an average of 6% higher F1 score resulted from CNN-LSTM model compared to the SVM model (Tables 9 and 10). 637 

  638 

 639 

    
Figure 1714. Histograms of F1 scores of validation for CNN (left), LSTM (middle), and 

CNCNN-LSTM (right) models with 100 random train-validation splits. 

 

 

  

  
Figure 1613. Train and validation errors over epochs for CNN (left), LSTM (middle), and 

CNCNN-LSTM (right) models with 100 random train-validation splits. 

 

 

    
Figure 1714. Histograms of F1 scores of validation for CNN (left), LSTM (middle), and 

CNCNN-LSTM (right) models with 100 random train-validation splits. 
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7640 

 641 

Table 9. F1 scores of validation for CNN, LSTM, and CNCNN-LSTM models with 100 random train-validation splits. 642 

 Models F1 score 

 mean max min 

CNN 0.80 0.88 0.42 

LSTM 0.81 0.87 0.74 
CNCNN-
LSTM 0.82 0.88 0.75 

 643 
Table 10. F1 scores of validation for SVM, DT, and KNN and MLP models with 100 random train-validation splits. 644 

Models F1 score 

  mean max min 

SVM 0.76 0.82 0.69 

DT 0.74 0.80 0.67 

KNN 0.75 0.84 0.68 

MLP 0.75 0.83 0.68 

3.32.2 Number of parameters and run time 645 

The total number of parameters in CNN, LSTM, and CNCNN-LSTM networks are 371586, 207874, and 664746, 646 

respectively. The best performance has resulted from CNCNN-LSTM with the highest number of parameters. Even 647 

though the number of parameters for the LSTM model is less than CNN, the LSTM model shows better validation 648 

performance. Furthermore, the number of parameters in the CNCNN-LSTM model is much higher than the two other 649 

    
 

 

Figure 15. Histograms of F1 scores of validation for SVM (top left), DT (top middle), KNN (top right), and MLP 

(bottom left) models with 100 random train-validation splits. 
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models, but the computation time is not much higher. All three models take less than 24 hours to train with 100 shuffle 650 

splits for training and validation. The models are run on a CPU with four cores, 3.4 GHz clock speed, and 12 GB 651 

RAM.  652 

For all the machine learning models, it took a couple of minutes to train with 100 shuffle splits for training and 653 

validation. Although, the training time for deep learning models is much higher than that of machine learning models, 654 

the much better performance of deep learning models justifies their application in our cases.  655 

3.43 Order of input variables 656 

AlthoughIt is not clear that whether the order of input variables in the input file is important throughmight influence 657 

multivariate TSC or not when using 2-D filters and 2-D max-pooling layers, there is no guideline for this order for 658 

multivariate TSC. In the benchmark, we randomly used this order from left to right: precipitation, minimum 659 

temperature, maximum temperature, net radiation, ATDD, AFDD, and snow depth. We randomly changed this order 660 

and applied the new order: snow depth, maximum temperature, precipitation, AFDD, net radiation, minimum 661 

temperature, and ATDD. Both models yielded the same average and minimum F1 scores, whereas the maximum F1 662 

score from the order in the benchmark model (0.88) is higher than that of the second-order (0.86). Therefore, it can be 663 

concluded that the order does not significantly impact the results. 664 

3.5 Generalization4 Testing 665 

To examine the ability of the models to generalize to new unseen data, we randomly set aside 10 % of data from 666 

training and validation. for all the developed deep learning and machine learning models. We trained a CNN, an 667 

LSTM, and a CNCNN-LSTM model, then the trained parameters are saved, and finally, the well-trained parameters 668 

are utilized for testing. We trained an SVM, a DT, a KNN, and an MLP model and the models are saved and later used 669 

for testing. The test dataset is almost a balanced dataset with 101 samples with the size of (16, 7), including 48 jams 670 

and 53 no jams. 671 

The results of the test models show that CNCNN-LSTM modelsmodel represent the best F1 score of 0.9192 (Table 672 

811). Tables 79 and 811 show that although LSTM has slightly better validation performance, CNN works a little 673 

better in generalization by only 1 %.  The better generalization of CNN can be becauseand LSTM is a little underfitted 674 

as LSTM models performed the same in testing.  675 

The results of machine learning models are often harder to regularize, agreeingfor testing presented in Table 12 676 

indicate that among the machine learning models KNN yields the best results with previous studies (e.g., Devineau et 677 

al., 2018, June).F1 scores of 78%. Tables 11 and 12 declare that deep learning models work much better than machine 678 

learning models for testing with 14% comparing CNN-LSTM with KNN as the best deep learning and machine 679 

learning models, respectively. 680 

 681 

Table 811. Test F1 scores for LSTM, CNN, and CNCNN-LSTM models. 682 

Models F1 score 

CNN 0.80 
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LSTM 0.7980 
CNCNN-
LSTM 0.9192 

 683 

 684 
Table 12. Test F1 scores for SVM, DT, and KNN and MLP models. 685 

Models F1 score 

SVM 0.75 

DT 0.71 

KNN 0.78 

MLP 0.70 

 686 

3.65 Model comparison 687 

Multiple combined classifiers can be considered for pattern recognition problems to reduce errors as different 688 

classifiers can cover internal weaknesses of each other (Parvin et al., 2011). The ensemblecombined classifier may be 689 

less accurate than the most accurate classifier. However, the accuracy of the combined model is always higher than 690 

the average accuracy of individual models. Combining two models improved our results compared to convolution-691 

only or LSTM-only networks in both training and generalization.testing, supporting the previous studies (e.g., Sainath 692 

et al., 2015). It can be because the CNCNN-LSTM model incorporates both the temporal dependency of each variable 693 

by using LSTM networks and the correlation between variables through CNN models. The combined CNN-LSTM 694 

model efficiently benefit from automatic feature learning by CNN plus the native support for time series by LSTM. 695 

The Although LSTM performed slightly better generalization results fromthan CNN compared to LSTM can be 696 

because ofin validation, these models showed the ability of same performance in testing. The CNN is able to partially 697 

include both temporal dependency and the correlation between variables by using 1D and 2D filters, respectively, 698 

while . Although the LSTM is unable to incorporate the correlations between variables, it gives promising results with 699 

relatively small dataset and captures longer temporal dynamics, while the CNN only captures temporal dynamics 700 

within the length of its filters.  701 

4 Conclusion 702 

This project is a part of a project called DAVE, which aims to develop a tool to provide regional ice jam watches and 703 

warnings, based on the integration of three aspects: the current conditions of the ice cover; hydrometeorological 704 

patterns associated with breakup ice jams; and channel predisposition to ice-jam formation. The outputs of the previous 705 

tasks will be used to develop an ice-jam monitoring and warning module and transfer the knowledge gained to end-706 

users to manage the risk of ice jams better. 707 

While most TSC research in deep learning is performed on 1D channels (Hatami et al., 2018, April), we propose deep 708 

learning frameworks for multivariate TSC for ice-jam prediction. The main finding from the comparison of results is 709 

that the CN-LSTM model is superior to the CNN-only and LSTM-only networks in both training and generalization 710 

accuracy, supporting the previous studies (e.g., Sainath et al., 2015). Though the LSTM network demonstrates quite 711 
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good performance, the CNN model performed slightly better generalization, which agrees with previous studies (e.g., 712 

Brunel et al., 2019). 713 

To our best knowledge, this study is the first study introducing these deep learning models to the problem of ice-jam 714 

prediction. Even though our training data in supervised ice-jam prediction is small, the results reveal that deep learning 715 

techniques can give accurate results, which agrees with a previous study conducted by Ordóñez and Roggen (2016) 716 

in activity recognition. The excellent performance of CNN and CNCNN-LSTM models may be partially due to the 717 

characteristic of CNN that decreases the total number of parameters which does training with limited training data 718 

easier (Gao et al., 2016, May) and including the correlation between involved variables.). However, our models will 719 

be improved in the future by a larger dataset. 720 

Among the developed machine learning models, SVM showed the best performance in validation, whereas KNN 721 

worked the best in testing. However, the performance of deep learning models is much better than machine learning 722 

models in both validation and testing. The machine learning models do not consider correlations between variables. 723 

However, it is not the only reason that deep learning models worked better than machine learning models. As the 724 

LSTM also does not consider correlations between variables but worked better than machine learning models. Some 725 

characteristics of developed deep learning models can explain their better performance compared to machine learning 726 

models. For instance, deep learning models perform well for the problems with complex-nonlinear dependencies, time 727 

dependencies, and multivariate inputs.  728 

The developed CNN-LSTM model can be used for future predictions of ice jams in Quebec to provide early warning 729 

of possible floods in the area by using historic hydro-meteorological variables and their predictions for some days in 730 

advance. 731 

3.6 Discussion on the interpretability of deep learning models 732 

Even though the developed deep learning models performed pretty well in predicting ice jams in Quebec, the 733 

interpretability of the results with respect to the physical processes of the ice jam is still essential. It is because although 734 

deep learning models have achieved superior performance in various tasks, these really complicated models with a 735 

large number of parameters might exhibit unexpected behaviours (Samek et al., 2017 & Zhang et al., 2021). This is 736 

because the real-world environment is still much more complex. Furthermore, the models may learn some spurious 737 

correlations in the data and make correct predictions with the ‘wrong’ reason (Samek and Müller, 2019). Hence, 738 

interpretability is especially important in some real-world applications like flood and ice-jam predictions where an 739 

error may cause catastrophic results. Also, interpretability can be used to extract novel domain knowledge and hidden 740 

laws of nature in the research fields with limited domain knowledge (Alipanahi et al., 2015) like ice-jam prediction.  741 

However, the nested non-linear structure and the “black box” nature of deep neural networks make interpretability of 742 

their underlying mechanisms and their decisions a significant challenge (Montavon et al., 2018, Zhang et al., 2021 743 

and Wojtas and Chen, 2020). That is why, interpretability of deep neural networks still remains a young and emerging 744 

field of research. Nevertheless, there are various methods available to facilitate understanding of decisions made by a 745 

deep learning model such as feature importance ranking, sensitivity analysis, layer-wise relevance propagation, and 746 
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the global surrogate model. However, the interpretability of developed deep learning models for ice-jam prediction is 747 

beyond the scope of this study and it will be investigated in our future works. 748 

3.7 Model transferability 749 

The transferability of a model between river basins is highly desirable but has not yet been achieved because most 750 

river ice-jam models are site specific (Mahabir et al., 2007). The developed models in this study can be used to predict 751 

future ice jams some days before the event not only for Quebec but also for eastern parts of Ontario and western New 752 

Brunswick. For other locations, the developed models can be transferred via re-training and a small amount of fine-753 

tuning using labeled instances, rather than building from scratch. It is because the logic in the model may be 754 

transferable to the other sites with small modifications. To transfer a model from one river basin to another, historic 755 

records of ice jams and equivalent hydro-meteorological variables (e.g., precipitation, temperature, and snow depth) 756 

as inputs to the model must be available at each site.  757 

4 Conclusion 758 

The main finding from this project is that all the developed deep models performed pretty well and performed much 759 

better than the developed machine learning models for ice-jam prediction in Quebec. The comparison of results show 760 

that the CNN-LSTM model is superior to the CNN-only and LSTM-only networks in both validation and testing 761 

accuracy, though the LSTM and CNN models demonstrate quite good performance. 762 

To our best knowledge, this study is the first study introducing these deep learning models to the problem of ice-jam 763 

prediction. The developed models are promising to be used to predict future ice jams in Quebec and in other river 764 

basins in Canada with re-training and a small amount of fine-tuning. 765 

The developed models do not apply to freeze-up jams that occur in early winter and are based on different processes 766 

than breakup jams. We studied only break-upbreakup ice jams as usually they result in flooding and are more 767 

dangerous than freeze-up jams.  Furthermore, there is a lack of data availability for freeze-up ice jams in Quebec and 768 

only 89 records of freeze-up jams are available which is too small. 769 

The main limitation of this study is data availability as recorded ice jams are small which causes deep learning models 770 

to easily overfit to small number of data. Another limitation of the presented work is the lack of interpretability of the 771 

results with respect to the physical characteristics of the ice jam. This is a topic of future research and our next step is 772 

to explore that.  773 

The hydro-meteorological variables are not the only drivers of ice-jam formation. The geomorphological indicators 774 

that control the formation of ice jams include the river slope, sinuosity, a barrier such as an island or a bridge, 775 

narrowing of the channel, and confluence of rivers. In the future, a geospatial model using deep learning will be 776 

developed to examine the impacts of these geospatial parameters on the ice-jam formation. 777 
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