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Abstract: The High Resolution Snow & Ice Monitoring Service was launched in 2020 to provide near real time, pan-European 10 

snow and ice information at 20 m resolution from Sentinel-2 observations. Here we present an evaluation of the snow detection 11 

using a database of snow depth observations from 1764 stations across Europe over the hydrological year 2016-2017. We find a 12 

good agreement between both datasets with an accuracy (proportion of correct classifications) of 94% and kappa of 0.81. More 13 

accurate (+6% kappa) retrievals are obtained by excluding low quality pixels at the cost of a reduced coverage (-13% data). 14 

1 Introduction 15 

The snow cover area, defined as the spatial extent of the snow cover on the land surface (Fierz et al., 2009), is a key variable in 16 

many hydrology, climatology and ecology studies. Earth observation satellites have been used to routinely map the snow cover 17 

area at continental scale since the late 1960s (Matson and Wiesnet, 1981). Such observations are increasingly used for 18 

meteorological, climate, hydrological, ecosystem and natural hazards applications. The Committee on Earth Observation Satellites 19 

has listed nineteen operational remote sensing products which provide information on the spatial extent of the snow cover either 20 

as binary (snow/no-snow) or fractional (snow covered fraction of the pixel area) representation. However, most of them have a 21 

spatial resolution of 500 m and above, and therefore do not meet a range of user needs both for science and operational applications 22 

(Malnes et al., 2015). Previous studies suggest that the spatial scale of variability of snow depth is less than 100 m (e.g. Trujillo et 23 

al., 2007; Mendoza et al., 2020). In snow dominated catchments, a fine description of snow cover properties distribution is 24 

important to compute snow melt (Freudiger et al., 2017). High resolution snow cover maps reflect the spatial heterogeneity of the 25 

snow cover properties and therefore can be assimilated to improve snow water equivalent estimation (Margulis et al., 2016; Baba 26 

et al., 2018). High resolution snow cover maps are also critical to understand plant species distribution in alpine and arctic 27 

ecosystems (Dedieu et al., 2016; Niittynen and Luoto, 2018). In the disaster management sector, high spatial and temporal 28 

resolution snow products down to 50 m resolution were requested by road and avalanches authorities (Malnes et al., 2015). High 29 

resolution snow cover maps can also be useful for outdoor activities. 30 

On behalf of the European Commission, the European Environment Agency has commissioned the development and real-time 31 

production of the Copernicus High Resolution Snow & Ice products (HRSI), including a snow cover component to address these 32 

needs. In particular, this service provides a canopy-adjusted Fractional Snow Cover (FSC) at 20 m resolution along with a cloud 33 

and cloud shadow mask and quality flags. The products are derived from Sentinel-2 observations, resulting in a revisit time less or 34 

equal to five days. The products are distributed with a maximal latency of 3 hours after the availability of the level 1C product in 35 

the Sentinel-2 mission ground segment, which means that they are generally available on the same day as the sensing time. The 36 
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products are computed using MAJA (atmospheric correction and cloud detection) and LIS (snow detection and snow fraction 37 

calculation) software (Hagolle et al., 2015; Gascoin et al., 2019). The performance of the snow detection with this processing 38 

pipeline was previously evaluated over the French Alps and Pyrenees using snow depth records at 120 stations from the Météo-39 

France database (Gascoin et al., 2019). The accuracy (proportion of correct classifications) was 94 % (κ = 0.83), with a higher false 40 

negative rate than the false positive rate. However, this evaluation was spatially limited to 10 Sentinel-2 tiles in France (a tile is 41 

110 km by 110 km), whereas the HRSI products cover 1054 Sentinel-2 tiles over 39 countries in Europe. Any operational snow 42 

cover detection algorithm applied to optical multispectral imagery is challenged by spectral similarities between clouds and the 43 

snow cover (Stillinger et al., 2019), forest cover obstruction (Xin et al., 2012) and lack of solar irradiance during the winter 44 

particularly in mountain regions (due to shading from the surrounding slopes) and high latitude regions (due to low sun elevation). 45 

These factors vary significantly across Europe and could have been misrepresented by the former evaluation. In the aim of 46 

providing a more robust assessment of the snow product reliability to users of the service, we report here on a much more extensive 47 

evaluation using 1764 stations from 36 countries, covering a wider range of climate and topographic conditions. This evaluation 48 

was made possible thanks to a massive processing of the Sentinel-2 archive using MAJA and LIS to generate the HRSI collection 49 

(about 600’000 products, i.e. 500 Terabytes of input data).  50 

2 Data and Methods 51 

2.1 In situ data 52 

The evaluation database was prepared by merging two datasets of in situ snow depth (height of snow, HS) measurements. First, 53 

we extracted daily snow depth measurements of 1094 SYNOP data (WMO automatic weather station) covering 36 countries. Then, 54 

we selected daily data from a recent compilation of snow depth measurements in the Alps (Matiu et al., 2021). The latter dataset 55 

consisted of 670 stations located in France, Italy and Germany. The evaluation period spans a hydrological year from 1 Sep 2017 56 

to 31 Aug 2018. This period was chosen to take advantage of the 5-days revisit periodicity reached by the Sentinel-2 mission in 57 

Sep 2017 and because the Alps dataset is smaller after 2018. All values were rounded to the nearest centimeter. We combined all 58 

these data sources into a single dataset totaling 26933 data points of daily snow depth measurements distributed across 36 countries 59 

in Europe (Fig.1). A data point was classified as snow covered if HS was strictly greater than a threshold HS0. We tested the 60 

sensitivity to this threshold by calculating the confusion matrix between the FSC products and the reference dataset for 1 cm 61 

increments of HS0 from 0 to 10 cm (Klein and Barnett, 2003; Gascoin et al., 2015, 2019). 62 

2.2 Snow product 63 

We used the on-ground fractional snow cover (FSCOG) layer but the analysis would be identical with the top-of-canopy layer 64 

(FSCTOC) as the canopy adjustment does not change the snow classification (HR-S&I consortium, 2020a). Pixels with value of 65 

205 (cloud or cloud shadow) and 255 (no data) were set to “no data”. A pixel was classified as snow if 0<FSC≤100 and no-snow 66 

if FSC=0. We matched each point of the reference dataset with the nearest pixel of an overlapping FSC product that was acquired 67 

on the same day, resulting in a maximal distance of 10√2 m between the pixel center and the station. If there were more than one 68 

matching FSC product on the same day, we selected one whose nearest pixel was neither cloud nor no data. We also assessed the 69 

impact of the quality layer on the performance. The QCFLAGS (quality control flags) layer provides bit-encoded quality flags to 70 

identify lower quality retrievals e.g. due to low sun elevation, thin cloud cover, surface water (HR-S&I consortium, 2020b). Hence 71 

we performed the same analysis as above by excluding all pixels with at least a non-zero quality flag, i.e. QCFLAGS>0. 72 
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2.3 Stratification data 73 

We stratified the analysis using four external variables: tree cover density, land cover type, elevation and country of measurement. 74 

The tree cover density (TCD) was obtained from Copernicus Land Monitoring Service. It was derived using Sentinel-2 data too 75 

and is available at 20 m resolution with pixel values ranging from 0 to 100%. We used the 2015 product and partitioned the data 76 

into 10 segments of equal TCD range. The land cover was obtained from the Copernicus Global Land Service version 3 (Buchhorn 77 

et al., 2020). We used the 2018 discrete classification map where a pixel’s label is the majority label from the fractional cover map. 78 

The classes were regrouped into the following labels: closed or open forest, herbaceous vegetation or wetland, urban, water bodies, 79 

snow and ice, shrubs, moss and lichen, bare and sparse vegetation, cropland, and open sea. The elevation was extracted from the 80 

Copernicus global 30 m digital elevation model. We used it to partition our data into 11 segments. We excluded from the analysis 81 

all pixels that were non-valid in at least one of the external datasets, so that the population sizes are equal for each stratification 82 

variable. 83 

2.4 Metrics 84 

The comparison between in situ/satellite matchups was performed by computing a confusion matrix and the derived false positive 85 

(FP), false negative (FN), true positive (TP), true negative (TN), recall or fraction of successfully identified positives 86 

(TP/(TP+FN)), precision (TP/(TP+FP)), accuracy ((TP+TN)/(TP+FP+FN+TN)), and kappa coefficient (κ). 87 

3 Results 88 

Figure 2 shows the evaluation of the snow/no-snow detection with in-situ data, and in particular the variation of the kappa 89 

coefficient with the HS0 threshold and corresponding confusion matrices. It indicates a good overall agreement between both 90 

datasets with an accuracy of 94% and κ = 0.80 at HS0 = 0. The kappa coefficient increases to 0.84 if low quality retrievals are 91 

excluded. The optimal HS0 is equal to 1 cm in both cases and used for the analysis with the stratification data. The false negative 92 

rate is higher than the false positive rate (precision is 93% but recall is 78%). The exclusion of low quality data reduces the total 93 

amount of available data points by 13% and increases the recall (82%) more than the precision (94%), meaning that more false 94 

negative errors are avoided. Figure 3 shows that the best performances (κ > 0.8) are at locations of “urban”, “cropland”, “open 95 

forest”, “herbaceous vegetation” or “bare/sparse” land cover types. A lower performance (κ≈0.6) is evident for the “closed forest” 96 

and “water body” class. The “shrubs” class has a very low performance (κ≈0.1) but there are only 13 snow values in the in situ 97 

data. The analysis by TCD bins shows that performances tend to decrease as the forest cover increases, in agreement with the lower 98 

accuracy for the “closed forest” land cover type. The snow detection is robust across elevations between 400 m and 2800 m with 99 

kappa values above 0.7, but a higher proportion of false negative between 100 m and 400 m is observed; it is likely related to the 100 

presence of dense forest at low elevation in nordic regions. The performances are also shown for the countries with at least 100 101 

data points. Countries with more than 1000 data points (France, Germany, Italy and Turkey) have kappa scores above 0.75 except 102 

Turkey. Finland and Norway, two high latitude countries and with more than 200 data points each, also have kappa scores equal 103 

or above 0.75. Stratifying the results of all countries by month (supplementary Figure S1) indicates that the number of false 104 

negatives is highest in December while the accuracy increases every month from January to April. 105 
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4 Discussion 106 

The results are in line with the previous evaluation with an accuracy of 94% and a kappa of 0.8 and an optimal snow depth threshold 107 

of 1 cm close to the previously reported 2 cm (Gascoin et al., 2019). This value is very low, ten times lower than the one that can 108 

be obtained with MODIS data (Klein and Barnett, 2003; Gascoin et al., 2015). This suggests that Sentinel-2 is much more sensitive 109 

to thin snow cover due to its higher spatial resolution which reduces the prevalence of mixed pixels. We also find that the proportion 110 

of FN is larger than the proportion of FP, indicating that the HRSI snow products are more likely to omit a snow pixel than to 111 

falsely classify a pixel as snow covered at the stations locations. This study demonstrates that this effect can be partly attributed to 112 

the adverse effect of the forest canopy on snow detection as the number of false negatives is higher in the closed forest land cover 113 

type. However, the results also show that this tendency for underdetection is present across nearly all subcategories, suggesting 114 

that this limitation is not only due to land cover. The lower performance in winter indicates that it may be a consequence of the 115 

low signal-to-noise ratio in Sentinel-2 radiances during the periods of low solar elevation angle. The lower proportion of FP than 116 

FN in this study also suggests that the occurrence of false snow detection under cloudy conditions which were visually identified 117 

in the previous evaluation (Gascoin et al., 2019) is actually not be the main issue to focus on in order to improve the product 118 

accuracy. 119 

5 Conclusion 120 

This brief communication reports on the performance of the HRSI snow classification based on a year of in situ snow depth data.  121 

Although the in situ dataset is unbalanced with about four times more no-snow values than snow values, it is sufficiently large to 122 

have thousands of observations in the two categories. It is also well distributed across Europe, as we obtained hundreds of 123 

observations in many subcategories (country, land cover, elevation, and tree cover density). This dataset therefore allows drawing 124 

more robust conclusions than previously on the performance of the MAJA-LIS algorithm to detect the snow cover. We conclude 125 

that Sentinel-2-derived HRSI snow products are sufficiently reliable to study snow cover variations across the variety of European 126 

landscapes from the northernmost Arctic regions to the southern semiarid mountains, excluding the densest forest regions. 127 

Although the evaluation dataset spans only one year of data, its large geographical scale compensates for its short duration. Further 128 

progress would result from a wider public availability of in situ snow cover data in the future over extended periods, including 129 

additional sources of data (e.g. citizen science observations, webcam-based snow cover observations, higher resolution satellite 130 

observations, etc.). 131 

Data availability 132 

The FSC products are available from the Copernicus Land website (https://land.copernicus.eu/pan-european/biophysical-133 

parameters/high-resolution-snow-and-ice-monitoring). The TCD product is also available from Copernicus Land 134 

(https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density). The SYNOP data are available upon 135 

request to the authors. The Alps data providers are Météo France, Deutscher Wetterdienst, Agenzia regionale per la protezione 136 

dell’ambiente (ARPA) Friuli Venezia Giulia - Osservatorio Meteorologico Regionale e Gestione Rischi Naturali, ARPA 137 

Lombardia, the hydrological office of Bolzano, and Meteotrentino.   138 
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 205 

 206 
Figure 1. Map of the study area and location of the in situ measurements. Each FSC (fractional snow cover) tile covers an area of 5490 207 
by 5490 pixels of 20 m resolution. 208 
 209 

 210 
Figure 2. Evaluation of the snow/no-snow detection with in situ data. Variation of the kappa coefficient with the HS0 threshold and 211 
confusion matrices with and without data flagged as low quality (using HS0 = 1 cm). QC filter on/off indicate whether the retrievals were 212 
filtered using the corresponding QCFLAGS layer or not. 213 
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 214 
Figure 3: Results of the evaluation by strata of land cover, elevation, countries and Tree Cover Density. Each subplot shows three 215 
histograms for each stratification variable. The histograms represent, from top to bottom respectively, the kappa, the amount of TP (true 216 
positive), FN (false negative), FP (false positive) and TN (true negative) on a logarithmic scale and the amount of in situ snow (TP + FN) 217 
and no-snow (FP + TN) on a logarithmic scale for each strata. A kappa score of zero happens when there are zero snow observations or 218 
zero no-snow observations for either the HRSI FSC or the reference dataset. For example, we get a kappa of zero in Greece despite the 219 
results being all true negatives. 220 


