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Abstract. The retreat and acceleration of marine-terminating outlet glaciers in Greenland over the past two decades has been 

widely attributed to climate change. Here we present a comprehensive annual record of glacier terminus positions in 

northwest and central-west Greenland and compare it against local and regional climatology to assess the regional sensitivity 

of glacier termini to different climatic factors. This record is derived from optical and radar satellite imagery and spans 87 10 

marine-terminating outlet glaciers from 1972 through 2021. We find that in this region, most glaciers have retreated over the 

observation period, and widespread regional retreat accelerated around 1996. The acceleration of glacier retreat coincides 

with the timing of sharp shifts in ocean surface temperatures, duration of sea-ice season, ice-sheet surface mass balance, and 

meltwater and runoff production. Regression analysis indicates that terminus retreat is most sensitive to increases in runoff 

and ocean temperatures, while the effect of offshore sea ice is weak. Because runoff and ocean temperatures can influence 15 

terminus positions through several mechanisms, our findings suggest that a variety of processes – such as ocean-interface 

melting, mélange presence and rigidity, and hydrofracture-induced calving – may contribute to, but do not conclusively 

dominate, the observed regional retreat. 

1 Introduction 

The Greenland Ice Sheet has lost significant mass over the last few decades (Enderlin et al., 2014; Shepherd et al., 2020) as 20 

many of its glaciers have retreated (Hill et al., 2017; Howat and Eddy, 2011; King et al., 2020; Moon and Joughin, 2008; 

Murray et al., 2015), and ice flow has accelerated (Joughin et al., 2010; Moon et al., 2012; Rignot and Kanagaratnam, 2006). 

Recent Greenland ice loss has contributed to rates at times approaching 1 mm a-1 of global sea-level rise (Shepherd et al., 

2020), with the contribution from northwest and central-west Greenland combined representing nearly half of the cumulative 

contribution from Greenland to sea-level rise since 1972 (Mouginot et al., 2019). Although surface mass balance has 25 

dominated Greenland’s mass loss in the past two decades, over half of the mass loss in northwest and central-west Greenland 

is currently due to ice discharge (Mouginot et al., 2019), which has accelerated since 2000 in this region (King et al., 2020).  

Changes in ice discharge are often related to changes to glacier terminus positions, with terminus retreat into deeper water 

driving acceleration and up-stream thinning (Howat et al., 2008; Joughin et al., 2008b). Because of the relationship between 
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terminus position and calving rate, initial perturbations that increase calving can trigger further glacier retreat. While glacier 30 

retreat and acceleration are generally linked to changes at the terminus, it remains unclear which processes are most 

responsible for controlling perturbations to calving rates and subsequent terminus retreat (Straneo et al., 2013). 

The recent acceleration and retreat of Greenland outlet glaciers has been attributed to warmer ocean temperatures (Fahrner et 

al., 2021; Holland et al., 2008; Howat et al., 2008; Morlighem et al., 2016; Rignot et al., 2012; Slater et al., 2019; Wood et 

al., 2021), to changes in the characteristics of sea ice and mélange – icebergs bound by a sea-ice matrix (Amundson et al., 35 

2010; Carr et al., 2013; Cassotto et al., 2015; Foga et al., 2014; Joughin et al., 2008a; Moon et al., 2015), and to increased 

melting and crevassing associated with warming air temperatures (Benn et al., 2007; Nick et al., 2013; van der Veen, 1998). 

In turn, responses to these forcings are modulated by geometric factors associated with individual glaciers such as bed 

topography and fjord width (Carr et al., 2015; Catania et al., 2018; Felikson et al., 2021; Schild and Hamilton, 2013); for 

many glaciers, these modulating factors necessitate detailed records of terminus position changes in order to identify the 40 

importance of different forcing mechanisms on decadal-scale outlet glacier changes across a large area. 

Most previous studies of Greenland outlet glacier terminus positions have been temporally or spatially limited. Some studies 

cover the entire ice sheet for over a decade, but map termini only decadally or in non-consecutive years (Howat and Eddy, 

2011; Moon and Joughin, 2008). Other studies map termini more frequently, but only for a small sector of the ice sheet 

(Bjørk et al., 2012; McFadden et al., 2011; Moon et al., 2015) or for a few specific glaciers (Holland et al., 2016; Joughin et 45 

al., 2008b; Larsen et al., 2016; Motyka et al., 2017; Schild and Hamilton, 2013). Murray et al. (2015) mapped terminus 

positions at high spatial and temporal resolutions, but only for a single decade. More recent studies have attempted to fill 

these observational gaps with ice sheet-wide analyses of annual terminus positions spanning multiple decades (Fahrner et al., 

2021; King et al., 2020; Wood et al., 2021), although they come to differing conclusions about the drivers of observed 

terminus retreat. 50 

In this paper, we analyze glacier change at high spatiotemporal resolution by constructing a multi-decadal (49 years) record 

of annual terminus positions for 87 marine-terminating outlet glaciers in northwest and central-west Greenland. This record 

allows us to identify the behavior of individual glaciers as well as regional trends in the magnitude and timing of glacier 

retreat. We compare this regional behavior with climate data – sea surface and subsurface temperatures, sea-ice 

concentration, and ice-sheet surface mass balance, precipitation, melt, and runoff – to assess the relative influence of 55 

different forcing mechanisms on multi-decadal and annual terminus retreat in this sector of Greenland. It is important to note 

that we do not account for the effect of geometric factors such as bed topography on modulating the retreat of individual 

glaciers, as we instead focus on terminus retreat in correspondence with regional climate trends. 
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2 Data and Methods 

We used 455 synthetic aperture radar (SAR) mosaics and optical satellite images to trace annual terminus positions for 87 60 

marine-terminating outlet glaciers in northwest and central-west Greenland (68.9° N to 78.2° N) (Fig. 1) from 1972 through 

2021. 

2.1 Satellite Images 

We digitized terminus positions from SAR images acquired by the European Copernicus Program’s Sentinel-1A/B and the 

Canadian Space Agency’s Radarsat-1 satellites for 13 of the 49 years in our record. These radar satellites are able to image 65 

the surface regardless of clouds or darkness. For the most recent seven years (2014–2015 through 2020–2021), we traced 

terminus positions in mosaics of Copernicus Sentinel-1A/B images (Joughin et al., 2016a). These mosaics are typically 

created from images acquired in early February of their respective years and have 25 or 50-m product-dependent resolution. 

Radarsat-1 mosaics were used to trace terminus positions for six winters (2000–2001, 2005–2009, 2012–2013) (Joughin et 

al., 2015; Moon and Joughin, 2008). These mosaics are formed from images collected from October through March and have 70 

nominal resolutions of 20 m. 

For the remaining 36 years in our record, we used imagery from all Landsat missions to map terminus positions. We also 

used Landsat imagery to map individual glacier termini where they were missing from or indiscernible in the SAR imagery. 

We prescreened images in the USGS Global Visualization Viewer (GloVis) to confirm that glaciers of interest were not 

obscured by clouds and that the images were georeferenced well. We continued to use Landsat-7 images after the 75 

instrument’s scan-line corrector failure in 2003 as Landsat-5 images were typically unavailable over our study area during 

this period, although we only kept images which retained a sufficient amount of data to map the terminus. In those images, 

we digitized across the scan-line corrector gaps when they crossed a glacier terminus (Supplementary Fig. 1); comparison of 

temporally close images with different data gaps indicates that this method only marginally increases errors. In all, the scan-

line corrector gaps affected 348 terminus traces (9.7% of the dataset). Due to winter darkness, we could not select images 80 

from the same time of year as the SAR mosaics; instead, we chose images as close to winter as possible, with a preference 

for spring over fall to capture a more winter-like state to reduce the effects of seasonal variation (Fig. 2). As a result, the 

majority of the Landsat images we used were collected in spring (March–May). Because of the difficulty in finding sunlit, 

cloud-free imagery, however, we had to use data from other periods, so all months except January and December are 

represented.  For some glaciers there are several years with missing data. The image resolution ranges from 15 m (Landsat 8 85 

panchromatic band) to 60 m (Landsat 1-5 Multispectral Scanner). We digitized termini using the panchromatic band for 

Landsat-7 and Landsat-8, and using a single band that provided high image contrast (typically band 2) for Landsat 1-5. 



4 

 

2.2 Terminus Positions 

Using ArcGIS, we manually traced annual terminus positions from the radar and Landsat imagery. This dataset builds on a 

preexisting dataset covering six winters between 2000 and 2013 (Joughin et al., 2015; Moon and Joughin, 2008). The study 90 

area ranges from Saqqarliup Sermia (68.9° N, 50.3° W; ~35 km southwest of Jakobshavn Isbræ) to Bamse Gletsjer (78.2° N, 

72.7° W) (Fig. 1). Individual glacier names and coordinates are detailed in Supplementary Table 1. To focus our analysis on 

glaciers that produce substantial ice discharge, we limited our analysis to marine-terminating outlet glaciers that are at least 

~1.5 km wide at the terminus and are flowing at least ~1000 m a-1. We traced each glacier's terminus position once per 

hydrological year (September 1 through August 31 (Ettema et al., 2009)) in every year for which suitable imagery was 95 

available. We used winter or near-winter imagery whenever possible as indicated by Figure 2. 

Errors in terminus position may arise from both the imagery used and the digitization process. The primary sources of errors 

introduced by the image data are the uncertainties in position after orthorectification and georeferencing. To reduce such 

errors, candidate images were compared with control images and discarded if they were noticeably offset or distorted. 

Manual digitization also introduces errors, which are exacerbated by poor image resolution and image artifacts (such as 100 

shadows or an indistinct transition from glacier to mélange) (Joughin et al., 2015). If a terminus position was ambiguous in 

one image, it was flagged during tracing, and compared with close-in-time images from the same or other satellite platforms 

when possible. Digitization errors are typically comparable to image resolution; for example, 25 m error for a Landsat-7 

image with 30 m resolution (Moon et al., 2015) 
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Figure 1: Map of study area, showing individual glacier locations (white) and points where ocean data were acquired (orange, 

numbered). Glacier labels are (a) every tenth glacier, numbered, and (b) specific glaciers named in the paper, acronymized as 

follows: Jakobshavn Isbræ (JI), Alianaatsup Sermia (AS), Sermeq Avannarleq (SA), Store Gletsjer (ST), Sermilik Isbræ (SI), 

Kangilleq (KA), Kangerlussuup Sermia (KS), Rink Isbræ (RI), Upernavik Isstrøm (UI), Naajarsuit Sermiat (NS), unnamed glacier 

#26 (26), Alison Glacier (AL), unnamed glacier #36 (36), Kjer Gletsjer (KJ), Kong Oscar Gletsjer (KO), unnamed glacier #55 (55), 110 
unnamed glacier #66 (66), Tracy Gletsjer (TR), Verhoeff Gletsjer (VH), and Morris Jesup Gletsjer (MJ). Basemaps are (a) bed 

topography from BedMachine Greenland V3 (Morlighem et al., 2017b, a) and (b) ice-sheet velocity from MEaSUREs GIMP 

(Joughin et al., 2016b, 2018a). 
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In addition to the errors associated with digitization of the images, there is additional uncertainty introduced by sampling 

seasonal variability at different times of year. For the terminus positions mapped from Landsat imagery, it was not possible 115 

to get sunlit and cloud-free images over each glacier at the same time every year (Fig. 2). This timing variation complicates 

the year-to-year comparison at a glacier, which might include seasonal variability in terminus position. Such seasonal 

variability could produce some short-term deviations in our data; for example, Moon et al. (2015) found a mean annual 

terminus range of 610 m for a subset of our study glaciers. However, the data collection season is largely consistent across 

each of our glaciers (Fig. 2) and because these seasonal errors are not independent, they tend to cancel out over longer 120 

periods. Since we mostly focus on decadal scale trends, issues of seasonal sampling should not greatly affect our results. 

 

Figure 2: Years in which a terminus position was observed (filled circles) for each glacier, colored by the season of the observation. 

If a terminus position was not observed, an estimated position was interpolated (open circles) from prior and subsequent 

observations to use in annual analyses. Glaciers #76-78 are not shown because they are not ice-sheet outlet glaciers and therefore 125 
are not included in this study. 

2.3 Glacier Change Measurements 

We calculated glacier area change over time using the box method (Moon and Joughin, 2008). Each glacier has a static, 

open-ended reference box (polygon) that approximately delineates the main region of ice flow. The box sides are roughly 

parallel to ice flow, and the 'back' of the box is perpendicular to ice flow at an arbitrary location up-glacier of the extent of 130 

maximum observed terminus retreat (see example in Fig. 3). Where a terminus trace intersects the open end of the box, the 

polygon is closed, and the area of that polygon represents the glacier's reference area at that point in time. Repeating this 
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process for each terminus trace for a glacier forms a time series of reference areas, from which we determine the annual area 

change. While the areas are arbitrarily determined by the box size, the area differences between successive terminus traces 

represent the annual gain or loss of area. By focusing on the area change between measurements rather than the absolute area 135 

of each measurement, we can ignore the arbitrariness of how the boxes are drawn, as well as any small regions of stagnant 

ice that may be included within the box boundaries. There is a small error associated with these area-change measurements 

because the boxes do not completely conform to the glacier sides.  

As length change can provide a more intuitive measure of retreat than area change, we determine the nominal length change 

by scaling the area change by the average width of the box to get an approximate length change. This measurement should 140 

be interpreted as a proxy for length change rather than an exact measurement. Compared to the centerline method of 

measuring length change, this method is less sensitive to uncertainties in the centerline position at the terminus. 

In years when no observations were made, we linearly interpolated between the prior and subsequent observations to 

estimate glacier length and area during the missing years (Fig. 2). For glaciers with missing observations in the beginning of 

the record, we did not interpolate prior to the first observation in the record. The largest temporal gap interpolated is nine 145 

years (1975–1976 through 1983–1984), at Sermeq Avannarleq (#8). Most temporal gaps are in the 1970s and early 1980s, 

with additional gaps into the 1990s for some high-latitude glaciers, and there are no temporal gaps after 2002. 

Because it is difficult to compare changes in area between glaciers of different sizes, we also determined the percent area 

change over time for each glacier. For each individual glacier area time series, we normalized the minimum observed glacier 

area to 0 and the maximum observed glacier area to 1, and linearly scaled the other measured areas between those set points. 150 

This method normalizes every glacier’s area change to the same 0–1 scale, allowing straightforward comparison of size 

changes between different glaciers. Because the equivalent length is simply a scaled area, the results are identical for area 

and length. 

To pinpoint the timing of changes in glacier area and length, we performed a break-point analysis on the time series for each 

glacier. We fit each time series with a piecewise-linear function with two segments (Jekel and Venter, 2019); the break point 155 

between the two segments corresponds to a year in the time series that is the best fit for approximating the time series as a 

two-segment piecewise linear function. Although this method always finds one break point in the time series, even if the 

number of break points is greater or there is no break point at all, we adopted it in order to identify the single-most important 

year for each glacier when a change in behavior may have occurred. 

2.4 Climate Data 160 

Earlier work has shown that climate-related processes including terminus ablation and undercutting (driven by ocean 

warming) (Holland et al., 2008; Motyka et al., 2011; Slater et al., 2019; Rignot et al., 2012; Wood et al., 2021), mélange 

rigidity (driven by changes in ocean temperature, sea ice concentration, and/or runoff) (Carr et al., 2017; Joughin et al., 

2020; Moon et al., 2015; Sohn et al., 1998; Todd and Christoffersen, 2014), and enhanced hydrofracture (driven by changes 

in runoff and surface mass balance) (Benn et al., 2007; Nick et al., 2010) may affect terminus position. Hence, we acquired 165 
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several ice-sheet and oceanographic datasets in order to compare our glacier terminus position changes with climatic factors. 

For each variable and dataset, we considered the annual and decadal mean values. For the ice-sheet variables, we considered 

the annual mean at a fixed location near the front of each glacier, as well as the population annual and decadal means. For 

the oceanographic data, due to lack of reliable long-term data in narrow fjords, we used offshore observations as a proxy for 

fjord conditions. We used eight points offshore (Fig. 1), selected to be representative of clusters of glaciers: Disko Bay, 170 

Uummannaq Fjord, Upernavik Icefjord and north, south Melville Bay/Wilcox Head, central Melville Bay, north Melville 

Bay/Cape York, Wolstenholme Bay/Thule, and Inglefield Fjord (coordinates for each point are detailed in Supplementary 

Table 2). 

Ice-sheet surface mass balance, snowfall, rainfall, meltwater production, and runoff were extracted from the Modèle 

Atmosphérique Régional (MAR), Version 3.11, on a 6km x 6km grid over the period 1979–2020.  175 

Sea-surface temperatures came from the NASA-JPL Estimating the Circulation and Climate of the Ocean (ECCO) 

consortium ocean circulation model, Version 5 (Forget et al., 2015; Zhang et al., 2018), on a 1/3° x 1/3° grid over the period 

1992–2017, and the merged Hadley-OI sea-surface temperature and sea-ice concentration dataset (Hurrell et al., 2008; Shea 

et al., 2020), on a 1° x 1° grid over the period 1972–2020.  

We also obtained subsurface temperatures from ECCO for most of our study area. In the Disko Bay area we used field 180 

observations from the ICES Dataset on Ocean Hydrography (ICES, 2014), collected over the period 1977–2016 by the 

Greenland Institute of Natural Resources. For both data sets, subsurface temperatures were averaged over the lower 60% of 

the water column in order to capture warm water at depth while excluding the near-surface mixed layer. For the ECCO data, 

we applied a temperature correction to bring the data in line with Wood et al. (2021) (see Supplementary Information). 

Sea-ice concentration came from the merged Hadley-OI dataset, as well as the NOAA/NSIDC Climate Data Record of 185 

Passive Microwave Sea Ice Concentration, Version 3 (Meier et al., 2017; Peng et al., 2013), on a 25km x 25km grid over the 

period 1978–2019. For the sea-ice concentration, we calculated the annual duration of the period when sea-ice concentration 

exceeds 15%, as well as the seasonal mean sea-ice concentration. 

3 Results 

We produced a comprehensive multi-decadal dataset of terminus positions for glaciers in our study area, and collected 190 

climate data both near the termini of these glaciers and in the ocean offshore of clusters of these glaciers. 

3.1 Terminus Positions 

We created a dataset of 3606 annual terminus positions for our 87 selected glaciers from 1972–1973 through 2020–2021 (see 

example in Fig. 3). The median number of annual observations per glacier is 41, and nearly all glaciers were observed in 38 

to 46 of the 49 years examined. Only three glaciers have fewer (33–34) observations; these glaciers are located just south of 195 

Thule Air Force Base and have limited imagery available in the 1980s and early 1990s. After interpolating area changes 
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between glacier observations, the first year with either an observation or an interpolation available for each glacier is 1977–

1978. Therefore, our glacier analyses start in this year except where noted. 

 

Figure 3: Illustration of terminus traces and box method for Kjer Gletsjer (#42). Each trace intersects the glacier’s box (green) to 200 
form a closed polygon. The areas of sequential polygons are differenced to create a time series of glacier area change. The basemap 

is a Sentinel-1 SAR mosaic from February 4–9, 2020. 

3.1.1 Terminus Behavior 

The majority of the glaciers in our study area retreated between 1977 and 2021. The cumulative area loss of all of these 

glaciers is 1067 km2, equivalent to a cumulative retreat of 287 km. The individual area and length changes are plotted in Fig. 205 

4 with glaciers with the greatest change broken out separately. We identify these dominant glaciers as those with a net 

change falling more than 2 standard deviations beyond the population mean, which yields four glaciers that dominate the 

area change: Jakobshavn Isbræ (#3; -130.9 km2), Alison Glacier (#35; -59.4 km2), Kjer Gletsjer (#42; -81.5 km2), and Tracy 

Gletsjer (#81; -58.7 km2). These glaciers together are responsible for 31.0% of the total area loss. Five glaciers dominate the 

length change: Jakobshavn Isbræ (-16.9 km), Alison Glacier (-14.7 km), Kjer Gletsjer (-14.7 km), Tracy Gletsjer (-14.0 km), 210 

and one unnamed glacier (#36; -11.1 km). These glaciers are cumulatively responsible for 24.9% of the total retreat. For the 

remaining glaciers, the mean area change is -8.9 km2 and the mean length change is -2.6 km. Net area and length changes for 

individual glaciers are detailed in Supplementary Table 3. 

Fifteen glaciers were stable in that the net changes in area were within 2 standard deviations of their respective observed 

interannual variability, and no glaciers advanced significantly over the observation period. The fifteen stable glaciers are: 215 

Alianaatsup Sermia (#7), Sermeq Avannarleq (#8), Store Gletsjer (#9), Sermilik (#11), Kangilleq (#12), Kangerlussuup 

Sermia (#16), Rink Isbræ (#17), Upernavik Isstrøm (#21), Naajarsuit Sermiat (#25), Kong Oscar Gletsjer (#51), Verhoeff 

Gletsjer (#86), Morris Jesup Gletsjer (#87), and unnamed glaciers #26, #55, and #66. 
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Figure 4: Cumulative (a) area change and (b) length change for large glaciers that dominate the total observed change. Glacier 220 
changes in each plot are labeled using the acronym scheme in Figure 1. The colormap follows the order of the glaciers (from south 

to north), so glaciers with similar colors are spatially closer together. For all other glaciers, cumulative (c) area change and (d) 

length change are provided but not distinguished by glacier. The final net (e) area change and (f) length change are reported as 

histograms. 
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3.1.2 Timing of Change 225 

Because a small number of glaciers tend to dominate the overall trends in glacier changes, we scaled each glacier's length 

and area to a 0–1 scale as described above in order to consistently compare the relative timing of each glacier's behavior 

(Fig. 5a). The resulting data are noisy, so to better identify overall trends we computed the mean and standard deviation of 

the scaled glacier changes (blue overlay in Fig. 5a). Of the observed mean size change (area or equivalent length), ~4% 

occurs each decade before 1996, and ~31% occurs each decade after 1996. The population of glaciers notably re-advanced in 230 

2017 and 2018, but began to retreat again in 2019. 

We performed a break-point analysis (see Sect. 2.3) for each glacier’s area time series (Fig. 5b). The step-change in retreat 

rates around 1996 for the normalized time series is consistent with the time series break points for individual glaciers. The 

most common break-point years were 1996–1997 and 1997–1998, with additional smaller peaks in break points in the mid-

1990s and mid-2000s. The break-point years for each glacier are detailed in Supplementary Table 3. 235 

 

Figure 5: Break-point analysis to identify the onset of increased terminus retreat rates. (a) Glacier cumulative area change is 

normalized such that for each glacier the greatest observed extent is 1 and the smallest observed extent is 0, so that glaciers of all 

sizes are placed on a common scale. Each glacier’s cumulative change is then approximated as a two-segment piecewise linear 

function, and we compute (b) a histogram of the breakpoint year between the two segments. 240 

3.2 Climate Data 

All of the climate variables that we surveyed showed long-term trends consistent with regional climate warming. Most of 

these variables, in most of the locations that we sampled, also showed a sharp change in their long-term trends between the 

1990s and 2000s. 

Figure 6 summarizes the data from the MAR climate model. While there is considerable interannual variability, the data 245 

indicate a net decrease in surface mass balance (Fig. 6a) and a net increase in both meltwater production (Fig. 6b) and runoff 
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(Fig. 6c), with corresponding increases in the annual number of meltwater production days (Fig. 6d) and runoff days (Fig. 

6e), since the late 1970s. The mean surface mass balance was steady in the 1980s and 1990s, but dropped by 0.48 m a-1 

between the 1990s and the 2000s, primarily due to substantial increases in meltwater production (+0.42 m a-1) and runoff 

(+0.48 m a-1). By contrast, there were only small changes to the mean snowfall (-0.01 m a-1; Fig. 6f) and the mean rainfall 250 

(+0.02 m a-1; Fig. 6g) from the 1980s to the 2010s. For the 2010s, while the annual surface mass balance anomaly was 

positive in 2013, 2017, and 2018, it reached its lowest values for the full record in 2019 and 2020.  These extremes are 

reflected in coincident meltwater production and runoff anomalies. For this decade as a whole, the decadal mean surface 

mass balance anomaly is slightly more negative than that of the 2000s, and the decadal mean meltwater production and 

runoff continued to increase. 255 

Like the mean meltwater production and runoff, the mean number of melt days (Fig. 6d) and runoff days (Fig. 6e) increased 

between the 1990s and the 2000s by 7 days and 12 days, respectively. However, instead of continuing to increase in the 

2010s, the number of melt and runoff days decreased, suggesting that the net increase in meltwater production and runoff 

was due to more intense melt events rather than a greater number of melt events. 
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 260 

Figure 6: Annual and decadal mean anomaly of (a) surface mass balance, (b) meltwater production, (c) number of melt days, (d) 

runoff, (e) number of runoff days, (f) snowfall, and (g) rainfall, from the MAR climate model, averaged over all glacier fronts in 

the study area. The mean for each anomaly is reported in each panel. 

Figure 7a shows Disko Bay warmed between 0.21 °C (ICES) and 0.69 °C (ECCO) between the 1990s and 2000s and cooled 

in 2016–2017 (the final years of the two subsurface temperature datasets). North of Disko Bay (Fig. 7b-h), the decadal 265 

subsurface ocean temperatures followed a continuously increasing trend at every location we sampled. The temperature 

warmed substantially (0.79–1.07 °C) between the 1990s and 2000s at each of these locations, with a lesser magnitude of 

warming (0.01–0.45 °C) between the 2000s and the 2010s. The temperature trends, especially between the 1990s and the 

2000s, are largely imposed by the corrections from Wood et al. (2021) (see Supplementary Information).  



14 

 

 270 

Figure 7: Annual and decadal mean deepwater (bottom 60%) ocean temperature anomaly from ECCO (blue) and ICES (green). 

Each panel corresponds with an ocean point in Figure 1. The mean for each anomaly is reported in each panel. The “decadal” 

means are not taken over the entire decade in the 1990s (for ECCO) and 2010s due to lack of data. Note the different temperature 

scale for Disko Bay (a). 

Figure 8 shows that sea-surface temperatures (SST) were relatively steady in the 1970s and 1980s. At some locations the 275 

SSTs dipped slightly in the 1990s, followed by a sharp rise (0.57–0.78 °C from ECCO; 0.33–0.81 °C from Hadley-OI) in 
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SSTs in the 2000s at all sites. SSTs in the 2010s were slightly warmer or cooler than in the 2000s, depending on the location 

and data source, but remained consistently above the pre-2000s temperatures. 

 

Figure 8: Annual and decadal mean sea-surface temperature anomaly from ECCO (blue) and Hadley-OI (orange). Each panel 280 
corresponds with an ocean point in Figure 1. The mean for each anomaly is reported in each panel. 

Figure 9 shows that the annual duration of the sea-ice season (defined as when sea-ice concentration exceeds 15%) has 

shortened since the 1970s. In particular, from Upernavik Icefjord north to Wolstenholme Bay (Fig. 9c-g), while the decadal 

mean sea-ice season length was relatively steady from the 1970s through the 1990s, it decreased by one to two months 
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between the 1990s and the 2000s, and remained relatively steady at the new shorter duration in the 2000s and 2010s. This 285 

pattern is borne out in the seasonal sea-ice concentration as well at many locations (Supplementary Figs. 2-5). 

 

Figure 9: Annual duration of sea-ice season (when sea-ice concentration is greater than 15%) from Hadley-OI (orange) and NOAA 

(purple). Each panel corresponds with an ocean point in Figure 1. 
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3.3 Regression Analysis 290 

We conducted a suite of multiple linear regressions of key climate variables against terminus retreat (Table 1), using data 

from 1992–2017, when we have data available for all variables. We ran two cases with all variables included: one with the 

corrected ECCO deepwater temperatures, and one with the original uncorrected ECCO deepwater temperatures. The 

remaining cases systematically drop one of the variables at a time, then include only one type of variable (ocean 

temperatures, sea ice, runoff). For each case, we report the sensitivity of terminus retreat to each climate variable with 1σ 295 

errors, as well as the R2 value of the regression. 

While it is difficult to interpret the results because of multiple correlations between the different parameters, it is clear that 

runoff has the dominant effect. Overall, terminus retreat appears to be most sensitive to runoff, moderately sensitive to ocean 

temperatures, and least sensitive to sea ice. For each case, the R2 value is small, likely due to large interannual variability in 

the climate variables. When we drop runoff from the regression, the R2 value drops by 0.098, suggesting that runoff accounts 300 

for ~10% of the variance in terminus sensitivity. Aside from runoff, dropping any individual variable seems to have little 

effect. Although dropping ocean temperatures (surface and deepwater) from the regressions has a small effect, keeping only 

ocean temperatures accounts for about half as much variance (0.094) as keeping only runoff (0.186). The sea-ice parameter 

sensitivities are not significantly different from zero, and the effect of dropping them is weak.  

Case Sensitivity to 

deep water 

temp. (km/°C) 

Sensitivity to 

SST (km/°C) 

Sensitivity to 

mean annual sea 

ice conc. (km/%) 

Sensitivity to 

sea ice season 

(km/month) 

Sensitivity to 

snowfall 

(km/m) 

Sensitivity to 

runoff (km/m) 

R2 

All variables -0.0406 ± 0.029 -0.0515 ± 0.034 -0.0015 ± 0.002 -0.0097 ± 0.012 0.0861 ± 0.162 -0.1458 ± 0.029 0.205 

All variables 

(uncorrected) 0.0279 ± 0.022 -0.0931 ± 0.052 -0.0026 ± 0.002 -0.0011 ± 0.012 0.0891 ± 0.162 -0.1526 ± 0.028 0.203 

Drop deep water 

temp   -0.0441 ± 0.033 -0.0010 ± 0.002 -0.0065 ± 0.011 0.0814 ± 0.162 -0.1610 ± 0.027 0.197 

Drop SST -0.0339 ± 0.028   0.0010 ± 0.001 -0.0072 ± 0.012 0.0442 ± 0.160 -0.1447 ± 0.029 0.196 

Drop annual sea 

ice conc. -0.0367 ± 0.028 -0.0314 ± 0.020   -0.0121 ± 0.011 0.0631 ± 0.158 -0.1432 ± 0.029 0.203 

Drop sea ice 

season length -0.0360 ± 0.028 -0.0474 ± 0.033 -0.0020 ± 0.002   0.0911 ± 0.161 -0.1464 ± 0.029 0.202 

Drop snowfall -0.0403 ± 0.029 -0.0484 ± 0.033 -0.0013 ± 0.002 -0.0100 ± 0.012   -0.1486 ± 0.029 0.204 

Drop runoff -0.0931 ± 0.028 -0.0474 ± 0.036 -0.0003 ± 0.002 -0.0112 ± 0.012 0.2332 ± 0.168   0.107 

Only ocean 

temps -0.0887 ± 0.026 -0.0301 ± 0.016         0.094 

Only sea ice     0.0030 ± 0.001 -0.0030 ± 0.012     0.047 

Only runoff           -0.1683 ± 0.025 0.186 

Table 1: Sensitivities of terminus retreat to different climate variables for a suite of multiple linear regressions, with 1σ error. 305 
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4 Discussion 

Our measurements (Fig. 5) show a multi-decadal trend of regional glacier retreat with a step-change in terminus retreat rate 

around 1996. Several mechanisms have been proposed as drivers of outlet glacier retreat, including ocean warming-induced 

terminus ablation and undercutting, mélange rigidity, and enhanced hydrofracture, all of which can affect calving (Straneo et 

al., 2013). All of these mechanisms are tied to climatic warming in some sense, whether due to rising air or ocean 310 

temperatures, and associated changes in meltwater production, runoff, and sea-ice concentration. Our observed step-change 

in terminus retreat rate was approximately coincident with sharp increases in meltwater production (22%; Fig. 6b), runoff 

(26%; Fig. 6c), deepwater temperature (0.21–1.07 °C; Fig. 7), and sea-surface temperature (0.33–0.81 °C; Fig. 8), and a 

sharp decrease in the duration of the sea-ice season (1–2 months; Fig. 9). Thus, any or all processes related to these 

anomalies could have contributed to the terminus retreat rates. Multiple linear regressions suggest that runoff is the dominant 315 

contributor to terminus retreat, with ocean temperatures accounting for much of the remaining variance. Offshore sea ice has 

a small and likely negligible effect.   

4.1 Observations of Regional Retreat 

The timing of our observed step-change in terminus retreat rate is consistent with previous studies of northwest and/or 

central-west Greenland that identified accelerated glacier retreat (Carr et al., 2017; Catania et al., 2018; Fahrner et al., 2021; 320 

Howat and Eddy, 2011; Wood et al., 2021) and ice speedup and discharge (Joughin et al., 2018b; King et al., 2020) 

beginning in the mid- to late 1990s. Nearly all glaciers in our study region retreated between the onset of this step-change 

and the end of our observations in 2021, in line with other observations of sustained retreat in the 21st century (Bunce et al., 

2018; Fahrner et al., 2021; Howat and Eddy, 2011; Murray et al., 2015). Howat and Eddy (2011) found that between 2000 

and 2010, nearly 100% of glaciers in northwest Greenland retreated; although we considered a larger set of glaciers, we 325 

found that 85% of our glaciers retreated and 15% were stable over the same time period. Between 2010 and 2020, 74% of 

glaciers retreated and 22% were stable. 69% of glaciers retreated in both decades and 9% were stable in both decades. 

Overall, between 2000 and 2020, 86% of glaciers retreated and 14% maintained stable terminus positions. 

We observed a brief period of regional advance in 2017 and 2018, which was negated by regional retreat in 2019 (Fig. 5a,b). 

This broad pattern of readvance coincides with the readvance of Jakobshavn Isbræ in 2017 and 2018 (Khazendar et al., 330 

2019); however, while Jakobshavn Isbræ remained in a relatively advanced position in 2019 and 2020 and retreated in 2021 

(Fig. 4a,b), the region as a whole began to retreat again in 2019. The regional behavior is coincident with a sustained 

negative runoff and meltwater production anomaly (and positive surface mass balance anomaly) in 2017 and 2018 with 

values near the 20th century mean anomaly.  This negative anomaly was followed by the strong positive anomalies in the 

record in 2019 and 2020 (Fig. 5a). Although we lack sufficient ocean temperature or sea ice data during this period to assess 335 

a relationship between those factors and regional glacier behavior, our regression analysis indicates that runoff anomalies 

have the strongest effect on terminus position.  



19 

 

4.2 Terminus Melting 

Ocean subsurface and surface warming in Baffin Bay and adjacent fjords have been cited as contributors to regional glacier 

retreat (Rignot et al., 2012; Slater et al., 2019; Wood et al., 2021) as well as for individual glaciers (Holland et al., 2008; 340 

Khazendar et al., 2019; Motyka et al., 2011; Rignot et al., 2010). Warmer ocean water increases melt at the calving face and, 

in conjunction with subglacial discharge plumes, subsurface warming undercuts the terminus (Motyka et al., 2013; Slater et 

al., 2015, 2017), which could enhance calving (How et al., 2019; Luckman et al., 2015; Morlighem et al., 2019; Rignot et al., 

2015).  

Wood et al. (2021) found that ocean thermal forcing switched from a stable period to one of rapid warming between 1997 345 

and 1998, consistent with the timing of the sharp step-change in glacier retreat rate we observed. Based on the same ocean 

dataset, we found that ocean subsurface temperatures increased an average of 0.90 °C coincident with our observed step-

change in glacier retreat rate (Fig. 7), and together with sea-surface temperatures were moderately associated with terminus 

retreat. Wood et al. (2021) identified deep glaciers sitting in warmer water as those that are retreating the most. Terminus 

response, however, tends to scale non-linearly with depth and deeper termini should be more responsive to any change that 350 

induces retreat (Schoof, 2007). As evidence of this effect, we note the strong response to seasonal perturbations on three of 

Greenland’s deepest outlet glaciers (Jakobshavn, Kangerlussuaq, and Helheim), which is large compared to the degree of 

melting at the terminus (Joughin et al., 2020; Kehrl et al., 2017). Thus, irrespective of the forcing that caused the initial 

perturbation, a greater response would be expected for the deeper glaciers (>100 m depth), whether the forcing is due to 

ocean melting or some other process.  355 

Similar to ocean subsurface temperatures, sea-surface temperatures averaged over all of our subregions also increased (0.58 

°C) in concert with accelerated glacier retreat (Fig. 8). Fahrner et al. (2021) found a significant relationship between sea-

surface temperatures and terminus change in northwest Greenland, whereas Murray et al. (2015) found no relationship 

between retreat and sea-surface temperature in this region. Elsewhere in Greenland, warming sea-surface temperatures have 

been linked with rapid terminus retreat (Howat et al., 2008).  360 

4.3 Mélange Rigidity  

Models indicate that the absence of a rigid mélange may be more important than ocean-driven melting of the terminus in 

enhancing glacier retreat (Todd and Christoffersen, 2014). Observations show a correlation between terminus change and sea 

ice and mélange conditions (Carr et al., 2017; Moon et al., 2015; Sohn et al., 1998), and that reduced sea ice and mélange 

formation could have triggered retreat at several Greenland glaciers (Amundson et al., 2010; Howat et al., 2010; Joughin et 365 

al., 2008a; Sohn et al., 1998). The presence of a rigid mélange can exert sufficient force to inhibit calving, facilitating 

seasonal glacier advance (Amundson et al., 2010; Cassotto et al., 2015; Cook et al., 2021; Reeh et al., 2001; Robel, 2017). 

We observed a sharp reduction in both the duration of the sea-ice season (Fig. 9) and of sea-ice concentrations 

(Supplementary Figs. 2-5), coincident with a step-change in regional glacier retreat rate in 1996; however, our regression 
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analysis indicated that offshore sea-ice conditions have only a weak correspondence with terminus retreat. This suggests that 370 

the effect of offshore sea ice on terminus retreat is weak, although we note that the data we sampled are an imperfect proxy 

for near-terminus sea-ice conditions.  

Runoff increases and ocean warming are both coincident with terminus retreat. While these factors also contribute to 

terminus melt, the majority of the ocean heat in the fjords goes into melting icebergs (thus weakening mélange) rather than 

the terminus face (Moon et al., 2018; Mortensen et al., 2020). Moreover, the runoff-enhanced iceberg melting lags discharge, 375 

causing iceberg melt to peak in late summer and early fall (Moon et al., 2018). At least for Jakobshavn Isbræ, reductions in 

mélange rigidity appear to correspond to periods of warmer temperatures at depth in the fjord (Joughin et al., 2020). Warmer 

sea-surface temperatures, although unlikely to contribute to submarine undercutting of the terminus, may also inhibit sea-ice 

formation and reduce mélange rigidity. Additionally, the observed increase of 26% in runoff and 11% in the number of 

runoff days (Fig. 6c,e), coincident with the observed step-change in terminus retreat rates, may have seasonally contributed 380 

to more mobile mélange near the terminus. Thus, the combination of increased runoff, sea-surface temperature, and 

subsurface temperature together suggest a reduction of mélange presence and rigidity that might have increased calving and 

retreat.  

4.4 Enhanced Hydrofracture 

In addition to reducing mélange rigidity, increased meltwater production and runoff could also increase hydrofracture-385 

induced calving. Crevasses filled with surface melt penetrate deeper than dry crevasses (van der Veen, 1998; Weertman, 

1973), and if a crevasse near the terminus penetrates the full thickness of the ice it can cause calving (Nick et al., 2010; Sohn 

et al., 1998). We observed a sustained 26% increase in runoff (Fig. 6c) coincident with accelerated glacier retreat in 1996, 

which could contribute to increased filling of surface crevasses and subsequent hydrofracture, which would facilitate greater 

calving and retreat. Although runoff remained high in the 2010s, the duration of the runoff season decreased by 6 days (Fig. 390 

6e) while sustained glacier retreat continued. These results suggest that to the extent that hydrofracture may have contributed 

to retreat, it is through increased runoff volume rather than seasonal duration. 

5 Conclusions 

We have built a comprehensive record of annual terminus positions for 87 marine-terminating outlet glaciers in northwest 

and central-west Greenland from 1972 through 2021. The majority of these glaciers retreated and lost area over the 395 

observation period, with retreat accelerating after 1996. We observed a brief regional readvance in 2017 and 2018, which 

was offset by losses in 2019. Ice-sheet climate data indicate that surface mass balance, meltwater production, and runoff 

increased substantially between the 1990s and 2000s, coincident with accelerated glacier retreat. Similarly, in most regions 

sea-surface and deepwater temperatures increased and sea-ice season duration decreased between the 1990s and 2000s.  
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Our results indicate that increased runoff and ocean temperatures correspond with periods of increased terminus retreat. 400 

Runoff and ocean warming are expected to increase terminus retreat through a combination of terminus undercutting and 

reducing mélange rigidity; runoff could also increase calving rates through enhanced hydrofracture. Thus, some combination 

of these processes is likely responsible for the widespread observed retreat across northwest and central-west Greenland. 

Further research is needed to improve our understanding of the dominant processes contributing to terminus retreat and the 

resulting increases in ice discharge. 405 

Code Availability 

Data analysis and visualization code are available on GitHub (https://github.com/tarynblack/northwest_decadal_2021). 

Data Availability 

Some of the terminus positions are available on NSIDC as part of the MEaSUREs Annual Greenland Outlet Glacier 

Terminus Positions from SAR Mosaics dataset (https://nsidc.org/data/NSIDC-0642), and the remainder are being prepared 410 

for delivery as part of the same dataset. Bed topography is from BedMachine Greenland V3 (https://nsidc.org/data/idbmg4). 

Ice-sheet velocity is from MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Version 1 

(https://nsidc.org/data/NSIDC-0670/versions/1). Landsat images were identified with GloVis (http://glovis.usgs.gov) and 

downloaded from Google Cloud Platform (https://console.cloud.google.com/storage/browser/gcp-public-data-landsat). 

Sentinel-1 images are from MEaSUREs Greenland Image Mosaics from Sentinel-1A and -1B, Version 3 415 

(https://nsidc.org/data/nsidc-0723). Ocean temperatures are from ECCO Version 5 (https://ecco-group.org), the ICES 

Dataset on Ocean Hydrography (https://ocean.ices.dk/hydchem/hydchem.aspx), and the Merged Hadley-OI sea surface 

temperature and sea ice concentration data set (https://doi.org/10.5065/r33v-sv91). Sea-ice concentrations are from the 

Merged Hadley-OI data set and the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, 

Version 3 (https://nsidc.org/data/g02202). Ice sheet climate data are from MAR v3.11 output over Greenland 420 

(ftp://ftp.climato.be/fettweis/MARv3.11/Greenland/ERA_1979-2020-6km/). 
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