

1

Convolutional Neural Network and Long Short-Term Memory 1

Models for Ice-Jam Prediction 2

 3

Fatemehalsadat Madaeni1, Karem Chokmani1, Rachid Lhissou1, Saied Homayouni1, Yves 4

Gauthier1, and Simon Tolszczuk-Leclerc2 5

1INRS-ETE, Université du Québec, Québec City, G1K 9A9, Canada 6
2EMGeo Operations, Natural Resources Canada, Ottawa, K1S 5K2, Canada 7
Correspondence to: Fatemehalsadat Madaeni (Fatemehalsadat.Madaeni@ete.inrs.ca) 8
 9
Abstract. In cold regions, ice-jam events result in severe flooding due to a rapid rise in water levels upstream of the 10

jam. These floods threaten human safety and damage properties and infrastructures as the floods resulting from ice-11

jams are sudden. Hence, the ice-jam prediction tools can give an early warning to increase response time and minimize 12

the possible corresponding damages. However, the ice-jam prediction has always been a challenging problem as there 13

is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological 14

conditions happen, a few hours to a few days before the event. The iceIce-jam prediction problem can be considered 15

as a binary multivariate time-series classification. Deep learning techniques have been successfully appliedwidely 16

used for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In 17

this research, we successfully applied Convolutional Neural Network (CNN,), Long Short-Term Memory (LSTM,), 18

and combined CNConvolutional-Long Short-Term Memory (CNN-LSTM) networks for ice-jam prediction for all 19

the150 rivers in Quebec. The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along 20

with the corresponding jam or no-jam events are used as the inputs to the models. We hold out 10% of the data for 21

testing. And we applied 100 re-shuffling and splitting iterations with 80 % of the remaining data for training and 20% 22

for validation. The results show that the CNCNN-LSTM model yields the best results in the validation and 23

generalizationtesting with F1 scores of 0.82 and 0.9192, respectively. This demonstrates that CNN and LSTM models 24

are complementary, and a combination of them further improves classification. 25

1 Introduction 26
Predicting ice-jam events gives an early warning of possible flooding, but there is no analytical solution to predict 27

these events due to the complex interactions between involved hydro-meteorological variables. (e.g., temperature, 28

precipitation, snow depth, and solar radiation). To date, a small number of empirical and statistical prediction methods 29

that have been developed (such as threshold methods, multi-regression models, logistic regression models, and 30

discriminant function analysis) for ice jams have been developed for ice jams (Barnes-Svarney and Montz, 1985; 31

Mahabir et al., 2006; Massie et al., 2002; White, 2003; White and Daly, 2002, January; Zhao et al., 2012). However, 32

these methods are site-specific with a high rate of false-positive errors (White, 2003). The numerical models developed 33

for ice-jam prediction (e.g., ICEJAM (Flato and Gerard, 1986, cf.; Carson et al., 2011), RIVJAM (Beltaos, 1993), 34

HEC-RAS (Brunner, 2002), ICESIM (Carson et al., 2001 and 2003), and RIVICE (Lindenschmidt, 2017)) show 35

limitations in predicting ice-jam occurrence. This is because mathematical formulations in these models are complex 36

which need many parameters that are often unavailable as they are challenging to measure in ice conditions. Hence, 37

Formatted: English (Canada)

Formatted: English (Canada)

Formatted: English (Canada)

Formatted: English (Canada)

mailto:Fatemehalsadat.Madaeni@ete.inrs.ca

2

many simplifications corresponding to these parameters may degrade model accuracy (Shouyu & Honglan, 2005). A 38

detailed overview of the previous models for ice-jam prediction based on hydro-meteorological data are presented in 39

Madaeni et al. (2020). 40

Prediction of ice-jam occurrence can be considered as a binary multivariate time-series classification (TSC) 41

modelproblem when the time series of various hydro-meteorological variables (explained later) can be used to classify 42

to jam or no jam events. Time-series classification (particularly multivariate) has been widely used in various fields, 43

including biomedical engineering, clinical prediction, human activity recognition, weather forecasting, and finance. 44

Multivariate time-series provide more patterns and improve classification performance compared to univariate time-45

series (Zheng et al., 2016). Time-series classification is one of the most challenging problems in data mining and 46

machine learning. 47

Most existing TSC methods are feature-based, distance-based, or ensemble methods (Cui et al., 2016). Feature 48

extraction is challenging due to the difficulty of handcrafting useful features to capture intrinsic characteristics from 49

time-series data (Karim et al., 2019; Zheng et al., 2014, June). Hence, distance-based methods work better in TSC 50

(Zheng et al., 2014, June). Among the hundreds of methods developed methods for TSC, the leading classifier with 51

the best performance was ensemble nearest neighbor with dynamic time warping (DTW) for many years (Fawaz et 52

al., 2019, July; Karim et al., 2019). 53

In the k-nearest neighbors (kNNKNN) classifier, the given test instance is classified by a majority vote of its k closest 54

neighbors in the training data. The kNNKNN classifier needs all the data to make a prediction which requires high 55

memory. Hence, it is computationally expensive and could be slow if the database is large, and sensitive to irrelevant 56

features and the scale of the data. Furthermore, the number of neighbors to include in the algorithm should be 57

wiselycarefully selected. The kNNKNN classifier is very challenging to be used for multivariate TSC. The dynamic 58

time warping is a more robust alternative for Euclidean distance (the most widely used time-series distance measure) 59

to measure the similarity between two given time series by searching for an optimal alignment (minimum distance) 60

between them (Zheng et al., 2016). However, the combined kNNKNN with DTW is time-consuming and inefficient 61

for long multivariate time-series (Lin et al., 2012; Zheng et al., 2014, June). The traditional classification and classic 62

data mining algorithms developed for TSC have high computational complexity or low prediction accuracy. This is 63

due to the size and inherent complexity of time series, seasonality, noise, and feature correlation (Lin et al., 2012). 64

There are some machine learning methods available for TSC such as KNN and support vector machine (SVM). 65

However, the focus of this research is on the deep learning models that have greatly impacted sequence classification 66

problems and they can also be used for multivariate TSC with good performance. Deep learning methods are able to 67

consider two-dimensionality in multivariate time-series and their deeper architecture could further improve the 68

classification especially for complex problems, which is why their results are more accurate and robust than other 69

methods (Wu et al., 2018a, April). However, they are more time consuming and difficult to interpret. 70

Deep learning is a type of neural networknetworks that uses multiple layers ofwhere nonlinear 71

informationtransformation is used to extract 72

higher-level features from the input data. Although deep learning in recent years showed promising performance in 73

various fields such as image and speech recognition, document classification, and natural language processing, only a 74

3

few studies employed deep learning for TSC (Gu et al., 2018; Fawaz et al., 2019, July). Various studies show that 75

deep neural networks significantly outperform the ensemble nearest neighbor with DTW (Fawaz et al., 2019, July). 76

The main benefit of deep learning networks is automatic feature-extraction, which reduces the need for expert 77

knowledge of the field and removes engineering bias in the classification task (Fawaz et al., 2019) as the probabilistic 78

decision (e.g., classification) is taken by the network. 79

The most widely used deep neural networks for TSC are Multi-Layer Perceptron (MLP; i.e., fully connected deep 80

neural networks), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) . 81

). The application of CNNs for TSC has recently become more and more popular, and different types of CNN are 82

being developed with superior accuracy performance for this purpose (e.g., Cui et al., 2016). Zheng et al. (2014, June) 83

and Zheng et al. (2016) introduce a Multi-Channels Deep Convolutional Neural Network (MC-DCNN) for 84

multivariate TSC, where each variable (i.e., univariate time series) is trained individually to extract features and finally 85

concatenated using an MLP to perform classification (Fig. 1). Their results showThey showed that their model 86

achieves a state-of-the-art performance both in efficiency and accuracy on a challenging dataset. The drawback of 87

their model and similar architectures (e.g., Devineau et al., 2018, May) is that they do not capture the correlation 88

between variables as the feature extraction is carried out separately for each variable. 89

 90

Figure 1. A 2-stages MC-DCNN architecture for activity classification. This architecture consists of three channels input, 91
two filter layers, two pooling layers, and two fully-connected layers (after Zheng et al., 2014, June). 92

Brunel et al. (2019) present CNNs adapted for TSC in cosmology using 1D filters to extract features from each channel 93

over time and a 1D convolution in depth to capture the correlation between the channels. They compared the results 94

4

from LSTMs with CNNs, which shows that CNNs give better results than LSTMs. Nevertheless, both deep learning 95

approaches are very promising. 96

The combination of CNNs and LSTM units has already yielded state-of-the-art results in problems requiring 97

classification of temporal information such as human activity recognition (Li et al., 2017; Mutegeki and Han, 2020, 98

February), text classification (Luan and Lin, 2019; March, She and Zhang, 2018, December; Umer et al., 2020), 99

video classification (Lu et al., 2018 and Wu et al., 2015, October), sentiment analysis (Ombabi et al., 2020; Sosa, 100

2017; Wang et al., 2016, August; Wang et al., 2019), typhoon formation forecasting (Chen et al.,2019), and 101

arrhythmia diagnosis (Oh et al., 2018). In this architecture, convolutional operations capture features and LSTMs 102

capture time dependencies on extracted features. Ordóñez and Roggen (2016) propose a deep convolutional LSTM 103

model (DeepConvLSTM) for activity recognition (Fig. 2). Their results are compared to the results from standard 104

feedforward units showing that DeepConvLSTM reaches a higher F1 score and better decision boundaries for 105

classification. Furthermore, they noticed that the LSTM model gives promising results with relatively small datasets. 106

Furthermore, LSTMs present a better performance in capturing longer temporal dynamics, whereas the convolution 107

filters can only capture the temporal dependencies dynamics within the length of the filter. 108

 109

Figure 2. The architecture of the DeepConvLSTM framework for activity recognition (after Ordóñez and Roggen, 2016). 110

This project is a part of a project called DAVE, which aims to develop a tool to provide regional ice jam watches and 111

warnings, based on the integration of three aspects: the current conditions of the ice cover; hydro-meteorological 112

patterns associated with breakup ice jams; and channel predisposition to ice-jam formation. The outputs of the previous 113

tasks will be used to develop an ice-jam monitoring and warning module and transfer the knowledge gained to end-114

users to better manage the risk of ice jams. 115

The objective of this research is to develop deep learning models to predict breakup ice-jam events to be used as an 116

early warning system of possible flooding. While most TSC research in deep learning is performed on 1D channels 117

(Hatami et al., 2018, April), we propose deep learning frameworks for multivariate TSC for ice-jam prediction. The 118

objective of this research is to develop deep learning models to predict breakup ice-jam events to be used as an early 119

warning system of possible flooding. Through our comprehensive literature review, we noticed that CNN (e.g., Brunel 120

et al., Deep2019; Cui et al., 2016; Devineau et al., 2018, June; Kashiparekh, 2019, July; Nosratabadi et al., 2020;Yan 121

et al., 2020; Yang et al., 2015, June; Yi et al., 2017; Zheng et al., 2016), LSTM (e.g., Fischer and Krauss, 2018; Lipton 122

et al., 2015; Nosratabadi et al., 2020; Torres et al., 2021), and a combined CNN-LSTM (e.g., Karim et al., 2o17; 123

5

Livieris et al., 2020; Ordóñez and Roggen, 2016; Sainath et al., 2015, April; Xingjian et al., 2015) have been widely 124

used for TSC. There are numerous applications of CNN, LSTM, and their hybrid versions applied in hydrology 125

(Althoff et al., 2021; Apaydin et al., 2020; Barzegar et al., 2021, 2020; Kratzert et al., 2018; Wunsch et al., 2020; 126

Zhang et al., 2018). Although deep learning methods areseem to be promising to address the requirements of ice-jam 127

predictions. , none of these methods yet have been explored for ice jam prediction. 128

Hence, we developed three deep learning models; a CNN, an LSTM, and a combined CN-LSTM (Convolutional-129

Long Short-Term Memory)CNN-LSTM for ice-jam predictions and compared the results. The previous studies show 130

that these models show good capabilities in capturing features and the correlation between features (through 131

convolution units) and time dependencies (through memory units) that will be later used for TSC. The previous studies 132

show that these models show good capabilities in capturing features and the correlation between features (through 133

convolution units) and time dependencies (through memory units) that will be later used for TSC. The combined 134

CNCNN-LSTM can reduce errors by compensating for the internal weaknesses of each model. In the CNCNN-LSTM 135

model, CNNs capture features, then the LSTMs give the time dependencies on the captured features. 136

Furthermore, we also developed some machine learning methods as simpler methods for ice-jam prediction. And their 137

results are compared with results from the developed deep learning models. 138

2 MaterialMaterials and Methods 139

2.1 Input dataData and study area 140

It is known that specific hydro-meteorological conditions lead to ice-jam occurrence (Turcotte and Morse, 2015, 141

August and White, 2003). For instance, breakup ice jams occur when a period of intense cold is followed by a rapid 142

peak discharge resulting from spring rainfall and snowmelt runoff (Massie et al., 2002). The period of intense cold 143

can be represented by the changes in Accumulated Freezing Degree Days (AFDD). The sudden spring runoff increase 144

is not often available at the jam location and can be represented by liquid precipitation and snow depth some days 145

before the ice-jam occurrence (Turcotte and Morse, 2015, August and White, 2003). For instance, breakup ice jams 146

occur when a period of intense cold is followed by a rapid peak discharge resulting from spring rainfall and snowmelt 147

runoff (Massie et al., 2002). The period of intense cold can be represented by the changes in Accumulated Freezing 148

Degree Days (AFDD). The sudden spring runoff increase is not often available at the jam location and can be 149

represented by liquid precipitation and snow depth some days before the ice-jam occurrence (Zhao et al., 2012). 150

Prowse and Bonsal (2004) and Prowse et al. (2007) evaluate various hydroclimatic explanations for river ice freeze -151

up and breakup, concluding that shortwave radiation is the most critical factor influencing the mechanical strength of 152

ice and consequently the possibility of breakup ice jams to occur. Turcotte and Morse (2015, August) explain that 153

Accumulated Thawing Degree Day (ATDD), an indicator of warming periods, partially covers the effect of shortwave 154

radiation. In the previous studies of ice-jam and breakup predictions, discharge and changes in discharge, water level 155

and changes in water level, AFDD, ATDD, precipitation, solar radiation, heat budget, and snowmelt or snowpack are 156

the most readily used variables (Madaeni et al., 2020). 157

The inputs we used in this study are historical ice-jam or no ice-jam occurrence (Fig. 23) as well as hydro-158

meteorological variables including liquid precipitation (mm), min and max temperature (°C), AFDD (from August 159

Formatted: Space Before: 0 pt, After: 0 pt

6

1st; °C), ATDD (from January 1st; °C), snow depth (cm) and net radiation (W m-2) in all150 rivers in Quebec. The net 160

solar radiation, the total energy available to influence the climate, is calculated as the difference between incoming 161

and outgoing energy. If the median temperature is greater than 1, the precipitation is considered liquid precipitation. 162

The statistics of hydro-meteorological data used in the models are presented in Table 1. The source, time period, and 163

spatial resolution of the input variables are presentedshown in Table 1. The “NaN” precipitation values get 0 values2. 164

TThe iceIce-jam database is provided by the Quebec Ministry of Public Security (MSPQ; Données Québec, 2021) for 165

150 rivers in Quebec, mainly in the St. Lawrence basin. The database comes from the digital or paper event reports 166

by local authorities under the jurisdiction of the MSPQ from 1985 to 2014. Moreover, some other data of this database 167

are provided by the field observations from the Vigilance / Flood application from 2013 to 2019. It contains 995 168

recorded jam events that are not validated and contain many inaccuracies, mainly in the toponymy of the rivers, 169

location, dating, and the redundancy of jam events. 170

The names of the watercourse of several icerecorded jams are not given or completely wrong or affected by a typo or 171

an abbreviation. The toponymy of the rivers was corrected using the National Hydrographic Network (NHN; National 172

Hydrographic Network - Natural Resources Canada (NRCan)), the Geobase of the Quebec hydrographic network 173

(National Hydro Network - NHN - GeoBase Series - Natural Resources Canada), and the Toporama Web map service 174

(The Atlas of Canada - Toporama - Natural Resources Canada) of the Sector of Earth Sciences. 175

Several ice jams are placed on the banks at a small distance (less than 20 m) from the polygon of the river. In this 176

case, the location of the ice jam is moved inside the river polygon. In other cases, the ice-jam point is posed further 177

on the flooded shore at a distance between 20 and 200 m. This has been corrected based on images with very high 178

spatial resolution, the sinuosity and the narrowing of the river, the history of ice jams at the site in question , and the 179

press archives. In addition, some ice jams were placed too far from the mentioned river due to a typo in entering 180

theirwrong recorded coordinates in the database. A single-digit correction in longitude or latitude returned the jam to 181

its exact location. There are certain cases where the date of jam formation is verified by searching the press archives, 182

notably when the date of formation is missing or several jams with the same dates and close locations in a section of 183

a river are present. 184

The ice jam database contains many duplicates. This redundancy can be due to merging two data sources, the double 185

entry during ice-jam monitoring, or recording an ice jam for several days. The duplicates are removed from the 186

database. The corrected ice-jam database contains 850 jams for 150 rivers, mainly in southern Quebec (Fig. 3). The 187

ice jams formed in November and December (freeze-up jams) are removed to only include breakup jams (from January 188

15th) in the modelling as these two types of jams are formed due to different processes. The final breakup ice-jam 189

database that used in this study includes 504 jam events. 190

7

 191

Figure 3. Study area and historic ice-jam locations recorded in Quebec from 1985-2017. 192

Table 1. HydroStatistics of hydro-meteorological datavariables used asin the input to the modelmodels. 193

Statistics

Liquid P

(mm)

Tmin

(°C)

Tmax

(°C)

Net radiation (W m-

2)

ATDD

(°C)

AFDD

(°C)

Snowdepth

(cm)

min 0.00 -40.00 -25.97 -67.77 0.00 -2109.33 0.00

max 50.87 12.05 27.48 222.69 280.82 -35.41 121.86

average 1.04 -9.41 0.98 59.75 8.83 -898.48 15.99

median 0.00 -7.73 1.68 59.41 1.27 -890.74 11.50

 194
Table 2. Source, duration, and spatial resolution of hydro-meteorological data used in the models. 195

Data Source Duration Spatial

resolution

Min and Max temperature* Daily Surface Weather Data (Daymet; Thornton et al., 2020) 1979-2019 1 km

Liquid precipitation Canadian Precipitation Analysis (CaPA; Mahfouf et al.,

2007)

2002-2019 10-15km

Liquid precipitation North American Regional Reanalysis (NARR; Mesinger et

al., 2006)

1979-2001 30 km

Infrared radiation emitted by

the atmosphere

North American Regional Reanalysis (NARR) 1979-2019 30 km

Infrared radiation emitted

from the surface

North American Regional Reanalysis (NARR) 1979-2019 30 km

Snow depth North American Regional Reanalysis (NARR) 1979-2019 30 km

* The average was used to derive the AFDD and the ATDD. 196
 197

Formatted: Keep with next

8

2.2 Machine learning models for TSC 198

The common machine learning techniques that have been used for TSC are SVM (Rodríguez and Alonso, 2004; Xing 199

and Keogh, 2010), KNN (Li et al., 2013; Xing and Keogh, 2010), decision tree (DT; Brunello et al., 2019; Jović et al., 200

2012, August), and multilayer perceptron (MLP; del Campo et al., 2021; Nanopoulos et al., 2001). For more 201

information about these machine learning models refer to the mentioned literature above. We do not explain these 202

models and their applications in TSC, as they are not the focus of this study. 203

We developed the mentioned machine learning methods and compared their results with the results of deep learning 204

models. After some trials and errors, the parameters that are changed from the default values for each machine learning 205

model are as follows. We developed an SVM with a polynomial kernel with a degree of 5 that can distinguish curved 206

or nonlinear input space. The KNN is used with 3 neighbors used for classification. The decision tree model is applied 207

with all the default values. The shallow MLP is used with ‘lbfgs’ solver (which can converge faster and perform better 208

for small datasets), alpha of 1e-5, and 3 layers with 7 neurons in each layer. 209

2.3 Deep learning models for time-series classification (TSC)TSC 210

The most common and popular deep neural networks for TSC are MLPMLPs, CNNs, and LSTM.LSTMs (Brownlee, 211

2018; and Torres et al., 2021). Despite their power, however, MLP has limitations that each input (i.e., time-series 212

element) and output are treated independently, which means that the temporal or space information is lost (Lipton et 213

al., 2015). Hence, an MLP needs some temporal information in the input data to model sequential data such as time 214

series (Ordóñez and Roggen, 2016). In this regard, Recurrent Neural Networks (RNNs) are specifically adapted to 215

sequence data through the direct connections between individual layers (Jozefowicz et al., 2015). Recurrent Neural 216

Networks perform the same repeating function with a straightforward structure, e.g., a single tanh (hyperbolic tangent) 217

layer, for every input of data (xt), while all the inputs are related to each other with their hidden internal state, which 218

allows it to learn the temporal dynamics of sequential data (Fig. 4). 219

9

 220

 221

Figure 4. An RNN with a single tanh layer, where A is a chunk of the neural network, xtx is input data, and hth is output 222
data (after Olah, 2015).. 223

Recurrent Neural Networks were rarely used in TSC due to their significant problems. Recurrent Neural Networks 224

mainly predict output for each time-series element, they are sensitive to the first examples seen, and it is also 225

challenging to capture long-term dependencies due to vanishing gradients, exploding gradients, and their complex 226

dynamics (Devineau et al., 2018, June; Fawaz et al., 2019). 227

Long short-term memory RNNs are developed to improve the performance of RNNs by integrating a memory to 228

model long-term dependencies in time-series problems (Brunel et al., 2019; Karim et al., 2019). Long short-term 229

memory networks do not have the problem of exploding gradients. The LSTMs have four interacting neural network 230

layers in a very special way (Fig. 5). An LSTM has three gates (sigmoid (σ) layers; σ) to control how much of each 231

component should be let through by outputting numbers between zero and one. The input to an LSTM goes through 232

three gates (“forget”, “input”, and “output gates”) that control the operation performed on each LSTM block (Ordóñez 233

and Roggen, 2016). The first step is the “forget gate” layer that gets the output of the previous block (ht−1), the input 234

for the current block (Xt), and the memory of the previous block (Ct-1) and gives a number between 0 and 1 for each 235

number in the cell state (Ct−1; Olah, 2015). The second step is called the “input gate” with two parts, a sigmoid layer 236

that decides which values to be updated and a tanh layer that creates new candidate values for the cell state. These two 237

new and old memories will then be combined and control how much the new memory should influence the old 238

memory. The last step (output gate; step 3 in Fig. 5) gives the output by applying a sigmoid layer deciding how much 239

new cell memory goes to output, and multiply it by tanh applied to the cell state (giving values between −1 and 1). 240

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

10

 241

 242

Figure 5. Structure of LSTM block with four interacting layers (adopted from Olah, 2015).. 243

Recently, convolutional neural networks challenged the assumption that RNNs (e.g., LSTMs) have the best 244

performance when working with sequences. Convolutional neural networksThe CNNs show state-of-the-art 245

performance in sequential data such as speech recognition and sentence classification, similar to TSC (Fawaz et al., 246

2019). 247

Convolutional neural networksThe CNNs are the most widely used deep learning methods in TSC problems (Fawaz 248

et al., 2019). They learn spatial features from raw input time series using filters (Fawaz et al., 2019). Convolutional 249

neural networksThe CNNs are robust and need a relatively small amount of training time comparing with RNNs or 250

MLPs. They work best for extracting local information and reducing the complexity of the model. 251

A CNN is a kind of neural network with at least one convolutional layer (or filter).) layer. A CNN usually involves 252

several convolutional layers, activation functions, and pooling layers for feature extraction following by dense layers 253

(or MLP) as a classifier (Devineau et al., 2018, June). The reason to use a sequence of filters is to learn various features 254

from time series for TSC. A convolutional layer consists of a set of learnable filters that compute dot products between 255

local regions in the input and corresponding weights. With high-dimensional inputs, it is impractical to connect 256

neurons to all neurons in the previous layer. Therefore, each neuron in CNNs is connected to only a local region of 257

11

the input, namely the receptive field, which equals the filter size (Fig. 56). This feature reduces the number of 258

parameters by limiting the number of connections between neurons in different layers. The input is first convolved 259

with a learned filter, and then an element-wise nonlinear activation function is applied to the convolved results (Gu et 260

al., 2018). The pooling layer performs a downsampling operation such as maximum or average, reducing the spatial 261

dimension (Fig. 6).. One of the most powerful features of CNNs is called weight or parameter sharing, where all 262

neurons share filters (weights) in a particular feature map (Fawaz et al., 2019) to reduce the number of parameters. 263

 264

Figure 6. A convolution layer structure including two sets of filters. 265

 266

Figure 6. . A CNN Architecture for image classification (modified from Karpathy, 2017).

12

2.34 Model libraries 267

In an anacondaAnaconda (Analytics, C., 2016) environment, Python is implemented to develop CNN, LSTM, and 268

CNCNN-LSTM networks for TSC. To build and train networks, the networks are implemented in Theano (Bergstra 269

et al., 2010, June) using the Lasagne (Dieleman et al., 2015) library. The other core libraries used for importing, 270

preprocessing, training data, and visualization of results are Pandas (Reback et al., 2020), NumPy (Harris et al., 2020), 271

Scikit-Learn (Pedregosa et al., 2011), and Matplotlib.PyLab (Hunter, J. D., 2007). Spyder (Raybaut, 2009) package 272

of Anaconda is utilized as an interface, or the command window can be used without any interface. 273

2.45 Preprocessing 274

The data is comprised of variables with varying scales, and the machine learning algorithms can benefit from rescaling 275

the variables to all have the same scale. Scikit-learn (Pedregosa et al., 2011) is a free library for machine learning in 276

Python that can be used to preprocess data. We examined Scikit-learn MinMaxScaler (scaling each variable between 277

0 and 1), Normalizer (scaling individual samples to the unit norm), and StandardScaler (transforming to zero mean 278

and unit variance separately for each feature). The results show that MinMaxScaler (Eq. (1)) worksleads to the best in 279

our modelsmost accurate results. The scaling of validation data is done with min and max from train data. 280

Xscaled = (
X − X.min

X.max − X.min
) ,

X − X.min

X.max − X.min
 (1) 281

For each jam or no jam event, we used 15 days of information before the event to predict the event on the 16th day. 282

We generate a balanced dataset with the same number of jam and no-jam events (1008 small sequences totally), 283

preventing the model from becoming biased to jam or no-jam events. The hydro-meteorological data related to no-284

jam events are constructed by extracting data from the reaches of no-jam records. To examine models’ generalization, 285

we hold out 10% of data for testing and 80 % and 20 % of remaining data for training and validation, respectively. 286

We used ShuffleSplit subroutine from the Scikit-learn library, where the database was randomly sampled during each 287

re-shuffling and splitting iteration to generate training and validation sets. We applied 100 re-shuffling and splitting 288

iterations with 80 % of data for training and 20 % for validation. There are 806726, 181, and 202101 small sequences 289

with the size of (16, 7), 16 days of data for the seven variables; for training and, validation, and test, respectively. To 290

examine models' generalization, we hold out 30 small sequences for testing and 80 % and 20 % of remaining data for 291

training and validation, respectively. 292

2.56 Training 293

Training a deep neural network with an excellent generalization to new unseen inputs is challenging. As a benchmark, 294

a CNN model with the parameters and layers similar to previous studies (e.g., Ordóñez and Roggen, 2016) is 295

developed. The model shows underfitting or overfitting with various architectures and parameters. To overcome 296

underfitting, deeper models and more nodes in each layer are beneficial; however, overfitting is more challenging to 297

overcome. The iceIce-jam dataset for Quebec contains 1008 balanced sequence instances (with a length of 16), which 298

is small, which easily causes the network for deep learning. The deep learning models often tend to memorizeoverfit 299

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

13

small datasets by memorizing inputs rather than training examples and consequently results in overfitting, as a small 300

dataset may not appropriately describe the relationship between input and output spaces. 301

2.56.1 Overcome overfitting 302

There are various methods to tackle the problem of overfitting, including acquiring more data, data augmentation 303
(e.g., cropping, rotating, and noise injection), dropout (Srivastava et al., 2014), early stopping, batch normalization 304
(Ioffe and Szegedy, 2015, June), and regularization. Acquiring more data is not possible with ice-jam records. We added 305
the Gaussian noise layer (from the Lasagne library), where the noise values are Gaussian-distributed with zero-mean 306
and a standard deviation of 0.1 to the input. 2.5.1.1 Noise layer 307

The first approach to overcome overfitting is acquiring more data that is not possible with ice-jam records. Another 308

popular approach to increase the number of samples is data augmentation, including cropping, rotating, blurring, color 309

modification, and noise injection in image classification. Data augmentation can act as a regularizer, prevent 310

overfitting, and improve performance in imbalanced class problems (Wong et al., 2016). However, the application of 311

data augmentation in deep learning for time series classification still has not been studied thoroughly (Fawaz et al., 312

2019). To expand the size of the dataset, noise layers, as a simple form of random data augmentation, can be used. 313

Over the training process, each time an input sample is exposed to the model, the noise layer creates new samples in 314

the vicinity of the training samples resulting in various input data every time, increases randomness, making the model 315

less prone to memorize training samples and learns more general features (resulting in better generalization). 316

We added the Gaussian noise layer (from the Lasagne library), where the noise values are Gaussian-distributed with 317

zero-mean and a standard deviation of 0.1 to the input. The noise layer is usually added to the input data but can also 318

be added to other layers. 319

2.5.1.2 Dropout 320

The other approach to tackle overfitting is dropout (Srivastava et al., 2014). The dropout, the most successful method 321

for neural network regularization, randomly sets inputs to zero (Fig. 7). To overcome overfitting and examine the 322

effectiveness of dropout in our models, the dropout with the recommended rates of 0.1 for the input layer and between 323

0.5 and 0.8 for hidden layers (Garbin et al., 2020) are applied in different layers of the models. 324

 325

Figure 7. A neural network with two hidden layers (left) and a neural network with dropout (right; after Srivastava et al., 326
2014). 327

14

2.5.1.3 Early stopping 328

The noise layers applied to the CNN and LSTM models significantly overcome the overfitting problem through data 329

augmentation. However, the performance of the CNN-LSTM model dramatically deteriorates, including a noise layer 330

(Fig. 7). Adding a noise layer to other layers does not improve any of the developed models for ice-jam prediction. 331

 332

Figure 7. Train and validation errors over epochs for CNN-LSTM model with a noise layer. 333

Early stopping is another efficient method to tackle overfitting via haltingthat halts the training procedure where 334

further training would decrease training loss, while validation loss starts to increase. 335

2.5.1.4 Batch normalization 336

As explained earlier, the input data is scaled separately for each feature to be between 0 and 1. However, in deep 337

learning, the distribution of the input of each layer will be changed by updates to all the preceding layers, so-called 338

internal covariate shift. Hence, hidden layers try to learn to adapt to the new distribution slowing down the training 339

process. Batch normalization (Ioffe and Szegedy, 2015, June) is a recent method that provides any layer with inputs 340

of zero mean and unit variance and consequently prevents internal covariate, solves exploding or vanishing gradient 341

problems, allows the use of higher learning rates, improves the training efficiency, and speeds up the training. Batch 342

normalization adjusts the value for each batch, results in more noise acting as a regularizer, similar to dropout, and 343

thus reduces the need for dropout (Garbin et al., 2020). We performedNeural networks solve an optimization problem 344

that requires a loss function to calculate the model error. The loss function is similar to an objective function for 345

process-based hydrological models. Among the developed models, only LSTM needs early stopping at 40 epoch (Fig. 346

8). More explanations about the other methods that are used in this study to overcome overfitting (e.g., batch 347

normalization over each channel in different layers in our models to find its best locations through trial and error., and 348

L2 regularization) can be found in the Appendix. 349

15

 350

Figure 8. Train and validation errors over epochs for an LSTM model showing overfitting after 40 epochs. 351

2.5.1.5 Regularization 352

There are two general ways to keep a deep neural network simple and consequently prevent overfitting; through the 353

number of weights and values of weights. The number of weights can be controlled by the number of layers and nodes 354

optimized via the grid or random search. A network with large weights can be more complex and unstable as large 355

weights increase loss gradients exponentially, resulting in exploding gradients that cause massive output changes with 356

minor changes in the inputs. In turn, the exploding gradients can force the model loss and weights to “NaN” values 357

(Brownlee, 2017). 358

The simplest and most common approach to keep the weights small is regularization methods that involve checking 359

model weights and adding an extra penalty term to the loss function in proportion to the size of weights' size in the 360

model. The two main methods used to calculate the size of the weights are L1 (the sum of the absolute values of the 361

weights; Eq. (2)) and L2 or weight decay (the sum of the squared values of the weights; Eq. 3). In Eq. (2) and (3), 𝜆 362

is a parameter that controls the importance of the regularization, and W is the network parameters. The L1 363

regularization encourages weights to be 0.0 (causing underfitting) and very few features with non-zero weights, while 364

L2 regularization forces the weights to be small rather than zero. Hence, L2 can predict more complex patterns when 365

output is a function of all input features. We used an L2 regularization cost by applying a penalty to the parameters of 366

all layers in the networks in CNN, LSTM, and CN-LSTM models. 367

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆 ∑ |𝑤𝑖|𝑛
𝑖=1 (2) 368

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆 ∑ 𝑤𝑖
2𝑛

𝑖=1 (3) 369

2.5.2 Architecture Tuning 370

2.6.2 Model Hyperparameters 371

Finding hyperparameter values in deep learning has been challenging due to the complex architecture of deep learning 372

models and a large number of parameters (Garbin et al., 2020). To find the best model architecture, we study the 373

performance of models with different layers and parameters such as number of noise, batch normalization, 374

convolutional, pooling, LSTM, dropout, and dense layers, as well as different pooling sizes and strides, different batch 375

sizes, various scaling of data (standardization and normalization), various filter sizes, number of units in LSTM and 376

16

dense layers, the type of the activation functions, regularization and learning rates, weight decay and number of filters 377

in convolutional layers. We also applied various combinations of these layers and parameters. The hyperparameters 378

are optimized through manual trial and error searches as grid search experiments suffer from poor coverage in 379

dimensions (Bergstra and Bengio, 2012) and manual experiments are much easier and more interpretable in 380

investigating the effect of one hyperparameter of interest. The optimized hyperparameters are presented in Table 3. 381

The most important parameters of the models are explained below and for more information about other parameters 382

readers are referred to the Appendix. 383

2.5.2.1 Activation function 384

The activation function adds non-linearity to the network allowing the model to learn more complex relationships 385

between inputs and outputs (Zheng et al., 2014, June). Each activation function that is used in deep learning has its 386

advantages and disadvantages, and typical activation functions in deep learning are Rectified Linear Unit (ReLU; Eq. 387

(4)), sigmoid (Eq. (5)), and hyperbolic tangent (tanh; Eq. (6); Fig. 8; Gu et al., 2018). In deep neural networks, adding 388

more layers with certain activation functions results in the vanishing gradient problem where the gradients of the loss 389

function become almost zero, causing difficulties in training. For instance, the sigmoid function maps a large input 390

space into a small one between 0 and 1. Hence, when the input is very positive or very negative, the sigmoid function 391

saturates (becomes very flat) and becomes insensitive to small changes in its input, causing the derivatives to disappear 392

(Goodfellow et al., 2016). Therefore, in backpropagation, small derivatives are multiplied together, causing the 393

gradient to decrease exponentially, propagating back to the first layer. This causes ineffective updates of weights and 394

biases of the initial layers and consequently inaccuracy. Some solutions to overcome this problem include using 395

specific activation functions like ReLU and tanh and using batch normalization layers to prevent the activation 396

functions from becoming saturated. The ReLU recently drown lots of attention and has been widely used in recent 397

deep learning models (Gamboa, 2017). The advantage of ReLU over sigmoid and tanh is a better generalization, 398

making the training faster and simpler. Hence, we investigated the performance of the model with ReLU, sigmoid, or 399

tanh activation functions in convolutional layers. 400

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (4) 401

𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝒙) =
𝟏

𝟏+𝒆−𝒙 Table 3. Common values 402

and selected values for different parameters of the models. 403

Parameter

Common

values Selected value

Mini-batch size 16, 32, 64 16

Number of convolution filters 32, 64, 128 128

Filter size 3, 5, 7 (5,1) and (5,3)

Number of LSTM units 32, 64, 128 128

Number of dense layer units 16, 32, 128, 256 32

Momentum in SGD 0.5, 0.99, 0.9 0.9

 404

2.6.2.1 (5) 405 Formatted: Font: 10 pt

17

tanh(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥 (6) 406

 407
Figure 8. Illustration of sigmoid, tanh, and ReLU activation functions (after Zheng et al., 2016). 408

2.5.2.2 Learning rate 409

To find the minimum cost function, a move in the negative direction of the gradient is required. This movement is 410

called the “learning rate,” which is the most significant hyperparameter in training a deep neural network. The model 411

error is calculated, and the errors corresponding to weights updated by the learning rate are backpropagated in the 412

network. A too-small learning rate needs many updates and epochs, reaching the minimum. On the other hand, a too-413

large learning rate causes dramatic updates and leads to oscillations in loss over epochs. A good learning rate quickly 414

reaches the minimum point between 0.1 to 1e-6 on a log scale and can be found through a grid or random search (Fig. 415

9). 416

 417

Figure 9. Too small, good, and too large learning rates from left to right (after Jordan, 2018). 418

2.5.2.3 Update expression 419

There are various algorithms to update the trainable parameters at each mini-batch. The parameter updating procedure 420

includes feedforwarding, backpropagation, and applying gradients. We tried the Stochastic Gradient Descent (SGD) 421

with Nesterov momentum, RMSProp, Adadelta, and Adam updates to update the parameters in Lasagne. The SGD 422

with momentum updates the model weights by adding a momentum so that the overall gradient depends on the current 423

and previous gradients, causing the weights to move in the previous direction without oscillation. 424

18

2.5.3 Network optimization 425

Training CNN involves global optimization by defining a loss expression to be minimized overtraining. For the 426

classification task, the loss function of the models is calculated using categorical cross-entropy between network 427

outputs and targets (Eq. (7)), where L is the loss, p is the prediction (probability), t is the target, and c is the number 428

of classes. Then, the mean of the loss is computed over each mini-batch. 429

𝐿 = − ∑ 𝑡𝑖 log(𝑝𝑖)𝑐=2
𝑖=1 (7) 430

2.5.4 Model evaluation 431

The network on the validation set is evaluated after each epoch during training to monitor the training progress. During 432

validation, all non-deterministic layers are switched to deterministic. For instance, noise layers are disabled, and the 433

update step of the parameters is not performed. 434

The classification accuracy cannot appropriately represent the model performance for unbalanced datasets, as the 435

model can show a high accuracy by biasing towards the majority class in the dataset (Ordóñez and Roggen, 2016). 436

While we built a balanced dataset (with the same number of jam and no jam events), randomly selecting test data and 437

shuffling the inputs, and splitting data into train and validation sets can result in a slightly unbalanced dataset. In our 438

case, the number of jams and no jams for train and validation and test sets is presented in Table 2. Therefore, the F1 439

score (Eq. (8)), which considers each class equally important, is used to measure the binary classification accuracy. 440

The F1 score, as a weighted average of the precision (Eq. (9)) and recall (Eq. (10)), has the best and worst scores of 1 441

and 0, respectively. In Eqs. 9 and 10, TP, FP, and FN are true positive, false positive, and false negative, respectively. 442

Table 2. The number of jam and no jam events in train and validation and test datasets. 443

Train and

validation Test

Jam 504 48

No jam 403 53

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8) 444

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 445

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 446

Although the model accuracy is usually used to examine the performance of deep learning models, the model size 447

(i.e., number of parameters) provides a second metric, which represents required memory and calculations, to be 448

compared among models with the same accuracy (Garbin et al., 2020). 449

After training the model, the well-trained network parameters are saved to a file and are later used for testing the 450

network generalization using a test dataset, which is not seen during training and validation. 451

19

3 Results and Discussion 452

3.1 Hyperparameters optimization 453

3.1.1 Batch size 454

The inputs and corresponding targets are iterated in mini-batches for training and validation. Batch size significantly 455

influences the training time (Fawaz et al., 2019, July), and the batch size of 32 is usually used in previous studies. 456

However, we investigated batch sizes of 16, 32, and 64, and the mini-batches of 16 demonstrate to improve the results 457

slightly. 458

3.1.2 Noise layers 459

The performance of CNN and LSTM models developed for the ice-jam prediction problem is improved by adding a 460

noise layer to the input, while the CN-LSTM model showed underfitting. Adding a noise layer to other layers does 461

not improve any of the developed models for ice-jam prediction. 462

3.1.3 Dropout layer 463

Adding dropout layers could not improve any developed models. This agrees with previous studies revealing that 464

dropout does not work well with LSTMs (Zaremba et al., 2014) and CNNs, and dropout layers do not work when 465

batch size is small (less than 256; Garbin et al., 2020). Furthermore, it is in agreement with Garbin et al. (2020) stating 466

that utilizing batch normalization layers in a model reduces the need for dropout layers. 467

3.1.4 Number of layers 468

The depth is related to the sequence length (Devineau et al., 2018, May), as deeper networks need more data to provide 469

better generalization (Fawaz et al., 2019, July). In the previous studies of CNNs, there are usually one, two, or three 470

convolution stages (Zheng et al., 2014, June). We tried different numbers of CNN, LSTM, and dense layers and 471

selected three, two, and two such layers, respectively, as the sequence length in this study is small (16), and we could 472

not improve the model performance by merely adding more depth. 473

3.1.52.6.2.2 Number and size of CNconvolution filters 474

Fawaz et al. (2019, July) explain the number and length of filters used in CNNs. Data with more classes need more 475

filters to classify the inputs accurately. Longerand longer time series need longer filters to capture longer patterns and 476

consequently to produce accurate results. (Fawaz et al., 2019, July). However, longer kernelsfilters significantly 477

increase the number of parameters and increase the potential for overfitting small datasets, while a small kernelfilter 478

size risks poor performance. In our models, the optimum number of filters is attained to be 128 by searching among 479

the typical number of filters (i.e., 32, 64, and 128). The kernel sizes of 3, 5, and 7 are often applied in deep CNNs. We 480

tried these filter sizes, and the best performance was achieved through usingfinally selected two convolutional layers 481

with 1-D filters of (5, 1) with theand stride of (1, 1) to capture temporal variation for each variable separately. 482

Formatted: Heading 4

Formatted: Font: Not Italic

20

 Furthermore, one convolutional layer with 2-D filters of size (5, 3) with theand stride of (1, 1) is then used to 483

achievecapture the correlation between variables via depth-wise convolution of input time-series. A big stride might 484

cause the model to miss valuable data used in predicting and smoothing out the noise in the time series. The layers in 485

CNNs have a bias for each channel, sharing across all positions in each channel. 486

3.12.6 Padding 487

The convolution is applied where the input and the filter overlap. Hence, we pad the input by zeros with half the filter 488

size on both sides. Using stride of 1 with “Pads = same” (in Lasagne) in the convolutional 2-D layers results in an 489

output size equal to the input size for each layer. 490

3.1.7 Activation functions in CN layers 491

The experiments demonstrate that errors are very high using tanh, whereas ReLU and sigmoid show almost the same 492

performance. As ReLU performs slightly better than sigmoid, we used ReLU in our models. 493

3.1.8 Weight initialization 494

Among the various types of methods available in Lasagne for weight initialization, the GLOROT uniform (i.e., Xavier; 495

Glorot and Bengio, 2010, March) and He initializations (He et al., 2015), the most popular initialization techniques, 496

are used to set the initial random weights in convolutional layers. The results reveal that these methods yield almost 497

the same F1 scores. However, the histograms of F1 scores reveal that GLOROT uniform yields slightly better results 498

(Fig. 10). 499

 500

Figure 10. Histograms of F1 score for CNN using He (left) and GLOROT uniform (right) weight initialization with 100 501
random train-validation splits. 502

3.1.9 Number of LSTM units and their activation functions 503

The optimal number of units in LSTM layers was found through a search over typical numbers of 32, 64, and 128. 504

We found that 128 units yield the best results in our models. We used the default activation function of tanh in LSTM 505

layers. 506

21

3.1.10 Dense layer 507

The dense layers with RecLU functions following by one dense layer with softmax function are applied after the 508

feature learning and LSTM layers to perform classification. The common number of units in dense layers are 16, 32, 509

128, and 256. We found that 32 gives the best results in our models. To output the binary classes from the network, 510

softmax or sigmoid functions can be used. We applied softmax as it gives a probability for each class where their total 511

sum is one. 512

3.1.11.2.4 Adaptive learning rates 513

The adaptive learning rate decreases the learning rate and consequently weights over each epoch. We tried different 514

base learning and decay rates for each model and found that the learning rate significantly impacts the model 515

performance. Finally, we chose a base learning rate of 0.1, 0.01, and 0.001 for LSTM, CNN, and CNCNN-LSTM and, 516

respectively. A decay rate of 0.8 was used for CNN and CNCNN-LSTM, while for the LSTM model, this rate was 517

0.95. Table 34 shows the adaptive learning rates for CNN, LSTM, and CNCNN-LSTM calculated using Eq. (112) for 518

each epoch. 519

adaptive learning rate = 𝑏𝑎𝑠𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝑑𝑒𝑐𝑎𝑦𝑒𝑝𝑜𝑐ℎ Eq. (11 520

(2) 521

The experiments show that the learning rate is the most critical parameter influencing the model performance. A small 522

learning rate can cause the costloss function to get stuck in local minima, and a large learning rate can result in 523

oscillations around global minima without reaching it. 524

Our CNCNN-LSTM model is deeper than the other two models, and deeper models are more prone to a vanishing 525

gradient problem. To overcome the vanishing gradients, it is recommended that lower learning rates, e.g., lower than 526

1e-4, be used. Interestingly, we found that our CNCNN-LSTM model works better with lower learning rates than the 527

other two models. 528

 529

Table 34. The adaptive learning rate for 50 epochs. 530

 Learning rate

Epochs CNN
CNCNN-

LSTM
LSTM

1 0.008 8.00E-04 0.095

2 0.006 6.40E-04 0.09

3 0.005 5.12E-04 0.086

4 0.004 4.10E-04 0.081

. . .

. . .

40 1.30E-06 1.33E-07 0.013

. . -

50 1.40E-07 1.43E-08 -

 531
Formatted: English (United States)

Formatted: Left, Line spacing: single

22

 532

2.6.5 Model evaluation 533

The network on the validation set is evaluated after each epoch during training to monitor the training progress. During 534

validation, all non-deterministic layers are switched to deterministic. For instance, noise layers are disabled, and the 535

update step of the parameters is not performed. 536

The classification accuracy cannot appropriately represent the model performance for unbalanced datasets, as the 537

model can show a high accuracy by biasing towards the majority class in the dataset (Ordóñez and Roggen, 2016). 538

While we built a balanced dataset (with the same number of jam and no jam events), randomly selecting test data and 539

shuffling the inputs, and splitting data into train and validation sets can result in a slightly unbalanced dataset. In our 540

case, the number of jams and no jams for train and validation and test sets is presented in Table 5. Therefore, the F1 541

score (Eq. (3)), which considers each class equally important, is used to measure the accuracy of binary classification. 542

The F1 score, as a weighted average of the precision (Eq. (4)) and recall (Eq. (5)), has the best and worst scores of 1 543

and 0, respectively. In Eqs. 7 and 8, TP, FP, and FN are true positive, false positive, and false negative, respectively. 544

Table 5. The number of jam and no jam events in train and validation and test datasets. 545

Train and

validation Test

Jam 456 48

No jam 451 53

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 546

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 547

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 548

Although the model accuracy is usually used to examine the performance of deep learning models, the model size 549

(i.e., number of parameters) provides a second metric, which represents required memory and calculations, to be 550

compared among models with the same accuracy (Garbin et al., 2020). 551

After training the model, the well-trained network parameters are saved to a file and are later used for testing the 552

network generalization using a test dataset, which is not seen during training and validation. 553

3.1.12 Update expression 554

We found that SGD with momentum works better than other methods in our cases. The typical values for momentum 555

are 0.99, 0.9, and 0.5. We applied different values and found that 0.9 gives the best results in our models; this high 556

momentum results in larger update steps. It is recommended to scale the learning rate by “1 – momentum” for using 557

the high momentums, which gives 0.1. Interestingly, we already have applied the base learning rate of 0.1 for the 558

LSTM model chosen through trial and error (as explained earlier); however, smaller values are chosen for CNN and 559

CN-LSTM networks. 560

Formatted: Font: 10 pt

https://en.wikipedia.org/wiki/Binary_classification

23

3.22.7 Architecture of models 561

The architectures of CNN, LSTM, and CNCNN-LSTM models that are finally selected are presented in Figs. 11, 129, 562

10, and 1311, respectively. The layers, their output shapes, and their number of parameters are presented in Tables 4, 563

56, 7, and 68 for CNN, LSTM, and CNCNN-LSTM models, respectively. 564

The ice-jam dataset for Quebec contains 1008 balanced sequence instances (with a length of 16), which is small for 565

deep learning. The deep learning models often tend to overfit small datasets by memorizing inputs rather than training. 566

The noise layers applied to the CNN and LSTM models significantly overcome the overfitting problem through data 567

augmentation. However, the performance of the CN-LSTM model dramatically deteriorates, including a noise layer 568

(Fig. 14; showing underfitting). 569

The CNN models often include pooling layers to reduce data complexity and dimensionality. However, it is not always 570

necessary that every convolutional layer is followed by a pooling layer in the time-series domain (Ordóñez and 571

Roggen, 2016). For instance, Fawaz et al. (2019, July) do not apply any pooling layers in their models for TSC. We 572

tried max-pooling layers after different convolutional layers in CNN and CNCNN-LSTM networks and found that a 573

pooling layer following only the last convolutional layer improves the performance of both models. This can be due 574

to subsampling the time series and using time series with a length of 16 that reduces the need for reducing 575

dimensionality. 576

 577

 578

Figure 119. The architecture of the CNN model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016). 579

 580
Figure 1210. The architecture of the LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 2016). 581

24

 582

Figure 1311. The architecture of the CNCNN-LSTM model for ice-jam prediction (adapted after Ordóñez and Roggen, 583
2016). 584

Table 46. The layers, their output shapes, and their number of parameters for the CNN model. 585

Layers Output shape

Number of

parameters

Input (16, 1, 16, 7) 0

GaussianNoise (16, 1, 16, 7) 0

Conv2D (16, 128, 16, 7) 640

BatchNorm (16, 128, 16, 7) 512

Nonlinearity (16, 128, 16, 7) 0

Conv2D (16, 128, 16, 7) 81920

BatchNorm (16, 128, 16, 7) 512

Nonlinearity (16, 128, 16, 7) 0

Conv2D (16, 128, 16, 7) 245888

MaxPool2D (16, 128, 5, 2) 0

Dense (16, 32) 40992

Dense (16, 32) 1056

Softmax (16, 2) 66

 586
Table 57. The layers, their output shapes, and their number of parameters for the LSTM model. 587

Layers Output shape

Number of

parameters

Input (16, 1, 16, 7) 0

GaussianNoise (16, 1, 16, 7) 0

Dimshuffle (16, 16, 1, 7) 0

BatchNorm (16, 16, 1, 7) 64

LSTM (16, 16, 128) 70272

BatchNorm (16, 16, 128) 64

Nonlinearity (16, 16, 128) 0

LSTM (16, 16, 128) 132224

Reshape (256, 128) 0

Dense (256, 32) 4128

Dense (256, 32) 1056

Softmax (256, 2) 66

Reshape (16, 16, 2) 0

Slice (16, 2) 0

 588
Table 68. The layers, their output shapes, and their number of parameters for the CNCNN-LSTM model. 589

25

Layers Output shape

Number of

parameters

Input (16, 1, 16, 7) 0

Conv2D (16, 128, 16, 7) 640

BatchNorm (16, 128, 16, 7) 512

Nonlinearity (16, 128, 16, 7) 0

Conv2D (16, 128, 16, 7) 81920

BatchNorm (16, 128, 16, 7) 512

Nonlinearity (16, 128, 16, 7) 0

Conv2D (16, 128, 16, 7) 245888

MaxPool2D (16, 128, 5, 2) 0

Dimshuffle (16, 5, 128, 2) 0

BatchNorm (16, 5, 128, 2) 20

LSTM (16, 5, 128) 197760

BatchNorm (16, 5, 128) 20

Nonlinearity (16, 5, 128) 0

LSTM (16, 5, 128) 132224

Reshape (80, 128) 0

Dense (80, 32) 4128

Dense (80, 32) 1056

Softmax (80, 2) 66

Reshape (16, 5, 2) 0

Slice (16, 2) 0

 590

3 Results and Discussion 591

3.1 Weight initialization 592

Among the various types of methods available in Lasagne for weight initialization, the GLOROT uniform (i.e., Xavier; 593

Glorot and Bengio, 2010, March) and He initializations (He et al., 2015), the most popular initialization techniques, 594

are used to set the initial random weights in convolutional layers. The results reveal that these methods yield almost 595

the same F1 scores. However, the histograms of F1 scores reveal that GLOROT uniform yields slightly better results 596

(Fig. 12). 597

26

 598

Figure 12. Histograms of F1 score for CNN using He (left) and GLOROT uniform (right) weight initialization with 100 599
random train-validation splits. 600

 601

Figure 14. Train and validation errors over epochs for CN-LSTM model with a noise layer. 602

3.3.2 Model evaluation 603

LSTM needs only early stopping at 40 epoch among the developed models, as its validation error starts to increase, 604

while its training error continues to decrease (Fig. 15). Hence, we set the number of epochs to 40 for the LSTM model. 605

 606

Figure 15. Train and validation errors over epochs for an LSTM model showing overfitting after 40 epochs. 607

3.3.2.1 Learning curves and F1 scores 608

Line plots of the loss (i.e., learning curves), which are loss over each epoch, are widely used to examine the 609

performance of models in machine learning. Furthermore, line plots clearly indicate common learning problems, such 610

27

as underfitting or overfitting. The learning curves for CNN, LSTM, and CNCNN-LSTM models are presented in Fig. 611

1613. The LSTM model starts to overfit at epoch 40, so an early stopping is conducted. CNCNN-LSTM performs 612

better than the other two models, as its training loss is the lowest and is lower than its validation loss. Histograms of 613

F1 scores (Fig. 1614 and Table 79) show that CNCNN-LSTM outperforms the other two models since it results in the 614

highest average and the lowesthighest minimum F1-scores for validation (0.82 and 0.75, respectively). Figure 1613 615

shows that the training error of CNN is lower than that of LSTM, which means that CNN trained better than LSTM 616

model. However, it is not true for the validation error. The reason that the validation error is less than the training error 617

in the LSTM model can be the employment of regularization methods as LSTM models are often harder to regularize, 618

agreeing with previous studies (e.g., Devineau et al., 2018, June). 619

The LSTM network is valdatedvalidated better than the CNN model since its average and minimum F1 scores for 620

validation are better than the CNN model (by 1 % and 32 %, respectively), and also LSTM yielded no F1 scores below 621

0.74 (Fig. 1714 and Table 7). This reveals that LSTM is showing underfitting.9). 622

As shown in Fig. 1613, training loss is higher than validation loss in some of the results. SomeThere are some reasons 623

are explaining that. Regularization reduces the validation and testing (i.e., evaluation) loss at the expense of increasing 624

training loss. The regularization techniques such as noise layers are only applied during training, but not during 625

evaluationvalidation resulting in more smooth and usually better functions in evaluationvalidation. There is no noise 626

layer in CNCNN-LSTM model that may causedcause a lower training error than validation error. However, other 627

regularization methods such as L2 regularization are used in all the models, including the CNCNN-LSTM model. 628

Furthermore, the other issue is that batch normalization uses the mean and variance of each batch in training, whereas, 629

in evaluationvalidation, it uses the mean and variance of the whole training dataset. Plus, training loss is averaged 630

over each epoch, while evaluationvalidation losses are calculated after each epoch once the current training epoch is 631

completed. Hence, the training loss includes error calculations with fewer updates. 632

Among the developed machine learning models, SVM shows the best validation performance (Figure 15 and 633

 634

Figure 1613. Train and validation errors over epochs for CNN (left), LSTM (middle), and

CNCNN-LSTM (right) models with 100 random train-validation splits.

Formatted: Not Highlight

28

 635

Table 10). However, F1 scores of deep learning models are much higher than those of machine learning models with 636

an average of 6% higher F1 score resulted from CNN-LSTM model compared to the SVM model (Tables 9 and 10). 637

 638

 639

Figure 1714. Histograms of F1 scores of validation for CNN (left), LSTM (middle), and

CNCNN-LSTM (right) models with 100 random train-validation splits.

Figure 1613. Train and validation errors over epochs for CNN (left), LSTM (middle), and

CNCNN-LSTM (right) models with 100 random train-validation splits.

Figure 1714. Histograms of F1 scores of validation for CNN (left), LSTM (middle), and

CNCNN-LSTM (right) models with 100 random train-validation splits.

Formatted: Font: 10 pt

Formatted: Not Highlight

29

7640

 641

Table 9. F1 scores of validation for CNN, LSTM, and CNCNN-LSTM models with 100 random train-validation splits. 642

 Models F1 score

 mean max min

CNN 0.80 0.88 0.42

LSTM 0.81 0.87 0.74
CNCNN-
LSTM 0.82 0.88 0.75

 643
Table 10. F1 scores of validation for SVM, DT, and KNN and MLP models with 100 random train-validation splits. 644

Models F1 score

 mean max min

SVM 0.76 0.82 0.69

DT 0.74 0.80 0.67

KNN 0.75 0.84 0.68

MLP 0.75 0.83 0.68

3.32.2 Number of parameters and run time 645

The total number of parameters in CNN, LSTM, and CNCNN-LSTM networks are 371586, 207874, and 664746, 646

respectively. The best performance has resulted from CNCNN-LSTM with the highest number of parameters. Even 647

though the number of parameters for the LSTM model is less than CNN, the LSTM model shows better validation 648

performance. Furthermore, the number of parameters in the CNCNN-LSTM model is much higher than the two other 649

Figure 15. Histograms of F1 scores of validation for SVM (top left), DT (top middle), KNN (top right), and MLP

(bottom left) models with 100 random train-validation splits.

Formatted Table

Formatted Table

30

models, but the computation time is not much higher. All three models take less than 24 hours to train with 100 shuffle 650

splits for training and validation. The models are run on a CPU with four cores, 3.4 GHz clock speed, and 12 GB 651

RAM. 652

For all the machine learning models, it took a couple of minutes to train with 100 shuffle splits for training and 653

validation. Although, the training time for deep learning models is much higher than that of machine learning models, 654

the much better performance of deep learning models justifies their application in our cases. 655

3.43 Order of input variables 656

AlthoughIt is not clear that whether the order of input variables in the input file is important throughmight influence 657

multivariate TSC or not when using 2-D filters and 2-D max-pooling layers, there is no guideline for this order for 658

multivariate TSC. In the benchmark, we randomly used this order from left to right: precipitation, minimum 659

temperature, maximum temperature, net radiation, ATDD, AFDD, and snow depth. We randomly changed this order 660

and applied the new order: snow depth, maximum temperature, precipitation, AFDD, net radiation, minimum 661

temperature, and ATDD. Both models yielded the same average and minimum F1 scores, whereas the maximum F1 662

score from the order in the benchmark model (0.88) is higher than that of the second-order (0.86). Therefore, it can be 663

concluded that the order does not significantly impact the results. 664

3.5 Generalization4 Testing 665

To examine the ability of the models to generalize to new unseen data, we randomly set aside 10 % of data from 666

training and validation. for all the developed deep learning and machine learning models. We trained a CNN, an 667

LSTM, and a CNCNN-LSTM model, then the trained parameters are saved, and finally, the well-trained parameters 668

are utilized for testing. We trained an SVM, a DT, a KNN, and an MLP model and the models are saved and later used 669

for testing. The test dataset is almost a balanced dataset with 101 samples with the size of (16, 7), including 48 jams 670

and 53 no jams. 671

The results of the test models show that CNCNN-LSTM modelsmodel represent the best F1 score of 0.9192 (Table 672

811). Tables 79 and 811 show that although LSTM has slightly better validation performance, CNN works a little 673

better in generalization by only 1 %. The better generalization of CNN can be becauseand LSTM is a little underfitted 674

as LSTM models performed the same in testing. 675

The results of machine learning models are often harder to regularize, agreeingfor testing presented in Table 12 676

indicate that among the machine learning models KNN yields the best results with previous studies (e.g., Devineau et 677

al., 2018, June).F1 scores of 78%. Tables 11 and 12 declare that deep learning models work much better than machine 678

learning models for testing with 14% comparing CNN-LSTM with KNN as the best deep learning and machine 679

learning models, respectively. 680

 681

Table 811. Test F1 scores for LSTM, CNN, and CNCNN-LSTM models. 682

Models F1 score

CNN 0.80

Formatted: Not Highlight

Formatted Table

31

LSTM 0.7980
CNCNN-
LSTM 0.9192

 683

 684
Table 12. Test F1 scores for SVM, DT, and KNN and MLP models. 685

Models F1 score

SVM 0.75

DT 0.71

KNN 0.78

MLP 0.70

 686

3.65 Model comparison 687

Multiple combined classifiers can be considered for pattern recognition problems to reduce errors as different 688

classifiers can cover internal weaknesses of each other (Parvin et al., 2011). The ensemblecombined classifier may be 689

less accurate than the most accurate classifier. However, the accuracy of the combined model is always higher than 690

the average accuracy of individual models. Combining two models improved our results compared to convolution-691

only or LSTM-only networks in both training and generalization.testing, supporting the previous studies (e.g., Sainath 692

et al., 2015). It can be because the CNCNN-LSTM model incorporates both the temporal dependency of each variable 693

by using LSTM networks and the correlation between variables through CNN models. The combined CNN-LSTM 694

model efficiently benefit from automatic feature learning by CNN plus the native support for time series by LSTM. 695

The Although LSTM performed slightly better generalization results fromthan CNN compared to LSTM can be 696

because ofin validation, these models showed the ability of same performance in testing. The CNN is able to partially 697

include both temporal dependency and the correlation between variables by using 1D and 2D filters, respectively, 698

while . Although the LSTM is unable to incorporate the correlations between variables, it gives promising results with 699

relatively small dataset and captures longer temporal dynamics, while the CNN only captures temporal dynamics 700

within the length of its filters. 701

4 Conclusion 702

This project is a part of a project called DAVE, which aims to develop a tool to provide regional ice jam watches and 703

warnings, based on the integration of three aspects: the current conditions of the ice cover; hydrometeorological 704

patterns associated with breakup ice jams; and channel predisposition to ice-jam formation. The outputs of the previous 705

tasks will be used to develop an ice-jam monitoring and warning module and transfer the knowledge gained to end-706

users to manage the risk of ice jams better. 707

While most TSC research in deep learning is performed on 1D channels (Hatami et al., 2018, April), we propose deep 708

learning frameworks for multivariate TSC for ice-jam prediction. The main finding from the comparison of results is 709

that the CN-LSTM model is superior to the CNN-only and LSTM-only networks in both training and generalization 710

accuracy, supporting the previous studies (e.g., Sainath et al., 2015). Though the LSTM network demonstrates quite 711

Formatted: Default, Space Before: 0 pt, After: 0 pt,

Line spacing: 1.5 lines

32

good performance, the CNN model performed slightly better generalization, which agrees with previous studies (e.g., 712

Brunel et al., 2019). 713

To our best knowledge, this study is the first study introducing these deep learning models to the problem of ice-jam 714

prediction. Even though our training data in supervised ice-jam prediction is small, the results reveal that deep learning 715

techniques can give accurate results, which agrees with a previous study conducted by Ordóñez and Roggen (2016) 716

in activity recognition. The excellent performance of CNN and CNCNN-LSTM models may be partially due to the 717

characteristic of CNN that decreases the total number of parameters which does training with limited training data 718

easier (Gao et al., 2016, May) and including the correlation between involved variables.). However, our models will 719

be improved in the future by a larger dataset. 720

Among the developed machine learning models, SVM showed the best performance in validation, whereas KNN 721

worked the best in testing. However, the performance of deep learning models is much better than machine learning 722

models in both validation and testing. The machine learning models do not consider correlations between variables. 723

However, it is not the only reason that deep learning models worked better than machine learning models. As the 724

LSTM also does not consider correlations between variables but worked better than machine learning models. Some 725

characteristics of developed deep learning models can explain their better performance compared to machine learning 726

models. For instance, deep learning models perform well for the problems with complex-nonlinear dependencies, time 727

dependencies, and multivariate inputs. 728

The developed CNN-LSTM model can be used for future predictions of ice jams in Quebec to provide early warning 729

of possible floods in the area by using historic hydro-meteorological variables and their predictions for some days in 730

advance. 731

3.6 Discussion on the interpretability of deep learning models 732

Even though the developed deep learning models performed pretty well in predicting ice jams in Quebec, the 733

interpretability of the results with respect to the physical processes of the ice jam is still essential. It is because although 734

deep learning models have achieved superior performance in various tasks, these really complicated models with a 735

large number of parameters might exhibit unexpected behaviours (Samek et al., 2017 & Zhang et al., 2021). This is 736

because the real-world environment is still much more complex. Furthermore, the models may learn some spurious 737

correlations in the data and make correct predictions with the ‘wrong’ reason (Samek and Müller, 2019). Hence, 738

interpretability is especially important in some real-world applications like flood and ice-jam predictions where an 739

error may cause catastrophic results. Also, interpretability can be used to extract novel domain knowledge and hidden 740

laws of nature in the research fields with limited domain knowledge (Alipanahi et al., 2015) like ice-jam prediction. 741

However, the nested non-linear structure and the “black box” nature of deep neural networks make interpretability of 742

their underlying mechanisms and their decisions a significant challenge (Montavon et al., 2018, Zhang et al., 2021 743

and Wojtas and Chen, 2020). That is why, interpretability of deep neural networks still remains a young and emerging 744

field of research. Nevertheless, there are various methods available to facilitate understanding of decisions made by a 745

deep learning model such as feature importance ranking, sensitivity analysis, layer-wise relevance propagation, and 746

33

the global surrogate model. However, the interpretability of developed deep learning models for ice-jam prediction is 747

beyond the scope of this study and it will be investigated in our future works. 748

3.7 Model transferability 749

The transferability of a model between river basins is highly desirable but has not yet been achieved because most 750

river ice-jam models are site specific (Mahabir et al., 2007). The developed models in this study can be used to predict 751

future ice jams some days before the event not only for Quebec but also for eastern parts of Ontario and western New 752

Brunswick. For other locations, the developed models can be transferred via re-training and a small amount of fine-753

tuning using labeled instances, rather than building from scratch. It is because the logic in the model may be 754

transferable to the other sites with small modifications. To transfer a model from one river basin to another, historic 755

records of ice jams and equivalent hydro-meteorological variables (e.g., precipitation, temperature, and snow depth) 756

as inputs to the model must be available at each site. 757

4 Conclusion 758

The main finding from this project is that all the developed deep models performed pretty well and performed much 759

better than the developed machine learning models for ice-jam prediction in Quebec. The comparison of results show 760

that the CNN-LSTM model is superior to the CNN-only and LSTM-only networks in both validation and testing 761

accuracy, though the LSTM and CNN models demonstrate quite good performance. 762

To our best knowledge, this study is the first study introducing these deep learning models to the problem of ice-jam 763

prediction. The developed models are promising to be used to predict future ice jams in Quebec and in other river 764

basins in Canada with re-training and a small amount of fine-tuning. 765

The developed models do not apply to freeze-up jams that occur in early winter and are based on different processes 766

than breakup jams. We studied only break-upbreakup ice jams as usually they result in flooding and are more 767

dangerous than freeze-up jams. Furthermore, there is a lack of data availability for freeze-up ice jams in Quebec and 768

only 89 records of freeze-up jams are available which is too small. 769

The main limitation of this study is data availability as recorded ice jams are small which causes deep learning models 770

to easily overfit to small number of data. Another limitation of the presented work is the lack of interpretability of the 771

results with respect to the physical characteristics of the ice jam. This is a topic of future research and our next step is 772

to explore that. 773

The hydro-meteorological variables are not the only drivers of ice-jam formation. The geomorphological indicators 774

that control the formation of ice jams include the river slope, sinuosity, a barrier such as an island or a bridge, 775

narrowing of the channel, and confluence of rivers. In the future, a geospatial model using deep learning will be 776

developed to examine the impacts of these geospatial parameters on the ice-jam formation. 777

Author contribution 778

Fatemehalsadat Madaeni designed and carried out the experiments under Karem Chokmani and Saeid Homayouni 779

supervision. Fatemehalsadat Madaeni developed the model code and performed the simulations using hydro-780

meteorological and ice-jam data provided and validated by Rachid Lhissou. Fatemehalsadat Madaeni wrote the bulk 781

Formatted: Default, Space Before: 0 pt, After: 0 pt,

Line spacing: 1.5 lines

34

of the paper with conceptual edits from Karem Chokmani and Saeid Homayouni. Yves Gauthier and Simon 782

Tolszczuk-Leclerc helped in the refinement of the objectives and the revision of the methodological developments. 783

Acknowledgment 784

This study is part of the DAVE project, funded by the Defence Research and Development Canada (DRDC), Canadian 785

Safety and Security Program (CSSP), with partners from Natural Resources Canada (NRCan), and Environment and 786

Climate Change Canada. 787

References 788

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA-and 789

RNA-binding proteins by deep learning. Nature biotechnology, 33(8), 831-838. 790

Althoff, D., Rodrigues, L. N., & Bazame, H. C. (2021). Uncertainty quantification for hydrological models based on 791

neural networks: the dropout ensemble. Stochastic Environmental Research and Risk Assessment, 35(5), 1051-1067. 792

Analytics, C. (2016). Anaconda Software Distribution: Version 2-2.4. 0. 793

Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S., Shamshirband, S., & Chau, K. W. (2020). Comparative analysis 794

of recurrent neural network architectures for reservoir inflow forecasting. Water, 12(5), 1500. 795

Barnes‐Svarney, P. L., & Montz, B. E. (1985). An ice jam prediction model as a tool in floodplain management. Water 796

Resources Research, 21(2), 256-260 797

Barzegar, R., Aalami, M. T., & Adamowski, J. (2020). Short-term water quality variable prediction using a hybrid 798

CNN–LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 1-19. 799

Barzegar, R., Aalami, M. T., & Adamowski, J. (2021). Coupling a hybrid CNN-LSTM deep learning model with a 800

Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level 801

forecasting. Journal of Hydrology, 598, 126196. 802

Beltaos, S. (1993). Numerical computation of river ice jams. Canadian Journal of Civil Engineering, 20(1), 88-99. 803

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning 804

research, 13(2). 805

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., ... & Bengio, Y. (2010, June). Theano: 806

A CPU and GPU math compiler in Python. In Proc. 9th Python in Science Conf (Vol. 1, pp. 3-10). 807

Brownlee, J. (2017). A gentle introduction to exploding gradients in neural networks. Retrieved from 808

https://machinelearningmastery.com/exploding-gradients-in-neural-networks/.2018). Deep learning for time series 809

forecasting: predict the future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery. 810

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

Formatted: English (Canada)

Formatted: Space After: 8 pt

35

Brunel, A., Pasquet, J., PASQUET, J., Rodriguez, N., Comby, F., Fouchez, D., & Chaumont, M. (2019). A CNN 811

adapted to time series for the classification of Supernovae. Electronic Imaging, 2019(14), 90-1. 812

Brunello, A., Marzano, E., Montanari, A., & Sciavicco, G. (2019). J48SS: A novel decision tree approach for the 813

handling of sequential and time series data. Computers, 8(1), 21. 814

Brunner, G. W. (2002). Hec-ras (river analysis system). In North American Water and Environment Congress & 815

Destructive Water (pp. 3782-3787). ASCE. 816

Carson, R. W., Beltaos, S., Healy, D., & Groeneveld, J. (2003, June). Tests of river ice jam models–phase 2. 817

In Proceedings of the 12th Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, Alta (pp. 19-20). 818

Carson, R., Beltaos, S., Groeneveld, J., Healy, D., She, Y., Malenchak, J., ... & Shen, H. T. (2011). Comparative 819

testing of numerical models of river ice jams. Canadian Journal of Civil Engineering, 38(6), 669-678. 820

Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., & Yang, C. (2019). A hybrid CNN-LSTM model for typhoon 821

formation forecasting. GeoInformatica, 23(3), 375-396. 822

Cui, Z., Chen, W., & Chen, Y. (2016). Multi-scale convolutional neural networks for time series classification. arXiv 823

preprint arXiv:1603.06995. 824

del Campo, F. A., Neri, M. C. G., Villegas, O. O. V., Sánchez, V. G. C., Domínguez, H. D. J. O., & Jiménez, V. G. 825

(2021). Auto-adaptive multilayer perceptron for univariate time series classification. Expert Systems with 826

Applications, 181, 115147. 827

Devineau, G., Moutarde, F., Xi, W., & Yang, J. (2018, May). Deep learning for hand gesture recognition on skeletal 828

data. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (pp. 106-829

113). IEEE. 830

Devineau, G., Xi, W., Moutarde, F., & Yang, J. (2018, June). Convolutional neural networks for multivariate time 831

series classification using both inter-and intra-channel parallel convolutions. In Reconnaissance des Formes, Image, 832

Apprentissage et Perception (RFIAP'2018). 833

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S.K., Nouri, D., … & Degrave,J. (2015). Lasagne: First 834

release. (Version v0.1). Zenodo. Retrieved from http://doi.org/10.5281/zenodo.27878. 835

Données Québec: Historique (publique) d'embâcles répertoriés au MSP - Données Québec,. Retrieved from 836

https://www.donneesquebec.ca/recherche/dataset/historique-publique-d-embacles-repertories-au-msp. (last access: 837

15 June 2021). 838

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019, July). Deep neural network ensembles 839

for time series classification. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. 840

Formatted: English (Canada)

Formatted: Space After: 8 pt

Formatted: French (Canada)

Formatted: French (Canada)

Formatted: Space After: 8 pt

https://www.donneesquebec.ca/recherche/dataset/historique-publique-d-embacles-repertories-au-msp

36

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for time series 841

classification: a review. Data Mining and Knowledge Discovery, 33(4), 917-963. 842

Gamboa,Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market 843

predictions. European Journal of Operational Research, 270(2), 654-669. 844

 J. C. B. (2017). Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887. 845

Gao, Y., Hendricks, L. A., Kuchenbecker, K. J., & Darrell, T. (2016, May). Deep learning for tactile understanding 846

from visual and haptic data. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 536-847

543). IEEE. 848

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study of their impact to 849

deep learning. Multimedia Tools and Applications, 1-39. 850

Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. 851

In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256). JMLR 852

Workshop and Conference Proceedings. 853

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press. 854

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional 855

neural networks. Pattern Recognition, 77, 354-377. 856

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. 857

(2020). Array programming with NumPy. Nature, 585(7825), 357-362. 858

Hatami, N., Gavet, Y., & Debayle, J. (2018, April). Classification of time-series images using deep convolutional 859

neural networks. In Tenth International Conference on Machine Vision (ICMV 2017) (Vol. 10696, p. 106960Y). 860

International Society for Optics and Photonics. 861

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on 862

imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034). 863

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Annals of the History of Computing, 9(03), 90-864

95. 865

Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal 866

covariate shift. In International conference on machine learning (pp. 448-456). PMLR. 867

Jordan, J. (2018). Setting the learning rate of your neural network. Retrieved from https://www. jeremyjordan. me/nn-868

learning-rate. 869

Jović, A., Brkić, K., & Bogunović, N. (2012, August). Decision tree ensembles in biomedical time-series 870

classification. In Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium (pp. 408-417). 871

Springer, Berlin, Heidelberg. 872

Formatted: Space After: 8 pt

Formatted: French (Canada)

Formatted: Space After: 8 pt

37

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015, June). An empirical exploration of recurrent network 873

architectures. In International conference on machine learning (pp. 2342-2350). PMLR. 874

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2017). LSTM fully convolutional networks for time series 875

classification. IEEE access, 6, 1662-1669. 876

Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate lstm-fcns for time series classification. Neural 877

Networks, 116, 237-245. 878

Karpathy, AKashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., & Shroff, G. (2019, July). ConvTimeNet: A pre-879

trained deep convolutional neural network for time series classification. In 2019 International Joint Conference on 880

Neural Networks (IJCNN) (pp. 1-8). IEEE. 881

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using long short-882

term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005-6022. 883

Li, D., Djulovic, A., & Xu, J. F. (2013). A Study of kNN using ICU multivariate time series data. In Proc. Int. Conf. 884

Data Mining, eds. R. Stahlbock and GM Weiss (DMIN, 2013) (pp. 211-217). 885

. (2017). Convolutional neural networks for visual recognition. Retrieved from http://cs231n.github.io/convolutional-886

networks/. 887

Li, X., Zhang, Y., Zhang, J., Chen, S., Marsic, I., Farneth, R. A., & Burd, R. S. (2017). Concurrent activity recognition 888

with multimodal CNN-LSTM structure. arXiv preprint arXiv:1702.01638. 889

Lin, J., Williamson, S., Borne, K., & DeBarr, D. (2012). Pattern recognition in time series. Advances in Machine 890

Learning and Data Mining for Astronomy, 1, 617-645. 891

Lindenschmidt, K. E. (2017). RIVICE—a non-proprietary, open-source, one-dimensional river-ice 892

model. Water, 9(5), 314. 893

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence 894

learning. arXiv preprint arXiv:1506.00019. 895

Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural 896

computing and applications, 32(23), 17351-17360. 897

Lu, N., Wu, Y., Feng, L., & Song, J. (2018). Deep learning for fall detection: Three-dimensional CNN combined with 898

LSTM on video kinematic data. IEEE journal of biomedical and health informatics, 23(1), 314-323. 899

Luan, Y., & Lin, S. (2019, March). Research on text classification based on CNN and LSTM. In 2019 IEEE 900

international conference on artificial intelligence and computer applications (ICAICA) (pp. 352-355). IEEE. 901

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

38

Madaeni, F., Lhissou, R., Chokmani, K., Raymond, S., & Gauthier, Y. (2020). Ice jam formation, breakup and 902

prediction methods based on hydroclimatic data using artificial intelligence: A review. Cold Regions Science and 903

Technology, 103032. 904

Mahabir, C., Hicks, F. E., & Fayek, A. R. (2007). Transferability of a neuro-fuzzy river ice jam flood forecasting 905

model. Cold Regions Science and Technology, 48(3), 188-201. 906

Mahabir, C., Hicks, F., & Fayek, A. R. (2006). Neuro-fuzzy river ice breakup forecasting system. Cold regions science 907

and technology, 46(2), 100-112. 908

Mahfouf, J. F., Brasnett, B., & Gagnon, S. (2007). A Canadian precipitation analysis (CaPA) project: Description and 909

preliminary results. Atmosphere-ocean, 45(1), 1-17. 910

Massie, D.D., White, K.D., Daly, S.F., 2002. Application of neural networks to predict ice jam occurrence. Cold Reg. 911

Sci. Technol. 35 (2), 115–122. 912

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., ... & Shi, W. (2006). North 913

American regional reanalysis. Bulletin of the American Meteorological Society, 87(3), 343-360. 914

Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural 915

networks. Digital Signal Processing, 73, 1-15. 916

Mutegeki, R., & Han, D. S. (2020, February). A CNN-LSTM approach to human activity recognition. In 2020 917

International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 362-366). IEEE. 918

Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of time-series 919

data. International Journal of Computer Research, 10(3), 49-61. 920

National Hydro Network - NHN - GeoBase Series - Natural Resources Canada. Retrieved from 921

https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977. 922

National Hydrographic Network - Natural Resources Canada. Retrieved from https://www.nrcan.gc.ca/science-and-923

data/science-and-research/earth-sciences/geography/topographic-information/geobase-surface-water-program-924

geeau/national-hydrographic-network/21361. 925

Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., ... & Gandomi, A. H. (2020). Data science 926

in economics: comprehensive review of advanced machine learning and deep learning methods. Mathematics, 8(10), 927

1799. 928

Oh, S. L., Ng, E. Y., San Tan, R., & Acharya, U. R. (2018). Automated diagnosis of arrhythmia using combination of 929

CNN and LSTM techniques with variable length heart beats. Computers in biology and medicine, 102, 278-287. 930

Olah, C. (2015). Understanding LSTM Networks. Retrieved from https://colah.github.io/posts/2015-08-931

Understanding-LSTMs/. 932

Formatted: Space After: 8 pt

Formatted: English (Canada)

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/topographic-information/geobase-surface-water-program-geeau/national-hydrographic-network/21361
https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/topographic-information/geobase-surface-water-program-geeau/national-hydrographic-network/21361
https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/topographic-information/geobase-surface-water-program-geeau/national-hydrographic-network/21361
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

39

Ombabi, A. H., Ouarda, W., & Alimi, A. M. (2020). Deep learning CNN–LSTM framework for Arabic sentiment 933

analysis using textual information shared in social networks. Social Network Analysis and Mining, 10(1), 1-13. 934

Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable 935

activity recognition. Sensors, 16(1), 115. 936

Parvin, H., Minaei, B., Beigi, A., & Helmi, H. (2011, April). Classification ensemble by genetic algorithms. 937

In International Conference on Adaptive and Natural Computing Algorithms (pp. 391-399). Springer, Berlin, 938

Heidelberg. 939

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-940

learn: Machine learning in Python. the Journal of machine Learning research, 12. 941

Prowse, T. D., & Bonsal, B. R. (2004). Historical trends in river-ice break-up: a review. Hydrology Research, 35 (4-942

5), 281-293. 943

Prowse, T. D., Bonsal, B. R., Duguay, C. R., & Lacroix, M. P. (2007). River-ice break-up/freeze-up: a review of 944

climatic drivers, historical trends and future predictions. Annals of Glaciology, 46, 443-451. 945

Raybaut, P. (2009). Spyder-documentation. Retrieved from pythonhosted. org. 946

Reback, J., McKinney, W., Den Van Bossche, J., Augspurger, T., Cloud, P., Klein, A., ... & Seabold, S. (2020). 947

pandas-dev/pandas: Pandas 1.0. 3. Zenodo. 948

Rodríguez, J. J., & Alonso, C. J. (2004, December). Support vector machines of interval-based features for time series 949

classification. In International Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 950

244-257). Springer, London. 951

Sainath, T. N., Vinyals, O., Senior, A., & Sak, H. (2015, April). Convolutional, long short-term memory, fully 952

connected deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing 953

(ICASSP) (pp. 4580-4584). IEEE. 954

Samek, W., & Müller, K. R. (2019). Towards explainable artificial intelligence. In Explainable AI: interpreting, 955

explaining and visualizing deep learning (pp. 5-22). Springer, Cham. 956

Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and 957

interpreting deep learning models. arXiv preprint arXiv:1708.08296. 958

She, X., & Zhang, D. (2018, December). Text classification based on hybrid CNN-LSTM hybrid model. In 2018 11th 959

International Symposium on Computational Intelligence and Design (ISCID) (Vol. 2, pp. 185-189). IEEE. 960

Shouyu, C., & Honglan, J. (2005). Fuzzy Optimization Neural Network Approach for Ice Forecast in the Inner 961

Mongolia Reach of the Yellow River/Approche d'Optimisation Floue de Réseau de Neurones pour la Prévision de la 962

Glace Dans le Tronçon de Mongolie Intérieure du Fleuve Jaune. Hydrological sciences journal, 50(2). 963

Formatted: English (Canada)

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

40

Sosa, P. M. (2017). Twitter sentiment analysis using combined LSTM-CNN models. Eprint Arxiv, 1-9. 964

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to 965

prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. 966

The Atlas of Canada - Toporama - Natural Resources Canada. Retrieved from 967

https://atlas.gc.ca/toporama/en/index.html. 968

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S. & Wilson, B.E. (2020). Daymet: Daily Surface 969

Weather Data on a 1-km Grid for North America, Version 4. ORNL DAAC, Oak Ridge, Tennessee, USA. 970

Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A. (2021). Deep Learning for Time Series 971

Forecasting: A Survey. Big Data, 9(1), 3-21. 972

Turcotte, B., & Morse, B. (2015, August). River ice breakup forecast and annual risk distribution in a climate change 973

perspective. In 18th Workshop on the Hydraulics of Ice Covered Rivers, CGU HS Committee on River Ice Processes 974

and the Environment, Quebec (Vol. 35). 975

Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G. S., & On, B. W. (2020). Fake news stance detection using 976

deep learning architecture (cnn-lstm). IEEE Access, 8, 156695-156706. 977

Wang, J., Yu, L. C., Lai, K. R., & Zhang, X. (2016, August). Dimensional sentiment analysis using a regional CNN-978

LSTM model. In Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: 979

Short papers) (pp. 225-230). 980

Wang, J., Yu, L. C., Lai, K. R., & Zhang, X. (2019). Tree-structured regional CNN-LSTM model for dimensional 981

sentiment analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 581-591. 982

White, K. D. (2003). Review of prediction methods for breakup ice jams. Canadian Journal of Civil Engineering, 983

30(1), 89-100. 984

Wong, S. C., Gatt, A., Stamatescu,White, K. D., & Daly, S. F. (2002, January). Predicting ice jams with discriminant 985

function analysis. In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering (pp. 986

683-690). American Society of Mechanical Engineers. 987

Wojtas, M., & Chen, K. (2020). Feature importance ranking for deep learning. arXiv preprint arXiv:2010.08973. 988

Wu, J., Yao, L., & Liu, B. (2018a, April). An overview on feature-based classification algorithms for multivariate 989

time series. In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 990

32-38). IEEE. 991

 V., & McDonnell, M. D. (2016, November). Understanding data augmentation for classification: when to warp?. 992

In 2016 international conference on digital image computing: techniques and applications (DICTA) (pp. 1-6). IEEE 993

Formatted: Space After: 8 pt

Formatted: French (Canada)

41

Wu, Z., Wang, X., Jiang, Y. G., Ye, H., & Xue, X. (2015, October). Modeling spatial-temporal clues in a hybrid deep 994

learning framework for video classification. In Proceedings of the 23rd ACM international conference on 995

Multimedia (pp. 461-470). 996

Zaremba, W., Sutskever,Wunsch, A., Liesch, T., & Broda, S. (2020). Groundwater Level Forecasting with Artificial 997

Neural Networks: A Comparison of LSTM, CNN and NARX. Hydrology and Earth System Sciences 998

Discussions, 2020, 1-23. 999

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classification. ACM Sigkdd Explorations 1000

Newsletter, 12(1), 40-48. 1001

Xingjian, S. H. I., & Vinyals, O. (2014). RecurrentChen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. 1002

(2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances in 1003

neural information processing systems (pp. 802-810). 1004

Yan, J., Mu, L., Wang, L., Ranjan, R., & Zomaya, A. Y. (2020). Temporal convolutional networks for the advance 1005

prediction of ENSO. Scientific reports, 10(1), 1-15. 1006

Yang, J., Nguyen, M. N., San, P. P., Li, X. L., & Krishnaswamy, S. (2015, June). Deep convolutional neural networks 1007

on multichannel time series for human activity recognition. In Twenty-fourth international joint conference on 1008

artificial intelligence. 1009

Yi, S., Ju, J., Yoon, M. K., & Choi, J. (2017). network regularization.Grouped convolutional neural networks for 1010

multivariate time series. arXiv preprint arXiv:1409.23291703.09938. 1011

Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., ... & Zhuang, J. (2018). Modeling and simulating of 1012

reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of 1013

Hydrology, 565, 720-736. 1014

Zhang, Y., Tiňo, P., Leonardis, A., & Tang, K. (2021). A survey on neural network interpretability. IEEE Transactions 1015

on Emerging Topics in Computational Intelligence. 1016

Zhao, L., Hicks, F. E., & Fayek, A. R. (2012). Applicability of multilayer feed-forward neural networks to model the 1017

onset of river breakup. Cold Regions Science and Technology, 70, 32-42. 1018

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014, June). Time series classification using multi-channels deep 1019

convolutional neural networks. In International Conference on Web-Age Information Management (pp. 298-310). 1020

Springer, Cham. 1021

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2016). Exploiting multi-channels deep convolutional neural 1022

networks for multivariate time series classification. Frontiers of Computer Science, 10(1), 96-112. 1023

 1024

Formatted: Space After: 8 pt

Formatted: Space After: 8 pt

Formatted: English (Canada)

Formatted: Font: 10 pt

42

 1025 Formatted: Font: Times New Roman, 10 pt, English

(Canada)

Formatted: Space Before: 0 pt, After: 8 pt, Line

spacing: 1.5 lines

