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Abstract. We present the generation and validation of an updated version of the TanDEM-X Digital Elevation Model (DEM)

of Antarctica: the TanDEM-X PolarDEM 90m of Antarctica. Improvements compared to the global TanDEM-X DEM version

include filling of gaps with newer acquisitions, interpolating of smaller voids, smoothing of noisy areas and replacing frozen

or open sea areas with geoid undulations. For the latter, a new semi-automatic editing approach allowed the delineation of the

coastline from DEM and amplitude data. Finally, the DEM was transformed into the cartographic Antarctic Polar Stereographic5

projection with a homogeneous metric spacing in northing and easting of 90 meters. As X-Band synthetic aperture radar (SAR)

penetrates the snow and ice pack by several meters a new concept for absolute height adjustment was set up that relies on areas

with stable penetration conditions and on ICESat (Ice, Cloud, and land Elevation Satellite) elevations. After DEM generation

and editing, a sophisticated height error characterization of the whole Antarctic continent with ICESat and IceBridge data

was carried out and a validation over blue ice achieved a mean vertical height error of just -0.3m ± 2.5m standard deviation.10

The filled and edited Antarctic TanDEM-X PolarDEM 90m is outstanding due to its accuracy, homogeneity and coverage

completeness. It is freely available for scientific purposes and provides a high-resolution data set as basis for polar research,

such as ice velocity, mass balance estimation or ortho-rectification.

1 Introduction

The Antarctic continent is almost entirely covered by a vast ice sheet of approximately 27 million cubic kilometres. This ice15

sheet plays an important role in terms of climate change and rising temperatures worldwide, not least because it holds water

that would raise the global sea level by 58 m (Fretwell et al., 2013; Shepherd et al., 2018). Digital Elevation Models (DEMs)

provide crucial information about the ice sheet topography for monitoring and modelling ice sheet dynamics, glacier velocities

and mass balance analyses, in order to understand these processes and their potential contribution to global sea level rise

(Sutterley et al., 2014; Forsberg et al., 2017; Mengel et al., 2018). Recently, the long term standard reference BEDMAP2 DEM20

(Fretwell et al., 2013) has been replaced by several up-to-date DEM products for Antarctica based on various remote sensing
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data including radar altimetry, optical data or laser altimetry. These include the very high resolution (8 m) Reference Elevation

Model of Antarctica (REMA) (Howat et al., 2019, 2018) which is created from stereo-photogrammetry using DigitalGlobe

satellite imagery (mostly from the 2015 and 2016 austral summer seasons), or CryoSat-2 DEMs based on 2010 to 2016 data

with a spatial resolution of 1 km (Helm et al., 2014; Slater et al., 2018).25

The German TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) mission was the first spaceborne inter-

ferometric Synthetic Aperture Radar (InSAR) mission in bistatic mode (Krieger et al., 2007), which mapped the entire Antarctic

ice sheet and its complex marginal areas between 2013 and 2014 (Borla Tridon et al., 2013). TanDEM-X is comprised of two al-

most identical satellites, TerraSAR-X and TanDEM-X, performing X-Band InSAR acquisitions in bistatic configuration, where

one satellite transmits and both simultaneously receive the backscattered signal. This enables the generation of highly accurate30

interferograms, which do not suffer from temporal and atmospheric decorrelation. In 2016, full global TanDEM-X DEM cov-

erage at 12 m spatial resolution (0.4 arcsecond) was completed. For the cryosphere, it provides an up-to-date high-resolution

elevation of glaciers and ice sheets in high latitudes.

However, interferometric elevation data suffer from penetration of the X-Band SAR signal into the snow and ice surface

by several meters (Rott et al., 2021; Fischer et al., 2020; Dehecq et al., 2016; Wessel et al., 2016) and therefore complicate35

calibration as well as validation and comparison to other data. Further, the TanDEM-X DEM is an unedited elevation model

with erroneous data such as invalid data on water areas, noise or even holes, all of which hinder further usage. In this paper, we

detail the special adaptations made for generating the TanDEM-X DEM for Antarctica: a new block adjustment strategy for

InSAR DEMs over larger ice sheets and a meticulous mosaicking of individual DEM scenes. Furtheron, we filled gaps in the

TanDEM-X DEM (which uses data from 2013-2014) with newer acquisitions taken between July 2016 and September 201740

and re-edited the coastlines. To identify water areas and assign homogeneous height values, we developed a semi-automatic

approach for coastline delineation. This updated and resampled version is called TanDEM-X PolarDEM for Antarctica and is

now available in 90 m Polar Stereographic projection for scientific use (https://geoservice.dlr.de/web/maps/tdm:polardem90:

antarctica, last access: 21 December 2020). The absolute vertical accuracy is characterized in this paper by an evaluation against

ICESat and Icebridge data depending on ice classes. Notably, blue ice areas (BIAs) are used to validate the absolute accuracy45

of this new InSAR DEM of Antarctica. BIAs are a phenomenon unique to Antarctica, describing very dense and snow-free ice

areas (Bintanja, 1999). The high density of BIAs prevents the X-Band SAR signal from penetrating into the ice (Rott et al.,

2017) which is of significance for this study since InSAR measurements over BIAs consequently represent the same elevations

as laser heights.

2 Data50

2.1 TanDEM-X data

Input to the TanDEM-X DEM product (Wessel, 2018) of Antarctica were two complete coverages acquired with bistatic

interferometric SAR and with different baselines. All acquisitions were taken in austral winter to avoid the melting season

along the coast to guarantee good coherence conditions (Rizzoli et al., 2017). The first coverage was taken between April and
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Figure 1. Number of coverages of TanDEM-X DEM data takes.

November 2013, the second between April and October 2014. In addition, for the mountainous areas, a third and a fourth55

coverage with larger heights of ambiguity from the opposite viewing geometry were performed in mid-2014 (Borla Tridon

et al., 2013). For the inner part of Antarctica, left-looking mode had to be applied since the inclination of the TerraSAR-X and

TanDEM-X satellite orbits inhibits the visibility of the South Pole from the nominal right-looking direction. For this, over a

radius of 1,300 km from the South Pole, left-looking observations with shallower incidence angles (above 50◦) were used (see

Fig. 1). In total, with a time span of 1.5 years, a very compact temporal acquisition base could be accomplished with 4,151 data60

takes resulting in approx. 41,000 DEM scenes having a spatial resolution of approximately 10-12 m. After the finalization of

the TanDEM-X DEM in 2016 still some smaller DEM gaps remained, i.e. void data which result from the absence of acquired

data or input DEMs with satisfying quality. For these residual smaller gaps ranging from 2 km2 to 2,600 km2 a so-called DEM

gap filling acquisition phase for Antarctica took place from July 2016 to September 2017.

2.2 ICESat65

In 2003 the National Aeronautics and Space Administration (NASA) launched ICESat with the Geoscience Laser Altimeter

System (GLAS) onboard. GLAS is a laser altimeter designed to measure ice-sheet topography with a footprint of about 70 m

in diameter spaced at about 172 m along track while not penetrating into the snowpack (Brenner et al., 2007). It observed the

ice sheets from 2003 to 2009. The specific data set used for supporting the TanDEM-X mission is the GLAS/ICESat L2 Global

Land Surface Altimetry Data, Version 31, GLA14 (Zwally et al., 2012).70
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To ensure a good height accuracy and to reduce slope induced elevation errors of ICESat points we used the classification

information provided for each measurement point (Schutz et al., 2005) to select the most reliable points (Hueso Gonzalez

et al., 2010). According to a previous accuracy study, the standard deviation for these selected GCPs should be below 2 m

under optimal conditions (ICESat points on flat bare land) (Huber et al., 2009), another study for flat ice areas report a standard

deviation even below 1 m (Brenner et al., 2007). For comparison, all elevation values of the TanDEM-X DEM within a single75

ICESat footprint were averaged according to a laser specific weighting function (Harding and Carabajal, 2005). The estimated

Gaussian elevations of ICESat were used as heights and a coarse outlier detection was performed by sorting out extreme

outliers that differ more than 100 m from the TanDEM-X elevations. The selected ICESat points are used as ground control

points within the TanDEM-X DEM block adjustment and for validation. For validation points, the standard deviation of the

TanDEM-X DEM scene within the footprint must be below 1 m and only the best 10 ICESat points per one 50 km long DEM80

scene were considered for the block adjustment.

For the absolute height accuracy evaluation, a well distribution of points over the whole continent is important. This was

realized via a fixed number of points per geocell. The TanDEM-X product is partitioned into geocells, whose size is latitude

dependent (1°x2° between 60° and 80° South, and 1° x 4° between 80° and 90° South). In total 2,349 geocells were evaluated

between latitudes of 60° and 87° South. Note that the geocell rows S88, S89, S90 do not contain any ICESat points because85

the polar cap could not be covered due to the ICESat orbit geometry. For each geocell only the most 1,000 reliable points were

selected for validation. This reduces the original 56,463,474 ICESat points over Antarctica to 2,314,167, and to 2,150,776 after

final selection with the 3-sigma rule and masking out the frozen ocean for consistent validation of the land mass topography

accuracy. The height differences were clipped and assigned by means of the land cover map of Hui et al. (2017a).

2.3 Blue ice maps90

Blue ice areas (BIAs) are unique to Antarctica and consist of old and compressed ice, extending mainly downwind from

protruding rocks (e.g., Orheim and Lucchitta, 1990; Bintanja, 1999). They are scattered across the continent, generally in the

vicinity of inland mountain ranges and nunataks as well as coastal regions. Estimates of BIAs are around one per cent of

the Antarctic land surface (e.g., Giovinetto, 1964; Winther et al., 2001; Hui et al., 2017a). Due to the reduced presence of air

bubbles compared to glacier ice, blue ice absorbs radiation in the red spectrum and reflects the deeper-penetrating blue, causing95

the ice to shimmer bluish. Significant features include a flat and hard surface which is smooth but often rippled because of wind

sublimation. The highly densified ice of BIAs cannot be penetrated by X-Band SAR wavelength (Rott et al., 2017; Zhao and

Floricioiu, 2017). Blue ice areas therefore represent relative comparable heights for InSAR and Laser measurements and are

well suited to validate the absolute height accuracy of the TanDEM-X DEM in Antarctica.

An Antarctic Land Cover Database (AntarcticaLC2000) using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery100

from 1999-2003 and (Moderate Resolution Imaging Spectrometer) MODIS data from 2003/04 has been produced by Hui et al.

(2017a). This data set consists of three classes: snow/firn (97.8 per cent of the area), ice-free rocks (0.537 per cent) and

blue ice (1.656 per cent), classified with an overall accuracy of 92.3 per cent (available at: https://zenodo.org/record/826032#

.Wo1zSk2pWUk, last access: 13 June 2020).
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For an evaluation of the AntarcticaLC2000 data, a more detailed blue ice classification from the Australian Antarctic Data105

Centre (AADC) was used (Bender and Smith, 2013, updated 2017). In this data set, which is limited to the Prince Charles

Mountains in the Lambert Basin (Southern Amery Ice Shelf), areas of blue ice regarded as potential aircraft landing sites were

digitized from the Landsat Image Mosaic of Antarctica (LIMA) (USGS, 2008).

In addition, for a test area within this region we performed our own object-based classification based on Landsat-8 Operational

Land Imager (OLI) with a similar acquisition time as the TanDEM-X data (December 2013). In the classification process,110

we made use of the spectral information including snow and glacier indices (Normalized Difference Glacier Index, NDGI;

Normalized Difference Snow Index, NDSI) as well as texture information (Gray-Level Co-Occurrence Matrix, GLCM).

2.4 IceBridge measurements

Operation IceBridge is an airborne scanning laser altimeter which is bridging the data gap between the ICESat and ICESat-2

missions (Koenig et al., 2010). Since 2009, IceBridge has annually surveyed both the Greenland and Antarctic ice sheets as115

well as sea ice and Arctic glaciers. Flown at typical altitudes of 500 m, the ATM illuminates a swath width of approximately

140 m, with a footprint size of 1 to 3 m and along track separation of 2 m by measuring surface elevation with an accuracy

of 10 cm or better (Krabill et al., 2002). In this study we used IceBridge ATM L2 elevation data (Studinger, 2014, updated

2020) to characterize the edited TanDEM-X DEM, although, TanDEM-X SAR measurements and the airborne laser altimeter

measurements of IceBridge differ over the snow pack in their the reflection on the surface and subsurface. Furthermore, the120

IceBridge program’s focus are active glacier areas (Koenig et al., 2010) which lead to temporal changes. Therefore, regarding

our error characterization purpose, we carefully reduced the Icebridge data set and selected Icebridge data from the same period

and from the most stable regions like the South Pole and the Recovery glacier, both acquired in October 2014.

2.5 Reference DEMs

For further model-to-model comparisons we used two actual DEM data sets both covering similar time frames as TanDEM-125

X: the CryoSat’s radar altimeter DEM from Slater et al. (2018) and REMA (Howat et al., 2019). The CryoSat-2 DEM is

composed of measurements between 2010 and 2016 and is posted at a resolution of 1 km. For our comparison, the TanDEM-X

DEM was resampled to 1 km Antarctic Polar Stereographic grid spacing. The REMA mosaic is constructed from stereoscopic

satellite imagery collected by DigitalGlobe’s Worldview satellite constellation acquired mostly between 2015 and 2016 and

is distributed in Antarctic Polar Stereographic projection in 8 m. For our purposes, we used the resampled version with 1 km130

spacing. The vertical reference for all used DEMs is the WGS84 ellipsoid.
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3 DEM Generation method

Two processors were involved in the generation of the TanDEM-X DEM product (Wessel, 2018). At first, the Integrated

TanDEM-X Processor (ITP) (Fritz et al., 2011; Rossi et al., 2012; Lachaise et al., 2018) interferometrically processed raw data

to pre-calibrated, geocoded single-scene DEMs, the so-called RawDEMs. The Mosaicking and Calibration Processor (MCP)135

performed the final height calibration by a block adjustment (Gruber et al., 2012) and a mosaicking of the corrected single

RawDEMs to the final TanDEM-X DEM product (Gruber et al., 2016). The generation of the DEM for Antarctica necessitated

a special calibration procedure that we present for the first time in detail in the following sections.

3.1 Antarctica DEM block adjustment

The TanDEM-X block adjustment, also called DEM calibration, is conducted by a weighted least-squares adjustment employ-140

ing ICESat points as well as image tie-points (TPs). Thanks to the excellent calibration of the TanDEM-X system only small

offsets and tilts for a single data take remain. They are in the range of few meters, typically most of them even below ±2 m,

and are subject to the block adjustment. ICESat points are used as Ground Control Points (GCPs) to adjust the TanDEM-X

DEM to the absolute height reference. Tie points are located within a 3 km range overlap between two adjacent acquisitions

and are used to derive height differences. For a tie point the height of an area of approximately 1 km x 1 km is evaluated and145

the median height is chosen for comparison (Huber et al., 2010).

However, SAR signals penetrate into the ice sheet. The penetration depth depends on the wavelength of the radar and the

snow and ice properties (Fischer et al., 2020). Consequently, the laser altimeter derived ICESat elevations and SAR measure-

ments are biased by some meters (see Fig. 2). Therefore, ICESat points have to be applied in a different way to avoid an

artificial raise or even deformation of the resulting DEM upwards to the ground control points. For Greenland, the calibration150

of the RawDEMs was performed solely with ICESat points measured in the outer coastal rock regions (Wessel et al., 2016),

in the inner ice sheet tie points link the data takes to each other. In contrast, Antarctica’s coast is mostly covered by ice and

therefore, the ICESat and radar elevations do not represent the same elevation because they are biased by penetration bias. For

Antarctica, we developed a new innovative approach relying on areas with homogeneous backscattering characteristics and

therewith predominantly homogeneous penetration bias (HPB), see Fig. 2. Figure 3 describes the workflow for this new DEM155

adjustment of InSAR data takes over glaciated terrain.

In a first step, the HPB areas must be identified in the inner Antarctic continent with help of the Radarsat-1 amplitude

mosaic (Jezek, 2002). TanDEM data takes over a homogeneous amplitude area located probably in the dry snow zone were

grouped into a so-called adjustment block, i.e. into a consolidation of several data takes over one region. Then, the data takes of

this potential homogeneous penetration block L were adjusted by a nominal least-squares adjustment towards the GCPs with160

the standard observation equation for TanDEM-X heights at GCP points (Gruber et al., 2012) that are aiming at zero height

differences given by the equation

[Hi,J + x̂J ]−Hi,GCP + v̂i = 0, (1)
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Figure 2. Schematic characterization of the snow zone dependent surface penetration of X-Band SAR into the ice sheet. bHP denotes a

homogeneous penetration bias for homogeneous snow zones.

where Hi,J is the observed height Hi of data take J , x̂J is the adjusted unknown correction parameter for data take J , and

v̂i are the summarized residuals. Due to the difficult conditions on ice sheets for Antarctica only offsets a were determined165

(x̂= â). After this, the mean height difference between TanDEM-X and ICESat elevations was calculated for all data takes of

the whole potential homogeneous penetration block. Though, having a mean of several meters, the standard deviation of the

height differences (STDdH ) should be low for these blocks and can serve as measure for a homogeneous InSAR penetration.

The extent of the input scenes was iteratively modified yielding standard deviations below 1 m. Finally, we identified 11

homogeneous penetration bias blocks (Fig. 4 in red). For the HPA blocks the mean penetration bias and standard deviations170

vary from -1.68 m to -5.66 m and 0.92 to 1.20 m respectively. They are located in the inner Antarctic and well distributed over

the continent to serve as ground control for the adjacent blocks.

In a nominal least-squares adjustment the estimated offsets would be applied and the DEM data takes would be lifted

towards the ICESat GCPs. In order to avoid uplifting effects, for each HPB block L the mean penetration bias bHP,L based on

the difference between TanDEM-X and ICESat elevations175

bHP,L = 1/n
n∑

i=0

Hi,J−HGCP
i , (2)

is calculated as a constant bias for the entire block. The application of bHP,L to the individual data takes, sets the height level

of the adjusted heights back to a mean InSAR height below the surface

Ĥ
bHP,L

i,J = [Hi,J + x̂] + bHP,L. (3)

Note that bHP,L is negative.180
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Figure 3. Workflow for DEM adjustment of TanDEM-X DEM data takes in Antarctica.

Starting from these ground control blocks, all other DEM acquisitions were adjusted relying solely on tie points and on

already adjusted heights from neighboring blocks that were used as ground control point heights using Eq. 1. Further on, the

observation equation for tie points also sets the height difference of two heights HTP
J of data take J and HTP

K of data take K

to zero

[
HTP
i,J + x̂J

]
−
[
HTP
i,K + x̂K

]
+ v̂i = 0. (4)185

The DEM calibration process of the 50 blocks without external GCPs (Fig. 4 in blue) started in East Antarctica and proceeded in

two directions, clock-wise and counter-clockwise, re-unified in the West Antarctica. In summary, the DEM calibration strategy

for Antarctica can be subdivided into two parts:

– First, all homogeneous penetration bias blocks are adjusted by maintaining the mean penetration with respect to ICESat.

– Second, all other DEM acquisitions are adjusted relying solely on tie points and on already adjusted heights from other190

blocks.
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Figure 4. DEM Calibration blocks for Antarctica. The 11 red blocks were calibrated first towards ICESat and then the mean SAR penetration

bias was substracted. Bold numbers: mean penetration bias per homogeneous penetration block. Italics: standard deviation of TanDEM-X to

ICESat elevations. The red blocks were used as ground control areas for the remaining blocks.

3.2 DEM Mosaicking concept

The aim of the DEM Mosaicking is the fusion of individual DEM scenes into a complete and homogeneous elevation model.

Basically, all acquired data were considered in the TanDEM-X DEM product generation process to reduce the random height

error (HE). The individual pixels were mosaicked according a HE-weighted average:195

hi =

∑K
k=1

1
σ2

HE,k
hk

∑K
k=1

1
σ2

HE,k

(5)

For each input elevation hk, the corresponding weight is derived from its height error, a standard deviation estimate σHE,k

obtained from the interferometric coherence. The estimated calibration correction parameters for each acquisition were applied

in advance to each single input DEM scene. In case of larger height discrepancies induced for example by phase unwrapping

errors, the TanDEM-X mosaicking approach performs a grouping of all input height measurements into several height intervals200

(Gruber et al., 2016). This allows for the identification of the most reliable height interval based on InSAR specific parameters

to be used for mosaicking.

Nevertheless, some continuous changes near the coast could be observed even though the acquisition time span was relatively

short. Melting, floating ice sheets and glacier advance that caused height disparities between the input data and were some of
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Figure 5. DEM mosaicking iterations at Filchner ice shelf. a) first mosaicking with all acquisitions from mid 2013 and mid 2014, b) second

mosaicking with 2014 acquisitions only, and c) third mosaicking with 2014 ascending acquisitions only.

the main challenges for the mosaicking. Thus, the quality assessment of the mosaicking results had to be conducted with205

regard to these conflicting measurements, with the consequence that contradicting measurements were taken out. In a first step

of this iterative quality control process, all acquisitions were mosaicked in the same way as for the standard TanDEM-X DEM

generation. Then, in a follow-on step conflicting DEM scenes were identified and removed for a second mosaicking run. This

identification and mosaicking step had to be repeated one to three times. Fig. 5 illustrates such a first all-in mosaicking result

at the Filchner ice shelf and its iterative improvement by omitting some contradicting scenes. The initial mosaicking resulted210

in multiple mappings of the ice shelf front and the crevasses caused by the ice drift at different acquisition times (Fig. 5a).

In the first improvement step the acquisitions of mid-2013 were omitted to reduce the effects of ice drifts between 2013 and

2014 (Fig. 5b). In a second iteration, additionally all scenes from the crossing orbits (in this case with a descending orbit look

direction from mid-2014) were taken out, eliminating edge effects and providing a smoother DEM (Fig. 5c).
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4 DEM Editing215

The global TanDEM-X DEM is an unedited DEM created from SAR interferometry. This implies, among other effects, that

open water surfaces show noisy relief due to low coherence and backscatter. In order to enhance the usability for further

applications such as ortho-rectification, ice velocity or mass balance estimation a filling and editing of the TanDEM-X DEM

was conducted with special focus on the coasts. These improvements are made under the TanDEM-X PolarDEM framework

for the provision of derivatives of the global TanDEM-X DEM for Polar Regions. The derivatives currently include a filled and220

edited version of the TanDEM-X DEM for Antarctica as described in this section. It will be supplemented in the future by the

TanDEM-X PolarDEM for the Arctic, especially over Greenland, with single year coverages and penetration bias corrected

DEMs.

4.1 DEM gap filling

Although the acquisition strategy planned at least two complete acquisitions, several factors contributed towards insufficient225

RawDEM quality or missing acquisitions (e.g. inappropriate height of ambiguity for dual-baseline phase unwrapping, loss of

data during downlink, a more detailed list is given in Rizzoli et al. (2017)). For Antarctica, this in turn yielded 16 small data

gaps within the TanDEM-X DEM with a total size of 13,200 km2 affecting 52 geocells as displayed in Fig. 6. Additional

Figure 6. TanDEM-X DEM geocells after DEM gap filling with new acquisitions: Geocells with gaps that could be filled (in green). Geocells

with remaining smaller gaps after DEM gap filling (in blue).
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acquisitions were subsequently scheduled for these gaps as DEM geocells containing gaps were identified during the quality

assurance process within the Ground Segment. For Antarctica these acquisitions were performed from mid-2016 to mid-2017.230

A major improvement in coverage could be achieved by incorporating 20 new acquisitions for Antarctica (see geocells with

improved coverage in Fig. 6). All new DEM scenes were calibrated onto the existing DEM scenes and all related geocells

were re-mosaicked including all previous and new DEM scenes. The resulting filled TanDEM-X DEM built the basis for

later editing. Finally, a coverage completeness of 99,991 per cent of the total Antarctic land mass could be achieved. Note

that remaining smaller gaps with a total size of 1,200 km2 are located over islands, while the rest of mainland Antarctica is235

completely covered by TanDEM-X elevation data.

4.2 Semi-automatic coastline delineation

In order to demarcate the Antarctic Ocean, an outline of Antarctica was derived based on the 0.4 arcsecond (approximately

12 m) TanDEM-X elevation (DEM) and amplitude (AMP) layers. This outline represents the separating line between open

sea and ice shelf or land areas rather than the actual divide between land and water. For the sake of convenience the term240

‘land’ comprises the ice shelf as well as land areas in the following. The TanDEM-X derived outline therefore distinguishes

between open sea and land and is called "TanDEM-X coastline". During the DEM editing, homogeneous geoid undulations

were assigned to the open sea areas while identified land areas were further edited as described in Sect. 4.3.

Figure 7 illustrates the workflow for the tile based coastline delineation. The input data includes the 0.4 arcsecond TanDEM-

X elevation (DEM) and amplitude (AMP) layers of the TanDEM-X DEM product (Wessel, 2018). Additionally, the coastline245

from the Scientific Committee on Antarctic Research (SCAR) provided via the Antarctic Digital Database (ADD) is utilized

as a proxy for the coastline (Scientific Committee on Antarctic Research, 2019). For integration into the workflow the SCAR

coastline was rasterized in 0.4 arcsecond. In the following, this rasterized proxy is referred to as SCAR water mask. It is adapted

where necessary by adding user defined sea and ice shelf or land areas, respectively. Note that shelf ice or land areas will only

survive where corresponding seeds exist within the water mask. Moreover, a set of variable configuration parameters can be250

set for each tile, e.g. AMP and DEM thresholds. Therefore, the approach is referred to as semi-automatic since tile specific

conditions may require individual adjustments.

In a first processing step, a seed land mask is derived from the AMP (Fig. 8a) and DEM (Fig. 8b) layer using default or user

specific thresholds. For the amplitude layer land areas are assumed to have values above a default threshold of, for example

100 DN. The threshold for the elevation layer is based on the mean geoid height plus a default threshold of, for example 10 m,255

i. e. land areas are assumed to be higher than the mean sea level plus a defined margin. For the seed land mask both thresholds

(AMP and DEM) have to be fulfilled (Fig. 8c). In the second processing step, the rasterized SCAR coastline is taken as starting

line and is gradually adjusted to the extent of the TanDEM-X seed land mask using dilation and erosion operations (Fig. 8c). In

other words, the SCAR coastline is extended towards the open sea while TanDEM-X indicates land and extended towards land

while TanDEM-X indicates water. This approach also eliminates false positive errors in the TanDEM-X seed land mask (e.g.260

presumed islands which are actually icebergs) as well as false negative errors (e.g. presumed water areas within land which are

indicated due to low amplitude values on land ice). Afterwards, filter operations were applied to smooth the resulting coastline
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Figure 7. Workflow for (semi-)automatic TanDEM-X coastline delineation.

and fill remaining inland holes in the land mask. Neighboring tiles may show misalignment in their coastlines due to varying

configuration parameters and tile based processing. Therefore, an automatic correction is applied to match detected coastlines

of adjacent tiles. The resulting outline (Fig. 8d) is utilized during the following editing process in order to replace open water265

areas by geoid undulations. The length of the derived TanDEM-X coastline of Antarctica is 62,971 km. It should be noticed

that the generated outline reflects the conditions as observed by the TanDEM-X mission mainly in the years 2013 and 2014.

4.3 Semi-automatic DEM Editing

All 0.4 arcsecond TanDEM-X DEM tiles of Antarctica run through the general editing workflow developed for TanDEM-

X DEMs which is described in Huber et al. (2015). Focus is on edge-preserving smoothing as well as the void and outlier270

interpolation, especially for areas with strong relief located mainly in outer Antarctica.

– Edge-preserving smoothing: An edge-preserving smoothing was applied to the whole dataset. On the one hand, this

provides a smoother dataset by reducing local noise. On the other hand, linear structures like ridges and peaks are

preserved as the smoothing does not weight pixels on different sides of these linear DEM features.
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Figure 8. TanDEM-X semi-automatic coastline delineation - Example of Mackenzie Bay, Amery ice shelf, a) + b) input: DEM and amplitude

of TanDEM-X DEM, c) SCAR coastline superimposed in red, and d) TanDEM-X coastline derived from DEM and amplitude in white,

superimposed on tailored and geoid filled DEM.

– Outlier and void interpolation: Due to the processing characteristics of radar data, single outlier pixels may be present275

in the elevation data. Although multiple radar acquisitions are fused during the TanDEM-X DEM generation (Gruber

et al., 2016), an outlier detection and local interpolation is implemented. The outlier pixels are defined based on local

statistics and interpolated with the same approach as for the smoothing. However, the center pixel, which is supposed to

be unreliable, receives zero weight and is therefore neglected.

Also, void pixels caused by low coherence may be present. They are interpolated from surrounding elevations by a280

variance-weighted averaging taking into account the variance values provided within the height error map as well as a

variogram model describing the degree of spatial dependence of the neighboring pixels.

– Integration of geoid undulations for the ocean mask: To provide heights for the ocean, the geoid undulation N is chosen.

The geoid undulation represents the deviation of the geoidal height hMSL from the ellipsoidal height hell

N = hell−hMSL. (6)285

This ensures that when ellipsoid heights are converted to mean sea level, the ocean height values in geoid heights

correspond to zero mean sea level. The geoid undulations are extracted from the commonly used Earth Gravitational

Model 2008 (EGM2008 Development Team, 2012). In order to support a smooth transition between geoid and TanDEM-
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X heights a buffer zone of approximately 200 m is defined starting from the coastline towards the open sea. Within this

buffer zone the geoid undulations and TanDEM-X heights are combined by distance weighted averaging.290

– Reduction and resampling to 90 m: The TanDEM-X PolarDEM of Antarctica was first reduced to 1 arcsecond pixel

spacing by an unweighted mean of the underlying 0.4 arcsecond pixels. For more convenient data handling the DEM

in geographic coordinates subdivided into 2,621 tiles south of 60°S was transformed into the more suitable Cartesian

coordinates in the Antarctic Polar Stereographic projection (EPSG:3031) with a pixel spacing of 90 m (Fig. 9).

Figure 9. Gap-filled and edited TanDEM-X PolarDEM 90m of Antarctica in color-coded elevations.

5 Results and discussion295

The evaluation and error characterization of the vertical accuracy of the TanDEM-X PolarDEM of Antartica is based on the

comparison with ICESat, IceBridge and other DEM data. The results are detailed in the following.

5.1 Quality characterization with ICESat

The resulting accuracy numbers in comparison with ICESat are given in Table 1. As the height differences are defined as

TanDEM-X height minus ICESat height, negative height differences, like the mean of -3.22 m, mean that the InSAR heights300

are below the laser-based ICESat heights. This can mainly be explained by the SAR signal penetration into ice in the order

of a few meters. The deepest penetration bias into the glaciated surface can be found at the highest elevations in the central
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Figure 10. TanDEM-X PolarDEM 90m amplitude mosaic of Antarctica.

east Antarctic ice sheet (AIS) (Fig. 11). Here, the temperatures are coldest (Macelloni et al., 2019; Scambos et al., 2018) and

the SAR signal penetrates the most in dry, cold firn (Ulaby et al., 1986), whereas the coastal areas show lower penetration

which clearly corresponds to the brighter reflecting perculation areas in the amplitude mosaic (Fig. 10). This variation of the305

SAR penetration over whole AIS raises the absolute linear error (LE90) to 6.25 m that is calculated by sorting the absolute

differences thresholded by 90% of the values. A LE90 of 6.25 m is still below the mission requirement of 10 m LE90 for

TanDEM-X DEM, though, the absolute height accuracy of all geocells world-wide without Antarctica yields in an impressive

LE90 value of around 3 m (Rizzoli et al., 2017).

To analyze these variations the absolute height statistic of the TanDEM-X DEM is subdivided into three different land-cover310

classes: blue ice areas, snow/firn and ice-free rocks (Table 1). Looking at the histograms of the height differences (Fig. 12) the

most symmetric distribution around zero is given for the blue ice class. Here, we have the lowest absolute median with -0.25 m.

In contrast, the class snow and ice shows a slightly uneven distribution with a negative median of -3.38 m due to different

penetration biases on different snow facies. Looking at the class ice-free rocks there seems to exist two maxima, one around

-1.5 m and one around 2.5 m. However, the differences of the class ice-free rocks should rather be distributed around zero.315

The points contributing to this class lie mainly in the Transantarctic Mountains and at the Antarctic peninsula. The ICESat

differences in Fig. 11 show positive height differences especially the northern part of the Peninsula, so these points contribute

to the peak around 2.5 m in Fig. 12c).
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Table 1. Accuracy numbers for height differences TanDEM-X minus ICESat and for the individual classes blue ice areas, snow/firn and

ice-free rocks according to LC2000.

Accuracy whole area BIA snow/firn ice-free

measure (m) (m) (m) rocks

(m)

Mean -3.22 -0.32 -3.28 -0.73

STD 2.56 2.46 2.51 2.77

RMSE 4.11 2.48 4.13 2.87

LE90 6.25 3.74 6.26 4.70

Median -3.33 -0.25 -3.38 -0.77

NMAD 2.50 2.02 2.46 3.15

#points 2,150,776 35,804 2,102,052 6,428

Figure 11. Height differences ICESat GLA14 elevations minus TanDEM-X DEM over all of Antarctica. Panel on the left: a detailed view

on the quadrant of the Antarctic Peninsula with its corresponding histogramm of height differences.

Also in the western AIS, another effect is prominent in a closer analysis of the the height differences to ICESat in Fig. 11: in

the area around West 90° the height differences increase from negative values to zero meters. Also the differences of the BIA320

(Fig. 13) increase in this area in a way that the TanDEM-X elevations are even some meters above ICESat elevations, which

is quite unrealistic for a larger area. These points suggest that the DEM calibration is not perfect in Western Antarctica and a

raise of the DEM by some few meters occured.
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Another interesting feature in the differences to ICESat (Fig. 11) can be found in central Antarctica. Here, lower and stronger

penetration biases alternate in a ray-structure centered at the Pole. It should be noted that the latitudes from -88° to -90° over325

Antarctica have no ICESat points as the ICESat system did not cover this region. The stronger penetration biases are related

to darker areas in the amplitude mosaic and lower penetration biases to brigthter amplitude areas (Fig. 10). Possibly wind

dynamics, form together with the underlying topography ice with special characteristics (personal communication with Andrew

Shepherd, 3 May 2019).

Generally, these height differences between ICESat and TanDEM-X confirm that the chosen DEM calibration strategy was330

justified to maintain the different penetration effects and not to raise the DEM towards ICESat elevations to prevent a deforming

of the DEM.

Figure 12. Histograms of height differences for TanDEM-X DEM minus a) all ICESat elevations, b) ICESat elevations on blue ice areas, c)

ICESat elevations on ice-free rocks, and d) ICESat on snow-firn. Assigned according to the land cover map of Hui et al. (2017a).

5.2 Validation with ICESat on blue ice areas (BIAs)

As shown in Sect. 5.1, BIAs are ice areas that the X-Band SAR signals do not penetrate. Therefore, a validation of the absolute

vertical accuracy of the final TanDEM-X PolarDEM can be achieved through an evaluation with ICESat over BIAs. The results335

obtained in the previous section rely on a BIAs mask from the AntarcticLC2000. For a deeper understanding, we conducted an

analysis over a smaller region of the Amery ice shelf with a more accurate reference BIA map from the Australian Antarctic

Data Centre (AADC) and an own supervised classification optimized for this region. In Fig. 14 all classification results for blue
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Figure 13. Left: Distribution of TanDEM-X minus ICESat differences on LC2000-BIAs. Right: study area for BIA classification, Southern

Prince Charles Mountains/Amery ice shelf.

ice for this subset are displayed, overlaid with TanDEM-X minus ICESat height differences. Over the BIAs, the differences

are around zero (green ICESat points) compared to a SAR signal penetration of several meters outside the BIAs. A visual340

inspection of the blue ice classifications in the Southern Prince Charles Mountains test area near Amery ice shelf show that

the AntarcticaLC2000 classification (Fig. 14d) identified much larger BIAs, whereas the AADC map (Fig. 14c) seems to

underestimate these. The purpose of our classification (Fig. 14b) is a more precise delimitation of visible BIAs based on

Landsat-8 imagery. It includes additional classes such as highly textured ice or dark snow/ice for a further differentiation.

For all three BIA classifications in the test area, we calculated height accuracy measures (Table 2). It could be shown that for345

all three classifications within this small subset the BIAs classes show the lowest mean values. The height accuracy measures

in Table 2 confirm the deepest mean penetration for BIAs for AntarcticaLC2000 which is in line with the visual inspection of

the data.

For our proposed classification, the mean difference between TanDEM-X and ICESat is only -0.4 m on BIAs, compared to

-2.74 m on snow. On dark snowy/icy and textured areas, the mean difference is still more than twice that of BIAs (-0.84 m),350

with highly textured ice showing the greatest difference within this group (-1.43 m). Areas with a high reflectivity in the short-

wave spectrum are generally adjacent to BIAs and show just a small difference between TanDEM-X and ICESat (-0.47 m).

The result for the AntarcticaLC2000 data set for all of Antarctica (Table 1) shows that despite the presumed overestimation

of BIAs, the height difference between TanDEM-X and ICESat is significantly smaller (-0.32 m) than for snow/firn (-3.28 m)

or ice-freerocks (-0.73 m). Though the AntarcticaLC2000 data set performed worse in the local Amery study test site (with a355

mean of -1.01 m compared to more fine-tuned classifications with mean values of -0.29 m and -0.40 m respectively), it is the

only one with a complete coverage and the results for all of Antarctica show an impressive mean of -0.32 m offset and a mean

standard deviation of 2.46 m (Table 1). These findings are inline with first results from literature (Zhao and Floricioiu, 2017)
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Figure 14. a) Subset of Landsat image used for classification, b) proposed BIA classification, c) AADC BIAs, and d) LC2000 BIAs. b)-d)

are overlaid with the height differences TanDEM-X minus ICESat.

Table 2. Accuracy numbers for height differences TanDEM-X minus ICESat for different classifications of Southern Prince Charles Moun-

tains (Fig. 13).

Classification Class Mean STD #points

(m) (m)

AntarcticaLC2000 BIAs -1.01 1.57 43,733

snow/firn -3.00 1.69 121,435

ice/freerocks 1.58 0.95 447

AADC BIAs -0.29 1.44 7,512

non-BIAs -2.57 1.85 158,212

Proposed classif. BIAs -0.40 1.47 7,299

rocks 1.93 1.32 83

dark snow (SWIR) -0.47 2.01 7,279

dark snow/ice -0.84 1.61 1,899

textured ice -1.43 1.32 5,457

snow -2.74 1.77 143,069

that states no significant X-Band penetration into BIAs. From these results, it can be concluded that BIA is very well suited for

the absolute height calibration and validation of InSAR DEMs.360
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5.3 Comparison to IceBridge

Figure 15 shows the distribution of height differences between TanDEM-X DEM and the IceBridge elevation measurements

acquired in October 2014 for two test sites which are located around the South Pole (Fig. 15a) and at the Recovery Glacier in

the northwest of the AIS (Fig. 15b).

Table 3. Accuracy numbers for height differences TanDEM-X minus Icebridge for October 2014 campaign.

Region Mean Median STD RMSE MAD NMAD LE90 #points

(m) (m) (m) (m) (m) (m) (m)

South Pole -4.04 -4.16 1.70 4.38 0.94 1.40 6.02 160,949

Recovery glacier -2.06 -1.79 2.46 3.20 1.08 1.60 4.69 164,439

The corresponding statistical metrics are given in Table 3, and in addition, Fig. 16 shows the spatial distribution of the365

height differences for the two test sites. The differences between TanDEM-X DEM and IceBridge elevation measurements at

the South Pole shown in Fig. 15a are distributed around a mean value of -4.04 m with a standard deviation of 1.70 m. The

NMAD, which represents a robust estimate for the standard deviation for non-normally distributed height differences (Höhle

and Höhle, 2009), is quite small with a value of 1.40 m, while the LE90 is 6.02 m (Table 3). In contrast, Fig. 15b shows

the height difference histogram at Recovery glacier with a lower mean value with -2.06 m between TanDEM-X DEM and370

IceBridge elevation measurements and a higher standard deviation (2.46 m), but with similar NMAD of 1.60 m. The larger

deviation between TanDEM-X and IceBridge elevation at the South Pole is caused by deeper penetration of the SAR signals,

which is related to lower backscatter intensity as shown in Fig. 16 (upper right). The higher variance in height differences

at Recovery Glacier indicates a higher variability of signal penetration, which is also reflected in the higher variability of

backscatter intensity (Fig. 16, lower right). The large number of height differences around zero at Recovery Glacier is due to375

areas with negligible signal penetration caused by surface scattering, which in turn leads to higher backscatter intensity, as can

be seen in Fig. 16.

Figure 15. Histogramm of TanDEM-X DEM minus IceBridge ATM differences for October 2014 campaigns a) South Pole and b) Recovery

Glacier.
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Figure 16. Height differences TanDEM-X DEM minus IceBridge from the October 2014 campaign over the South Pole and the Recovery

Glacier displayed over the amplitude mosaic.

In general, best agreement between TanDEM-X DEM and IceBridge elevation measurements can be observed over regions

with high backscatter intensity associated with low signal penetration. In contrast, the TanDEM-X DEM can deviate from the

IceBridge elevation measurements by up to 10 meters and more in areas with deep signal penetration, which can be identified380

by low backscatter intensity.

5.4 Comparison to Cryosat-2 DEM and REMA

The height differences of the TanDEM-X PolarDEM 90m to the CryoSAT DEM of Slater et al. (2018) and the REMA DEM

(Howat et al., 2018) were calculated and the accuracy measures are given in Table 4. For TanDEM-X minus CryoSAT we

observe a high negative mean value of -11.59 m with high standard deviation (70.58 m) and RMSE (71.53 m) values. These385

values are in strong contrast to the more robust median (-4.52 m) and NMAD (3.49 m) and suggest a large amount of high

outliers. These are particularly located in mountainous areas where CryoSAT systematically underestimates the elevation.

Therefore, strict outlier detection was performed by clipping the height differences above mean +/- 2 times standard deviation.

This improves the measures and results in a mean value of -5.26 m with a standard deviation of 15.21 m.

Figure 17 shows the color-coded height differences where the clipped outlier values are marked in white. These areas can390

be found particularly in mountains where TanDEM-X InSAR and CryoSAT-2 altimeter measurements diverge by up to several

hundred meters. In contrast, the differences on the ice sheet show a high agreement, apart from the SAR signal penetration

of TanDEM-X, usually between -4 to -10 m in the interior of Antarctica. These penetration patterns correspond to the ones
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observed by ICESat (Fig. 11), where the highest penetration-related differences are also in central Antarctica and between 0°

and 30° East. A sector in West Antarctica (between 90° and 150° West) also shows higher differences between TanDEM-X395

and CryoSAT of up to -10 m. However, the shape of this higher difference zone seems to be related to the processing windows

of CryoSAT. The interior of the CryoSAT DEM was processed by radar altimetry by low-resolution mode (LRM), a pulse-

limited altimetry with a 2.25 km2 footprint. The ice sheet margins were processed by the higher-resolution SARIn mode, where

CryoSat operates as a SAR altimeter. These areas near the coasts generally coincidence well with the TanDEM-X heights. On

the one hand, the TanDEM-X DEM elevations in this area are less affected by a penetration bias. On the other hand, CryoSAT400

seems to also have a penetration bias: the mode mask boundary between CryoSat-2 LRM and SARIn processing modes is

obviously visible (Figure 17).

Table 4. Accuracy numbers for height differences TanDEM-X minus Cryosat-2 DEM (Slater et al., 2018) and REMA (Howat et al., 2019).

DEM difference Mean Median STD RMSE MAD NMAD LE90

(m) (m) (m) (m) (m) (m) (m)

TDM-CS2 -11.59 -4.52 70.58 71.53 2.53 3.49 14.85

TDM-CS2 w/o outlier -5.26 -4.45 15.21 14.10 2.28 3.38 12.29

TDM-REMA -3.70 -4.00 10.60 11.23 1.70 2.52 6.96

Figure 17. Height difference between TanDEM-X DEM minus CryoSat-2 DEM (rocks: mean +/-2*STD is masked out in white).
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The accuracy measures TanDEM-X minus REMA correspond more consistently (Table 4) and are not that outlier prone with

similar mean (-3.70 m) and median (4.00 m) values as well as a lower standard deviation (10.60 m) and NMAD (2.52 m). The

color-coded height differences in Fig. 18 show an overall good agreement, especially near the coast, as the InSAR scattering405

center in percolated areas lies near the surface. The InSAR signal penetration of TanDEM-X into the ice sheet in the inner

Antarctic part is clearly visible. The same elevated area in west Antarctica could be observed similarly to ICESat where

presumably a DEM calibration error for TanDEM-X occurred as we observed disparities between two DEM calibration blocks

of up to 4m in this area. Note that this comparison refers to 1 km versions of TanDEM-X DEM and REMA. Regarding the

coverage, there are slight differences since REMA does not cover the Pole and the islands north of Ross ice shelf. The most410

prominent feature regarding the coverage is that REMA has some local gaps and missing stripes most obvious near the Pole.

These areas are marked in white in Fig. 18. In contrast to REMA, the TanDEM-X PolarDEM 90m has an almost complete

coverage.

However, some erroneous TanDEM-X DEM scenes can be detected. These are rectangular areas with the size of a DEM scene

(approx. 30 km x 55 km) that show a constant height offset in the order of a multiple of half the height of ambiguity (such as415

the red spot in the western AIS in Fig. 18). These so-called PI-jump errors (Rizzoli et al., 2017; Dong et al., 2020) could not be

detected fully like for almost the rest of the globe due to the lack of adequate reference data. On the other hand, especially in

east Antarctica, some rectangular offset area divergences are visible, e.g. blue quadratic areas near the Pole, that might suggest

a processing error in REMA as TanDEM-X was processed in geographic coordinates.

Figure 18. Height difference between TanDEM-X DEM minus REMA.
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Some consistent areas clearly stand out, like the Pine and Thwaites glaciers, where we have a quite good correspondence in420

height for this dynamic area. On the one hand, this is due to the close acquisition time of both data and on the other hand, the

flowing part of the ice shelf corresponds well where no penetration is given. In summary, due to the high vertical resolution

and coverage, so far undetected errors in TanDEM-X PolarDEM could be revealed by REMA. Cryosat-2 DEM and REMA are

both highly accurate and therefore allow an error characterization of the data set.

6 Conclusions and outlook425

The TanDEM-X PolarDEM of Antarctica is a new interferometric DEM data set freely available to scientific users in 90 m

horizontal spacing. It is void-free, only the elevations of a few islands are missing on the Antarctic Peninsula. A new DEM

calibration approach, additional acquisitions and new editing techniques were utilized to shape the global TanDEM-X DEM

into the new TanDEM-X PolarDEM 90m product. In addition, the interferometric DEM was validated with blue ice areas that

seem to be free of penetration effects. The corresponding accuracy measures are close to the absolute accuracy measures found430

by validation with highly accurate GPS tracks on other continents (Wessel et al., 2018). The quality of the data in terms of

absolute vertical accuracy, evaluated by comparing the TanDEM-X DEM to ICESat heights, delivered a brilliant performance

with a median value of -0.32 m and an absolute height accuracy at 90 % confidence level of 3.74 m on blue-ice regions.

Even including rock and snow/firn areas, which are characterized by radar wave penetration phenomena, the overall absolute

vertical accuracy at 90 % confidence level was just 6.25 m. The conducted DEM calibration was designed to preserve the435

SAR signal penetration into the ice sheet. A further refinement of this data set might be possible by correcting the penetration

bias, as shown shown e.g. by Abdullahi et al. (2019) on the base of coherence and amplitude, which would improve the

comparability with other data. An adequate handling of individual height offset scenes like in Dong et al. (2020) and a re-

calibration near the Antarctic Peninsula could lead to a further improvement of this data set. All in all, TanDEM-X PolarDEM

is a framework for the provision of derivatives of the global digital elevation model of the TanDEM-X mission which resolved440

some limitations, including edited DEM products; single year coverages and penetration bias corrected DEMs of Polar Regions

will be supplemented in the future, especially over Greenland. Together with the excellent global absolute accuracy this edited

TanDEM-X PolarDEM 90m product for Antarctica provides a high level of detail. It serves as a new topographic reference

from which the monitoring of the dynamic topographic changes in Antarctica will benefit.

Data availability. The presented TanDEM-X PolarDEM 90m for Antarctica in Polar Stereographic projection is made freely available to scientific users via445

DLR’s Earth Observation Center GeoPortal (https://geoservice.dlr.de/web/maps). The TanDEM-X derived coastline will follow after its release. The data sets

from NASA’s ICESat and IceBridge operations are provided by the National Snow and Ice Data Center (NSIDC), Distributed Active Archive Center, Boulder,

CO, USA at https://nsidc.org (Studinger, 2014, updated 2020) and the coastline of the Antarctic digital database by SCAR (https://www.add.scar.org). REMA

mosaic was provided by the Byrd Polar and Climate Research Center and the U.S. Polar Geospatial Center at https://www.pgc.umn.edu/dta/rema/ (Howat

et al., 2019). The CryoSat-2 DEM was made available via the Centre for Polar Observation and Modelling data portal (http://www.cpom.ucl.ac.uk/csopr/)450

and the Antarctica classifications by Hui et al. (2017b) (AntarcticaLC2000) and from the Australian AntarcticData Centre (AADC) (Bender and Smith, 2013,

updated 2017).
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Appendix A: Product description

The global DEM delivered by TanDEM-X has been defined in the TanDEM-X DEM product specification document (Wessel,

2018). In contrast to this, the gap-filled and edited TanDEM-X PolarDEM 90m of Antarctica introduced in this paper is460

described by the following parameters (Huber, 2020):

– Projection: WGS 84 / Antarctic Polar Stereographic

– EPSG: 3031

– Vertical datum: WGS-84G1150 (ITRF2008 and ITRF2010)

– Height reference: ellipsoidal heights465

– Elevation unit: meters

– Grid spacing: 90 m

– Coverage: all land masses below 60° South in 4 tiles

– Acquisition dates: mainly April 2013 to Oct. 2014 (for gap filling July 2016 to September 2017)

– Data format: 32 bit signed float470

– No data value: -32767.0

– License: TanDEM-X PolarDEM 90m for Antarctica is licensed for scientific use
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