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Abstract. The satellite observations unveiled that the July sea ice extent of the Arctic shrank to the lowest value in 2020 since 15 

1979, with a major ice retreat in the Eurasian shelf seas including Kara, Laptev, and East Siberian Seas. Based on the ERA-5 

reanalysis products, we explored the impacts of warm and moist air-mass transport on this extreme event. The results reveal 

that anomalously high energy and moisture converged into these regions in the spring months (April to June) of 2020, leading 

to a burst of high moisture content and warming within the atmospheric column. The convergence is accompanied by local 

enhanced downward longwave radiation and turbulent fluxes, which is favorable for initiating an early melt onset in the areas 20 

with severe ice loss. Once the melt begins, solar radiation played a decisive role in leading to further sea ice depletion due to 

ice-albedo positive feedback. The typical trajectories of the synoptic cyclones that occurred on the Eurasian side in spring 2020 

agree well with the path of atmospheric flow. Assessments suggest that variations in characteristics of the spring cyclones are 

conducive to the severe melt of sea ice. We argue that large-scale atmospheric circulation and synoptic cyclones act in concert 

to trigger the exceptional poleward transport of total energy and moisture from April to June to cause this new record minimum 25 

of sea ice extent in the following July. 

1 Introduction 

Arctic sea ice is declining dramatically (Wang et al., 2019) under the background of global warming (Hinzman et al., 2005; 

Comiso and Hall, 2014; Johannessen et al., 2016) and Arctic Amplification (Screen and Simmonds, 2010; Serreze and Barry, 

2011; Kim et al., 2016). Sea ice extent (SIE) minima of the Arctic reached its record low in September 2012 over all the 30 
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satellite observations during the period 1979-2020, stood at 3.40×10 6 km2. After that, 2020 witnessed the second-lowest 

September SIE in the Arctic, which ended up only 3.74×10 6 km2. During the seasonal cycle of the sea ice cover in 2020, SIE 

grew to its maximum on March 5, then decreased persistently in the following warm months. Roughly speaking, Arctic sea ice 

cover turned to be smaller in extent during spring and early summer than that of 2012. Consequently, in 2020, Arctic sea ice 

experienced the lowest July extent recorded since 1979. As estimated, the July SIE of 2020 shrunk to 7.01×10 6 km2, which is 35 

~8% (or ~21%) lower than that of 2012 (or the average July SIE over the period 2000-2020). Figure 1 demonstrates the spatial 

pattern of sea ice concentration (SIC) anomalies and the corresponding SIE in July 2020. During the early summer of 2020, a 

prominent SIC reduction occurred in the Eurasian shelf seas, including Kara, Laptev, and East Siberian Seas (60° E-165° E 

and 70° N-82° N, as represented by green polygon in Fig. 3c and d, hereafter the study area). The averaged SIC anomaly in 

these areas of 2020 (-25.96%) exceeds corresponding anomalies from all other years during the period 1979-2020. Therefore, 40 

the sea ice retreat in these regions contributed remarkably to the distinguished shrinkage of SIE in the Arctic Ocean in July 

2020.  

The severe retreat of Arctic sea ice provides vital implications of environmental change, and it could have a diverse impact 

on regional and even global climate (Overland et al., 2015; Gu et al., 2018; Previdi et al., 2020), marine ecology (Post et al., 

2013), economic activities (Crépin et al., 2017). Likewise, the scientific studies about the causes of Arctic sea ice shrinkage 45 

encompass various disciplines. Regarding the sea ice-atmosphere interactions, previous studies provided a consensus that 

changes in both large-scale atmospheric circulation (Wu et al., 2006; Deser and Teng, 2008; Hegyi and Taylor, 2018; Lei et al., 

2019) and synoptic activities (e.g., cyclones) (Zhang et al., 2013a; Olason and Notz, 2015; Lei et al., 2016; Wernli and Papritz, 

2018; Lei et al., 2020) could significantly impact sea ice variation. Atmospheric forcing plays an important role in regulating 

the sea ice variations and trends through both thermodynamic and dynamic processes. With respect to the thermodynamics, the 50 

heat and moisture advection from mid-latitudes increase the air temperature, humidity, and cloudiness, thereby altering the 

surface radiation and energy budget in the Arctic (Doyle et al., 2011; Graversen et al., 2011; Zhang et al., 2013a; Boisvert et al., 

2016; Dufour et al., 2016; Vázquez et al., 2017). Dynamically, wind anomalies can induce sea ice motion and deformation, 

leading to sea ice redistribution and the occurrence of cracks, leads, and polynyas (Brümmer et al., 2001; Vihma et al., 2012; 

Olason and Notz, 2015; Lei et al., 2020; Liang et al., 2021).  55 

At present, the new record low Arctic sea ice extent (SIE) in July 2020, especially in the study area, has not garnered much 

attention. The underlying mechanisms contributing to this extreme event remain unclear. Inspired by the previous works, we 

conduct an assessment for the preconditions in meteorological fields during the spring months just prior to the record 

minimum SIE in July 2020. Specifically, we examine the magnitude and variations of the atmospheric transport of total 

energy and moisture as well as their convergence over the Arctic in spring (April-June) 2020. The changes in terms of the 60 

temperature and specific humidity fields over the vast area with significant sea ice retreat due to the convergence of the energy 

and water vapor are explored. To quantify the sea ice melt due to changes in the surface energy balance, the energy flux 
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components including downward longwave radiation, solar radiation, and turbulent fluxes are analyzed. Moreover, we 

investigate the distinct role of the synoptic activities, which contributes to the remarkable anomalies of the moisture and 

energy fluxes into the area of substantial ice loss.  65 

 
Figure 1. Spatial patterns of SIC anomalies (shading), and the SIEs in typical years (bold lines). The red line represents the SIE in July 2020. 

Green and grey curves within denote the SIE in July 2012 and the 20-yr average of the recent period 2001-2020, respectively. The anomalies 

are computed as the difference between the fields in July and the corresponding climatology over the past four decades (1979-2020). 

2 Data and methods 70 

2.1 Data 

We use the Polar Pathfinder Daily sea ice motion (SIM) vectors product and satellite-derived daily sea ice concentration (SIC) 

provided by the National Snow and Ice Data Center (NSIDC) to investigate the SIE variations over the ice-retreated area. The 

SIM product is derived from a variety of sensors on satellite platforms, merged with buoy observations as well as reanalyzed 

wind data. The motion data is georeferenced to the Equal-Area Scalable Earth (EASE) Grids. The upgrade of the most recent 75 

SIM (Version 4.0) addresses artifacts resulting from interpolation (Tschudi et al., 2019). Tschudi et al. (2019) show that the 

NSIDC SIM product is one of the most comprehensive sea ice motion datasets. SIC fields are available on a polar 

stereographic projection and are derived from the SMMR, the SSM/I, and the SSMIS by applying the bootstrap algorithm 

(Comiso, 2017). The latest version (Version 3.1) of the dataset provides improved consistency between sensors through the use 

of a suite of daily varying tie points generated from the AMSR-E observations. Both datasets have a spatial resolution of 25 km 80 

and a temporal resolution of 1-day.  

We use daily sea ice thickness (SIT) from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Zhang 

and Rothrock, 2003). PIOMAS is a coupled sea-ice/ocean model which is forced by atmospheric fields and sea surface 
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temperatures from the National Centers for Environmental Prediction/National Center for Atmospheric Research 

((NCEP/NCAR) reanalysis. Multiple studies have compared PIOMAS SIT fields with satellite, submarine, airborne, and in 85 

situ observations, whose results revealed that PIOMAS is highly consistent with these observations (Zhang and Rothrock, 

2003; Schweiger et al., 2011; Stroeve et al., 2014; Wang et al., 2016). In particular, Schweiger et al. (2011) outlined a less than 

0.1-m mean difference and a high pattern correlation (r = +0.8) between the PIOMAS and the ICESat-derived SIT fields. The 

PIOMAS SIT dataset is available on a generalized orthogonal curvilinear coordinate system with a mean resolution of 22 km.  

Cryosphere Science Research Portal (CSRP) of National Aeronautics and Space Administration (NASA) provides the 90 

record of sea ice surface melt dates in the Arctic, wherein the knowledge concerning the onset of the melt season is obtained. 

The fields are derived from SSM/I data following Markus et al. (2009) and available on the data grid in line with the SIC 

fields provided by NSIDC.  

ERA5 reanalysis datasets including sea level pressure (SLP), temperature, specific humidity, surface evaporation, wind 

speed, the vertical integral of northward/eastward water vapor flux, the vertical integral of northward/eastward total energy 95 

flux and their convergence, as well as the radiation parameters (surface net/downward longwave radiation, surface 

net/downward shortwave radiation, surface latent heat flux and surface sensible heat flux) are obtained from the European 

Centre for Medium-Range Weather Forecasts (ECMWF). These meteorological variables are used to identify cyclones and 

extract the associated characteristic variables (track, intensity, center, et al.), and to quantify the atmospheric energy and 

moisture transport. Previously, Kapsch et al. (2013) found ERA-Interim to be the most credible reanalysis for the Arctic 100 

climate. ERA5 is a new reanalysis product that benefits from a decade of developments in model physics, core dynamics, and 

data assimilation, replacing the ERA-Interim. Compared with ERA-Interim, the major strength of ERA5 is the much higher 

temporal and spatial resolutions than those of previous global reanalyses and better performance in the troposphere (Hersbach 

et al., 2020). The adopted ERA5 datasets are characterized by a spatial resolution of 1.0° ×1.0° in longitude and latitude. Note 

that most of the ERA5 variables we utilized are recorded every six hours except for parameters that accumulated over a 105 

particular time period (evaporation and surface radiation fluxes) and the convergence of the energy and moisture transport.  

2.2 Methods 

2.2.1 The atmospheric transport of total energy and moisture 

The net atmospheric moisture transport for the Arctic represents regionally integrated precipitation minus evapotranspiration 

and the precipitable water tendency. However, large errors and sparse uncertainties exist in precipitation and 110 

evapotranspiration measurements (Zhang et al., 2013b). To this end, we utilize wind and specific humidity fields from 

reanalysis, which are of great fidelity, to compute moisture transport. The vertical integral of northward moisture flux can be 

approximated following the trapezoidal rule (Dufour et al., 2016): 
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𝑓𝑓(𝑝𝑝𝑛𝑛) = 𝑣𝑣𝑛𝑛𝑞𝑞𝑛𝑛                                                                 (2) 115 

where 𝑛𝑛 is the number of pressure levels, 𝑛𝑛0 is the lowest pressure level. 𝑝𝑝𝑛𝑛 corresponds to pressure at the nth pressure level, 

𝑣𝑣𝑛𝑛 and 𝑞𝑞𝑛𝑛 represents the northward component of the wind speed and specific humidity at the nth pressure level, respectively. 

We compared our estimated results of the vertical integrated northward water vapor flux against the existing dataset archived 

in ERA5. The results (not shown) show that the estimated results are highly consistent with the corresponding ERA5 filed 

both in the magnitude and change of all months across various latitudes (e.g., 70° N) during the period 1979 to 2020, which 120 

lends credence to the direct use of the water vapor flux field obtained from ERA5. By the same token, we take advantage of 

the vertical integral of total energy from ERA5. The vertically integrated, atmospheric, northward energy transport consists of 

internal, potential, kinetic and latent energy.  

2.2.2 Changes in sea ice thickness due to melt  

Changes in surface energy budget related to energy and water vapor convergence affect sea‐ice melting. The thickness of melt 125 

caused by alteration of surface energy budget can be calculated via the sea-ice growth model (Maykut et al., 1992; Eisenman et 

al., 2007). Neglecting some smaller radiative fluxes, the changes in sea ice thickness can be written as a simplified function of 

the surface radiation and turbulent flux:  

−𝛥𝛥ℎ = △𝑡𝑡
𝜌𝜌𝜌𝜌

[𝐹𝐹𝐿𝐿𝑤𝑤↓ + 𝐹𝐹𝑆𝑆𝑤𝑤↓ + 𝐻𝐻↓ + 𝐿𝐿𝐸𝐸↓]                                         (3) 

where Δℎ represents sea-ice change, △ 𝑡𝑡 is the time step, 𝜌𝜌 represents the density of sea ice (917 kg/m3), 𝐿𝐿 is the latent 130 

heat of fusion for sea ice ( 333.4 kJ/kg ), 𝐹𝐹𝐿𝐿𝑤𝑤↓ and 𝐹𝐹𝑆𝑆𝑤𝑤↓ represent the surface net fluxes of longwave and shortwave 

radiation, respectively. 𝐻𝐻↓ corresponds to the sensible heat, and 𝐿𝐿𝐸𝐸↓ denotes the latent heat. 

2.2.3 Cyclone identification and tracking  

To examine the effects of cyclone activities on the anomalous energy and moisture transport in spring 2020, we use a revised 

automatic cyclone identification and tracking algorithm developed originally by Serreze et al. (1993) to diagnose the center 135 

positions and trajectories of the cyclones from the 6-hourly SLP data (Serreze et al., 1993; Serreze, 1994; Serreze et al., 1997; 

Wang et al., 2006; Wang et al., 2013). The cyclone detection and tracking algorithm consists of two steps: (1) Inspecting the 

candidate center where the pressure is lower by 0.1 hPa than the surrounding grid points (Wang et al., 2013). If multiple 

cyclone center candidates are found within a radius of 1200 km, the one with the largest local Laplacian of SLP is determined 

as the exact cyclone center. (2) Tracking the centers between two consecutive time steps based on the “nearest neighbor” rule 140 

to form trajectories, with further checks including the distance moved in specific directions and pressure tendency. Therefore, 

a cyclone track consists of a series of cyclone centers identified in sequential time steps at adjacent locations. In this study, 
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thresholds related to multiple parameters, including the maximum travel distance (800 km), maximum north-, south- and 

west-ward migration (600 km), and maximum pressure tendency (20 hPa) (Serreze, 1994; Wang et al., 2006), are adopted. 

Note that regions with surface elevations higher than 1000 m are excluded since the algorithm tends to detect spurious systems 145 

due to larger uncertainty in the SLP over mountainous terrain. 

Moreover, the corresponding features for each cyclone, including the duration, intensity, and radius, were also retrieved. 

By definition, the intensity is referred to as the difference between the SLP of the cyclone center and the climatological 

monthly mean SLP at corresponding grid points. The density of tracks denotes the number of distinct cyclones occurring in a 

particular region during spring. We use an integrative parameter to measure the intensity, number, and duration of a cyclone. 150 

The Cyclone Activity Index (CAI) is defined as the sum of the intensity over all cyclone centers in a particular region during 

the spring months (Zhang et al., 2004). A more detailed description of the automated cyclone detection and tracking scheme 

can be found in Liang et al. (2021).  

3 Atmospheric energy and moisture transport 

The transport of total energy and moisture toward the Arctic system is controlled by changes in large-scale atmospheric 155 

circulation and patterns of climatic variability (Graversen et al., 2011; Vihma et al., 2016; Ding et al., 2017). As depicted in Fig. 

2, the average Arctic atmospheric condition from April to June 2020 was dominated by a persistent low-pressure anomaly 

centered over the north pole and extended southwards from the Barents-Kara Seas to the middle part of northern Eurasia. Two 

high-pressure anomaly centers were located in Eastern Siberia and around the Norwegian Sea, respectively. These SLP modes 

favor anomalous southerly winds, which transport moist and warm air mass from Eurasia into the Arctic through the entry in 160 

the Kara Sea. After entering the Arctic Ocean, the air mass was deflected to move along the coast of Eurasia and influenced the 

shelf seas. 
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Figure 2. Spatial patterns of SLP anomalies (shading) during April to June 2020. The anomalies are computed as the difference between the 

averaged fields of the three months (April-June) and the corresponding climatology over the past four decades (1979-2020).  165 

Using ERA5 reanalysis, we quantify the anomalies of the vertical integral of meridional total energy and water vapor flux. 

As shown in Fig. 3, an anomalously large advection of energy and water vapor from lower latitudes, which is diverted by wind 

variations, prevailed in the region with conspicuous sea ice retreat (Fig. 1) in spring 2020. Regions around the Laptev and Kara 

sea (45° E-120° E, 70° N) are the main entry channels for warm air-mass input from lower latitudes. It is estimated that the 

zonal mean of the meridional total energy flux (water vapor flux) through these main entry channels over the entire spring in 170 

2020 reached up to 1.74×1011 Wm-1 (1.51×103 kg m-1s-1), producing a transport that was 2 (3) standard deviations larger than 

the 1979-2020 climatology. The pronounced poleward energy and moisture through the entry then converged into the Arctic. 

As depicted in Fig. 3c and d, the major parts of the ice-retreated shelf seas in spring 2020 are characterized by positive 

convergence anomalies of the atmospheric moisture and energy transport. Particularly, the magnitude of the total energy and 

moisture flux convergence anomaly even exceeds 50 Wm-2 and 9×10-6 kg m-1s-2, respectively, in the Kara Sea).  175 
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Figure 3. Anomalies of the vertically integrated northward (a) moisture flux and (b) total energy transport and the corresponding 

convergence (c-d) averaged over the spring months (April-June) of 2020. Anomalies are relative to the climatology of April-June from the 

years 1979-2020. Green polygons encapsulate areas where substantial sea ice cover loss (60° E-165° E, 70° N-82° N) occurred in July 2020, 

which represents the study area of this paper.  180 

Figure 4 illustrates the meridional cross-sections of temperature and specific humidity anomalies spanning the regions 

with maximum convergence of the atmospheric fluxes (60° E-165° E, 60° N -90° N). Horizontally, elevated temperature and 

higher moisture content distributed widely from 60° N to 85° N near the surface. Vertically, the positive temperature and 

moisture anomalies extend conspicuously into the mid-troposphere (~750 hPa). The intrusion of moisture and energy leads to 

surface warming (damping) of up to 3-4 K (6-8×10-4 kg kg-1) in the spring months. The vertical patterns of the anomalies 185 

indicate that the great convergence (Fig. 3c and d) of energy and moisture could contribute to the local increases in the 

atmospheric temperature and humidity, both at the surface and in the troposphere above the boundary layer, which is in 

agreement with the finding of Graversen et al. (2008). Noticeably, unusual conditions that higher moisture content and 

warming within the Arctic atmospheric column prevailed over the ice cover loss region. We also examine the role of local 

evaporation in the regional increase of moisture under a warmer Arctic climate. According to the ERA5 reanalysis, the spring 190 

evaporation over the Arctic Basin exhibits a decreasing trend over the past four decades, except for the Barents and 

Norwegian Seas. In April-June 2020, below-normal evaporation dominated the Arctic with an averaged negative value of 

-1.5×10-4 m in the regions with notable ice-retreat (not shown). The decline in evaporation indicates that the enhanced 

moisture contributing to the moister atmosphere over these regions is primarily provided by atmospheric transport from remote 

areas rather than by local sources as the moisture fluxes from the sea surface are negligible. This finding further affirms the 195 
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arguments of Vázquez et al. (2016) and Singh et al. (2017), which highlighted the importance of remote sources of water 

vapor. 

 
Figure 4. Vertical cross-sections of zonal averaged (a) air temperature and (b) specific humidity anomalies, as a function of latitude and 

pressure level, during the spring months (April–June) of 2020 spanning the with significant energy and moisture convergence (60° E-165° E, 200 
60° N-90° N). The anomalies are calculated as the difference between the averaged fields of the three months (April-June) and the 

corresponding climatology over the past four decades (1979-2020). 

4 Surface energy Budget 

The surface energy budget that consists of thermal radiation, solar radiation, and turbulent fluxes is vital for sea ice melt and 

growth. An increase of humidity associated with the convergence of moisture flux may strengthen cloud formation(Johansson 205 

et al., 2017), of which both contribute to the enhanced local greenhouse effect. In addition, the energy convergence in the 

atmosphere may partly be radiated directly to space in the form of longwave radiation, and partly radiated to the sea surface and 

turbulently mixed, contributing to the sea ice melt. Having shown the anomalously large convergence of water vapor and total 

energy transport in April-June 2020, in the following we will present the variations of different surface energy flux 

components. Note that the ECMWF convention for vertical fluxes is positive downwards. 210 

In the Eurasian shelf seas with remarkable sea ice shrinkage, the surface gained more energy owing to both shortwave and 

longwave radiation, as well as turbulent fluxes, as the enhanced surface fluxes predominantly appeared in these regions (Fig. 

5). The spatial pattern of anomalies in surface thermal radiation downwards is characterized by positive values throughout the 
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convergence zones, with the largest amplitudes in the Kara Sea (~32 Wm-2, Fig. 5a). The anomalies of the net longwave 

radiation (Fig. 5b) are roughly similar in spatial distribution to that of the downward component over the Arctic marginal seas 215 

on the Eurasian side. The difference between Fig.5a and b indicates that part of thermal radiation was radiated upwards to 

increase the surface air temperature before the melt commenced. Downward and net shortwave radiation anomalies are 

portrayed in Fig. 5d and e. The downward component of the solar radiation was below-normal in most parts of the ice-retreated 

area (Fig. 5d), which is presumably attributed to increased cloudiness associated with the convergence of moisture. In contrast, 

remarkably positive anomalies of the net solar radiation were found in the Eurasian shelf seas where the extensive loss of sea 220 

ice is observed. This is a result of the substantial formation of open water due to sea ice loss which reduces the albedo and 

thereby enables the upper ocean to absorb more heat (i.e., the ice-albedo feedback).  

Additionally, sensible and latent turbulent surface flux anomalies both make a contribution to the energy surplus at the 

surface in the spring months of 2020 (Fig. 5c and f). The positive (downward) anomalies of turbulent surface fluxes were 

detected in the regions which coincide well with the seas with contracted ice cover (Fig. 5c and f). Intuitively, more turbulent 225 

fluxes would be released to the atmosphere as more open water prevailed. That is, a negative (upward) value over the Arctic 

shelf seas is expected. However, reduced upward, or even downward, sensible and latent heat fluxes are detected in the study 

region during April-June in 2020. This can be attributed to the anomalously high moisture advection and convergence which 

as a result could reduce the gradient of the water vapor pressure at the surface. As implied in Fig.4, positive temperature and 

humidity anomalies extend from surface even to mid-troposphere, peaks at around 925 hPa. These changes would result in a 230 

decreased vertical gradient in air temperature and humidity in the lower atmosphere, reducing the hypothesized upward 

turbulent fluxes from the ocean surface to the overlying atmosphere.   

 
Figure 5. Anomalies of surface (a) downwelling and (b) net longwave radiation, (d) downwelling and (e) net shortwave radiation, as well as 

sensible (c) and latent (f) heat fluxes. The anomalies are relative to the climatology with monthly resolution from the years 1979-2020 and 235 
averaged over the spring months (April–June) of 2020. 
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Figure 6a presents the time series of SIE, the anomalies of atmospheric energy transport convergence and the surface fluxes 

averaged over the study area (enclosed by the green polygon in Fig. 3c and d) during 2020. Indeed, the energy convergence 

event started at the end of March and lasted for three months, peaked in early June. This is followed by an augment in the 

downward thermal radiation plus turbulent fluxes (smaller) by ~30-40 Wm-2 (Fig. 6a, green line). The almost simultaneous 240 

response of downward thermal radiation highlights that the convergence of the total energy and moisture flux has a significant 

imprint on the increased surface energy fluxes. With the enhanced downward infrared radiation, sea ice cover began to 

decrease gradually (Fig. 6a, grey line). The time development underlines that the positive anomalies of longwave radiation 

plus turbulent fluxes played a significant role in initiating an early than usual melt in 2020. As estimated from fields of melt 

dates archived in NASA, persistent melt conditions in the study area were observed in May 2020 (Fig. 6, red vertical line), 245 

which occurred about 15 days earlier than the average value of the period 1979-2020. As the melt commenced, the formation of 

open water decreased the surface albedo, which in turn acted to increase the absorption of solar radiation (Fig. 6a, red line). 

That is, the earlier melt onset could foster stronger ice-albedo feedback(Hall, 2004), leading to an accelerated decline in SIE in 

June-July when the anomaly of net solar radiation reached its maximum.  

 250 
Figure 6. Time series of SIE, the anomalies of atmospheric energy transport convergence and surface energy fluxes over the study area 

(indicated by the green polygon in Fig. 3c and d) during 2020. The blue curve represents the SIE. The red line denotes the anomalies of net 

solar radiation. The green line corresponds to the anomalies of the sum of the downwelling thermal radiation and the turbulent (latent plus 

sensible) flux. The vertical pink line denotes the average melt day (May 28) in 2020, provided by NASA. The anomalies are relative to the 

climatology of the years 1979-2020. 255 

To quantify the thermodynamic impact of atmospheric energy of spring 2020 on the sea ice melt, we calculate the changes 

in sea-ice thickness due to the variations of surface energy fluxes via the sea-ice growth model(Maykut et al., 1992; Eisenman 

et al., 2007). According to equation (3), a 1 W/m-2 increase in surface energy budget during three spring months (April to 

June) would melt approximately 2.60 cm of sea ice. The spatial pattern of sea ice thickness change due to surface energy 

fluxes variations, calculated by equation (4), is portrayed in Fig. 7a. SIT anomalies due to radiative forcing are mostly 260 

negative (i.e., melting) in the Kara, Laptev, and East Siberian Seas during the three spring months of 2020, with a particularly 
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large value (-1.2m) in the Kara sea (Fig.7a). The region with significant SIT reduction agrees well with that with distinct SIC 

anomalies.  

To reiterate the long-term changes, we examine the trend of SIT over the past four decades in the study area. As 

estimated from the thickness data provided by PIOMAS, the average thickness of spring (April-June) sea ice in the study 265 

area has a remarkable decreasing trend of -0.27 m per decade (significant at the 99% confidence level) in the past four 

decades (Fig. 7b). SIT was persistently lower than 2.50 m since 2000 and dropped sharply to only 1.20 m in the spring of 

2020. Thinner ice is more susceptible to changes thermodynamically forcing, thus prone to melt earlier, which in turn could 

foster a stronger summer ice-albedo feedback through the formation of open water areas. In other words, without the extensive 

coverage of thin, first-year ice in spring 2020 in the study area (Fig. 7b), the unusual atmospheric energy and moisture 270 

transport would not have been nearly as effective in reducing ice extent as was observed (Fig. 1).  

 
Figure 7. (a) Changes of SIT caused by anomalies of surface radiative fluxes during spring (April-June) 2020 which is estimated by a sea-ice 

growth model. (b) Time series of SIT (provided by PIOMAS) and the corresponding trend (dashed line) averaged over the study area (60° 

E-165° E and 70° N-82° N) in spring during the period 1979-2020. 275 

5 Cyclones activities in Spring 2020 

Synoptic cyclones are a central component maintaining the global atmospheric energy, moist, and momentum 

budgets(Jakobson and Vihma, 2010; Dufour et al., 2016; Villamil-Otero et al., 2018). A wide variety of studies reveal a 
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poleward shift in tracks and significant changes in the frequency and intensity of extratropical cyclones(Yin, 2005; Sepp and 

Jaagus, 2011; Zhang et al., 2013a; Day et al., 2018). Considering the notable variations in cyclone activities and the strong sea 280 

ice decline experienced in the study area over recent decades, understanding the underlying effects of the cyclones on the 

poleward transport of energy/moisture is especially crucial. We identify and tracking cyclone systems that occurred in the 

spring months (April - June) during the period 1979-2020 using the automated algorithm(Serreze et al., 1993; Serreze, 1994; 

Serreze et al., 1997; Wang et al., 2006; Wang et al., 2013). To cross-check the cyclone systems diagnosed from the ERA5 SLP, 

we also analyzed data from ERA-interim. Despite some differences in certain regions, a high agreement exists in terms of 285 

interannual variability and climatological geographical distribution of cyclone characteristics (not shown). To some extent, 

this consistency gives credence to the method and datasets utilized. 

Longitudinal distributions of the climatological vertically integrated northward total energy and moisture flux across 60° N, 

as well as CAI of cyclones entering the Arctic at the 60° N averaged over the spring months (April–June) during 1979-2020, 

are illustrated in Fig. 8. Note that cyclones entering the Arctic are defined as cyclone trajectories having their cyclolysis south 290 

of 60° N and traveling poleward through 60° N. The spatial distribution of CAI is in good agreement with the vertically 

integrated meridional total energy and moisture flux. The main entry channels of the energy and moisture including the North 

Atlantic, North Pacific, and the Labrador Seas witness more cyclones with greater intensity that propagated toward the Arctic 

region. A strong correlation exists between the averaged CAI and the vertically integrated northward total energy flux 

(moisture flux) at 60° N with R=+0.69 (+0.68) (361 grids, significant at the 99% confidence level), suggesting the significant 295 

role of cyclone activity in contributing to the poleward advection of energy and moisture. Note that Greenland is masked when 

tracking cyclones to avoid problems caused by SLP extrapolation, hence we use the latitude 60° N other than 70° N to display 

the relationship between cyclone activities and the meridional fluxes. Other studies also corroborated the fact that synoptic 

cyclones play a crucial role in regulating the poleward fluxes considering the fundamental nature of cyclones in holding and 

transporting moisture and energy. For instance, Dufour et al. (2016) concluded that poleward advection of moisture is 300 

dominated by transient eddies (e.g., cyclones) owing to its almost exclusively meridional direction of the flux. It was estimated 

that the cyclones could explain 80–90% of the total northward transport at latitudes of 70° N(Jakobson and Vihma, 2010; 

Dufour et al., 2016). In addition, Villamil-Otero et al. (2018) found that stronger cyclone activity across 60° N measured by the 

CAI generally co-occurs with enhanced poleward monthly atmospheric moisture transport in each representative seasonal 

month. Our results augment evidence for the view that the intrusion of moisture and energy associated with cyclones into the 305 

Arctic is linked with the abrupt changes in the Arctic climate system.  
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Figure 8. Longitudinal distributions of the climatological vertically integrated meridional total energy and moisture flux across 60° N, as 

well as CAI of cyclones entering the Arctic at the 60° N averaged over the spring months (April–June) during 1979-2020. 

It is noteworthy that, in this study, we use a range of latitudes (50° N-70° N, with a step length of 1° ), other than a single 310 

one, to define the poleward cyclones. For instance, poleward cyclones are defined as those that are generated south of a certain 

latitude within the range (50° N-70° N) and traveling northward through it. All of these cyclones may play a non-negligible 

role in carrying energy and water vapor to the Arctic in the form of a relay. As shown in Fig. 9, spring 2020 saw many 

low-pressure systems moving poleward from Eurasia and some of them entered the study area through the main entry channels 

in the Kara sea (Fig. 9, green thin lines). Besides, in the Eurasian shelf seas with great convergence of the total energy and 315 

water vapor transport (Fig. 3c and d), the majority of the cyclones are featured with trajectories in a zonal direction (Fig. 9, 

blue thin lines). Furthermore, we retrieve the typical trajectory paths of these cyclones following Gaffney (2004). The 

trajectory clustering was done using a polynomial regression mixture model where each cyclone trajectory is approximated as 

a second-order polynomial. The detected cyclones during the spring months (April-June) of 2020 are clustered in two 

categories, which are schematically explained in Fig. 9 with thick polylines. One track represents the cyclones that are 320 

generated in the lower latitude of Eurasia with a poleward moving tendency, while the other denotes cyclones in the marginal 

seas that are characterized by an eastward movement toward or through the Kara, Laptev, and East Siberian Seas (Fig. 9). In 

general, the trajectories of these cyclones as observed during the spring months (April-June) of 2020 coincide well with the 

path of total energy and water vapor transport (Fig. 3a and b). The good agreement implies that these extratropical cyclones in 

spring, as shown in Fig. 9, served as a vital carrier of the anomalously large amount of energy and moisture into the study 325 

area. To sum up, the synoptic cyclones act in concert with the large-scale atmospheric circulation to cause anomalous energy 

and moisture fluxes into the study area and to change the characteristics of the Arctic climate system.  
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Figure 9. Poleward cyclones detected in the main entry channels (green thin line, 45° E-120° E and 40° N-90° N) and all cyclones occurred 

in the regions intersected with the route after the fluxes entering Arctic (blue thin line, 45° E-15° W and 65° N-90° N) during the spring 330 
months (April-June) in 2020 and their typical trajectories (thick lines). Red (black) dots represent the position of the genesis (lysis) of 

cyclones. 

We further investigate the connection between the long-term changes in poleward cyclones and meridional transport. 

Figures 10a illustrates the decadal relationship between the 10-year running trends that have been observed in the meridional 

total energy/moist transport and the poleward cyclone activities in spring (April-June) during the period 1979-2020. Note that 335 

the northward transport is the average value of all the corresponding fluxes across 50° N-70° N, which is consistent with the 

definition of poleward cyclones. Indeed, a robust correlation exists between the trends of the average intensity of poleward 

cyclones and the vertical integral of northward energy (moisture) transport during spring with a strong correlation coefficient 

of +0.62 (+0.59), suggesting poleward cyclone activities play an important role in regulating the variations of the decadal 

trends in meridional transport of energy and moisture. Particularly, in the recent decade (2010-2020), significant upward 340 

trends are observed in the northward transport of total energy and moisture together with more intense poleward cyclones 

(Fig. 10a). As for the spring months of 2020, stronger and more frequent cyclones are detected in the Arctic (Fig. 10b and c). 

The density of cyclone tracks is higher than normal in many parts of marginal seas and the central Arctic Ocean, with the 

largest positive values centered over the Taymir Peninsula. Most cyclones throughout the Arctic Basin have unusually high 

intensity than the climatology of the years 1979-2020, especially in the Barents, Kara, Laptev, and Beaufort Seas, indicating 345 

lower-than-normal SLP in these regions (Fig. 10c). The spatial pattern of CAI anomalies is roughly in line with those of track 

density and intensity (Fig. 10d).  
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Figure 10. (a) The time series for the trends of the meridional total energy (moisture) transport and average intensity of poleward cyclone 

during spring months (April to June) from 1979 to 2020. The trends are calculated using a 10-year running window. Note that the northward 350 
transport is the average value of all the corresponding fluxes across 50° N-70° N, which is consistent with the definition of poleward cyclones. 

Anomalies of the cyclone features in spring 2020 relative to the climatology of the years 1979-2020, including the (b) density of tracks, (c) 

intensity, and (d) CAI. Panels (a) have units of counts per 106 km2 while (b) and (c) have units of hPa per 106 km2. Blue dots represent the 

regions with values above the mean plus 1.5 above standard deviation.  

In general, the Eurasian shelf seas had more frequent and stronger cyclones in the spring, especially in the Kara and Laptev 355 

seas (Fig. 10). The cyclone variations could alter the spatiotemporal characteristics of the critical near-surface atmospheric 

parameters (wind stress, temperature, and humidity). As a result, the atmospheric conditions could have a significant impact on 

sea ice in the study area through control on ice motion, deformation, and melt associated with both dynamic and 

thermodynamic processes of a cyclone.  

From the thermodynamical view, the enhancement of the total energy and water vapor transport in the Eurasia side (Fig. 3a 360 

and b) is associated with the regional increases both in the number (Fig. 10b) and intensity (Fig. 10c) of synoptic cyclones that 

occurred in the main entry channels and some part of the study area. The warm and moist air mass carried by cyclones in spring 

(Fig. 9) could alter the surface energy balance, thus initiating the earlier melt onset of sea ice as observed in the study area. 

Moreover, the cyclones traversing the Arctic can trigger a spatially extensive sea ice melting with their associated frontal 

systems(Stramler et al., 2011). The cyclones and the associated frontal systems can also affect the formation of low-level and 365 

midlevel clouds over the Arctic Ocean(Curry et al., 1996). All these thermodynamic factors may contribute to the significant 

SIT decline in Eurasia shelf seas as shown in Fig. 7. Dynamically, the extreme loss of SIE in July 2020 was accompanied by a 

strong pattern of anomalous cyclonic SIM in spring (Fig.11), with Ekman drift out of the central Arctic toward the marginal 

seas. On one hand, the cyclonic SIM anomaly in cold seasons serves to enhance the production of new ice within leads 
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because of the increase in sea ice divergence. On the other hand, as the melt season commences, while ice divergence increases 370 

extent, it can also accelerate melt by exposing more dark open water areas in the cracks, leads, and polynyas. More frequent 

and intense cyclones in the Arctic during spring 2020 (Fig. 10) may provide additional cyclonic wind anomalies which are 

superimposed on that of the large-scale atmospheric circulation as depicted in Fig. 2, promoting the above processes. Based on 

our results, the thermodynamical other than dynamical effects of cyclones seem to play a dominant role in regulating the 

changes in SIE during spring 2020, as the expansion of sea ice cover due to divergence was offset by the significant shrinkage 375 

due to melt. 

 
Figure 11. Anomalies of the spring (April to June) SIM relative to the climatology of the years 1979-2020.  

6 Discussion and Conclusions 

An unprecedented reduction in SIE was observed in July 2020 since the satellite era (1979-2020), especially in the Eurasia 380 

shelf seas covering the Kara, Laptev, and East Siberian Seas (60° E-165° E, 70° N-82° N). By utilizing global reanalysis 

datasets and satellite observations, we address the mechanisms of the extreme event. The variations of the total energy and 

moisture transport toward the study area are obtained and analyzed. We investigate the associated surface energy budget 

during spring (April to June) of 2020 to disentangle the driving effects of different energy components on sea ice in July. 

Moreover, the influences of large-scale atmospheric circulation and synoptic cyclones on the poleward energy and moisture 385 

transport are outlined.  

Our results reveal that anomalously high advection of energy and water vapor prevailed during spring (April-June) in 2020 

over the regions where conspicuous sea ice retreat occurred in the following July. The enhanced energy and moist transport 

converged into the study area through the main entry channels in the Laptev and Kara Seas from lower latitudes, which 
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reached up to 1.74×1011 Wm-1 and 1.51×103 kg m-1s-1 respectively, over the entire spring. As a consequence, the convergence 390 

of the transport increased the temperature and specific humidity of the local atmosphere from the surface to the 

middle-troposphere. This is accompanied by a strengthened downward longwave radiation plus turbulent fluxes at the surface, 

which initiated the earlier melt onset of sea ice in the study area (15 days in advance). After the melt commenced, the enhanced 

net solar radiation absorbed by dark water due to ice-albedo feedback produced an accelerated decline in SIE. Quantitative 

analysis shows that the amount of surface radiative fluxes surplus (~40 Wm-2) during April–June 2020 in the ice-retreat 395 

domain can potentially melt around 1 meter of ice in addition to the climatological melt. Besides, having experienced a large 

reduction in thickness during recent decades (-0.27 m per decade), the majority of the present sea ice in the study area is 

composed of thinner seasonal ice(Kwok, 2018). We conclude that the fact of younger and thinner sea ice, together with 

enhanced total energy and moisture transport which affect the surface radiative forcing, having repercussions for the 

occurrence of the record low July SIE in 2020. 400 

A key driver of the anomalous high transport of the total energy and moisture during spring 2020 was a persistent 

atmospheric pattern, featuring unusually low SLP over the north pole which extended through the Barents-Kara Sea to Eurasia 

and unusually high-pressure centers over the Eastern Siberia and the Norwegian Sea. The SLP pattern led to southerly winds 

and favored the enhanced transport of warm and moist air mass from Eurasia to the adjacent Arctic shelf seas where 

substantial sea ice retreat was observed in July 2020. Besides, the typical trajectories of the synoptic cyclones that occurred on 405 

the Eurasian side in the spring months of 2020 agree well with the path of the intensive total energy and water vapor transport. 

The agreement implies that cyclones served as another important carrier of the large energy and moist fluxes into the study 

area since the storm is capable of holding moisture and energy. Further analysis reveals that the enhanced atmospheric fluxes 

in spring may be partly attributed to the stronger and more frequent cyclone activities near the region with severe loss of SIE. 

Moreover, anomalously frequent and intense cyclones in the Arctic during spring 2020 coupled with large-scale atmospheric 410 

circulation, further strengthen the cyclonic wind and ice motion. The cyclonic ice drift could lead to extensive sea ice melt as 

presented in July 2020 through the large formation of the cracks and leads among sea ice floes.  

Likewise, previous studies have investigated the relationship between synoptic activities and sea ice variability. For 

instance, Persson (2012) found that the synoptic-scale weather systems that augmented the atmospheric energy fluxes to the 

surface can trigger the melt onset at a specific site and a certain year. Moisture transport associated with the synoptic activity 415 

may explain part of regional differences in sea ice extent and concentration variations, such as in the Barents and Kara 

Seas(Kapsch et al., 2014; Woods and Caballero, 2016). Nevertheless, the impacts of cyclones on sea ice depend on the location 

of the cyclone tracks as the movement of cyclones determine the transport of heat and moisture as well as the direction of sea 

ice drift ice(Thorndike and Colony, 1982; Brümmer et al., 2001; Liang et al., 2021). In the present study, we explored the 

influence of cyclones qualitatively because of the strong coupling between the large-scale atmospheric circulation and synoptic 420 

activities(Cohen et al., 2017; Koyama et al., 2017). Besides, the coupled interaction between sea ice and atmosphere involves 
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myriad physical processes which may lead to diverse and nonlinear effects on the Arctic ice, as well as triggering multiple 

feedback mechanisms. Disentangling their effects is challenging which requires using more sophisticated statistical techniques, 

combined with climate models of higher fidelity. The environment of the Arctic has transformed to a new state with 

younger(Rigor and Wallace, 2004; Tschudi et al., 2016)and thinner(Kwok and Rothrock, 2009; Johnson et al., 2012; Bi et al., 425 

2018) ice floes. Under such a circumstance, comprehensive and quantitative analysis of different mechanisms associated with 

cyclone activity would be an appropriate avenue for follow-up research. It is also noteworthy that despite the exceptionally low 

sea ice extent in July 2020, which is the focus of the present study, the September SIE minima did not exceed that of 2012, as 

the sea ice decline slowed down after late July. The mechanisms that retard the rapid sea ice melt remain unclear, other possible 

processes like sea ice export variability, and multi-year ice cover should be explored in greater detail in future studies. 430 
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