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Abstract. We present a method to combine CryoSat-2 (CS2) radar altimeter and Sentinel-1 synthetic aperture radar (SAR)

data to obtain sea ice thickness (SIT) estimates for the Barents and Kara Seas. From the viewpoint of tactical navigation

along-track altimeter SIT estimates are sparse, and the goal of our study is to develop a method to interpolate altimeter SIT

measurements between CS2 ground tracks. The SIT estimation method developed here is based on the interpolation of CS2

SIT utilizing SAR segmentation and segmentwise SAR texture features. The SIT results are compared to SIT data derived from5

the AARI ice charts, to ORAS5, PIOMAS and TOPAZ4 ocean-sea ice data assimilation system reanalyses, to combined CS2

and Soil Moisture and Ocean Salinity (SMOS) radiometer weekly SIT (CS2SMOS SIT) chart and to daily MODIS (Moderate

Resolution Imaging Spectroradiometer) SIT chart. We studied two approaches: CS2 directly interpolated to SAR segments, and

CS2 SIT interpolated to SAR segments with mapping the CS2 SIT distributions to correspond SIT distribution of the PIOMAS

ice model. Our approaches yield larger spatial coverage and better accuracy compared to SIT estimates based on either CS210

or SAR data alone. The agreement with modeled SIT is better than with the CS2SMOS SIT. The average differences when

compared to ice models and the AARI ice chart SIT were typically tens of centimeters and there was a significant positive bias

when compared to the AARI SIT (on average 27 cm) and a similar bias (24 cm) when compared to the CS2SMOS SIT. Our

results are directly applicable to the future CRISTAL mission and Copernicus programme SAR missions.

1 Introduction15

The goal of this study is to use Sentinel-1 (S-1) C-band SAR data to interpolate CryoSat-2 (CS2) sea ice thickness (SIT)

estimates to spatially cover the whole Barents and Kara Sea (BKS) area (see Fig. 1). We have chosen this study area because

we have collected S-1 data over BKS since 2015 and also generated daily S-1 mosaics covering the area. Using combination

of the CS2 and S-1 data it is possible to estimate SIT with much finer resolution and much larger spatial coverage than using

only the CS2, or an other altimeter data. The interpolated CS2 SIT is assigned for classified SAR segments, i.e. locally uniform20

sea ice areas in the SAR imagery. In this way we are able to provide accurate boundaries of different ice areas and provide a

typical SIT for each of these areas based on the CS2 SIT data conducted within the areas themselves or nearby similar areas.

SIT is one of the essential climate variables. It is a key parameter, together with sea ice concentration (SIC), for estimating

total ice volume over any given area of interest. Accurate estimates of SIT are important for ice navigation, off-shore engi-
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neering and construction IMarEST (2015), climate studies as well as sea ice and weather forecasting Jung et al. (2014). The25

ocean–atmosphere heat, mass, momentum, and gas exchanges are controlled by the SIT distribution in the polar oceans. Thin

ice with a thickness of less than half a meter produces strong heat and salt fluxes and affects the weather and deep water circu-

lation in the polar oceans McPhee (2008). Thick ice insulates the relatively warm ocean from the cold atmosphere maintaining

the polar conditions, and is mainly responsible for the proportion of ice that persists through the summer melt period, which is

particularly important for the summer radiation budget.30

Estimation of SIT with SAR data has been studied before. In the Baltic Sea, SIT estimation of deformed ice under dry snow

conditions is possible through a statistical relationship between the ice freeboard and the radar backscatter (Similä et al., 2010).

The standard deviation of the average large-scale surface roughness increases with increasing average surface roughness, and,

as the average surface roughness increases, the backscatter also increases. In Similä et al. (2010) an exponential empirical

model was derived for estimating average surface roughness from the backscattering coefficient (σ0) and dominant thickness35

of level ice. A good correlation between the L- and C-band co-polarization ratio and SIT of undeformed ice in the Sea of

Okhotsk have been found Nakamura et al. (2006). The co-polarization ratio has little sensitivity to ice surface roughness and

is related to variations in salinity, i.e. ice surface dielectric constant, that can be caused by changes in SIT (Wakabayashi et al.,

2004). Toyota et al. (2011) found good correlation between ALOS/PALSAR L-band HH-polarization σ0 and SIT (R = 0.86)

and surface roughness (R = 0.70) in the seasonal ice zone (SIZ), and derived linear relation between σ0 and SIT (SIT from 0.240

to 0.6 m). They suggested that satellite L-band σ0 data allows to estimate SIT distribution in the SIZ, where surface roughness

is closely related with the SIT distribution through deformation processes. Airborne C-band polarimetric SAR (POLSAR) data

together with a theoretical backscattering model have been used to estimate SIT in the 0–10 cm range (Kwok et al., 1995).

Zhang et al. (2016) derived SIT estimation method for undeformed first-year ice under dry snow conditions based on sea ice

thermodynamic model and forward scattering model for C-band compact polarimetric (CP) SAR images. Using simulated CP45

imagery from RADARSAT-2 POLSAR SIT estimation was possible up to 80 cm thickness. SAR data have also been used to

estimate SIT of pancake ice from the way in which the pancake ice changes the dispersion relation of the waves, dampens the

wave amplitude and causes dissipation of the energy of the waves, i.e., it changes the wavelength of ocean waves as they enter

the ice (Wadhams et al. 2018). SIT retrieval methods based only on the SAR data are still experimental, and no operational

solutions are yet available.50

As indicated by these earlier studies SAR, especially C-band SAR (S-1), alone is not capable of estimating accurately

Arctic SIT. Thus, complementary data is required for reasonable Arctic SIT estimation. In this paper we try to overcome this

deficiency by proposing a method to utilize CS2 SIT as complementary data to SAR data to estimate Arctic SIT.

Detection of thin ice and its thickness estimation can be done using satellite thermal infrared (TIR) imagery, e.g., from

Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite based ice surface temperature (Ts) is combined with55

atmospheric forcing data through ice surface heat balance equation for the SIT estimation Yu and Rothrock (2016). Unfortu-

nately, this method is restricted by cloud cover and quality of cloud masking in polar conditions Frey at al. (2008). A daily

MODIS SIT chart combined from swath SIT charts, which mitigates the cloud problem, has been developed in Makynen and
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Karvonen (2017). In addition, daily cloud-cover corrected MODIS SIT composites for polynya monitoring in the Arctic and

Antarctic have been produced utilizing several days of swath data Paul et al. (2015); Preusser et al. (2016).60

Thin ice detection and its SIT estimation in winter conditions are also possible with microwave radiometer data. Thin ice

thickness retrieval algorithms have been developed for low-frequency L-band brightness temperature (TB) data from SMOS

and Soil Moisture Active Passive (SMAP) missions Kaleschke et al. (2012); Tian-Kunze et al. (2014); Huntemann et al.

(2014); Kaleschke et al. (2016); Schmitt and Kaleschke (2018). With the SMOS data SIT can be estimated up to 0.5–1.5

m thick ice Kaleschke et al. (2016). The drawback of the SMOS data is its poor spatial resolution, 35–50 km, which does65

not allow to detect leads and smaller polynyas. For high-frequency radiometer data (36 and 90 GHz), thin ice SIT retrieval

algorithms have also been developed, e.g. Martin et al. (2004); Iwamoto et al. (2014); Nakata et al. (2019). The thin ice SIT

can be typically estimated up to 20 cm, and the SIT data are used for polynya monitoring, e.g. Onshima et al. (2016).

Estimation of ice thickness from radar and laser altimeter data has been studied extensively in recent years. Altimeters

onboard several satellites have provided estimates of sea ice thickness and volume time series and trends for the Arctic and70

Antarctic Oceans for recent decades. Such methods have been applied and evaluated e.g. in Laxon et al. (2003); Giles et al.

(2008); Kwok and Cunningham (2008); Kwok et al. (2009); Armitage et al. (2015); Zygmuntowska et al. (2014); Tilling et

al. (2015, 2018); Xia and Xie (2018); Yi et al. (2018); Xu et al. (2020); Petty et al. (2020). Traditionally satellite altimeters,

including CS2, cannot estimate thickness of thin ice (<0.5 m) with reasonable certainty Wingham et al. (2006). However, the

recently launched ICESat-2 improves thin ice estimation, giving reasonable uncertainties down to SIT of approximately 0.2 m75

Petty et al. (2020).

In this study we use the CS2 radar altimeter SIT data Wingham et al. (2006).Due to the nature of altimeter measurements

and the orbit pattern of the platform, CS2 gives spatially and temporally sparse SIT information in temporal scales from one

day to few weeks. Examples of all available CS2 ice thickness estimates during the period of one day and one week over our

Barents and Kara Seas study area are shown in Figure 1. Especially for tactical navigation these estimates are sparse. Thus, our80

goal is to develop a method to interpolate altimeter SIT estimates between CS2 ground tracks.

SIT estimation algorithms combining CS2 and other sources of information, e.g. SMOS (Soil Moisture and Ocean Salinity)

mission with the MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) instrument exist Ricker et al. (2017).

However, these algorithms still have relatively poor spatial and temporal resolution (25 km, weekly estimates updated daily).

Therefore, algorithms fusing CS2 data with data from instruments with higher spatial and temporal resolution are needed for85

timely high-resolution SIT estimates. Such SIT estimates can then be used e.g. in navigation and data assimilation to high-

resolution ocean-sea ice forecast models.

The structure of this paper is as follows: the study area, time period and weather conditions are described in Section 2,

then the data sets used in the study are described in Section 3, followed by the description of the data preprocessing, and the

proposed SIT estimation method combining CS2 SIT and SAR data in Section 4. The proposed SIT interpolation is based on90

pairwise similarity of segments and their pairwise distance and time difference. The texture similarity is measured by similarity

of several segment-wise SAR texture features. The texture features and the similarity criteria are described in detail in Section

4. The estimation results and their evaluation are presented in Section 5. For evaluation we have used sea ice model data, ice
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chart data and also included comparisons to the SIT charts based on CS2 and the ESA SMOS radiometer data Ricker et al.

(2017), and to the MODS SIT charts Makynen and Karvonen (2017). Finally, discussion and conclusions are provided in95

Section 6.

2 Study Area, Sea Ice and Weather Conditions and Time Period

Our study covers Kara and Barents Seas, see Fig. 2. Seasonal sea ice is found over most of our study area. In the far north,

however, multi-year ice (MYI) is present year-round Johannessen et al. (2007). The average dates for the ice formation over

the area varies from September 10th in the north to mid-November in the southern Kara Sea and south-eastern Barents Sea100

(Pechora Sea), and March-April in the central Barents Sea (west of Novaya Zemlya) Johannessen et al. (2007). Melting season

begins in late April in the marginal ice zone of the Barents Sea. By the end of June the central Barents Sea and the Pechora Sea

are usually ice-free. In August the ice edge reaches Svalbard and Franz Josef Land. In the Kara Sea, melting gradually begins

in May and continues through July and August. Most of the Kara Sea is ice-free between mid-July and mid-August. In Kara

Sea, the ice season lasts for 6–9 months depending on the location and seasonal conditions. We have only used wintertime105

data (January-April, October-December) for two calendar years, 2016 and 2017. Currently, radar altimeter SIT retrieval is only

possible in dry snow winter conditions Kern et al. (2020). During the melt season the radar wave penetration in snow pack is

ambiguous and surface type classification often fails due to melt ponds which give similar radar waveforms as the leads.

Throughout our study we use the coordinate system (CS) based on polar stereographic projection with a center longitude

of 55◦E, reference latitude (latitude of the correct scale) of 70◦N and the WGS84 datum. The upper left (UL) and lower110

right (LR) coordinates, i.e. the polar stereographic CS northing and easting in meters are: UL=(-700000,-1100000) and LR=(-

2550000,1100000). The size of the study area is 2200 km (easting) by 1850 km (northing).

2.1 Weather conditions

Average daily air temperature data (Ta) from four coastal weather stations (Kongsøya, Vize, Im. M.V. Popova, and Varandey)

shown in Fig. 2 are used to evaluate the weather conditions, periods of cold and warm weather, during our study period:115

January-April and October-December in 2016 and 2017. The (Ta) data from the four stations are shown in Fig. 3. We set here

Ta<-5 ◦C to represent dry snow cold conditions, and Ta>0 ◦C to moist/wet snow conditions when the snow pack, if exists,

prevents or significantly attenuates radar returns from sea ice. Between these Ta limits the state of the snow pack is ambiguous

as it depends on Ta history and time of the CS2 and S-1 data acquisition, e.g. early morning vs. late afternoon. The Ta data

will not be used to classify the CS2 and S-1 into different weather condition classes, but to support analysis on the accuracy of120

SIT from the combined CS2 and S-1 data. It is noted that the Ta limits above are only approximations.

During first part of our two year study period, from January to April 2016, our analysis of the (Ta) data from the four weather

stations, suggests that this time period represents typically cold dry snow conditions in our study area. The second part of the

study period, from October 2016 to April 2017, covers one winter sea ice season. Our analysis shows the CS2 and S-1 data

from the beginning of October to roughly mid-November are typically affected by wet or moist snow conditions, depending125
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on the diurnal acquisition time and location in our study area (more probable in the Barents and Pechora Seas). Data acquired

from mid-November 2016 to Apr 2017 mostly represent cold winter conditions. The third, and the last, part of the study period

is from October to December 2017, and represents sea ice freeze-up and early winter conditions. It seems that in the Kara Sea

the time period after first week of November 2017 can be assumed to represent mostly cold winter conditions. In the Barents

and Pechora Seas in November and December there are also periods of cold winter conditions, but sometimes Ta is between130

-5 and 0 ◦C, when there could have been moist snow effects on the radar signatures.

3 Data

In this section we present the data sets used in our study.

3.1 CryoSat-2 data

CS2’s primary payload is the Synthetic Aperture Interferometric Radar Altimeter operating in the Ku-Band (13.6 GHz) which135

allows a much smaller sampling footprint (about 300 m in the satellite along track direction Scagliola (2013)) than traditional

pulse-limited altimeters. Over sea ice, CS2 echoes are assumed to scatter from the interface between the ice surface and

the layer of overlying snow Laxon et al. (2013), thus enabling freeboard, denoted by F here, estimation, and further, SIT

calculation assuming known snow depth and density, and sea ice density (e.g. climatologically derived).

The quantity altimeters measure is surface elevation, from which freeboard can be derived. Assuming hydrostatic equilibrium140

and known sea ice density (ρi), snow density (ρs) and thickness (hs), and water density (ρw) the following equation can be

formed for the SIT (hi) estimation

hi =
ρw

ρw − ρi
F − ρw − ρs

ρw − ρi
hs. (1)

In dry snow conditions,the radar scattering and backscattering penetrate the snow cover and the backscattering comes from

the ice surface, i.e. the ice freeboard is measured by a radar altimeter. In dry snow conditions hi can be estimated from the ice145

freeboard Fi:

hi =
ρw

ρw − ρi
Fi +

ρs
ρw − ρi

hs. (2)

As can be seen from equations above, hs estimate has a large effect on retrieved SIT. In the case of radar altimeters, such

as CS2 used here, hs is also required for wave propagation speed correction in deriving F . A more detailed analysis on the

effect of snow can be found in Kern et al. (2015). In this study, like in many other CS2-based sea ice thickness products,150

climatological snow depth and density based on the Warren climatology Warren et al. (1999) are used.

In this study we have computed SIT with FMI implementation of the python sea-ice radar altimetry toolbox (PySiral,

available in: https://github.com/shendric/pysiral). The primary input has been the European Space Agency’s CS2 Baseline-D

Level-1B product. The processing follows the algorithm of Ricker et al. (2014); Hendricks et al. (2021). For auxiliary data

we have used the DTU15 mean sea surface height product, EUMETSAT OSISAF sea ice concentration and sea ice type, as155
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well as Warren 1999 snow depth and density data with the 50 percent reduction over first-year ice first proposed by Kurtz and

Farrell (2011).

3.2 Sentinel-1 SAR

All the available Copernicus S-1 C-band dual-polarized Extra Wide (EW) swath mode level 1 Ground Range Detected Medium

resolution (GRDM) SAR data with the HH/HV polarization channels over the BKS study area and period (January-April and160

October-December 2016, and January-April and October-December 2017) were used in this study. The S-1 SAR data are

publicly available through the European Space Agency (ESA) Copernicus Science Hub (https://scihub.copernicus.eu/). The

S-1 EW SAR images cover a region of 410 by 400 km in size, with a pixel size of 40 m and a spatial resolution of 95–91 by

90 m (range by azimuth), and have θ0 variation from 19◦ to 47◦.

3.3 Reference data165

In our study we use the Russian Arctic-Antarctic Research Institute (AARI) ice charts, Ocean Reanalysis System 5 (ORAS5),

Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), and TOPAZ4 ice model ocean-sea ice reanalyses SIT

data, CS2SMOS SIT data Ricker et al. (2017) and MODIS daily SIT charts Makynen and Karvonen (2017) as reference data.

They are used to evaluate the performance of our CS2-SAR SIT estimation method. The TOPAZ4 SIT model data are also

used to remap the CryoSat-2 training data set based on cumulative SIT distributions.170

3.3.1 AARI ice charts

Arctic and Antarctic Research Institute (AARI) produces weekly ice charts for many Arctic regions, including the Barents

and Kara Seas AARI (2018); Afanasyeva et al. (2019). These charts are currently widely used for a variety of scientific and

practical tasks. The main input data for the ice chart generation is remote sensing data from various optical, thermal infrared and

microwave satellite sensors, including MODIS, AVHRR (Advanced Very-High-Resolution Radiometer), S-1 SAR, Sentinel-3175

OLCI (Ocean and Land Colour Instrument). The regional ice charts are based on satellite imagery collected over a period of

2-3 days. The more recent information is in priority. In case of absence of up-to-date information, the data for previous day is

used. The ice charts are generated by skilled ice experts using an ArcGIS workstation. The ice analyst defines homogeneous sea

ice zones, polygons, on georeferenced satellite imagery, and assigns various sea ice attributes, e.g. sea ice concentration, to the

polygons. In this process also auxiliary data, e.g. operational monitoring of sea ice drift using satellite data, and Observations180

from hydrometeorological stations of Roshydromet, are utilized. The main purpose of a regional weekly ice chart is to show

the spatial distribution and characteristics of sea ice. The AARI weekly ice charts are in the digital SIGRID-3 vector file format

JCOMM (2014b). The AARI ice charts are available at: http://wdc.aari.ru/datasets/d0004/.

The ice charts convey their information in codes that are explained in JCOMM (2014a). The charts show total concentration

(code CT) and partial concentrations of the first, second, and third thickest ice (codes CA, CB, and CC) along with their185

respective stages of development (SA, SB, and SC) and form of ice (FA, FB, FC) for polygonal areas of variable sizes. The
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concentrations are shown with intervals of either one or two tenths wide. The stage of development is defined as ice thickness

intervals. Following thickness ranges are used: nilas (<10 cm), young ice (10–30 cm), grey ice (10-15 cm), grey-white ice

(15-30 cm), thin first-year ice (FYI) (30–70 cm), medium FYI (70–120 cm), thick FYI (>=120 cm), FYI in general (>=30 cm),

and old ice (>=120 cm). The form of ice carries information on e.g. ice floe size or occurrence of landfast ice. Some polygons190

only have one or two stage of development classes assigned to them (i.e. polygons are more homogeneous).

In the stage of development, i.e. SIT range, estimation fast ice thickness measured at a hydrometeorological station serves

as a reference Afanasyeva et al. (2019). Looking at a satellite image, ice expert matches brightness of drifting ice outside the

shore to brightness of land-fast ice with known thickness. Further, monitoring SIT at a seashore stations allows to estimate the

rate of ice growth in remote areas. Here we interpret the AARI SIT as the thickness of level ice in the area - analogous to the195

thermodynamic grown fast ice.

For validation, polygons from the AARI ice charts were interpolated to an 1 km by 1 km grid covering our study area. Then

for each AARI ice chart polygon a mid-range SIC and mid-range SIT or upper or lower SIT values of the first, second, and

third thickest ice types were assigned. However, for FYI general type (SIT>=30 cm) a SIT value of 95 cm is used (same as for

thick FYI). An average SIT for each chart polygon was calculated as a sum of the SIT values for the three ice types weighted200

with their concentrations. Finally, the gridded charts for the Barents and Kara Seas were combined together, see an example in

Fig. 8(c). This processing of the AARI charts has been used previously by Makynen and Karvonen (2017). The total number

of the AARI weekly charts used in the validation was 37 (time span from 4 Jan until 26 Dec, excluding the summer period) for

both the Barents and Kara Seas.

3.4 CS2SMOS weekly SIT chart205

The SMOS L-band brightness temperature data are currently used estimate SIT for thin ice areas (<1 m) Kaleschke et al.

(2012), while CS2 data allows to estimate SIT for thicker ice (>1 m) Ricker et al. (2017). The CS2SMOS SIT product merges

the SMOS and CS2 SIT data which are complementary to each other. The CS2 SIT used in the merging is a weekly averaged

product, and the daily SMOS SIT product is likewise averaged to weekly temporal scale. Optimal interpolation similar to

Böhme and Send (2005); McIntosh (1990) are used to merge the data sets into the regular product grid.210

3.5 Model reanalysis data

3.5.1 TOPAZ4

TOPAZ4 is a coupled ocean-sea ice model with advanced data assimilation system for the North Atlantic Ocean and Arctic

Sakov et al. (2012). The data assimilation is based on the use of ensemble Kalman filter Evensen (1994). The resolution

of the TOPAZ4 model grid is 12–16 km. TOPAZ4 is operationally available in CMEMS (Copernicus Marine Environment215

Monitoring Service) funded by European Commission. In this study we have used the TOPAZ4 daily reanalysis ice thickness

values (CMEMS product ARCTIC_REANALYSIS_PHY_002_003) Copernicum PUM (2020). The CS2SMOS thickness

Ricker et al. (2017), based on fusion of CS2 and SMOS SIT is assimilated to the TOPAZ4 reanalysis SIT product during
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wintertime, from end of October to early April. The modeled sea-ice thickness provided by the TOPAZ4 CMEMS product is

a diagnostic variable based on prognostically calculated sea-ice volume divided by sea-ice concentration for each model grid220

cell. Accordingly, it provides the mean sea-ice thickness for the portion of grid cell that is covered by sea ice.

3.5.2 ORAS5

As TOPAZ4 seems to underestimate the Arctic ice thickness (Xie et al. , 2018), we also used the ORAS5 (Ocean Reanalysis

System 5) reanalysis SIT data (Zuo et al. (2017), Zuo et al. (2019)). Tietsche et al. (2017) calculated the root-mean-square-

difference between ORAS5, the prototype of ORAS5, and ICESat sea-ice thicknesses to be of 1.0 m, comparable to the225

PIOMAS product (Schweiger et al. , 2011), see also section 3.5.3. The ORAS5 data are produced by the European Centre of

Medium-Range Weather Forecasts (ECMWF) in 0.25 degree nominal resolution in a stretched global tri-polar grid with the

poles in northern Canada, Eurasia and the South Pole. This grid has a resolution of about 5–15 km in the Arctic. A feature

of ORAS5 is that in the open-water part of a grid cell sea ice forms at a certain initial thickness of the order of H0 = 0.5 m

Tietsche et al. (2017). Such a treatment of initial sea ice is common in geophysical sea-ice models (Lemieux et al. , 2018).230

The initial thickness H0 is, coincidentally, close to the thinnest ice CS2 is able to reliably measure. As TOPAZ4, the ORAS5

product provides the diagnostic sea-ice thickness for each grid cell that has been calculated by dividing the modeled sea-ice

volume by concentration.

3.5.3 PIOMAS

Additionally we utilized the PIOMAS model (Pan-Arctic Ice Ocean Modeling and Assimilation System) Zhang and Rothrock235

(2003) SIT data which have a coarser resolution than TOPAZ4 and ORAS5. Despite the coarse resolution, PIOMAS sea-ice

volume agrees well with the ICESat estimates (Schweiger et al. , 2011). The PIOMAS model grid is a stretched generalized

orthogonal curvilinear coordinate (GOCC) system. A GOCC system allows a coordinate transformation that displaces the pole

of the model grid. The PIOMAS model data are in the GOCC grid with the northern grid pole displaced into Greenland. The

PIOMAS resolution in our study area is around 40 km. Unlike TOPAZ4 and ORAS5, PIOMAS provides sea-ice volume per240

unit area, which was divided by the PIOMAS sea-ice concentration to obtain sea-ice thickness per grid cell. Because of the

coarse resolution of the PIOMAS data we did not use it in direct comparisons, but we utilize it in defining the mapping of CS2

thicknesses to model compliant thicknesses in Section 3.

3.6 MODIS daily SIT chart

Daily MODIS ice thickness (hiM ) charts for our study area have been processed for two winters, from November 2015 to245

April 2017. All the details on the daily chart processing can be found in Makynen and Karvonen (2017). The daily charts are

based on all available Aqua and Terra MODIS hiM swath charts. Charts for very cloudy days were manually excluded. The

total number of the daily charts is 317.
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The MODIS based SIT charts have pixel size of 1 km, but the cloud mask has 10 km pixel size. The daily hiM chart shows

daily median hiM (hdiM ) for pixels which had at least two hiM samples from the swath charts. The requirement for having at250

least two valid hiM samples decreases the errors due to the misdetected clouds in the swath charts. hdiM has following thickness

categories (1) 0-0.3 m, (2) 0.31-0.5 m which corresponds to thin FYI of the first stage in the WMO sea ice nomenclature

JCOMM (2014a), (3) and hdiM>0.5 m. The first category is given as cm in the MODIS SIT chart, for the second category the

value 40 cm is given in the SIT maps, and for the third category the value 50 cm is given in the SIT chart.

The MODIS hiM swath charts are based on ice surface temperature from the MODIS/Terra or Aqua Sea Ice Extent 5-Min255

L2 Swath 1km product (MOD29/MYD29) and ERA-Interim atmospheric forcing data. The processing method of the hiM

swath chart is described in detail in Makynen et al. (2013). Cloud masking for the swath hiM charts was conducted using

fully automatic methods Makynen and Karvonen (2017). As the uncertainty of the retrieved hiM increases with increasing

air temperature Ta, the hiM retrieval with the MODIS swath data was not conducted when Ta>-5 ◦C. The typical maximum

reliable hiM (max 50% uncertainty) is 0.35-0.50 m Makynen et al. (2013).260

3.7 S-1 preprocessing

We georectified and sampled the S-1 SAR data into a 100-m pixel size. The calibration to provide the backscattering coefficients

(σ0
HH and σ0

HV for HH- and HV-channel) at image location (pixel i) was performed according to the following equation

Bourbigot et al. (2016):

σ0
i =

(DN2
i −ni)
A2

i

(3)265

DNi is the original image pixel value at location i, ni is the provided noise data at location i,and Ai the provided calibration

coefficient at location i.

The S1 data was preprocessed by applying a linear incidence angle correction Makynen and Karvonen (2017) to the HH

channel and a combined incidence angle and noise floor correction to the HV channel, for details, see Karvonen (2017). The

HH channel incidence angle correction has been tuned for sea ice. This leads to reduced performance on open water because270

of the varying backscatter by ocean waves. After incidence angle and noise floor corrections the image data were georectified

into the polar stereographic projection specified in Section 2. After georectification the imagery were down-sampled to 500 m

resolution, and finally the daily mosaics were constructed by overlaying the newer images over the older ones such that at each

mosaic grid cell (pixel) the newest SAR data prior to the mosaic time label, which was defined to be 12:00 UTC, was available.

The mosaic was initialized only in the beginning of the mosaicking (in this case in the beginning January 2016). In practice275

the data at a given grid cell location were never older than three days from the mosaic time label. Separate mosaics for the HH

and HV channels were constructed. Finally, a land mask based on the GSHHG coastline (Wessel and Smith , 1996) was applied

to the mosaics. The SAR mosaics of 21 February 2017 for the HH and HV channels are shown in Fig. 4 and small parts of the

mosaics (more details visible) in Fig. 5.

SAR images were processed to 8 bits-per-pixel images by scaling the σ0 between 1 and 255 (0 representing background).280

The scaling for the HH channel is such that -30 dB corresponds to the pixel value of one and 0 dB corresponds to the pixel
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value of 255. For HV channel the decibel values are -40 and 0, respectively. For segmentation the meanshift (MS) algorithm

Fukunaga and Hostetler (1975) was first applied to locate the modes of the two-dimensional (HH and HV) SAR data. The

meanshift algorithm has been empirically adjusted so that about 10-15 modes will be produced after convergence. The initial

10-15 categories based on MS were then used as a starting point for iterated conditional modes (ICM) segmentation Besag285

(1986).

We also identify the low SIC areas (SAR segments with SIC< 50 %) and exclude them from the SIT estimation procedure.

The algorithm utilizing both SAR and AMSR2 microwave radiometer data of Karvonen (2017) is used to locate the low SIC

areas.

4 Methodology290

In the first sub-section we describe the SAR processing including calibration, resampling to the desired projection and cropping

to the study area as well as building daily SAR mosaics. Interpolation of the CS2 SIT is then described in the following

subsection. This interpolation consist of several steps, including SAR segmentation, computing segment-wise SAR texture

features used in the matching of the SAR segments used to define the SIT value to be assigned to each SAR segment. In the

third subsection we describe the remapping of the SIT applied here to better correspondence between the estimated SIT and295

modeled SIT.

A block diagram of the SIT estimation algorithm is presented in Fig. 6. In the first phase the CS2 SIT values are assigned

to segments of the segmented SAR mosaic. Only the segments with a large enough number of CS2 SIT measurements (≥N)

within them get a SIT directly assigned. The SIT value assigned to the segments is the median of the CS2 SIT values within

the segment. In the next phase a difference function to other segments with CS2 SIT measurements and withing a predefined300

distance and time range is computed for all the segments without an assigned SIT value yet. The difference function describes

the pairwise segment similarity, being small for similar segments and larger for different segments. In the following phase a SIT

is interpolated to the segments without a SIT value based on the CS2 SIT values within the similar segments. For one segment

the of SIT values of the segments ordered by ascending similarity (difference function) with respect to the segment are used

to interpolate the SIT for the segment. The CS2 SIT values of the most similar segments are included until the number of SIT305

values exceeds the threshold value N. The average of these included CS2 SIT values weighted by the inverse of the segment

difference is then assigned to the segment. For the remapped estimates a mapping based on histograms of the estimated SIT

and PIOMAS ice model SIT for a training data is performed to get reduced bias with respect to the reference data. These steps

are describe in more detail in the following subsections.

4.1 Interpolation of CS2 SIT using S-1 SAR310

In this subsection we describe the mapping and interpolation of the CS2 SIT to SAR segments. SAR segments represent

uniform areas in the SAR image and each SAR segment is here assumed to have a uniform SIT value derived from the CS2
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SIT values within the segment or interpolated from the CS2 SIT values of other SAR segments with CS2 SIT values in the

case there are not enough CS2 SIT values within a SAR segment.

As we want to provide SIT estimates for uniform areas of the SAR mosaics, i.e. SAR segments, the mosaics first need to315

segmented. After segmentation the CS2 SIT values are mapped to SAR segments where enough single CS2 SIT measurements

are available. The SIT value assigned to these segments is the median value of the CS2 SIT values within the segment. Then

the SIT is estimated (interpolated) for the rest of the segments by utilizing a difference function describing the similarity of

the segments and pairwise distance of each pair of segments in time and space. The difference function includes difference of

several SAR texture features in addition to the temporal and spatial pairwise distance of the segments. The data of January-320

April and October-December 2016 were used for training the algorithm and January-April and October-December 2017 data

were used for evaluating the algorithm performance.

The SAR features were computed within a round-shaped window with a radius R. In this study we have used R=5 pixels.

Median of the feature values within each segment were then assigned to the segments as segment-wise texture features. The

features used in this study are:325

• HH backscattering coefficient (σ0
HH in dB)

• HV backscattering coefficient (σ0
HV in dB)

• HH entropies (EHH )

• HV entropies (EHV )

• HH local autocorrelations (CHH
A )330

• HV local autocorrelations (CHV
A )

• HH/HV channel cross-correlation (Cc)

• HH local variogram slopes (V HH
1 )

• HV local variogram slopes (V HV
1 )

• HH coefficient of variations (CHH
v )335

• HV coefficient of variations (CHV
v )

• HH edge point densities (DHH
E )

• HV edge point densities (DHV
E )

• HH corner point densities (DHH
C )

• HV corner point densities (DHV
C )340
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The feature computation windows were overlapping by half of the window size (i.e. window radius) in the both coordinate

directions.

Entropy E Shannon (1948) was computed as

E =−
255∑
k=0

pklog2pk, (4)

where pk’s are the proportions of each gray tone k within each computation window. Auto-correlation CA Box and Jenkins345

(1976) was computed as

CA(k, l) =∑
ij∈W (I(i− k,j− l)−µW )(I(i, j)−µW )

|B|σ2
W

,
(5)

where I(k, l) is the pixel value at image location (k,l). Mean over the horizontal, vertical and diagonal directions i.e. (k, l) =

(0,1), (k, l) = (1,0), (k, l) = (1,1) and (k, l) = (1,−1) was used to accomplish directional independence. The computation

window is here denoted by W. σW and µW are the mean and standard deviation within the window, respectively.350

The cross-correlation Cc Knapp and Carter (1976) between the SAR polarization channels (HH and HV,) here denoted by

X (HH) and Y (HV), is

Cc(k, l) =
1

Npσxσy
×∑

i,j∈W
(X(k+ i, l+ j)−µy)(Y (k+ i, l+ j)−µy) , (6)

where k and l refer to the row and column coordinates of the window center image pixel, respectively, σx and µx are the mean355

and standard deviation, respectively, of the window in X and σy and µy are the mean and standard deviation, respectively, of

the window in Y . Np is the number of pixels within the window denoted by W .

We also computed texture features based on local variograms. The variograms were locally estimated in a window with a

radius of five pixels. Assuming a stationary and isotropic process, the variogram γ is (locally) dependent on the inter-distance,

here denoted by d, only Cressie (1993), and can be estimated as360

γ(h) =
1

2|Nd|
∑

i,j∈Nd

|zi− zj |2, (7)

where zi and zj are the pixel values at locations i and j, whose distance is d, Nd is the set of pixels with the mutual distance

d and |Nd| is the number of these pixels within the window. We have computed the length of approximately linear part of the

variogram as a function of h, and the slope of a linear fit of this linear part. These are referred here as features V ch
1 and V ch

2 ,

where ch (channel) is either HH or HV.365

The coefficient of variation is computed as

Cv = σw/µw, (8)
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where σ and µ are the standard deviation and mean within the window w. Cv is computed separately for the HH and HV

channels, respectively, i.e. we have CHH
v and CHV

v .

Edge and corner points represent the locations with large sudden change in σ0, i.e. where high local gradients appear.370

Corner points are the points where the edge direction abruptly changes. The edge and corner points counts (Ne and Nc) were

extracted for each segment using local binary patterns Ojala et al. (1996) in a similar way as presented in Karvonen (2016).

The proportion of the number of edge and corner points with respect to each segment area (in pixels) was computed for both

polarization channels and they were used as texture features. These features are denoted here by NHH
e , NHV

e , NHH
c and

NHV
c .375

Based on the segmentation result and the SAR texture features complemented by σ0
HH and σ0

HV , the segment-wise median

values of each texture feature and channel-wise SAR backscatterting coefficients were calculated, resulting to a total of 15 SAR

features (13 texture features and two backscattering coefficients) for each segment. As an example, segmented SAR mosaics

with σ0
HH and σ0

HV medians assigned to SAR segments on 21 Feb 2017 is shown in Fig. 4, and a detail of these HH and HV

mosaics in Fig. 5. We use the SIT estimation and reference SIT data of this day as an example in the following sections.380

The segment difference function T was defined as linear combination of the SAR feature differences and temporal and

spatial distance between a segment pair:

T = ct∆t+ cd∆D+

Nf∑
k=1

ck|∆fk| (9)

∆t is the (absolute) time difference in days, ∆D is the distance difference between the centers of the segments, ∆fk is the

difference between a SAR feature fk (k = 1, ...,15) in the two segments. The 2016 CS2 thickness and SAR mosaics (training385

data) were used in defining the coefficients ct, cd, ck, using a non-negative least squares (LS) fit. Non-negative LS was used

because all the absolute differences should have an increasing effect on T .

According to our analysis the SIT difference between two segments was mainly explained by the absolute difference, i.e.

L1 difference, of a few features. σ0
HV , HV entropy and HH edge density and the spatial distance between segment means

were the most significant features based on a least squares fit of the training data. However, other features also had minor390

effect (small but non-zero coefficients based on the LS). For this reason we have used all the above-mentioned features in our

difference function because the number of features did not produce any computational problems with respect to execution time

or hardware resources on a common desktop personal computer. Because the training data set consisted of data of a whole year

with CS2 SIT data (Jan-Apr, Oct-Dec) we consider this as a representative training data set and assume there is no significant

overfitting.395

As training data we used the CS2 SIT values assigned to the segments. Each 2016 training data SAR segment with an as-

signed SIT were included and the neighboring assigned SIT values and the corresponding segment pair-wise feature differences

were used in the LS fit, i.e. each segment pair with an assigned CS2 SIT were utilized.

SIT for a segment (S) without a SIT value were obtained as follows: T between S and all the other segments within a

predefined time and distance range was computed and the segments were ordered by ascending T. Then the CS2 SIT values of400

the other segments, in addition to possible CS2 SIT values with segment S (less than N values), were included in a set of SIT
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values, until the number of the values in the list exceeds the threshold value N (strictly is equal to N or more than N). The SIT

assigned to S was the weighted average of the SIT values of the collected SIT value set. The weights used in the averaging are

relative to the inverse values of T corresponding to the segment from which the SIT values are. The possible (less than N) CS2

SIT values of the segment itself are included with the same weight as the CS2 SIT values within the segment with the smallest405

non-zero value of T. We have used parameter values of N=7 in this study.

In Fig. 7 the dependence of the SIT difference on the SAR feature linear combination, pairwise segment distance and

pairwise segment time difference is shown for the 2016 data. Here the time difference is restricted to be less than one day (i.e.

using only the same day data) and distance less than 500 pixels (250km) for the Fig. 7a, describing the dependence on the

pairwise segment texture difference. For the Fig. 7b, describing the dependence of the SIT difference on the pairwise segment410

distance, and 7c, describing the dependence of the SIT difference on the segment time difference, the normalized pairwise

texture difference is restricted to be under 0.1, and for Fig. 7b the time difference less than one day, and for Fig. 7c the distance

difference is restricted to be less than 250 km. It can be seen that there is a clear correlation between the linear combination of

the texture feature differences and the SIT difference. There is quite large deviation, however, the correlation is around 0.5. For

the pairwise segment distance and the pairwise segment time difference, correlations are smaller (0.28 and 0.22, respectively)415

but there is still a visible trend. Based on the slopes of the linear fits, the average increase of SIT difference is 2.9 cm/100 km

and 2.1 cm/day.

4.2 Ice chart and model compliant CS2 product

After defining the coefficients ct, cd and ck in (9) using the training data we tested the SIT estimation for the 2016 training data.

It was observed that SIT is significantly overestimated in the 2016 training data when compared to the modeled and AARI SIT.420

Therefore, we introduce a mapping based on the PIOMAS model reanalysis SIT data to reduce this SIT overestimation. The

CS2 SIT measurements are now further mapped based on the training data and the corresponding PIOMAS reanalysis SIT.

The coarser resolution PIOMAS data were selected for this purpose because ORAS5 does not give reasonable SIT values for

SIT less than 50 cm Tietsche et al. (2017). The adapted SIT histogram mapping is based on the normalized histograms and

minimizing the Kolmogorov-Smirnov distance (i.e. mapping the cumulative histograms) of the CS2/S-1 SIT and the TOPAZ4425

reanalysis SIT. The Kolmogorov-Smirnov distance, Dm, for a variable x is defined as

Dm = supx|Ft(x)−Fc(x)|, (10)

where supx is the supremum within the range of x (SIT in our case) and Ft(x) and Fc(x) are the cumulative probability

density functions (CDF’s) of the PIOMAS SIT, and CS2 SIT computed for the 2016 training data set. In our case we have

quantized the SIT into integer centimeters with 16 bits, and the SIT histograms are used as approximations of probability430

density functions (PDF’s).

This mapping based on the 2016 training data CS2 SIT and PIOMAS model SIT is shown in Fig. 8 as a green curve, For

reference also the AARI ice chart SIT, ORAS5 model SIT, and TOPAZ4 model SIT (blue curve) matching results are shown
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in 8. It can be seen that TOPAZ4 reanalysis SIT mapping is at significantly lower level than the mapping for the other two

models.435

5 Results

5.1 Measures used in evaluation of the results

We have compared the SIT values produced by the CS2/S-1 algorithm to the SIT based on the AARI ice charts, ORAS5,

PIOMAS and TOPAZ4 reanalysis to evaluate the algorithm performance. In the comparisons we have used the following

measures of difference between the CS2/S-1 SIT estimates and the reference SIT:440

C =
1

Nsσσref

Ns∑
i=1

((Xi−µ)(X ref
i −µref )), (11)

DL1 =
1

Ns

Ns∑
i=1

∣∣Xi−X ref
i

∣∣ , (12)

Dsgn =
1

Ns

Ns∑
i=1

(
Xi−X ref

i

)
. (13)

DRMS =

√√√√ 1

Ns

Ns∑
i=1

(
Xest

i −X ref
i

)2
. (14)

Ns refers to the number of samples (number of grid points involved) used in the comparison and Xi (i= 1...Ns) are the445

estimated values of SIT and X ref
i are the values of the reference SIT data at the same location as Xi. C is the correlation, DL1

is the L1 difference andDsgn is the signed L1 difference giving the estimation bias, positive bias indicating overestimation and

negative bias indicating underestimation. DRMS is the root-mean-square difference. µ and µref are the means of the estimated

SIT and reference SIT, and σ, σref are the standard deviations of the estimated SIT and reference SIT, respectively. All the

difference measures were computed in the resolution of each reference data set, i.e. the CS2 SIT assigned to SAR segments450

and interpolated, given in a high-resolution grid, were down-sampled to each reference data set resolution. This approach was

not applicable to the single CS2 SIT measurements and for them the difference measures were computed directly, using the

nearest reference data set grid point SIT for each measurement as the reference SIT.

As the CS2 SIT data covers only the time period from October to April the weather conditions were mostly with dry snow

conditions, i.e. Ta was mainly below zero degrees for the time range studied. Only in the early winter (October-November)455

there were some periods with Ta above zero and potential to have wet snow on sea ice. In this study we do evaluate the effect of

wet snow on the SIT estimation. For reliable estimation of the effect of wet snow conditions on estimation more data acquired

during the melting period would be required.
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5.2 Difference statistics between the estimates and reference data

The statistics from the comparisons between the CS2/S-1 SIT, without and with the proposed histogram mapping, and the460

different reference SIT data sets are shown in Tables 1-4. The correlations between different SIT data sets for each 2017 winter

month and their averages and standard deviations are shown in Table I, the corresponding biases in Table II, the L1 differences

in Table III and the RMSD’s in Table IV. For reference, the average difference measures and correlations between the different

reference SIT data sets are shown in Table V.

On average the correlation between the non-interpolated CS2 SIT estimates and the AARI ice chart SIT was very small,465

only 0.15. There was a significant bias, CS2 SIT being on average 83 cm larger than the AARI chart SIT. This also reflects to

the high L1 differences and RMS differences between the CS2 and AARI SITs. The statistics of the CS2 SIT with respect to

the AARI SIT are given in the first columns of Tables 1-4. The numbers were similar with respect to the the three ice models,

showing small correlations and large positive bias (overestimation by CS2). Because of their similarity these values were not

included to the tables.470

The correlations for the interpolated CS2 SIT assigned to the SAR segments was significantly higher, around 0.64. The

monthly correlations between the interpolated CS2/S-1 SIT and the remapped interpolated CS2/S-1 SIT with respect to the

AARI SIT were similar, and in the range 0.52-0.76. The highest values were reached in April and October. There CS2/S-1 SIT

correlations were quite similar with respect to the model data for all the studied models.

The monthly signed L1 difference in Table II also increases for the estimated SIT with respect to both the AARI SIT and475

model reanalysis SIT as the ice gets thicker, indicating significant overestimation. For the remapped interpolated SIT bias

remains at a lower level for all the studied months, with respect to ORAS5 there was even small underestimation on average,

but with respect to TOPAZ4 reanalysis SIT some overestimation. The averages and maximum biases for the interpolated SIT

with respect to the AARI SIT were 27/46 cm (maximum reached in March). The corresponding values with respect to the

AARI SIT for the remapped interpolated SIT were 6/14 cm (maximum underestimation in April). The corresponding values480

with respect to the TOPAZ4 reanalysis SIT were 29/49 cm and 8/16 cm, respectively. The corresponding values with respect

to the ORAS5 SIT were 6/20 cm and -15/-20 cm, i.e. slight underestimation, for the PIOMAS model data the corresponding

figures were 14/31 cm and -7/-13 cm.

The monthly L1 differences in Table III were smaller for the freeze-up period and higher for the winter months, starting to

decrease in April. The L1 difference with respect to the AARI SIT, and TOPAZ4, ORAS5 and PIOMAS reanalysis SIT were485

smaller for the remapped estimated SIT which was expected as the target of the remapping was to reduce the relatively large

positive bias. The average and maximum L1 difference with respect to AARI SIT were 32/51 cm for the interpolated SIT and

14/21 cm for the remapped interpolated SIT. The maximum values were reached in January and March. The corresponding

values with respect to TOPAZ reanalysis were 32/52 cm and 17/26 cm, with respect to ORAS5 SIT 29/41 cm and 24/31 cm

and with respect to PIOMAS SIT 29/42 cm and 21/30 cm. The difference maxima were reached in February-April for all the490

cases.
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The RMS differences in Table IV have a similar behavior as the L1 differences. RMSD also increases as the average ice

thickness increases in the course of the winter and smallest RMSD values were reached during the freeze-up months (October-

December). The average and monthly maximum RMSD values for the estimated SIT with respect to the AARI SIT were were

56/81 cm, and the corresponding values for the remapped estimated SIT were 25/34 cm. The corresponding values with respect495

to the TOPAZ4 reanalysis SIT were 58/84 cm for the interpolated SIT and 29/41 cm for the remapped interpolated SIT, the

corresponding values with respect to the ORAS5 SIT were 49/65 cm for the estimated SIT and 38/50 cm for the remapped

interpolated SIT. and the corresponding values with respect to PIOMAS SIT were the 52/73 cm for the estimated SIT and 35/46

cm for the remapped interpolated SIT. The average maxima were again reached during the winter months (January-April).

For the CS2 SIT the difference measures shown in Tables II-IV, indicate large positive biases (overestimation) and large L1D500

and RMSD with respect to the AARI SIT, TOPAZ4, ORAS5 and PIOMAS reanalysis SIT. These values are highest for the

winter months with thickest ice, and smaller for the freeze-up/early winter (October-December). The cross-correlations with

respect to all reference data sets were low, significantly lower than for the interpolated CS2/S-1 SIT.

It should be noted that also the reference SIT data sets differ from each other, see Table V. The average cross-correlations

between the reference data sets were in the range 0.54-0.60. The TOPAZ4 and AARI SIT values were on average quite close505

to each other, having only low bias, but the ORAS5 SIT was then on average 35-40 cm above them. Furthermore, it is noted

that in our evaluation the compared randomly sampled points were located in highly dissimilar regions, characteristic for the

different data sets, with different sizes and shapes (such as ice model grid points, SAR segments, ice chart polygons).

In order to assess how far from the assigned CS2 measurement the SIT can be interpolated and still give usable estimates,

we studied the effect of distance and time on the SIT difference (or in other words, estimation error) using our training data510

set. We used the assigned CS2 SIT values as reference and searched for sets of segments with either constant time difference

or constant distance and defined the increase of SIT difference as a function of the difference in the other. The average increase

in estimation error for the training data set as a function of time was 2.1 cm/day and of distance was 2.9 cm/100 km. This

indicates that the contribution of distance difference to the total difference is in maximum (corresponding to the search range

boundaries) around 14 cm for the 1000 pixel (500 km) spatial search range and 21 cm for the 10 day temporal search range.515

An example of the SIT estimation on 21 February 2017 without and with the histogram remapping can be seen in Fig. 9.

For reference also the AARI SIT and the TOPAZ4, ORAS5 reanalysis SIT and CS2SMOS SIT have been included in Fig. 9.

This figure represents a typical case of the thinner and thicker ice fields generally in agreement with the reference data but still

indicating differences due to the details of the local SIT distribution, given in higher level of detail in the estimated CS2/S-1

SIT.520

We also included a comparison of the proposed SIT estimates (interpolated and remapped versions) to the CS2SMOS SIT

data Ricker et al. (2017) for our 2017 test data set. These comparison results are shown in Tables 6 and 7. The results are

discussed more in the following subsection.
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5.3 Difference maps and estimation uncertainty

We also provide difference maps of the unmampped and remapped SIT with respect to the AARI ice chart SIT in Fig. 10 for the525

21 Feb 2021 case and for the 2017 test data set on the average. It can be seen that the unmapped interpolated SIT overestimates

SIT with respect to the AARI ice chart SIT, both for the 21 Feb 2017 case and on the average in many areas. For the remapped

interpolated SIT estimates the overestimation is significantly smaller with respect to the AARI ice chart SIT for both the case

of 21 Feb 2017 and on average.

SIT difference charts with respect to the CsSMOS SIT on 21 Feb 2017 and the average difference charts for 2017 are shown530

in Fig. 11. It can be seen that the SIT differences are are quite similar to the differences with respect to the AARI ice charts.

There is some more underestimation in the northeastern part of the study area compared to the difference maps with the AARI

SIT. Also this comparison indicates that the interpolated SIT estimates deem to overestimate SIT and the remapped interpolated

SIT values are less biased.

As we are using a (segment) difference function for each segment, this value corresponds to the mapping and the larger it is535

the larger the uncertainty of the SIT estimation can be considered. We have scaled the difference T values to the range 0-100

(based on the training data difference function values) and in Fig. 12 the scaled difference function for 21 February 2017 is

shown. The highest uncertainty is found at the ice edge and in the Ob river delta area. The uncertainly could probably also be

used for iteratively re-estimating the SIT of segments with the highest uncertainties.

5.4 Comparison to MODIS SIT540

We also performed comparisons of the interpolated CS2/S-1 SIT estimates against the daily MODIS SIT charts. The MODIS

product only gives thin ice thicknesses and the thicker ice thicknesses are only roughly categorized: SIT in 1-30 cm range, and

then one category for SIT of 31-50 cm and another for SIT over 50 cm. The monthly correlations between the thin MODIS

SIT (1-30 cm) and the SIT estimated by the proposed method varied between 0.15 to 0.25. We also computed the averages of

the estimated SIT for the three MODIS SIT categories for each month and for the estimated SIT and estimated remapped SIT.545

These are presented in Table 8. It can be seen that the averages increase towards a thicker MODIS thickness category for both

the estimates, but the increases are quite small and the averages are high for both the methods, some less for the remapped

estimate. It can also be seen that the averages increase as a function of time, i.e. as ice gets thicker in the course of time.

Based on this experiment we can conclude that the SIT estimates, even with the proposed remapping, tends to overestimate

SIT, specifically for thin ice.550

For visual evaluation and comparison to the SIT estimates of Fig. 9 we also show the MODIS SIT collage for February 21

2017 in Fig. 13. For better visual appearance the color scale is different from that of Fig. 9. Because in a daily MODIS SIT

chart SIT can typically be computed only for small areas due to cloud cover, the collage is composed of two weeks of MODIS

SIT charts with the most recent available MODIS SIT value at each grid point. The areas with no data during the 2-week period

are indicated by the black color in the figure.When comparing the MODIS SIT collage of Fig. 10 with the daily CS2/S-1 SIT555

estimate in Fig. 8b we notice that most of the ice-covered regions of the study area belong to the thickest MODIS SIT category
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(SIT>50 cm). The thin ice areas according to the MODIS SIT are located near the Kara Gate (southern Kara Sea) and near the

ice edge in the northwestern part of the study area. These are in general in agreement with the CS2/S-1 SIT. Also some thicker

ice patches within or in the vicinity of the MODIS SIT thin ice areas can be identified in the CS2/S-1 SIT. The general pattern

detecting thinner ice in the south and near ice edge is present in both CS2/S-1 and MODIS SIT. This general large scale pattern560

can be seen throughout the winter. However, the SIT estimates include many anomalous local details due to the dynamic nature

of the ice field and the fact that the data are not exactly simultaneous.

6 Discussion and Conclusions

In this study an algorithm for interpolating of the CS2 SIT data over the daily Kara and Barents Sea S-1 SAR mosaic was

developed and evaluated by comparisons to SIT derived from the AARI ice charts and three ice model reanalysis data sets.565

Baseline-D CS2 data Meloni et al. (2020) were used in this study. Baseline-D data were was the most recent version when

our data analysis were made. We wanted to demonstrate the potential of our method, as well as to evaluate its performance.

Our method is capable of interpolating CS2 SIT values to areas between orbit ground tracks where SIT measurements are not

available. We found significant differences (low correlation, large bias) between non-interpolated CS2 SIT and the reference

data. Given the different nature of our reference data, this was not surprising. The match between CS2 and reference data570

improved with the introduction of segmentwise medians. However, there were still significant differences, especially a high

positive bias due to different nature of CS2 SIT estimates and the reference SIT data sets. To reduce this bias, we performed a

mapping based on the PDF’s (histograms) of the CS2 SIT and PIOMAS ice model reanalysis SIT for our training data set. This

mapping reduced the positive bias which also reflected to reduced L1D and RMSD. However, the remapped CS2 data should

not be understood as more correct, but as one more akin to the model SIT.575

We used the 2016 data (January-April, October-December) as training data set and 2017 data (January-April, October-

December) as a test data set in this study. There would have been different ways of dividing the data into the training and test

data sets, e.g. randomly selected days or one whole season for training instead of using calendar year data from two seasons.

However, with some preliminary tests this did not have any significant effect on the results and we selected this chronological

order (training data earlier than test data) for this study. The training and evaluation of this study was also performed for580

January-April and November-December. This was because both the CS2 SIT and AARI ice chart ice stage of development

were not available outside of this period, i.e. under wet surface conditions. For such conditions reliable estimation of SIT is

difficult or even impossible with the current data and algorithms. This is due to the deviating behavior of radar signal at the wet

air/snow-ice boundary, compared to a frozen surface.

An alternative to directly using CS2 SIT would have been to utilize CS2 ice freeboard. Then ice freeboard could have been585

computed from modeled ice and snow data using Eq. (1). Freeboard could be more suitable quantity for comparisons because

radar backscatter and ice freeboard are statistically related as reported in Similä et al. (2010) and the radar penetrates the snow

layer and radar backscattering is from the ice surface layer in dry snow conditions. Using ice freeboard can also reduce the

effect of incorrect snow depth.
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An interesting result was that the interpolation does not decrease the correlation with respect to the reference data compared590

to (incomplete) SIT resulting from CS2 data assigned to SAR segments, or CS2 data as individual measurements. For example,

the correlation for the CS2 SIT assigned to segments with respect to the AARI ice chart SIT were on average around 0.64. This

is a similar value as for the interpolated segment-wise CS2 SIT. For the individual point-wise CS2 SIT values the correlations

were significantly lower.

In parts of the study area there may exists areas with wet snow on sea ice Rösel et al. (2016). Wet snow will have an effect595

on the SIT estimate accuracy in the late winter. Because the CS2 SIT is produced for the winter months only, i.e. stopped at

the end of April, indicating that most of the melt-down period, most likely to have wet snow on ice, is excluded. In this study

the uncertainty due to wet snow was not studied but this will be an interesting topic for further studies.

In general, evaluation of ice thickness over Arctic is difficult because of lack of reliable reference data. Another problem

are the different scales of the SIT measurements, estimates and models. SIT measurements, if available, are typically point600

measurements or measurements with a footprint of a few meters to a few tens of meters (e.g. SIT measurements by drilling

or Electromagnetic induction based EM measurements), and the model grid cells, satellite measurements or segment-wise

SAR estimates represent averages over several square kilometers (km2). Also ice charts give averages of typically quite large

polygons of several tens or even hundreds of km2.

According to the results the monthly biases without any remapping the interpolated CS2 SIT are positive with respect to the605

AARI SIT and smaller but still positive with respect to the ice model data sets. For the remapped interpolated SIT all the biases

are smaller. Comparison to the CS2SMOS SIT product with the 2017 test data indicate large overestimation for the interpolated

CS2 SIT estimates. This large positive bias was decreased significantly for the remapped estimates and was on average only a

few centimeters.

We selected parameters, such as N, empirically. The sensitivity of SIT to parameters chosen was not studied thoroughly yet.610

It will be a topic for future research. For example the value of N was selected such that we had enough segments with CS2

SIT assigned to them to get interpolated SIT for all the segments of a daily SAR mosaic. Currently the value of N is relatively

small for a typical SAR segment. A higher value of N would be preferable. However, a higher value of N in turn would reduce

the number of segments included in the estimation and also increase the possibility of too few assigned SIT values for the

interpolation step. For this reason we used a moderately small value of N.615

The relatively large differences with respect to the reference SIT data sets can at least partly be explained by the different

resolutions and level of detail of the SIT estimates. The CS2/S-1 SIT has a resolution of 500 m (the SAR mosaic resolution)

which is significantly higher than the resolution of the ORAS5, PIOMAS and TOPAZ4 reanalyses (over 10 km) and also

of the AARI ice chart level of detail. Furthermore the original CS2 measurements stem from individual footprints that are

approximately 300 m x 1600 m. Even though the ice charts have a nominal resolution up to about 1 km, in practice it is620

impossible for the ice analysts to include all the ice field details in this scale within the limited time available for making

the ice charts. Instead, the ice analysts tend to draw larger polygons, representing rather homogeneous sea ice, neglecting the

details, and assigning areal average values to the polygons. However, the polygon boundaries typically have the precision of the

nominal ice chart resolution. For this reason of varying scales we have used the reference data resolution in the comparisons and
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downsampled the interpolated CS2 SIT accordingly. For the individual CS2 SIT measurements we used the nearest reference625

grid point data.

We also studied use of regularized linear regression (LASSO) Tibshiran (1996) for reducing the number of texture features

needed in the SIT estimation. According to our first tests the performance was nearly similar with less texture parameters

involved, but on the other hand the need for computational resources with the amount of LS fit parameters used now were

not significantly larger than with a reduced number of parameters, and thus we here used all the studied parameters in the LS630

fit in this study. In the future, reduction of LS fit parameters could be studied more, if seen necessary, e.g. for more efficient

computing to cover larger sea areas in a reasonable time. This may be required to meet near-real-time processing conditions

for operational SIT estimation, e.g. for a pan-Arctic high-resolution SIT product.

Snow depth in winter conditions can be estimated based on microwave radiometer data, e.g. see Rostosky et al. (2018).

More precise snow density estimation can then be utilized to yield more precise SIT estimates. Microwave radiometer data can635

be utilized to locate the thin ice regions, e.g. AMSR2 based thin ice (SIT>20 cm) detection has been recently developed for

the Barents and Kara Seas . One future goal will be integration of microwave radiometer data in the algorithm to get better

estimates of snow cover on sea ice and thin ice presence.

In some areas near the ice edge there still seems to exist local SIT overestimation with respect to the reference data. One

possible way to reduce this overestimation would be to adjust the algorithm parameters such that the spatial search radius would640

be more restricted near the ice edge, i.e. dependent on the geographical location. This could also be adjusted by varying the

weight assigned to pairwise segment distance in the difference function T. However, this alternative will require a significant

amount of additional research.

As the proposed method uses several CS2 SIT values to assign a SIT value to a SAR segment, it is also possible to give

estimates of the SIT range or SIT distribution of the segments. This does not even require development of new algorithm, only645

selecting a suitable value of parameter N (number of CS2 SIT values required for a segment) and extracting the SIT range or

distribution from the CS2 SIT measurements.

In the future we also plan to study segment clustering and then assigning CS2 SIT value median or mode of each segment

cluster to all segments of a segment cluster instead of single segment medians. An easy solution would be to merge small

segments into their neighboring larger segments to remove all the segments smaller than a given area. This would give more650

CS2 measurements within the segments but on the other hand also then give SIT estimates representing averages of larger

areas. Despite of this it should be noted that the segment boundaries, representing different ice fields, are still represented in

the resolution of the segmentation. With these approaches we aim to overcome the problem of either having too few CS2 SIT

values assigned to segments or too few segments with an assigned SIT. Also more detailed utilization of SIT distributions

of segment clusters with a large enough number of SIT samples for forming statistically reliable SIT distributions should be655

studied. In some cases also large SAR segments could be split into smaller ones to get more detailed and more accurate local

SIT estimates.

It may be possible to use the dependence of the biases on the phase of the winter (related to average SIT), such as early

freeze-up, freeze-up, mid-winter, early spring phase, to reduce the bias by applying a bias-reducing mapping dependent on the
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phase of the winter instead on a common mapping for the whole winter. The phase of the winter could roughly be estimated660

based on the estimated average ice thickness. Also different algorithm parameters (weights used in the difference function T)

could be tested for different phases of winter. This would require a larger multi-year training data set and a significant amount

of additional work but could be one way to improve the SIT estimation accuracy.

Our algorithm can be easily adapted to any satellite altimeter SIT product. This study is especially relevant for the future

CRISTAL mission Kern et al. (2020). After its expected launch in late 2027, CRISTAL shall provide a time-critical SIT665

product, which can be merged with SAR data to interpolate SIT between the CRISTAL ground tracks. Thus our study is one

of the necessary steps in introducing satellite altimeter data into the realm of operational ice charting. Before CRISTAL, our

algorithm can be applied to ICESat-2 as well as to Sentinel-3 SRAL based SIT estimates.
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Table 1. Monthly average cross-correlations between the SIT estimates studied with respect to to the reference data set SIT. SIT refers to

the proposed algorithm SIT, RSIT refers to the proposed algorithm SIT with remapping based on the histogram mapping with model data,

CS2 refers to the CS2 values assigned to the SAR segments (without inter- or extrapolation), A refers to the SIT derived from the AARI ice

charts, T refers to the TOPAZ4 model reanalysis SIT, and O refers to the ORAS5 model SIT.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 0.20 0.52 0.58 0.43 0.49 0.57 0.63 0.43 0.50

02/17 0.13 0.61 0.65 0.51 0.57 0.64 0.68 0.56 0.62

03/17 0.24 0.69 0.72 0.64 0.68 0.67 0.70 0.66 0.70

04/17 0.13 0.71 0.76 0.61 0.65 0.68 0.72 0.67 0.71

10/17 0.12 0.75 0.76 0.76 0.77 0.70 0.70 0.76 0.77

11/17 0.08 0.65 0.68 0.60 0.63 0.63 0.66 0.62 0.65

12/17 0.14 0.54 0.59 0.51 0.56 0.60 0.65 0.51 0.56

Ave. 0.15 0.64 0.68 0.58 0.62 0.64 0.68 0.60 0.64

Std. 0.05 0.09 0.07 0.11 0.09 0.04 0.03 0.11 0.09

Table 2. Monthly average bias in cm between the different SIT estimates with respect to the SIT reference data sets. The symbols are the

same as in Table 1.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 118 29 9 31 11 3 -18 18 -2

02/17 105 46 14 48 16 18 -13 31 -0

03/17 104 45 10 48 12 20 -15 27 -8

04/17 82 42 5 49 12 18 -20 25 -12

10/17 43 4. 0 4 1 -5 -9 -0 -4

11/17 48 9 1 10 2 -7 -15 -1 -9

12/17 45 14 1 14 1 -8 -20 -0 -13

Ave. 83 27 6 29 8 6 -16 14 -7

Std. 28.7 17.95 5.27 19.71 6.50 12.71 4.00 14.31 4.93
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Table 3. Monthly average L1 difference in cm between the different SIT estimates with respect to the reference SIT data sets. The symbols

are the same as in Table 1.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 129 34 17 35 18 32 26 33 21

02/17 118 49 21 50 23 38 26 42 23

03/17 118 51 20 50 22 41 28 40 25

04/17 105 48 18 52 26 40 31 39 30

10/17 76 8 6 7 6 11 12 8 8

11/17 68 14 8 13 9 17 18 15 15

12/17 63 19 11 19 12 22 24 22 22

Ave. 96 32 14 32 17 29 24 29 21

Std. 27.3 18.32 6.08 19.24 7.91 11.90 6.47 13.64 6.92

Table 4. Monthly average RMS difference in cm between the different SIT estimates with respect to the reference SIT data sets. The symbols

are the same as in Table 3.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 190 67 29 70 33 57 41 65 35

02/17 164 81 34 84 38 65 43 73 38

03/17 157 77 32 80 37 65 47 68 41

04/17 142 72 30 80 41 62 50 65 46

10/17 104 21 13 21 14 25 23 21 18

11/17 99 31 15 32 18 32 29 32 28

12/17 101 41 20 42 22 39 36 43 36

Ave. 137 56 25 58 29 49 38 52 35

Std. 36.2 24.03 8.33 26.16 10.78 17.10 9.54 20.51 9.10

Table 5. Average difference measures between the AARI ice chart SIT (A), CS2SMOS SIT (CS2SM) and SIT of the three ice models. O

refers to ORAS5, T refers to TOPAZ4, PM refers to PIOMAS.

Measure A/CS2SM A/O A/T A/PM CS2SM/O CS2SM/T CS2SM/PM

CC 0.78 0.79 0.74 0.70 0.74 0.82 0.78

Bias -4 -22 2 -13 -18 6 -9

L1D 13 24 11 21 24 11 16

RMSD 22 38 22 34 39 22 29
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Table 6. Comparison between the CS2 SIT assigned to SAR mosaic segments and CS2SMOS SIT.

Month 01/17 02/17 03/17 04/17 10/17 11/17 12/17 Average Std. dev.

Corr. 0.55 0.62 0.72 0.67 0.75 0.67 0.56 0.65 0.08

Bias (cm) 31 38 34 34 4 9 13 24 14

L1D (cm) 33 42 41 43 8 12 17 28 15

RMSD (cm) 67 73 67 68 22 31 40 53 21

Table 7. Comparison between the CS2 assigned to SAR mosaic segments with the mapping and CS2SMOS SIT.

Month 01/17 02/17 03/17 04/17 10/17 11/17 12/17 Average Std. dev.

Corr. 0.62 0.67 0.74 0.70 0.77 0.70 0.62 0.69 0.06

Bias (cm) 10 8 -2 -3 0 1 0 2 5

L1D (cm) 15 21 23 25 6 8 11 16 7

RMSD (cm) 29 34 37 40 14 16 21 27 11

Table 8. Monthly averages of estimated SIT (SIT) and remapped SIT (Rem. SIT) for the MODIS daily SIT chart categories. All values are

in cm. The MODIS SIT categories are 1-30 cm (Cat1), 31-50 cm (Cat2) and over 50 cm (Cat3).

Month SIT ave. Cat1 SIT ave. Cat2 SIT ave. Cat3 Rem. SIT ave. Cat1 Rem. SIT ave. Cat2 Rem. SIT Cat3

01/2017 92 98 103 50 53 56

02/2017 99 108 119 54 66 68

03/2017 122 129 139 67 73 77

04/2017 120 131 139 67 73 78
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Figure 1. CryoSat-2 sea ice thickness measurements during one day and (A) one week (B) before 21 February 2017.

Figure 2. The Barents and Kara Seas study area in the used polar stereographic projection. Air temperature data from four coastal weather

stations shown with black dots are used in this study. ©FMI.
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Figure 3. Average daily air temperature during the period 2016-2017 from four coastal weather stations shown in Figure 1.
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Figure 4. Sentinel-1 HH (A) and HV (B) mosaic σ0 segment median on 21 Feb 2017.
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Figure 5. Cropped area of the HH (A) and HV (B) segment median images of Fig. 4.
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Figure 6. Algorithm block diagram for the sea ice thickness estimation using combination of the CryoSat-2 sea ice thickness data and

Sentinel-1 SAR imagery. We have used N=7 in this study.

Figure 7. A: Dependence of the SIT difference on the pairwise SAR segment texture difference, B: Dependence of the SIT difference on the

pairwise SAR segment distance, C: Dependence of the SIT difference on the pairwise SAR segment time difference. The cyan lines in the

figures represent the linear least squares regression.
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Figure 8. The correspondence of the CryoSat-2 SIT to AARI ice chart SIT and modeled SIT from the three models studied based on

histogram matching.

36



Figure 9. A: CS2/S-1 SIT, B: remapped CS2/S-1 SIT, C: AARI ice chart SIT, D: TOPAZ4 ice model reanalysis SIT, E: ORAS5 model ice

model SIT and F: CS2/SMOS SIT of 21 February 2017.
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Figure 10. A: Difference of the proposed (unmapped) SIT for 21 Feb 2017 and AARI ice chart SIT, B: Difference of the proposed remapped

SIT and AARI ice chart SIT for 21 Feb 2017, C: Average difference of the proposed (unmapped) SIT and the AARI ice chart SIT for the

2017 data, D: Average difference of the proposed remapped SIT and the AARI ice chart SIT for the 2017 data.
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Figure 11. A: Difference of the proposed (unmapped) SIT and CS2SMOS SIT for the 21 Feb 2021 case, B: Difference of the proposed

remapped SIT and CS2SMOS SIT for the 21 Feb 2017 case, C: Average difference of the proposed (unmapped) SIT and the CS2SMOS SIT

for the 2017 data, D: Average difference of the proposed remapped SIT and the CS2SMOS SIT for the 2017 data.
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Figure 12. Segment difference (T ) as a measure of uncertainty of the SIT estimates. This is the segment difference for the 21 Feb 2017 case.

The values of T have been scaled to the range 0-100, based on the variation of T in the training data. The black area is open water.
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Figure 13. MODIS SIT collage based on two weeks of MODIS daily SIT charts before 21 Feb 2017. The areas without data are indicated

by gray color and all the ice thicker than 50 cm is indicated by green color, corresponding to 60 cm in the colormap.
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