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SPECIFIC COMMENTS  

1. Abstract: define terms CNN, LSTM, etc. at first use in the abstract.  

We explained them in the abstract. 

2. Introduction: First, why are deep learning methods needed for this problem more so than traditional 

machine learning methods (e.g., 3-layer multilayer perceptron, decision trees, support vector machine).  

We added that: “There are some machine learning methods available for TSC such as K nearest neighbour 

and support vector machine. However, the focus of this research is on the deep learning models that have 

greatly impacted sequence classification problems and they can also be used for multivariate TSC with 

good performance. Deep learning methods are able to consider two-dimensionality in multivariate time-

series and their deeper architecture could further improve the classification especially for complex 

problems, which is why their results are more accurate and robust than other methods (Wu et al., 2018a, 

April). However, they are more time consuming and difficult to interpret.” 

And also later we added in the text that: “Deep learning models perform well for the problems with 

complex-nonlinear dependencies, time dependencies, and multivariate inputs.” 

 

Second, there are numerous applications of CNN, LSTM, and their hybrid versions applied in hydrology 

(Althoff et al., 2021; Apaydin et al., 2020; Barzegar et al., 2021, 2020; Kratzert et al., 2018; Wunsch et al., 

2020; Zhang et al., 2018). It would be good to mention the application of such models in hydrology to 

show that their use is well established within this domain and to highlight that none of these methods 

have been explored for ice jam prediction.  

We added that: “There are numerous applications of CNN, LSTM, and their hybrid versions applied in 

hydrology (Althoff et al., 2021; Apaydin et al., 2020; Barzegar et al., 2021, 2020; Kratzert et al., 2018; 

Wunsch et al., 2020; Zhang et al., 2018). Although deep learning methods seem to be promising to address 

the requirements of ice-jam predictions, none of these methods yet have been explored for ice jam 

prediction.” 

3. L183: ‘…and multiplying it by tanh…’ Is this fully correct? tanh is an activation function and therefore 

needs an input to evaluate, would it not be more correct to write ‘…and multiplying it by 

tanh(something)’?  

That is right. It is tanh (cell state). 

4. L217-219: do you mean that earlier experimentation showed that MinMaxScaler lead to the most 

accurate results?  

My experiments showed that. We changed the phrase:” The results show that MinMaxScaler (Eq. (1)) 

leads to the most accurate results.” 



5. Figures: the vast majority of figures in this paper are taken from other sources. While the figures appear 

to be properly cited it may be worthwhile to consider creating some new figures specific to the dataset 

and models employed in this work. 

 I created and added figures 4, 5 and 6.  

 

Figure 4. An RNN with a single tanh layer, where A is a chunk of the neural network, x is input data, and 
h is output data. 

 

Figure 5. Structure of LSTM block with four interacting layers. 

 

Figure 6. A convolution layer structure including two sets of filters. 

 



6. The authors refer to ‘loss’ (i.e., a loss function) without defining it until section 2.5.1.5, where they then 

switch to the term ‘cost function’. It would be good for the authors to: a) clarify early on that a loss 

function for neural networks is similar to an objective function for process-based hydrological models (to 

make this term more approachable for a wide audience) and b) use consistent terminology (i.e., choose 

loss or cost function).  

We selected the term loss function to be used in the text.  

We added the phrase “The loss function is similar to an objective function for process-based hydrological 

models”. 

7. Eqs. 2 and 3: specifically mention which equation pertains to the L1 and L2 regularization. The authors 

should also explicitly state the cost function (see also comment 6 above to ensure consistent terminology 

is adopted) or at least point to where it is discussed in more detail within the text.  

We had explicitly stated that “The two main methods used to calculate the size of the weights are L1 (Eq. 

2) and L2 or weight decay (Eq. 3)”. 

We added that “Neural networks solve an optimization problem that requires a loss function to calculate 

the model error.” 

We also explained that in more detail in “Network optimization” section in the Appendix: “Training CNN 

involves global optimization by defining a loss function to be minimized over training. For the classification 

task, the loss function of the models is calculated using categorical cross-entropy between network 

outputs and targets (Eq. (5)), where L is the loss, p is the prediction (probability), t is the target, and c is 

the number of classes. Then, the mean of the loss is computed over each mini-batch. 

𝐿 =  − ∑ 𝑡𝑖  log(𝑝𝑖)

𝑐=2

𝑖=1

 

8. Section 2.5.2: what do you use for identifying the optimal architecture? Grid-search, random-search, 

Bayesian optimization, …?   

We were aware of other methods for hyperparameter tuning but we selected a manual trial and error 

method, as grid search experiments suffer from poor coverage in dimensions (Bergstra and Bengio, 2012) 

and manual experiments are much easier and more interpretable in investigating the effect of one 

hyperparameter of interest. 

 

9. Eqs. 4-6: why are RELU and Sigmoid in italic font but not tanh? I believe the Sigmoid function is referred 

to earlier as 𝜎, consistency should be maintained here (and elsewhere in the text, e.g., see comment 6 

above). 

WE edited that. I used 𝜎 in the figures and explained that in the corresponding line. In text it is mentioned 

as sigmoid. 

 



10. L330: I do not think ‘mini-batch’ has been discussed yet, nor should it be assumed that most readers 

will be familiar with the term. What is a ‘mini-batch’ and what is its purpose?  

We added: “Mini-batches split the training data into small batches which is used during each iteration one 

after the other to calculate model error and update model parameters. It is computationally efficient not 

having all training data in memory and model implementations, since batch size significantly influences 

the training time (Fawaz et al., 2019, July). Mini-batches cause the model to update more frequently 

resulting in a more robust convergence, and avoiding local minima.” 

11. 2.5.3: see comments 6 and 7 above.  

Ok. We edited that. 

 

12. Much of sections 3.1 – 3.2 (and their sub-sections) do not belong in a Results and Discussion section, 

these sections are more related to Methodology or Model Development. Some sections such as 3.1.8 

include results, but the majority of these sub-sections in 3.1 and 3.2 do not.  

You are right. We moved them to materials and method section. 

 

13. L517-518: the authors should include at least a single reference that corroborate this statement.  

There is no reference for that. We changed my statement to “It is not clear that whether the order of 

input variables in the input file might influence multivariate TSC or not when using 2-D filters and 2-D max-

pooling layers. 

 

14. L547-551: no new information should be provided in the Conclusion section, why is project ‘DAVE’ not 

mentioned earlier in the paper? It would seem best to mention this information in the introduction of the 

paper to better motivate its goals and objectives.  

We removed that from conclusion and added that at the end of the Introduction where we explained the 

objective of this work. 

15. The authors spend most of the paper describing all the components of the different models and spend 

little time focussing on the significance of the results. The authors may wish to only describe the main 

components of the models and shift non-essential information to a supplementary material file.  

A) We removed all subsections of the section “Overcome overfitting” and tried to make this part shorter. 

We also moved some parts from Results to “Overcome overfitting” section. We moved some explanations 

of methods that are used to the Appendix. There are now 14 lines in “Overcome overfitting” section in 

the text.” 

We moved subsections “Activation function”, “Learning rate”, “Padding”, “Activation functions in CN 

layers”, “Dense layer”, “Network optimization”, and “Update expression” to the Appendix.  

We added Table 3 in the text. 



Table 1. Common values and selected values for different parameters of the models. 

Parameter Common values 

Selected 

value 

Mini-batch size 16, 32, 64 16 

Number of convolution filters 32, 64, 128 128 

Filter size 3, 5, 7 (5,1) and (5,3) 

Number of LSTM units 32, 64, 128 128 

Number of dense layer units 16, 32, 128, 256 32 

Momentum in SGD   0.5, 0.99, 0.9 0.9 

 

B) In terms of significance of the results, we added a section to the Discussion “Model transferability”: 

“The transferability of a model between river basins is highly desirable but has not yet been achieved 

because most river ice-jam models are site specific (Mahabir et al., 2007). The developed models in this 

study can be used to predict future ice jams some days before the event not only for Quebec but also for 

eastern parts of Ontario and western New Brunswick. For other locations, the developed models can be 

transferred via retraining and a small amount of fine-tuning using labeled instances, rather than building 

from scratch. It is because the logic in the model may be transferable to another site with small 

modifications. To transfer a model from one river basin to another, historic records of ice jams and 

equivalent hydro-meteorological variables (e.g., precipitation, temperature, and snow depth) as inputs to 

the model must be available at each site.” 

16. Why did the authors not compare these much more complicated models (with, as noted in 3.3.2, 100’s 

of thousands of parameters!) to a simple 3-layered multilayer perceptron model, or a decision tree model 

(e.g., random forests or eXtreme Gradient Boosting), or a support vector machine (which is ideal for small 

datasets)? Based on the type of dataset (small and structured) it seems the previously mentioned methods 

might be more appropriate, may result in better performance with much less complexity (e.g., fewer 

parameters and hyper-parameters), and have lower training times (e.g., likely minutes rather than hours). 

Without lack of a meaningful benchmark it is difficult to justify the use of these very complicated models 

(CNN, LSTM, CN-LSTM) that took nearly the whole paper to describe.  

We developed machine learning models and compared their performance with developed deep learning 

models in the text. The validation and test F1 scores of Machine learning models are presented in Tables 

10 and 12, showing that deep learning performed much better than machine learning in ice-jam 

prediction.  

Table 10. F1 scores of validation for SVM, DT, and KNN and MLP models with 100 random train-validation splits. 

Models F1 score 

  mean max min 

SVM 0.76 0.82 0.69 

DT 0.74 0.80 0.67 



KNN 0.75 0.84 0.68 

MLP 0.75 0.83 0.68 

 

Table 12. Test F1 scores for SVM, DT, and KNN and MLP models. 

Models F1 score 

SVM 0.75 

DT 0.71 

KNN 0.78 

MLP 0.70 

 

17. There is little emphasis placed on exploring why certain models performed better than others and 

how this relates to the physical system under study. It’s great if a new model provides high accuracy for 

modelling a physical system but understanding why the model may work better than others is also 

important to explore.  

A) We added that: “There are some machine learning methods available for TSC such as K nearest 

neighbour and support vector machine. However, the focus of this research is on the deep learning models 

that have greatly impacted sequence classification problems and they can also be used for multivariate 

TSC with good performance. Deep learning methods are able to consider two-dimensionality in 

multivariate time-series and their deeper architecture could further improve the classification especially 

for complex problems, which is why their results are more accurate and robust than other methods (Wu 

et al., 2018a, April). However, they are more time consuming and difficult to interpret.” 

And also later we added in the text that: “Deep learning models perform well for the problems with 

complex-nonlinear dependencies, time dependencies, and multivariate inputs.” 

B) A) In terms of relation to the physical system, we added a section “Discussion on the interpretability of 

deep learning models” and later explained that we will cover this issue in our future work: 

“Even though the developed deep learning models performed pretty well in predicting ice jams in Quebec, 

the interpretability of the results with respect to the physical processes of the ice jam is still essential. It 

is because although deep learning models have achieved superior performance in various tasks, these 

really complicated models with a large number of parameters might exhibit unexpected behaviours 

(Samek et al., 2017 & Zhang et al., 2021). This is because the real-world environment is still much more 

complex. Furthermore, the models may learn some spurious correlations in the data and make correct 

predictions with the ‘wrong’ reason (Samek and Müller, 2019). Hence, interpretability is especially 

important in some real-world applications like flood and ice-jam predictions where an error may cause 

catastrophic results. Also, interpretability can be used to extract novel domain knowledge and hidden 

laws of nature in the research fields with limited domain knowledge (Alipanahi et al., 2015) like ice-jam 

prediction.  

However, the nested non-linear structure and the “black box” nature of deep neural networks make 

interpretability of their underlying mechanisms and their decisions a significant challenge (Montavon et 



al., 2018, Zhang et al., 2021 and Wojtas and Chen, 2020). That is why, interpretability of deep neural 

networks still remains a young and emerging field of research. Nevertheless, there are various methods 

available to facilitate understanding of decisions made by a deep learning model such as feature 

importance ranking, sensitivity analysis, layer-wise relevance propagation, and the global surrogate 

model. However, the interpretability of developed deep learning models for ice-jam prediction is beyond 

the scope of this study and it will be investigated in our future works.” 

 

TECHNICAL CORRECTIONS  

• L12 (and elsewhere in the text, e.g., L13): remove ‘the’ before ‘ice-jam’.  Done 

• L19: ‘validation and generalization sets‘? Why not use test set instead of generalization set, as it is more 

common in the ML community? Done 

• L35: remove ‘to’ before ‘jam’. Done 

• L49: ‘carefully’ instead of ‘wisely’. Done 

• L50: include ‘classifier’ after ‘kNN’. Done 

• I will mostly stop providing editorial remarks at this point…the paper should be carefully edited.  

• L57: ‘…that use multiple layers where nonlinear transformation is used to extract…’ Done 

• L219: I suppose the brackets around the scaled variable should be black instead of red. Done 

• L266: ‘covariate shift’?   “In deep learning, the distribution of the input of each layer will be changed by 

updates to all the preceding layers (i.e., internal covariate shift).” 

However, I moved this part to Appendix. 

• L310: is ‘drown’ the right word to use here? Changed to “gained” 

• L336: ‘over-training’. Done 
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Response-to-tc-2021-194-CC1-supplement 

1) Abstract should be most informative. The abstract discusses ice jam and prediction necessity in the first 

half. The reader should also be able to obtain information from the data, modeling process, and validation 

metrics.  

We explained and added that: “The hydro-meteorological variables (e.g., temperature, precipitation, and 

snow depth) along with the corresponding jam or no-jam events are used as the inputs to the models. We 

hold out 10% of the data for testing. And we applied 100 re-shuffling and splitting iterations with 80 % of 

the remaining data for training and 20% for validation. The results show that the CNN-LSTM model yields 

the best results with the validation and test F1 scores of 0.82 and 0.92, respectively.” 

2) Acronyms (e.g., CNN, LSTM, CN-LSTM, F1) should be defined in the first use in the abstract.  

We explained them in the abstract, except for F1 score that is not an acronym. 

3) Provide a reference for empirical and statistical prediction methods (threshold methods, multi-

regression models, logistic regression models, and discriminant function analysis). 

We added :“( Barnes-Svarney and Montz, 1985; Mahabir et al., 2006; Massie et al., 2002; White, 2003; 

White and Daly, 2002, January; Zhao et al., 2012)”. 

4) Introduce “involved hydro-meteorological variables” in line 24.  

We added: “involved hydro-meteorological variables (e.g., temperature, precipitation, snow depth, and 

solar radiation)”.  

And later explained all the variables in detail in “Data and study area” section. 

5) Why did you choose deep learning over other machine learning models for ice jam prediction? Is that 

all due to an automatic feature selection? Clarification is needed.   

We added that: “There are some machine learning methods available for TSC such as K nearest neighbour 

and support vector machine. However, the focus of this research is on the deep learning models that have 

greatly impacted sequence classification problems and they can also be used for multivariate TSC with 

good performance. Deep learning methods are able to consider two-dimensionality in multivariate time-

series and their deeper architecture could further improve the classification especially for complex 

problems, which is why their results are more accurate and robust than other methods (Wu et al., 2018a, 

April). However, they are more time consuming and difficult to interpret.” 

And also later we added in the text that: “Deep learning models perform well for the problems with 

complex-nonlinear dependencies, time dependencies, and multivariate inputs.” 

Also we developed machine learning models and compared their performance with developed deep 

learning models in the text. The validation and test F1 scores of Machine learning models are presented 

in Tables 10 and 12, showing that deep learning performed much better than machine learning in ice-jam 

prediction.  

Table 10. F1 scores of validation for SVM, DT, and KNN and MLP models with 100 random train-validation splits. 

Models F1 score 



  mean max min 

SVM 0.76 0.82 0.69 

DT 0.74 0.80 0.67 

KNN 0.75 0.84 0.68 

MLP 0.75 0.83 0.68 

 

Table 12. Test F1 scores for SVM, DT, and KNN and MLP models. 

Models F1 score 

SVM 0.75 

DT 0.71 

KNN 0.78 

MLP 0.70 

 

6) There is a lot of focus on time series predictions in the literature review while you should be more 

specific about ice jam prediction. The literature should at least include data-driven models for predicting 

ice jams.  

The ice-jam prediction is considered as a multivariate time-series classification problem. The focus of our 

previous paper was on the literature review on ice jam prediction methods. As we mentioned in the 

previous question, we developed machine learning methods and compared the results with the results of 

the deep learning models, as you suggested. 

7) In lines 97-98: the authors state “Deep learning methods are promising to address the requirements of 

ice jam predictions.” Is there any research to use deep learning for ice jam prediction? If so, what is the 

contribution to the current research?  

No there is no research for that. You are right so we changed the phrases to address your comment:” 

Although deep learning methods seem to be promising to address the requirements of ice-jam 

predictions, none of these methods yet have been explored for ice jam prediction.” 

8) Although there are several deep learning methods, why did you select CNN, LSTM, and a combined 

CNN-LSTM?  

we added that “Through our comprehensive literature review, we noticed that CNN (e.g., Brunel et al., 

2019; Cui et al., 2016; Devineau et al., 2018, June; Kashiparekh, 2019, July; Nosratabadi et al., 2020;Yan 

et al., 2020; Yang et al., 2015, June; Yi et al., 2017; Zheng et al., 2016), LSTM (e.g., Fischer and Krauss, 

2018; Lipton et al., 2015; Nosratabadi et al., 2020; Torres et al., 2021), and a combined CNN-LSTM (e.g., 

Karim et al., 2o17; Livieris et al., 2020; Ordóñez and Roggen, 2016; Sainath et al., 2015, April; Xingjian et 

al., 2015) have been widely used  for TSC. 



9) The authors consider 0 value for “NaN” precipitation values. 0 value means there is no precipitation. 

However, there might be precipitation and there is no measurement. Since the modeling is based on time 

series, it is better to impute missing values instead of considering 0 values. 

You are right. We removed that phrase from the text as although there are some NaN records in the 

database for precipitation, we did not use them in our study. 

10) The text contains several typos.  

We tried to edit and remove them. 

11) Provide a reference for the statement “The most popular deep neural networks for TSC are MLP, 

CNNs, and LSTM.”  

We added: “(Brownlee, 2018; and Torres et al., 2021)”. 

12) The sub-heading “Input data and study area” is not appropriate. The reader may think you mean input 

variables of the model. Sub-heading “Data and study area” should be suitable.  

We agree. We changed that.  

13) Detailed information, at least as a statistical description, should be provided for the data used in the 

study.  

We added a Table for that. 

Table 2. Statistics of hydro-meteorological variables used in the models. 

Statistics 

Liquid P 

(mm) Tmin (°C) Tmax (°C) Net radiation (W m-2) ATDD (°C) AFDD (°C) 

Snowdepth 

(cm)  

min 0.00 -40.00 -25.97 -67.77 0.00 -2109.33 0.00 

max 50.87 12.05 27.48 222.69 280.82 -35.41 121.86 

average 1.04 -9.41 0.98 59.75 8.83 -898.48 15.99 

median 0.00 -7.73 1.68 59.41 1.27 -890.74 11.50 

 

14) Provide a reference “As a benchmark, a CNN model with the parameters and layers similar to previous 

studies is developed.”  

We added: “(e.g., Ordóñez and Roggen, 2016).” 

15) Section 2.5.1. Overcome overfitting is too long. It needs to be shortened.  

We removed all subsections and tried to make this part shorter. We also moved some parts from Results 

to “Overcome overfitting” section. We moved some explanations of methods that are used to the 

Appendix. There are now 14 lines in “Overcome overfitting” section in the text. 

16) It is not clear how you optimize the structure of the model. Did you use any hyperparameter tuning 

method e.g. GridSearch, random search, Bayesian optimization? Or only a trial and errors approach?  



We were aware of other methods for hyperparameter tuning but we selected a manual trial and error 

method, as grid search experiments suffer from poor coverage in dimensions (Bergstra and Bengio, 2012) 

and manual experiments are much easier and more interpretable in investigating the effect of one 

hyperparameter of interest. 

17) The training chapter “2.5 Training” has focused only on the general statements of the modeling. The 

authors should give more information about the modeling process, optimum values for the parameters, 

loos function, etc.  

We restructured that part. We added Table 3 for optimum values of parameters. 

We moved subsections “Activation function”, “Learning rate”, “Padding”, “Activation functions in CN 

layers”, “Dense layer”, “Network optimization”, and “Update expression” to Appendix.  

Table 3. Common values and selected values for different parameters of the models. 

Parameter Common values 

Selected 

value 

Mini-batch size 16, 32, 64 16 

Number of convolution filters 32, 64, 128 128 

Filter size 3, 5, 7 (5,1) and (5,3) 

Number of LSTM units 32, 64, 128 128 

Number of dense layer units 16, 32, 128, 256 32 

Momentum in SGD   0.5, 0.99, 0.9 0.9 

 

18) Provided Information in “3.1 Hyperparameters optimization” is not a result! It is a model development 

and should be moved to the materials and method chapter as a “model development” sub-chapter. The 

structure of the manuscript needs to be revised. 

We moved that to materials and method section. 

19) I suggest developing a traditional machine learning model such as MLP, random forest, … to show the 

efficiency of the developed deep learning models.  

As We explained above, I developed SVM, KNN, decision tree, and multilayer perceptron models as the 

common machine learning models for TSC and compared the results with deep learning models. 

20) Abbreviations should be checked throughout the text. Different abbreviations (e.g. CN-LSTM, CNN-

LSTM, CNLSTM) has been used.  

Done. We selected CNN-LSTM. 

21) Discussion should be improved significantly. The authors have focused only on the structure of the 

models. The results should also be connected to the physical characteristics of the ice jam. How does the 

model can help manage the water resources? Compare the results with the literature, not a simple report.  



A) In terms of relation to the physical system, we added a section “Discussion on the interpretability of 

deep learning models” and later explained that we will cover this issue in our future work: 

“Even though the developed deep learning models performed pretty well in predicting ice jams in Quebec, 

the interpretability of the results with respect to the physical processes of the ice jam is still essential. It 

is because although deep learning models have achieved superior performance in various tasks, these 

really complicated models with a large number of parameters might exhibit unexpected behaviours 

(Samek et al., 2017 & Zhang et al., 2021). This is because the real-world environment is still much more 

complex. Furthermore, the models may learn some spurious correlations in the data and make correct 

predictions with the ‘wrong’ reason (Samek and Müller, 2019). Hence, interpretability is especially 

important in some real-world applications like flood and ice-jam predictions where an error may cause 

catastrophic results. Also, interpretability can be used to extract novel domain knowledge and hidden 

laws of nature in the research fields with limited domain knowledge (Alipanahi et al., 2015) like ice-jam 

prediction.  

However, the nested non-linear structure and the “black box” nature of deep neural networks make 

interpretability of their underlying mechanisms and their decisions a significant challenge (Montavon et 

al., 2018, Zhang et al., 2021 and Wojtas and Chen, 2020). That is why, interpretability of deep neural 

networks still remains a young and emerging field of research. Nevertheless, there are various methods 

available to facilitate understanding of decisions made by a deep learning model such as feature 

importance ranking, sensitivity analysis, layer-wise relevance propagation, and the global surrogate 

model. However, the interpretability of developed deep learning models for ice-jam prediction is beyond 

the scope of this study and it will be investigated in our future works.” 

B) In terms of comparison of the results with the literature, the present work is the first application of the 

comprehensive ice-jam database for Quebec. To the knowledge of the authors previous studies for ice-

jam prediction in Quebec consider only specific locations in a specific river for just a year or two years, 

hence there is no literature available to compare our ice jam predictions with.  

C) How does the model can help manage the water resources?  

To address your question, we added a section to Discussion “Model transferability”: 

“The transferability of a model between river basins is highly desirable but has not yet been achieved 

because most river ice-jam models are site specific (Mahabir et al., 2007). The developed models in this 

study can be used to predict future ice jams some days before the event not only for Quebec but also for 

eastern parts of Ontario and western New Brunswick. For other locations, the developed models can be 

transferred via retraining and a small amount of fine-tuning using labeled instances, rather than building 

from scratch. It is because the logic in the model may be transferable to another site with small 

modifications. To transfer a model from one river basin to another, historic records of ice jams and 

equivalent hydro-meteorological variables (e.g., precipitation, temperature, and snow depth) as inputs to 

the model must be available at each site.” 

22) Conclusion needs to be revised significantly. You should only give the main findings of the research 

here. Providing reference is not recommended in the conclusion section.  

We removed the references and re-wrote the Conclusion: 



“Conclusion 

The main finding from this project is that all the developed deep models performed pretty well and 

performed much better than the developed machine learning models for ice-jam prediction in Quebec. 

The comparison of results show that the CNN-LSTM model is superior to the CNN-only and LSTM-only 

networks in both validation and testing accuracy, though the LSTM and CNN models demonstrate quite 

good performance. 

To our best knowledge, this study is the first study introducing these deep learning models to the problem 

of ice-jam prediction. The developed models are promising to be used to predict future ice jams in Quebec 

and in other river basins in Canada with re-training and a small amount of fine-tuning. 

The developed models do not apply to freeze-up jams that occur in early winter and are based on different 

processes than breakup jams. We studied only breakup ice jams as usually they result in flooding and are 

more dangerous than freeze-up jams.  Furthermore, there is a lack of data availability for freeze-up ice 

jams in Quebec and only 89 records of freeze-up jams are available which is too small. 

The main limitation of this study is data availability as recorded ice jams are small which causes deep 

learning models to easily overfit to small number of data. Another limitation of the presented work is the 

lack of interpretability of the results with respect to the physical characteristics of the ice jam. This is a 

topic of future research and our next step is to explore that.  

The hydro-meteorological variables are not the only drivers of ice-jam formation. The geomorphological 

indicators that control the formation of ice jams include the river slope, sinuosity, a barrier such as an 

island or a bridge, narrowing of the channel, and confluence of rivers. In the future, a geospatial model 

using deep learning will be developed to examine the impacts of these geospatial parameters on ice-jam 

formation.” 

23) Provide the limitations of the research along with the recommendations for the future studies.  

We added that to the Conclusion (above). 

24) The mean error of training in LSTM is much higher than validation (middle plot in figure 16) which 

might be a sign of overfitting.  

We added some reasons for that: “There are some reasons explaining that. Regularization reduces the 

validation loss at the expense of increasing training loss. The regularization techniques such as noise layers 

are only applied during training, but not during validation resulting in more smooth and usually better 

functions in validation. There is no noise layer in CNN-LSTM model that may cause a lower training error 

than validation error. However, other regularization methods such as L2 regularization are used in all the 

models, including the CNN-LSTM model.  

Furthermore, the other issue is that batch normalization uses the mean and variance of each batch in 

training, whereas, in validation, it uses the mean and variance of the whole training dataset. Plus, training 

loss is averaged over each epoch, while validation loss is calculated after each epoch once the current 

training epoch is completed. Hence, the training loss includes error calculations with fewer updates.” 
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