
1 

 

Characteristics of mountain glaciers in the northern Japanese Alps 
 

Kenshiro Arie1，Chiyuki Narama2，Ryohei Yamamoto1,3，Kotaro Fukui4，Hajime Iida4 

1Graduate School of Science and Technology, Niigata University,8050 Igarashi2-Cho, Nishi-Ku, Niigata, 950-2181 
2Program of Field Research in the Environmental Sciences, Niigata University,8050 Igarashi2-Cho, Nishi-Ku, Niigata, 950-5 

2181 
3Aero Asahi Corporation Spatial Information Infrastructure, 350-1165 
4Tateyama Caldera Sabo Museum, 68 Ashikuraji-bunazaka, Tateyama-machi, Toyama, 930-1405 

 

Correspondence to: Kenshiro Arie (kenshiroarie@gmail.com) 10 

Abstract. In 2012, three perennial snow patches in the northern Japanese Alps were determined to be very small glaciers 

(VSGs: <0.5km2). These were soon followed by four more nearby. However, it had not been determined how such glaciers 

could be maintained in such a warm climate. In this study, we calculate the annual mass balance, accumulation depth, and 

ablation depth of five of these VSGs, covering 2015–2019 for four of them (2017–2019 for the fifth) using multi-period digital 

surface models (DSMs) based on structure from motion–multi-view stereo (SfM–MVS) technology and images taken from a 15 

small airplane.  

The results indicate that, due to snow acquired from avalanches and snowdrifts, these VSGs are maintained by the 

accumulation in winter that is more than double that from the snowfall, thereby exceeding the ablation in summer. Therefore, 

we classify them as topographically controlled VSGs. We find very small yearly fluctuations in their ablation depth; however, 

their annual mass balance and accumulation depth have large yearly fluctuations. The annual mass balance, which mainly 20 

depends on the accumulation depth, showed accumulation throughout each glacier during heavy snow years and ablation 

throughout each glacier during light snow years. This characteristic differs from the upper accumulation area and lower 

ablation area that exists on most glaciers. These VSGs had a lack of positive annual mass balance gradient, which suggests 

that they are not divided by a distinct glacier ELA into an upstream accumulation area and a downstream ablation area. 

Moreover, comparing to other glaciers worldwide, we find the mass balance amplitude of glaciers in the northern Japanese 25 

Alps to be the highest measured to date. 

1 Introduction 

More than 100 perennial snow patches are distributed throughout the northern Japanese Alps (Higuchi and Iozawa, 1971), 

with some containing glacial ice as determined by the density (at least 830 kg m-3) (Sakita, 1931; Ogasahara, 1964; Tsuchiya, 

1978;  Kawashima et al., 1993; Kawashima, 1997). Since the 1960s, researchers have tried to determine which ones are glaciers, 30 

but the difficulty of measuring flow stymied the earlier efforts (Fukui et al., 2018). However, recently smaller, more accurate 

surveying instruments have been developed that allow the measurement of ice thickness using ground-penetrating radar. Using 

these instruments together with the cm-scale accuracy of global navigation satellite system (GNSS) surveys, several groups 
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measured the ice thickness and horizontal flow velocity of seven perennial snow patches in the region, finding them to be 

active glaciers, subsequently named Gozenzawa, Sannomado, Komado, Kakunezato, Karamatsuzawa, Kuranosuke, and 35 

Ikenotan (Fukui and Iida, 2012; Fukui et al., 2018; Arie et al., 2019). As they are less than 0.5 km2 in area, they are classified 

as very small glaciers (VSGs) (Huss, 2010; Huss and Fischer, 2016).  

In general, glaciers form and change in response to their mass balance, which is determined by the accumulation of 

primary snowfall and ablation of primary snow. Therefore, to understand the factors contributing to glacier formation and 

persistence, one must measure accumulation and ablation (Ohmura, 2010). Accumulation and ablation can be substituted by 40 

winter and summer balances (Ohmura, 2011). This approach should also apply to VSGs. 

The accumulation and ablation incorporate the geographical characteristics of glaciers, and are crucial for assessing 

the relationship between the climatic environment and glacier mass balance (Dyurgerov and Meier, 1999; Huss et al., 2008; 

Ohmura, 2011; Pelto et al., 2019). A related quantity is the mass balance amplitude, which Meier (1984; 1993) defines as half 

of the sum of the absolute values of the winter and summer mass balances. In the Glossary of Mass Balance and Related Terms 45 

(Cogley et al., 2011), the mass balance amplitude tends to be higher for glaciers in maritime climates than those in continental 

climates due to the former having higher accumulation.  

In the northern Japanese Alps, Fukui et al. (2018) measured the mass balance of the Gozenzawa Glacier using the 

stake, or glaciological, method. Their study indicated that the mass balance in 2012-2015 had accumulation throughout, 

whereas in 2015-2016, it had ablation throughout. The characteristic of accumulation or ablation throughout has also been 50 

reported in the VSGs in the European Alps (Colucci et al., 2021). In addition, they showed that avalanches contributed 

significantly to the accumulation of Gozenzawa Glacier. However, the stakes were measured only twice, in the autumns of 

2012 and 2016, the accumulation and ablation not being determined. For measuring accumulation and ablation, the stake 

method is not reliable in the northern Japanese Alps because the stakes are buried under heavy snowfall during winter. In some 

years, they remain buried even at the end of the snowmelt season. 55 

Although some characteristics of VSGs that persist in warm environments at middle latitudes (here: 36.57°–36.69°N) 

and low altitudes (here: 1,750–2,770 ⅿ) have been explored, the mechanisms by which the VSGs in the northern Japanese 

Alps are formed and maintained remain unclear. To clarify the mass balance characteristics of these VSGs, we measured the 

annual mass balance, accumulation depth, and ablation depth of five VSGs in the northern Japanese Alps using a geodetic 

method. The geodetic method obtains the change in volume by evaluating the elevation change of the entire glacier surface 60 

between two dates (Ohmura, 2010, 2011). This method has been used in recent years to measure the mass balance of many 

glaciers because it can obtain data for parts of the glacier that are difficult to access and observe on-site (Brun et al., 2016; 

Dussaillant et al., 2019; Vincent et al., 2021).  

Here, we calculate the annual mass balance, accumulation depth, and ablation depth of four VSGs in 2015–2019 and 

for one VSG in 2017–2019 by comparing multi-period digital surface models (DSMs) created using structure from motion–65 

multi-view stereo (SfM–MVS) software and aerial images taken from a small airplane. We also compare the mass balance 
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amplitude of VSGs in the northern Japanese Alps with those of other glaciers worldwide. In addition, we discuss the 

characteristics of the mass balance profile of VSGs based on the profile of the altitude changes. 

2 Study area 

The climate of the northern Japanese Alps is greatly influenced by the winter monsoon and Tsushima warm current in the Sea 70 

of Japan. During the winter monsoon, a dry cold air mass from the continent passes over the Tsushima warm current, gaining 

heat and water vapor, then undergoes topographic updraft, producing some of the heaviest snowfall worldwide over the 

northern Japanese Alps (Nosaka et al., 2019; Kawase et al., 2020). In addition, the winter eastwesterly winds supply much 

snow to the east side of the mountain ridge due to snowdrifts deposits (Suzuki and Sasaki, 2019). Over 80% of perennial snow 

patches are also distributed on the east side of the mountain ridge (Asahi, 2013). Based on the wind speed data at the near Mt. 75 

Hakubadake (2,932 m) observed during December in 2010, January, February, March in 2011 by the Research Center for 

Mountain Environment of Shinshu University, monthly average data of a maximum wind speed are 23.5, 34.9, 23.3, and 25.9 

m s-1 respectively. Wind directions are mainly west and northwest during the observation period. Moreover, an average 

monthly temperature in January 2011 observed at the same place is -18.0 ℃; an average temperature in July 2011 is 11.9 ℃; 

an average annual temperature in 2011 is -2.3 ℃. The average snow depth at Tateyama Murododaira (~2,450 m; Fig. 1), 80 

located at the west side of the mountain ridge, in March during 1996–2018 was about 6.8 m (Iida et al., 2018). 

In this study, we focus on five VSGs in the northern Japanese Alps (Fig. 1). Briefly, their characteristics and 

environments are as follows. The Gozenzawa Glacier (Fig. 2a) lies on the eastern side of Mt. Oyama (3,003 m), at the bottom 

of the north-eastern curve in the Gozenzawa valley. The Sannomado Glacier (Fig. 2b) lies at the bottom of the glacial trough 

erosion valley between the Sannomado and Hachimine ridges, and trends east–southeast. The Komado Glacier (Fig. 2b) lies 85 

at the bottom of the glacial trough erosion valley between the southeast side of Mt. Ikenotaira (2,561 m) and the Sannomado 

ridge, and trends east–southeast. The Kakunezato Glacier (Fig. 2c) is at the head of the glacial trough erosion valley extending 

northeast from the northern peak of Mt. Kashima-Yarigatake (2,842 m). The Karamatsuzawa Glacier (Fig. 2d) lies at the head 

of the glacial trough erosion valley extending northeast from the northern peak of Mt. Karamatsu (2,696 m). These glaciers 

are located at trough bottom surrounded by steep bedrock in the east part of the mountain ridge. This means snow avalanches 90 

and snowdrifts contribute largely to the accumulation of the entire glacier. 

The bedrock surrounding the Sannomado and Komado Glaciers is diorite, whereas that for the Gozenzawa and 

Kakunezato Glaciers is granite and that for the Karamatsuzawa Glacier is serpentine. These geological differences influence 

the differing amounts of sediment on the glacier surfaces. In particular, the Sannomado and Komado Glaciers are clean-type 

glaciers with little debris, whereas the Gozenzawa, Kakunezato, and Karamatsuzawa Glaciers have a debris-covered area in 95 

their middle and terminal regions during ablation years. 

For further details about these glaciers, see Table 1 (also, Fukui and Iida 2012; Fukui et al. 2018; Arie et al. 2019). 
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Figure 1 Seven glaciers in the northern Japanese Alps (names in bold font). 

Figure 2 The five very small glaciers (VSGs) in this study at the end of snowmelt season in 2016. a) Gozenzawa. b) 

Sannomado (left), Komado (right). c) Kakunezato (left). d) Karamatsuzawa. All taken on Sep. 30. 
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3.1 Methods 100 

3.1 Data acquisition 

We determine the altitude changes (annual, winter, summer) of the five glaciers by comparing multi-period DSMs created 

using aerial images and SfM-MVS software. The images were taken under clear weather with few clouds from a small Cessna 

aircraft at the end of the snowmelt season (late September to early October) and during the maximum snow depth season (late 

March to early April) from 2015 to 2019. These shooting days were 9 Oct. 2015, 16 Mar. and 30 Sep. 2016, 5 Apr. and 30 105 

Sep. 2017, 10 Apr. and 3 Oct. 2018, 18 Mar., and 16 Oct. 2019. 

The cameras were a Sony α7II (24.3 million pixels) from 2015 (end of snowmelt season) to 2018 (maximum snow 

depth season) and a Sony α7RII (42.4 million pixels) from 2018 (end of snowmelt season) to 2019 (end of snowmelt season). 

Images were taken every 2 s to obtain a complete view of the entire glacier and surrounding terrain from an altitude range of 

3,500–3,800 m. The AUTO mode was used from 2015 (end of snowmelt season) to 2017 (maximum snow depth season). 110 

From 2017 (end of snowmelt season) to 2019 (end of snowmelt season), we used a shutter setting of less than 1/1600 s, and 

an ISO of 100–200, with the F value set to automatic. The flight route first visits Gozenzawa, then Sannomado, Komado, 

Karamatsuzawa (from 2017), and Kakunezato Glaciers.  

The observation period included both light and heavy snow years. For 1996–2018, the measured snow depths at 

Tateyama Murododaira (2,450 m) were the lowest in 2016 and second-highest in 2017 (Iida et al., 2018). 115 

 

3.2 SfM-MVS analysis 

SfM is a calculation technique that allows automatic camera position determination in three-dimensional (3D) space. After 

estimating the camera positions, we use additional dense image-matching algorithms such as MVS to calculate the dense 3D 

point cloud of the surveyed object on an arbitrary relative scale (Piermattei et al., 2015). This relative scale must then be 120 

converted into an absolute scale to obtain geometric measurements using real-world coordinates or a known field distance (Dai 

et al., 2014).  

Table 1 Physical properties of the glaciers. Maximum depth and maximum horizontal velocity at Gozenzawa, Sannomado, Komado, 

Kakunezato Glacier were showed in Fukui et al. (2018). 

Glacier Gozenzawa Sannomado Komado Kakunezato Karamatsuzawa

Length（m） 760 1420 1270 740 1080

Maximum width（m） 200 110 210 250 150

Area（kｍ²） 0.074 0.101 0.109 0.087 0.103

Altitude range（m） 2510-2770 1760-2500 1910-2300 1800-2150 1750-2350

Average inclination（°） 18.9 27.5 17.1 25.3 26.1

Maximum depth（m） 27 48 30> 30> 35

Maximum horizontal velocity（m a-1） 0.63 3.65 3.77 2.39 3.15
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Creating a DSM is as follows. First, high-density point cloud data are created from continuous aerial images using 

SfM-MVS. Next, multiple (three or more) ground control points (GCPs) are defined in the created point cloud data and 

geometrically corrected. Finally, these corrected data are used to create a DSM. Setting the GCPs is the only manual work in 125 

this process because PIX4Dmapper automates the first and last steps.  

We set the GCPs using a DSM (resolution: 0.5 m) created from both aerial laser survey data (from the Ministry of 

Land, Infrastructure, Transport and Tourism) and orthophoto-corrected images of aerial images obtained at the time of the 

survey. The error in the height direction of the aerial laser survey data is 0.4–0.6 m in a region with large undulations (Sato et 

al., 2004). The aerial laser survey data are from the end of the snowmelt season in 2009 for the Sannomado and Komado 130 

Glaciers, in 2010 for the Kakunezato Glacier, in 2011 for the Gozenzawa Glacier, and in 2014 for the Karamatsuzawa Glacier. 

The GCPs were positioned to surround the glacier. At the end of the snowmelt season, the GCPs were set at long-term 

immovable and easy-to-read buildings and rocks. In the maximum snow depth season, GCPs were set at an exposed rock wall 

without snow at the same location for each image. Figure 3 shows the locations of GCPs for each glacier and period. The 

numbers of GCPs for each glacier at the end of the snowmelt season are 17 at Gozenzawa Glacier, 28 at Sannomado and 135 

Komado Glaciers, 17 at Kakunezato Glacier, and 17 at Karamatsuzawa Glacier. For the maximum snow depth season, these 

numbers are instead 5, 6, 5, and 7, respectively. 

 

Figure 3 Glacier area and GCP locations for each glacier and season. a) Gozenzawa. b) Sannomado (lower), Komado 

(upper). c) Kakunezato. d) Karamatsuzawa. Black line of d is the GPS survey line. Contour interval is 10 m. 
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3.3 Geodetic mass balance determination 140 

In the geodetic method, the mass balance of glaciers is estimated by the change in volume as judged by comparing the DSMs 

for two periods and multiplying the result by the estimated ice density (Huss, 2013; Piermattei et al., 2016). This estimated 

relative volume change equals the surface mass balance plus the vertical component of glacier flow (i.e., the emergence 

velocity). Therefore, to express the surface mass balance, one integrates the relative volume change for the entire glacier to 

remove the vertical flow component (Ohmura, 2010). The resulting mass balance B is  145 

 

B = (δV × ρ)/A ,                                 (1) 

 

where B is expressed in m of water equivalent (m weq), δV is the relative volume change (m3), ρ is the snow and ice density 

(kg m-3), and A is the glacier area (m2).  150 

For the calculation of annual mass balance, we compare DSMs from the end of one snowmelt season to the end of 

the next to determine annual δV. The area A is determined at the end of the snowmelt season, an approach called a stratigraphic 

system (Cogley et al., 2011). The aerial images were taken just before the snow falls at the end of snowmelt season based on 

the stratigraphic system. However, the date has a gap of several days from a day before the snow falls, due to flight schedule 

and weather conditions.  155 

Here, differences between DSMs were calculated using a geographic information system (GIS). For the ice density, 

the average value for Gozenawa was 695 kg m-3 in the top 0.7 m (570–740 kg m-3) and 860 kg m-3 at depths below 0.7 m (824–

907 kg m-3) at the end of the snowmelt season (Fukui et al., 2018). In the perennial snow patches of Japan, snow transitions to 

glacier ice during a one-year period (Kawashima 1997); therefore, the layer between the snow surface and a depth of 0.7 m 

consists of residual snow from the previous winter, whereas the deeper layer consists of ice formed earlier. For annual mass 160 

balance calculations for all glaciers, we used a snow and ice density of 695 kg m–3 if the balance was positive and 860 kg m–3 

if the balance was negative.  

We also compared DSMs created for the maximum snow depth season with those for the end of the snowmelt season 

and calculated the change in relative volume during the accumulation and ablation seasons. The accumulation and ablation 

depth are calculated by one integrates the relative volume change for the entire glacier area. Due to the uncertainty of the 165 

winter snow density, including avalanche deposits, it is difficult to calculate the exact winter and summer balance. At Tateyama 

Murododaira, which is flat and not affected by the topographical influence of avalanches and snowdrifts, Iida et al. (2018) 

measured the density in the snow-cover cross-sections in late March 1996–2018, getting an average of 431 kg m–3. In Japanese 

mountains, the snow density of avalanche deposits is larger than that of snowfall snow layers ( Naruse et al., 1986; Abe et al., 

2016). In the northern Japanese Alps, the density of avalanche deposits is 590 kg/m3 (Shimizu et al., 1974). Therefore, we 170 

calculate the winter and summer balances using the winter snow density in the range of 431 to 590 kg/m3 and change in relative 

volume during the accumulation and ablation seasons.  
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We apply these calculations for the Gozenzawa, Sannomado, Komado, and Kakunezato Glaciers in 2015-2016, 

2016-2017, 2017-2018, and 2018-2019, as well as for the Karamatsuzawa Glacier in 2017-2018 and 2018-2019. For each 

glacier, the mass balance calculation uses the glacier area when this area was smallest for five years. This occurred on October 175 

16, 2019, for Gozenzawa, Sannomado, Komado, and Karamatsuzawa Glaciers and on September 30, 2016, for Kakunezato 

Glacier.  

3.4 Data accuracy 

Following the method in Immerzeel et al. (2014), we estimate the error for the annual mass balance at the end of the snowmelt 

season by first creating a 10-m-wide buffer zone around the outside of the glacier area on the base area (Fig. 4). Then, we 180 

calculate the geodetic annual mass balance error as the mean and standard deviation (SD) of the altitude difference in the buffer 

zone.  

However, because the base area is covered with snow during winter, we must use a different method to estimate the 

accumulation and ablation depth error. For this estimate, we ran kinematic GPS surveys of Karamatsuzawa Glacier and the 

ridges of Mts. Karamatsu and Happoike-Sanso one day after the aerial photography (Fig. 3). We then equate the geodetic 185 

seasonal mass balance error as the SD of the altitude difference between the measured kinematic GPS data for March 19 and 

the DSM of Karamatsuzawa Glacier on March 18, both in 2019. The GPS surveying instrument was GEM-1 (Enabler; formerly 

GNSS Technologies), with calculated coordinates of the GPS antenna and post-processing using the open-source program 

RTKLIB (ver. 2.4.3) with the base station data of the ‘Hakuba’ electronic reference point of the Geospatial Information 

Authority of Japan (Fig. 1). 190 

Figure 4 Glacier area and 10-m-wide buffer zone used for uncertainty estimate. a) Gozenzawa. b) 

Sannomado and Komado. c) Kakunezato. d) Karamatsuzawa. Contour interval is 10 m. 
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3.5 Mass balance amplitude 

The mass balance amplitude (α) equals the average of the absolute values of the winter (Bww) and summer (Bss) balances:  

 

α = (|Bw | + | Bs |)/2.                                   (2) 

Using this equation (2) with winter and summer balances that calculated during 2015–2019, we estimate the mass 195 

balance amplitude for the Gozenzawa, Sannomado, Komado, and Kakunezato Glaciers. We then compare these four-year 

averages to the average mass balance amplitude of other glaciers worldwide. The worldwide glaciers were all glaciers observed 

for periods longer than 5 years according to the "fluctuations of glaciers" database of the World Glacier Monitoring Service 

(World Glacier Monitoring Service (WGMS), 2020). Glacier locations are shown in Fig. 5. 

 200 

3.6 Mass balance profile and emergence velocity 

On many glaciers, the amounts of ablation and accumulation vary systematically with altitude and thus the mass balance has 

an altitude profile, and the rate at which mass balance changes with altitude is termed mass balance gradient (Benn and Evans, 

2014). In general, the amount of ablation and accumulation increases with altitude due to the decrease in temperature. 

We divided each glacier region into 10-m altitude intervals and calculated the profile of altitude changes (annual, 205 

winter, summer) using the altitude changes of each interval. This was done for the Gozenzawa, Sannomado, Komado and 

Kakunezato Glaciers because they were observed for four years. However, due to altitudinal changes calculated by the geodetic 

Figure 5 Glacier locations used for comparison of winter and summer balances (from WGMS, 2020). All glaciers had 

been observed for periods longer than 5 years. The numbers of glaciers in each region are: 51 in Alps, 7 in Andes, 3 in 

Antarctic, 3 in Arctic North America, 3 in Caucasus, 2 in Dry Valley, 5 in Greenland, 13 in high mountain Asia (HMA: 

Tien Shan, Altai, Qilian), 12 in Iceland, 2 in Kamchatka, 3 in New Zealand, 38 in Scandinavia, 9 in Svalbard, 2 in Urals, 

27 in western North America． 
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method include both the surface mass balance and the emergence velocity (as explained at 3.3). Thus, we assessed the profile 

including the influence of estimated emergence velocity.  

The emergence velocity (Ve) is expressed using the flux method as  210 

 

Ve = (Qin – Qout)/(W× x) ,                            (3) 

 

where Q is the ice flux into and out of the target area, W is the average glacier width, and x is the longitudinal length of the 

target area (Nuimura et al., 2011).  215 

The ice flux at the boundaries of the target area is  

 

Q = W × h × v,                                 (4) 

 

where W, h, and v are the glacier width, depth, and flow velocity  (Nuimura et al., 2011). For the Karamatsuzawa Glacier, we 220 

measured W and v, and use the depth measurement from an earlier study (Arie et al., 2019). For the flow v, we measured the 

stake locations on 22 October, 2019 using a GEM-3 GNSS surveying instrument (Enabler) and then calculated the annual flow 

by comparing to their locations in 2018 (Arie et al., 2019). The earlier study had inserted 4.6-m-long stakes at five points on 

the glacier (Fig. 6, P1–5) and used GNSS surveyors to measure the stake locations on 23 October 2018 (As a check, we also 

compared a base point located near the glacier terminus (Fig. 6, P6) between 2018 and 2019). With the five flow measurements, 225 

we determine Ve. We then use the maximum value as the mass balance profile error for four glaciers.  
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4 Results  

4.1 Data accuracy   230 

For the different DSMs, the SD of differences in slope within the 10 m buffer zone around the glacier area increases with the 

slope of the terrain, particularly above 60°, as shown in Fig. 7a. Such an increase is consistent with the finding of Piermattei 

et al. (2016). However, regions with a slope below 65° account for over 75% of the total buffer area (Fig. 7b).  

Thus, we evaluated the value in the region of the polygon with an inclination of 65° or less. Table 2 shows that all 

mean and SD values are below 1 m, except for 2018-2019 on Komado Glacier where the SD is 1.11 m. As the glacier slopes 235 

and buffer regions sloped less than 65°, the annual mass balance calculation method has sufficient accuracy. 

To evaluate DSM accuracy during the maximum snowfall season, the day after obtaining aerial images for this season, 

we obtained surface altitude data via a kinematic GPS survey. The survey was done when a researcher attached a GPS antenna 

to their pack, then walked the ridge between Karamatsudake and Happoike Sanso, then snowboarded down Karamatsuzawa 

Glacier. The mean and SD of the altitude differences between the Karamatsuzawa Glacier DSM (March 18, 2019) and that 240 

from the GPS data (March 19, 2019) are 1.89 and 1.73 m, respectively. Assuming an average height of 1.5 m from the ground 

Figure 6 Target area for emergence velocity estimation and flow measurement 

point in the Karamatsuzawa glacier. Contour interval is 10 m. 



12 

 

to the antenna (on the pack), the mean and SD of the altitude difference between the DSM and GPS survey data are 0.39 and 

1.73 m, respectively. We used this SD value as the altitude-difference error for the winter and summer seasons.  

  

Figure 7 Comparison of the DSMs for the end of the 2017 and 2018 end of snowmelt seasons. a) The standard deviation SD of 

differences in slope between the different DSMs used. b) The number of pixels within the 10 m buffer around the glacier area. 

Shaded band along abscissa axis is the range of average slopes of the five glaciers. 

Table 2 Mean and SD of the altitude differences (m) in the DSMs for the 10-meter-wide polygon around each glacier with an 

inclination of 65° or less in the given years. In parentheses are the mean slopes in the 10-meter-wide polygon around each glacier. 

Mean SD Mean SD Mean SD Mean SD Mean SD

2015-2016 0.10 0.55 -0.81 0.96 -0.66 0.87 -0.60 0.85

2016-2017 -0.15 0.30 0.38 0.99 0.37 0.73 -0.12 0.79

2017-2018 -0.04 0.33 -0.06 0.90 -0.01 0.81 -0.33 0.62 -0.06 0.89

2018-2019 0.20 0.29 -0.37 0.85 -0.08 1.11 -0.28 0.74 0.29 0.81

Average 0.03 0.37 -0.22 0.93 -0.10 0.88 -0.33 0.75 0.12 0.85

year
Gozenzawa（31°） Sannomado（44°） Komado（43°） Kakunezato（36°） Karamatsuzawa（42°）
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4.2 Mass balance  245 

For all glaciers, the annual mass balance is negative in all years except 2016-2017 (Table 3), a heavy snow year. All glaciers 

are also consistent in all having their largest mass reduction in 2015-2016, a light snow year. In this year, the ablation area 

extends throughout each glacier (first column, Fig. 8), whereas in the heavy snow year that followed (2016-2017), each glacier 

is entirely an accumulation area (second column, Fig. 8). These characteristics agree with Fukui et al.'s (2018) findings for the 

Gozenzawa Glacier. 250 

For the accumulation depth, the values for all glaciers are 13-30 m, as shown in Table 4. We can compare this value 

to the average snow depth of 6.8 m on Tateyama Murododaira (1996–2018) (Iida et al., 2018). Unlike the glaciers, the terrain 

at Tateyama Murododaira (2,450 m) is flat and not affected by the topographical influence of avalanches and snowdrifts. But 

in the northern Japanese Alps, the glaciers had an accumulation depth a winter balance of 13-30 m, or over 2-4 times as much 

as the snow depth at Tateyama Murododaira. Presumably, this additional accumulation is from avalanches and snowdrifts. 255 

Between the light and heavy snow years, the accumulation depth increases by about 8-11 m (Table 4), whereas their 

ablation depth remains about the same. This difference in behaviour between summer and winter can be seen to occur 

throughout the four-year period in the plots in Fig. 9. Namely, the ablation depth is much less variable compared to the 

variations in the annual mass balance and accumulation depth. 

The cumulative mass balances are shown in Fig. 10. From 2015 to 2019, the trends show a significant mass loss, 260 

decreasing by 4-5 m weq for the Gozenzawa and Kakunezato Glaciers, which had debris cover. For the Sannomado and 

Komado Glaciers, which did not have debris cover, the loss is larger, at 7-9 m weq. The Karamatsuzawa Glacier also has a 

significant mass loss, though the period covered is only three years (2017-2019). These balances are closely correlated between 

the five glaciers over this period (Figs. 9 and 10). 
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265 

Table 3 Relative altitude change, and annual mass balance of each glacier calculated from comparison of the DSMs at the end of 

snowmelt season. Corrected data were calculated using Mean and SD in Table 2. We subtract the mean value of the difference in 

the buffer zone from the value of the difference on the glaciers. The SD of buffer zone is used as the error (±). 

Original Corrected Original Corrected

2015-2016 -3.45  -3.55 ± 0.55 -2.98  -3.06 ± 0.47

2016-2017 1.80  1.95 ± 0.30 1.31   1.41 ± 0.21

2017-2018 -1.80  -1.76 ± 0.33 -1.55  -1.51 ± 0.28

2018-2019 -1.30  -1.50 ± 0.29 -1.12  -1.29 ± 0.25

Original Corrected Original Corrected

2015-2016 -7.97  -7.16 ± 0.96 -6.89  -6.19 ± 0.83

2016-2017 3.58 　3.20 ± 0.99 2.45 2.19 ± 0.69

2017-2018 -1.09  -1.03 ± 0.90 -0.97  -0.92 ± 0.77

2018-2019 -3.67  -3.30 ± 0.85 -3.20  -2.88 ± 0.73

Original Corrected Original Corrected

2015-2016 -7.82  -7.16+0.87 -6.75  -6.18 ± 0.75

2016-2017 2.71 　2.34 ± 0.73 1.86 1.60 ± 0.51

2017-2018 -0.80  -0.79 ± 0.81 -0.71  -0.70 ± 0.70

2018-2019 -3.97  -3.89 ± 1.11 -3.46  -3.39 ± 0.95

Original Corrected Original Corrected

2015-2016 -5.71  -5.11 ± 0.85 -4.91  -4.39 ± 0.73

2016-2017 3.54 　3.54 ± 0.79 2.46 2.54 ± 0.79

2017-2018 -2.19  -2.19 ± 0.62 -1.88  -1.59 ± 0.53

2018-2019 -1.92  -1.64 ± 0.74 -1.65  -1.41 ± 0.64

Original Corrected Original Corrected

2017-2018 -1.27  -1.21±0.89 -1.09  -1.04±0.77

2018-2019 -2.08  -2.37±0.81 -1.79  -2.04±0.70

Karamatsuzawa

Year
Relative altitude change (m) Annual mass balance (m weq)

Komado

Year
Relative altitude change (m) Annual mass balance (m weq)

Kakunezato

Year
Relative altitude change (m) Annual mass balance (m weq)

Year
Relative altitude change (m) Annual mass balance (m weq)

Sannomado

Year
Relative altitude change (m) Annual mass balance (m weq)

Gozenzawa
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Figure 8 Annual altitude changes of each glacier and year. a) Gozenzawa. b) Sannomado 

(lower), Komado (upper). c) Kakunezato. d) Karamatsuzawa. 

Table 4 Accumulation and ablation depth (m). 

Accumulation Ablation Accumulation Ablation Accumulation Ablation Accumulation Ablation Accumulation Ablation

2015-2016 13.16 -16.61 17.49 -25.46 15.53 -23.35 19.45 -25.16

2016-2017 20.80 -18.92 28.90 -25.32 24.28 -21.57 29.51 -25.97

2017-2018 17.73 -19.53 22.35 -23.44 21.80 -22.60 23.08 -25.27 22.70 -23.97

2018-2019 16.61 -17.91 23.44 -27.11 20.84 -24.81 24.39 -26.31 23.99 -26.07

Average 17.08 -18.24 23.05 -25.33 20.61 -23.08 24.11 -25.68 23.35 -25.02

SD 2.73 1.11 4.06 1.30 3.19 1.18 3.61 0.48 0.65 1.05

Year
Gozenzawa Sannomado Komado Kakunezato Karamatsuzawa
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Figure 9 Annual mass balance, accumulation depth, and ablation depth of each glacier in 2015-2019. 

Figure 10 Cumulative mass balance of each glacier with baseline on 2015 data (2017 for Karamatsuzawa). 
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4.3 Mass balance amplitude  280 

The mass balance amplitudes of these four glaciers, are much higher than glaciers studied elsewhere, even in the case of the 

snow density at Tateyama Murododaira is 431 kg/m³. We plot the comparison in Fig. 11. In general, the mass balance 

amplitudes of glaciers in polar regions and HMA (high mountain Asia) are low, and those for glaciers in maritime climates 

such as New Zealand and Kamchatka are higher (Cogley et al., 2011). One exception to this trend is the relatively high value 

for glaciers in the Urals, despite their dry, cold climate. The SD of the annual mass balance increases linearly with the mass 285 

balance amplitudes as shown in Fig. 12.  

 

 

Figure 11 Mass balance amplitudes of glaciers. 
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4.4 Emergence velocity of VSGs in the northern Japanese Alps 290 

The measurement error of the GNSS survey was set at 0.07 m, according to annual migration relative to a base point near the 

glacier terminal. The annual flow of Karamatsuzawa Glacier is shown in Table 5; all measurements exceeded the error level 

of 0.07, indicating significant flow. Using the measured results for the Karamatsuzawa Glacier (Table 5), we find the 

emergence velocity in the different target areas to range from –0.04 to 0.16 m a-1.  

 In the Changri Nup glacier in Nepal, the emergence velocity of the glacier terminus is about 0.37 m a-1  against an 295 

average horizontal velocity of 9.7 m a-1 (Vincent et al., 2016). In the Argentière Glacier in the French Alps, the emergence 

velocity of the glacier terminus is 3-6 m a-1 against a horizontal velocity of 35-60 m a-1 (Vincent et al., 2021). As shown in 

these references, the emergence velocity is less than a tenth of the horizontal velocity on the glacier surface. In the case of 

VSGs in the northern Japanese Alps, the horizontal velocity is less than 4 m a-1, and the emergence velocity is estimated to be 

extremely small. Therefore, the profile of altitude change shows the characteristics of a mass balance profile (next chapter 4.5). 300 

Figure 12 Standard deviation of annual mass balance versus mass balance amplitude. 
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4.5 Mass balance profile  

We now examine the profiles of altitude changes of the four VSGs studied during 2015–2019. Consider the gradient trends of 

these profiles of altitude changes in summer, as shown at left in Fig. 13. The gradients of altitude changes in summer for 

Sannomado and Komado Glaciers are positive, consistent with those of a typical glacier. On the other hand, the profiles of the 305 

Gozenzawa and Kakunezato Glaciers are nearly flat, particularly in 2015-2016, where it is negative for the Kakunezato Glacier. 

These glaciers differ from the other two by having a debris-covered area in their downstream parts in ablation years, such as 

the light snow year of 2015-2016. In general, most glaciers have a positive gradient in both summer and winter, the balance 

increasing with altitude due to the decrease in temperature. Thus, this trend is consistent with the VSGs here for cases with 

little-to-no debris cover, but not for cases having a debris-covered area downstream in ablation years.  310 

Now consider the gradient trends of these profiles of altitude changes in winter winter balance. In contrast to the usual 

trend for a larger glacier, the profiles of altitude changes in winter of these four VSGs are roughly zero or negative. In the light 

snow year of 2015-2016, the gradient trends of the four glaciers are nearly zero. Even in the heavy snow year of 2016-2017, 

the gradient of winter balance of the Kakunezato Glacier is nearly zero. Differing even more from mountain glaciers in the 

world, the gradients of altitude changes in winter of Gozenzawa, Sannomado, and Komado Glaciers are negative in the heavy 315 

snow year. Another common feature of the altitude changes in winter of these VSG is that their altitude changes in winter are 

always significantly larger than the average snow depth of the Murododaira (2.93 m weq: Iida et al., 2018). Moreover, 

compared to the profiles of altitude changes in summer, those in winter have much greater year-to-year variation. 

On the right side of Fig. 13, we show profiles of annual altitude changes. The gradients vary significantly by year and 

by glacier. For the Sannomado and Komado Glaciers, the gradients are positive in the light snow year of 2015-2016 and 320 

negative in the heavy snow year of 2016-2017. For the Gozenzawa Glacier, the gradient is slightly negative in all years, 

whereas the gradient for the Kakunezato Glacier is negative in the light snow year and positive in the heavy snow year. Thus, 

the gradients of the annual altitude changes of the four VSGs differ from the positive trend for typical glaciers and show 

significant variation between themselves.  

  325 

Table 5 Analyses results of the Karamatsusawa Glacier. Regions refer to Fig. 6. 

P1 P2 P3 P4 P5 a b c d

Flow Velocity (m a-1) 1.90 2.32 2.03 2.14 2.20

Ice thickness (m) 28 35 28 27 28

Width (m) 106 72 92 90 86

longitudinal length of target area (m) 60 47 40 40

Mean width of target area (m) 89 82 91 88
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Figure 13 Profiles of the altitude changes of Gozenzawa, Sannomado, Komado, Kakunezato Glaciers. The 

green line is the average snow depth of the Murododaira (6.8 : Iida et al., 2018). 
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5 Discussion  

5.1 Mass balance characteristics of VSGs in Japan: comparison to other glaciers  

We reported on our measurements of the accumulation depth, ablation depth, and continuous annual mass balances of the 

recently classified VSGs in Japan. To help understand their behaviour, we compared them with previously reported 330 

measurements of other glaciers worldwide. In general, the glacier mass balance amplitude increased from polar, to continental, 

and then to maritime climates. An exception to this trend was the Ural glaciers, which appeared to have anomalously high 

amplitude for their dry, cold climate. The Urals have small glaciers that inhabit valley bottoms, where the large effects of 

topography (avalanche and snowdrift) are localized (Dolgushin, 1961), leading to higher mass balance amplitudes (Dyurgerov 

and Meier, 1999). Like the VSGs studied here, the glaciers in the Urals are located at high latitude, and lie in narrow cirques, 335 

gaining much of their mass through avalanches or snowdrifts. However, while the Urals are located at a colder environment 

and dry, the northern Japanese Alps has some of the heaviest snowfall in the world. Steep bedrocks surrounding VSGs cause 

avalanches and the avalanches supply to much snow at the trough bottom. In addition, strong northwesterly winds through 

winter supply to much snow in the east part of the mountain ridge due to snowdrift. This combination of heavy snowfall, strong 

northwesterly winds (snowdrift), and narrow valleys (avalanche) may explain why the mass balance amplitude of VSGs in 340 

Japan was found to be higher than the other glaciers worldwide (Fig. 11). In addition, Braithwaite and Hughes (2020) showed 

that the mass balance amplitude correlated with summer temperature, which is also relatively high in the northern Japanese 

Alps. In addition, we found the standard deviation of the annual mass balance to be nearly proportional to the mass balance 

amplitude (Fig. 11), with the result that VSGs in Japan have a variation in annual mass balance higher than the other glaciers 

worldwide. 345 

Why do the glaciers exist here? The high accumulation depth is probably a major factor. We found the winter balance 

of VSGs in Japan to be the highest of all investigated glaciers worldwide to date, being more than double those of the 

Kamchatka glaciers, the second highest. However, despite the very heavy snowfall here, the winter snowfall cannot keep pace 

with the rapid snowmelt in summer, and hence the perennial snow patches form only where avalanches and snowdrifts deposit 

significant snow (Higuchi, 1968). Here, the VSGs receive more than double the snowfall depth due to recharge from avalanches 350 

and snowdrifts. This source of snow is thus the reason five VSGs located in the altitude range of 1750–2770 m can exist in 

such a warm climate in mid-latitude.  

Concerning the yearly fluctuations in mass balance, the ablation depth of the VSGs here is relatively constant, whereas 

the accumulation depth and annual mass balances fluctuate significantly from year to year (Fig. 9). This result indicates that 

the variable accumulation depth dominates the behaviour of the annual mass balance of VSGs in Japan. Higher mass balance 355 

amplitudes result in the annual mass balance having lower sensitivity to the summer balance and higher sensitivity to the winter 

balance (Dyurgerov and Meier, 1999).  
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The profiles of these altitude changes were found to differ from those typical of glaciers elsewhere. A typical glacier 

consists of an upstream accumulation area and a downstream ablation area, separated by an equilibrium line altitude (ELA), a 

structure that produces a positive gradient in the annual mass balance. Even if the glacier can become an ablation area 360 

throughout due to recent climate change effects (e.g., the Ålfotbreen Glacier (Bjarne Kjøllmoen (Ed.) et al., 2019)), the glacier's 

gradient can remain positive (Oerlemans and Hoogendoorn, 1989). In these cases, the ELA can be defined above the glacier 

altitude range. In contrast, we found that the gradients of altitude changes in the summer of VSGs in Japan vary greatly in light 

or heavy snow years, often being near zero or negative. Although the Sannomado and Komado Glaciers had positive summer 

gradients, the Gozenzawa and Kakunezato Glaciers, where debris-covered areas appear in the downstream parts of the glacier 365 

in light snow years, did not. Suppression of melting in the downstream parts in these cases is probably due to their debris cover 

(e.g., Nicholson and Benn, 2006). In addition, the gradients of altitude changes in winter of VSGs in Japan did not have a 

positive gradient. We argued that this property of the VSGs is probably due to the significant effect of avalanches and snowdrift, 

which can be greater downstream. As a result, the gradient of the annual altitude changes of VSGs in Japan can be negative. 

Furthermore, the annual mass balances were negative (ablation-area throughout) most years, being positive (accumulation-370 

area throughout) for all VSGs only in the heavy snow year. Taken together, these results suggest that VSGs in Japan are not 

divided by a distinct glacier ELA into an upstream accumulation zone and a downstream ablation zone.  

5.2 Climate sensitivity of VSGs in Japan 

The VSGs in Japan persist where the accumulation depth is more than double the snowfall depth due to avalanche and 

snowdrift deposit. Thus, of the two types of VSGs (Kuhn 1995), the VSGs in Japan can be classified as topographically 375 

controlled VSGs.  

Generally, VSGs are more sensitive and react faster to climatic change than larger glaciers (Hoelzle et al., 2003; 

Hoffman et al., 2007; Jóhannesson et al., 1989). However, the responses of individual VSGs to changes in climatic forcing 

depend on the site, being influenced by topographic factors, feedbacks, and non-linearities (e.g., Carturan et al., 2013; Kuhn, 

1995; López-Moreno et al., 2006). Like the VSGs here, other topographically controlled VSGs tend to have annual mass 380 

balances strongly correlated with the winter balance and weakly correlated with the summer balance (De Marco et al., 2020; 

Hughes, 2009; Huss and Fischer, 2016; Pecci et al., 2008). Huss and Fischer (2016), modelling the climate sensitivity of 1,133 

VSGs in the Swiss Alps, argued that most VSGs in the Swiss Alps would disappear by 2060. However, they reported that the 

topographically controlled VSGs are less sensitive to temperature fluctuations and thus some may survive future warming. 

The lower sensitivity of topographically controlled VSGs to temperature rise has also been reported in the Eastern Alps 385 

(Carrivick et al., 2015) and Canadian Rockies (DeBeer and Sharp, 2009).   

To help understand how these topographically controlled VSGs in Japan may respond to climate, we consider their 

high sensitivity to the accumulation depth. Their dependence on accumulation depth suggests a dependence on snowfall depth 

variation. How has snowfall depth changed over recent years? Yamaguchi et al. (2011) made meteorological observations in 
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the alpine zone of central Japan, finding no decreasing trend in snow depth in the alpine zone for 1990–2010, yet large yearly 390 

fluctuations. (Suzuki and Sasaki, 2019) found similar results for 2002–2017. Regional climate projections using a high-

resolution non-hydrostatic regional climate model (NHRCM) with 5-km resolution and 1 km grid spacing concluded that the 

amount of snow in the northern Japanese Alps will decrease if the temperature rises by 2 ○K (Kawase et al., 2020). 

If the non-decreasing trend in snow depth continues, VSGs in Japan should persist like other topographically 

controlled VSGs worldwide. On the other hand, a temperature rise, and snow-depth decrease would deplete these VSGs, which 395 

are already less than 50 m thick. If glacier shrinkage continues at the same rate as that in 2015–2019, the VSGs will probably 

transform into perennial snow patches and then vanish. 

Understanding variation in the annual mass balance of a glacier requires measurements of the seasonal balance for at 

least 30 years (Ohmura, 2010). As this study covered only four-years, further mass balance observations of the VSGs in Japan 

are needed. 400 

6 Conclusion 

In this study, we calculated the annual mass balances, accumulation depth and ablation depth of VSGs in the northern Japanese 

Alps using a geodetic method based on SfM–MVS technology and aerial images. Their ablation depth showed very small 

yearly fluctuations, whereas they had large yearly fluctuations in the accumulation depth and annual mass balance. Therefore, 

their annual mass balance was dominated by their accumulation depth. The annual mass balance of the entire area represented 405 

an accumulation area during a heavy snow year and an ablation area during a lighter snow year. These characteristics differ 

from those of a typical glacier, which instead have both an upstream accumulation area and a downstream ablation area, 

separated by a glacier ELA. Moreover, VSGs in Japan had a lack of positive annual mass balance gradient, which suggests 

that they are not divided by a distinct glacier ELA into an upstream accumulation area and a downstream ablation area during 

the observation period.  A comparison of the mass balance amplitudes of VSGs in Japan with those of other glaciers worldwide 410 

showed that mass balance amplitude increased from polar to continental to maritime climates. The VSGs studied here had the 

highest mass balance amplitudes, probably due to the warm climate at mid-latitude with very heavy snowfall and recharged 

avalanche and snowdrift deposits. For this reason, we classified them as topographically controlled VSGs.  

Like other topographically controlled VSGs worldwide, the VSGs in Japan showed relatively low sensitivity to 

summer balance fluctuation. However, if the amount of snow in Japan were to decrease due to climate change, these VSGs 415 

would probably respond within 10–20 years by significantly shrinking, transforming into perennial snow patches, and then 

vanishing. Before they experience such climate changes, they should be continually observed for at least 30 years to better 

predict their future development. 
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