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Abstract.  10 

Topography and vegetation play a major role in sub-pixel variability of Arctic snowpack properties, but are not considered in 

current passive microwave (PMW) satellite SWE retrievals. Simulation of sub-pixel variability of snow properties is also 

problematic when downscaling snow and climate models. In this study, we simplified observed variability of snowpack 

properties (depth, density, microstructure) in a two-layer model with mean values and distributions of two multi-year tundra 

dataset so they could be incorporated in SWE retrieval schemes. Spatial variation of snow depth was parametrized by a log-15 

normal distribution with mean (𝜇𝑠𝑑) values and coefficients of variation (𝐶𝑉𝑠𝑑). Snow depth variability (𝐶𝑉𝑠𝑑) was found to 

increase as a function of the area measured by a Remotely Piloted Aircraft System (RPAS). Distributions of snow specific area 

(SSA) and density were found for the wind slab (WS) and depth hoar (DH) layers. The mean depth hoar fraction (DHF) was 

found to be higher in Trail Valley Creek (TVC) than Cambridge Bay (CB) where TVC is at a lower latitude with a sub-arctic 

shrub tundra compared to CB which is a graminoid tundra. DHF were fitted with a gaussian process and predicted from snow 20 

depth. Simulations of brightness temperatures using the Snow Microwave Radiative Transfer (SMRT) model incorporating 

snow depth and DHF variation were evaluated with measurements from the Special Sensor Microwave/Imager and Sounder 

(SSMIS) sensor. Variation in snow depth (𝐶𝑉𝑠𝑑) is proposed as an effective parameter to account for sub-pixel variability in 

PMW emission, improving simulation by 8K. Snow depth simulations using a 𝐶𝑉𝑠𝑑 of 0.9 best matched 𝐶𝑉𝑠𝑑 observations 

from spatial datasets for areas > 3 km2, which is comparable to the 3.125 km pixel size of the Equal-Area Scalable Earth 25 

(EASE) grid 2.0 enhanced resolution at 37 GHz. 
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1 Introduction 

Snow cover is known to be highly variable at the local scale (10 – 1000 m) due to wind redistribution, sublimation (Liston and 30 

Sturm, 1998; Winstral et al., 2013) and vegetation trapping (Sturm et al., 2001). Physical properties of snow such as 

measurement of stratigraphy (Fierz et al., 2009) can be aggregated into layers, but their spatial distribution is highly variable 

given their dependence on total depth and surface roughness (Liljedahl et al., 2016; Rutter et al., 2014). Such variability leads 

to uncertainties in the retrievals of snow state variables such as snow water equivalent (SWE) using microwave remote sensing 

from local scales (King et al., 2018; Rutter et al., 2019) to global scales (Pulliainen et al., 2020). Improving our empirical 35 

understanding of the processes governing this variability would improve space-borne snow monitoring, especially in Arctic 

regions where ground measurements and weather station networks are sparse.  

Measurement of SWE using passive microwave satellite data (Larue et al., 2018; Pulliainen, 2006) is possible using a radiative 

transfer model to simulate snow emission at various frequencies, from which an inversion of the model can produce global 

estimates of snow depth (Takala et al., 2011). More specifically, passive microwave brightness temperatures (𝑇𝐵) are governed 40 

by dielectric properties of the layered snowpack. As such, each layer has its own absorption and scattering properties; the 

amount of scattering is proportional to snow total mass where the scattering and emission is frequency-dependent (Kelly et al., 

2003). Scattering at higher frequencies such as 37GHz, will lead to lower 𝑇𝐵 so differences between 𝑇𝐵 at two frequencies (37-

19 GHz) is related to snow mass (Chang et al., 1982). Arctic snowpack mainly consists of two distinct layers (wind slab and 

depth hoar), where each layer has unique scattering properties (Derksen et al., 2010). Complexity of the layered properties 45 

(density, temperature and microstructure) strongly influence radiative transfer modelling (King et al., 2015; Rutter et al., 2014). 

Furthermore, recent developments in radiative transfer modelling (SMRT: Picard et al., 2018, DMRT: Tsang et al., 2000 and  

MEMLS: Wiesmann and Mätzler, 1999), microstructure representation (Royer et al., 2017), and in situ measurement of 

snowpack properties (Gallet et al., 2009; Montpetit et al., 2012; Proksch et al., 2015) have provided significant agreement 

between models and in situ measurements. However, spatial distribution and heterogeneity of total snow depth and stratigraphy 50 

remains challenging to implement and is not considered for large scale monitoring of SWE in tundra environments. Rutter et 

al. (2019) and Saberi et al. (2020), using three- and two-layer models respectively, demonstrated a relationship between the 

ratio of depth hoar and wind slab with respect to total depth, enabling the usage of proportion of these two layers with total 

snow depth. Working with a simplified layer representation of a snowpack with well-defined physical properties may 

adequately characterize snowpack for large scale SWE retrievals. 55 

Two dominant processes governing snow depth variability in the Arctic are 1) wind redistribution with topography (Sturm and 

Wagner, 2010; Winstral et al., 2002) and 2) vegetation trapping (Domine et al., 2018; Sturm et al., 2001). Liston (2004) 

described snow depth heterogeneity using a log-normal distribution with a coefficient of variation of snow depth (𝐶𝑉𝑠𝑑), the 

ratio between standard deviation (𝜎𝑠𝑑) and the mean of snow depth (𝜇𝑠𝑑), indicating the extent and spread of a distribution 

(i.e. high variability over thin snow will lead to high values of 𝐶𝑉𝑠𝑑). Also, Liston (2004) proposed 9 categories of 𝐶𝑉𝑠𝑑 with 60 
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values ranging from 0.9 to 0.06 for mid-latitude treeless mountains to ephemeral snow, where arctic tundra type was 0.4. Snow 

depth variability is based on a parametrization of 𝜇𝑠𝑑, 𝐶𝑉𝑠𝑑 on the log-normal distribution scale parameters (λ, ζ). Gisnas et 

al. (2016) adapted that approach using scale parameters (α, β) of the gamma distribution. In all cases, 𝐶𝑉𝑠𝑑 is used to describe 

subgrid variability (Clark et al., 2011), but its value remains challenging to quantify given that regional trends are linked to 

topography, vegetation and climate (Winstral and Marks, 2014). In this context, 𝐶𝑉𝑠𝑑 is used to quantify spatial heterogeneity 65 

of snow in climate modelling, but so far has not been used in microwave SWE retrievals. 

In SWE retrievals, snow depth is assumed to be uniform and the mean depth is used to optimize brightness temperature and 

derive SWE from depth and assumed density (Kelly, 2009). There is potential for 𝐶𝑉𝑠𝑑 to be used as an effective parameter to 

estimate sub-pixel variability in brightness temperature. Bayesian frameworks are used in inversion schemes for SWE 

retrievals (Durand and Liu, 2012; Pan et al., 2017; Saberi et al., 2020) using a priori information (density, microstructure and 70 

temperature) from regional snowpack characteristics  and inversion of radiative transfer models (Saberi et al., 2020). An 

iterative approach based on Bayesian theory is used (Takala et al., 2011) to match observed brightness temperature with 

modelled brightness temperature by iterating a priori information of the snowpack in order to derive snow depth and SWE. 

Saberi et al. (2020) conducted a case study for snow depth retrievals using a two layer model from airborne microwave 

observations using a Bayesian framework (or Monte Carlo Markov Chain) over tundra snow. However, high uncertainty (21.8 75 

cm) in retrieved snow depth (via 𝑇𝐵) resulted, which suggested the use of a Gaussian Process (GP) involving snow depth 

instead of a uniform snow depth.  

To address this research gap, we used a multi-year snow dataset from two Arctic locations to quantify sub-pixel variability of 

snow depth and microstructure and used 𝐶𝑉𝑠𝑑 as an effective parameter that controls snow sub-pixel variability. Firstly, we 

evaluate tundra snow depth spatial variability using probability density functions (log-normal and gamma) and its parameters, 80 

𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑. Secondly, we present distinct snow microstructure and density values of both tundra main layers (depth hoar 

and wind slab), mean ratios of layer thickness and their properties relative to snow depth. Finally, we perform a Gaussian 

process fit to estimate depth hoar fraction (DHF) from snow depth, using probability density functions of snow depth. Then 

we compare mean pixel snow properties with simulations of sub-pixel variation in snow properties to evaluate biases between 

measured 𝑇𝐵 from a satellite sensor at 37 GHz, and 𝑇𝐵 simulated by inversion of a radiative transfer model. 85 

2 Methods 

2.1 Study site 

Data were collected in two regions of the Canadian Arctic, with different topography and vegetation yielding different snow 

depth distributions. Trail Valley Creek (TVC) research watershed, Northwest Territories (68°44’ N, 133°33’ W), located at 

the southern edge of arctic shrub-tundra, is dominated by herbaceous tundra and dwarf shrubs and characterized by gently 90 
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rolling hills with steep slopes. Greiner Lake watershed, Cambridge Bay (CB), Nunavut (69°13’ N, 104°53’ W), located within 

arctic tundra, is characterized by dwarf shrub and calcareous tills on upland sites with gently rolling hills and small ponds and 

lakes. TVC is considered to have more sub-arctic attributes with predominant vegetation than CB given its proximity to the 

Northern edge of the boreal forest. Topographic maps (Figure 1; ArcticDEM), show slightly higher variation in elevation at 

TVC with plateau and steep slopes compared to CB which is dominated by ponds and small variation in topography.  95 

 

Figure 1: Locations of study areas in the Canadian Arctic, Cambridge Bay and Trail Valley Creek site. Grid shown is the 

enhanced 3.125 km EASE grid 2.0 used for satellite data. The ArcticDEM is a 2 m-resolution (Morin et al., 2016) derived from 

stereo high-resolution visible imagery for the entire Arctic domain, freely available. 

2.2 Data 100 

Snow pits (315) at each site (TVC: 68, CB: 248) provided information on snow layering, vertical profiles of geophysical 

properties (includes temperature, grain type classification, hardness, density, microstructure, and depth). Measurements of 

visual stratigraphy and grain type classification was conducted following Fierz et al. (2009). Density was measured using 100 

cm3 density cutters and digital scales. Snow specific surface area (SSA) was measured using an InfraRed Integrating Sphere 

(IRIS) (Montpetit et al., 2012b) in Cambridge Bay, and an A2 Photonic Sensors IceCube in TVC, both based on 1300 nm laser 105 

reflectometry (Gallet et al., 2009). Snow depth measurements, linear transects and circular transect around snow pits, used a 

magnaprobe from SnowHydro LLC (Sturm and Holmgren, 2018), which is equipped with a standard GPS unit. Measured 
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snow depth distributions were used to identify subsequent pit locations (on site) from a predefined transect across CB 

watershed in order to ensure the snow pit locations were representative of wider spatial variability (Table 1). For TVC, pit 

locations were chosen based on previous snow depth distribution (2016), slope and elevation. Multiple snow depth maps at 110 

1m resolution from RPAS surveys conducted in March 2018 (Walker et al., 2020) were used to estimate snow depth 

distribution in TVC with total spatial coverage of 13 km2. Also, a small RPAS survey is available for CB with spatial coverage 

of 0.2 km2 at 1 m resolution. Maps of normalized difference vegetation index (NDVI) were created from Sentinel-2 (10 m 

resolution) images from late summer (2019-09-01 for TVC and 2019-09-08 for CB).  

 115 

 

Table 1: Summary of number of snow depth measurements (Magnaprobe and RPAS) and snow pit sites per year. The availability 

of SSA and density measurements across sites and years are also noted (x). See Table 2 for full dates. 

Site Date Magnaprobe Snowpit SSA Density 

TVC March 15 -25, 2019  8541 32 x x 

  March 15 -23, 2018 7190 36 x x 

TVC-RPAS 
March 12- April 22, 

2018 

Pixels : 6 325 365 

Resolution : 1m 
  

CB-RPAS April 15, 2018 
Pixels : 72 902 

Resolution : 1m 
  

CB April 15-29, 2019 982 64 x x 

 April 12-24, 2018 - 50 x x 

 May 1-8, 2017 4045 51  x 

 April 2-10, 2016 3403 35  x 

  April 9-16, 2015 12 282 48   x 

 

2.3 Measured brightness temperatures and Snow Microwave Radiative Transfer (SMRT)  120 

Microwave 𝑇𝐵 were used to evaluate simulations from SMRT at 37 GHz from the Special Sensor Microwave/Imager and 

Sounder (SSMIS) sensor, EASE 2.0 grid resampled at 3.125 km resolution (Brodzik et al., 2018), for both TVC and CB 

regions. 𝑇𝐵 were spatially averaged to match snow pit area   (CB : 24 pixels, TVC : 14 pixels) and filtered to remove any 

contribution from sea or deep lakes, as pixels with liquid water exhibit large biases even if the signal at 37 GHz is mostly 

sensitive to snow (Derksen et al., 2012). 𝑇𝐵 were temporally averaged to match times of field measurements, representing peak 125 

winter snow accumulation (Table 2). Also, 𝑇𝐵  were corrected for atmospheric contributions using the linear relation with 

precipitable water from the 29 atmospheric NARR layers (Vargel et al., 2020; Roy et al., 2013).  

 

A multi-layered snowpack radiative transfer model (SMRT,  Picard et al., 2018) was used to simulate snow emission at 37 

GHz. Model inputs are snow temperature, density and microstructure of each snow layer. Correlation length of snow 130 
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microstructure in each layer was estimated from mean density and SSA measurements of each layer (WS and DH) using 

Debye’s equation scaled by a factor (𝜅 = 1.39) for arctic snow as suggested by Eq. (3b) and (4) in Vargel et al. (2020) with 

the Improved Born Approximation (IBA-Exp) configuration. Soil emission was simulated using the Wegmüller and Mätzler 

(1999) model with permittivity and roughness values from a field study of frozen soil emission based in CB (Meloche et al., 

2020). The soil parameters from CB (Meloche et al., 2020) closely match values from a study in TVC (King et al., 2018) and 135 

were used for both sites simulation. The basal layer temperature was set to the mean soil-DH interface measurements from 

snow pits of each site.  The temperature of the WS layer was estimated from the North American Regional Reanalysis (NARR) 

air surface temperature, which closely matched snow pit surface layer temperature. NARR air surface temperatures were used 

because it provides a global estimate that matches spatial coverage of the EASE grid, which is continuous (spatially and 

temporally) compared to the sparse snow pit observations.  140 

 

Table 2: Summary of mean basal and air surface temperatures for SMRT simulations, precipitable water (PWAT) used for 

atmospheric correction and measured (corrected) 𝑻𝑩 at both polarization vertical (V) and horizontal (H) by the SSMIS sensor 

(platform F18). 

Sites 𝑻𝒃𝒂𝒔𝒆 (K)  𝑻𝒔𝒖𝒓𝒇𝒂𝒄𝒆 NARR (K) PWAT (mm) 𝑻𝑩 H (K) 𝑻𝑩 V (K) 

CB (April 15-29, 2019) 257 261.5 3.61 195.3 211.0 

CB (April 12-24, 2018) 257 260.1 3.72 179.3 195.7 

CB (May 1-8, 2017) 263 261.3 3.33 187.1 205.0 

CB (April 2-10, 2016) 256 258.8 2.80 190.1 215.4 

CB (April 9-16, 2015) 254 256.2 2.34 193.0 215.9 

TVC (March 15 -25, 2019) 266 261.8 7.04 177.0 199.5 

TVC (March 15 -23, 2018) 264 261.8 4.21 176.6 197.6 

 145 

2.4 Gaussian Processes 

Gaussian Processes (GP) are a non-parametric Bayesian method used in regression models. These processes are effective and 

flexible tools to fit complex functions with small training datasets (Quiñonero-Candela and Rasmussen, 2005). Gaussian 

processes provide uncertainties on predictions, using training data and prior distributions to produce posterior distributions for 

predictions. Mean (𝑚(𝑥)) and covariance (𝑘(𝑥, 𝑥′)) functions from the multi-variate Gaussian distribution are used to fit data 150 

(x: snow depth, y: ratio of layers). The 𝑚(𝑥) function describes the expected value of the distribution and the 𝑘(𝑥, 𝑥′) 

describes the shape of the correlation between data points (𝑥𝑖). Different mean and covariance kernels can be chosen to fit the 

data. From Bayes rule in Eq. (1) where y (ratio of layer) and X (snow depth) are observed data and f the GP function, posterior 

predictions of ratios of layers can be produced. Posterior predictions were calculated using the standard method of Markov 

Chain Monte Carlo (MCMC) sampling using PyMC3 (Salvatier et al., 2016). 155 
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𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⋅𝑃𝑟𝑖𝑜𝑟

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
    =     𝑝(𝑓|𝑦, 𝑋) =

𝑝(𝑦|𝑋, 𝑓)⋅𝑝(𝑓)

𝑝(𝑦|𝑋)
                                                                     (1) 

𝑓(𝑥) ∼  𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′), 𝜙(𝑥))                                                                                                                (2) 

Equation 2 defined 𝑓 as a function of 𝑚(𝑥), 𝑘(𝑥, 𝑥′). A mean function 𝑚(𝑥), following an inverse logic function (𝜙) (Eq. 3), 

was chosen due to the close fit with observations. The covariance function 𝑘(𝑥, 𝑥′) determines correlation between data points 

(𝑥𝑖). This function is a classic Gaussian white noise covariance function and is defined with noise (𝜎) and the Kronecker delta 160 

function (𝛿𝑥,𝑥,) (Eq. 4), to best fit the observations. By using a scaling function (𝜙), the covariance function (uniform noise in 

this case) can be modified as a function of x. The scaling function used is also an inverse logic function (𝜙) that takes the same 

form as Eq. (3). Finally, a deterministic transformation is applied to the prior (GP) to constrain values to a ratio (0,1). The 

likelihood of DHF observation is defined by a Beta distribution (0,1). 

𝑚(𝑥) = 𝜙(𝑥) = 𝑐 + 𝑏 [
𝑒𝑎(𝑥−𝑥0)

1+𝑒𝑎(𝑥−𝑥0)]                                                                                                                                  (3) 165 

𝑘(𝑥, 𝑥′) =  𝜎2𝛿𝑥,𝑥′𝜙(𝑥)                                                                                                                            (4) 

3. Results 

3.1. Snow depth distribution 

Distributions of snow depth are needed when integrating over large areas to calculate sub grid snow variability for distributed 

models (Clark et al., 2011; Liston, 2004). The 𝜇𝑠𝑑 and the 𝐶𝑉𝑠𝑑 of snow depth are used as parameters in probability density 170 

functions to estimate the shape of the log-normal and gamma distributions. To find which distribution best fits the depth 

observations, we tested the log-normal and gamma distributions using the Kolmogorov-Smirnov two sample test with snow 

depth observations (shown in blue in Figure 2). The statistical fits for each distribution are shown in Table 3. For both the log-

normal and gamma distributions the null hypothesis is validated at the 5%significance level  from p-value > 0.05 (i.e. the two 

samples were drawn from the same distribution), which agrees with previous assessments of Arctic snow (Clark et al., 2011; 175 

Gisnas et al., 2016).  

 

 

 

 180 
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Table 3: Kolmogorov-Smirnov (KS) test for 2 samples of probability distribution function (PDF).  

Site PDF KS stats p-value 

TVC log-normal 0.029 0.41 

  gamma 0.039 0.11 

CB log-normal 0.024 0.63 

 gamma 0.017 0.95 

 

 

Figure 2: Log-normal and gamma distribution fit to the measured snow depths. 

 185 

Distributions with parameterization using measured 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 (Figure 2) differ from the best fit with regular parameters, 

especially compared with log-normal distribution in CB (black dotted line in Figure 2b). Liston (2004) reported 𝐶𝑉𝑠𝑑 of 0.4 

for Arctic tundra snow, which is in close agreement with the values of 0.43 for TVC and 0.56 for CB. These values were also 

obtained from spatially distributed snow depth measurements around snow pits. For comparison, maps of snow depth 

variability, derived using photogrammetry from a RPAS, for TVC (n = 6 325 365 with total spatial coverage of 13 km2) shows 190 

a much larger 𝐶𝑉𝑠𝑑= 0.78 than magnaprobe data (n=15 731) with 𝐶𝑉𝑠𝑑 = 0.43 (Table 4). A RPAS dataset is also available for 

CB but with a much smaller spatial coverage (0.2 km2) showing a 𝐶𝑉𝑠𝑑 of 0.49. In Figure 3, we investigated the relationship 

between spatial coverage of sampling and the 𝐶𝑉𝑠𝑑 parameter. Datasets include RPAS-derived data at TVC (TVC18-RPAS) 

containing 7 areas with various size from 1- 4 km2, and at CB (map of 0.2 km2), and in-situ (magnaprobe) with variable high-

density sampling over different spatial extents at Daring Lake, NWT (Derksen et al., 2009; Rees et al., 2014), Puvirnituq, QC 195 

(Derksen et al., 2010) and at Eureka, NU (Saberi et al., 2017). Results showed that the 𝐶𝑉𝑠𝑑 converges toward 0.9 as spatial 

coverage increased up to 4 km2, suggesting typical 𝐶𝑉𝑠𝑑 values of 0.8-1.0 for microwave pixels of 3.125 km (Fig. 3).  
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Table 4: Statistical parameters of snow depth distributions. 

Site n 𝜇 (m) 𝜎 (m) 𝐶𝑉𝑠𝑑  

TVC19 8 541 0.44 0.14 0.33 

TVC18 7 190 0.39 0.21 0.54 

TVC 15 731 0.42 0.19 0.43 

TVC18-RPAS 55 583 0.46 0.36 0.78 

CB19 982 0.42 0.17 0.40 

CB18 577 0.34 0.18 0.53 

CB18-RPAS 7290 0.39 0.19 0.49 

CB17 4 045 0.42 0.19 0.46 

CB16 3 403 0.28 0.16 0.61 

CB15 12 282 0.32 0.18 0.57 

CB 20 712 0.36 0.18 0.52 

 200 

    

Figure 3: Snow depth variability as a function of spatial coverage from different RPAS maps (blue round point) and in-situ sampling 

(red cross). The two points at the limit coverage scale correspond to areas of respectively 625 km2 (𝑪𝑽𝒔𝒅 = 1; Daring Lake site; C. 

Derksen personal communication) and 198 km2 (𝑪𝑽𝒔𝒅 = 0.89, Euraka site; Saberi et al., 2007). The dotted line corresponds to the 

exponential variogram curve to fit the data with 𝑹𝟐 = 0.88. 205 

 

3.2. Analysis of SSA and density per layer 

After combining measurements from all snow pits at TVC and CB (n = 315) the mean proportion of DH layer thickness was 

46% and WS was 54%. A small amount of surface fresh snow (SS) was present in some pits but was not included in this 

calculation as this type of snow was a short-lived layer, combining fresh precipitation that rapidly transformed into rounded 210 

grains due to destructive metamorphism and defragmentation by wind. Distributions of SSA are more distinct between layers 

then density (Figure 4a and b), c.f. Rutter et al. (2019). Figure 4 c) and d) show that the mean values for density of WS (335 

kg ⋅ m−3) and DH (266 kg ⋅ m−3) were closer together. SSA distributions also showed a gap between both mean values (WS: 
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19.7 m2kg−1  and DH: 11.1 m2kg−1) (Figure 4, Table 5). Even if snow properties can show high heterogeneity at local scales, 

simple distributions approximate this variability well. Temporal (year) and spatial (regional between site) variation is low and 215 

snow properties (density and SSA) can be approximated by a distribution for each distinct layer, WS and DH as in Figure 4. 

Therefore, snow properties were simplified in distributions for each layer (WS and DH) representing tundra snow. 

 

 

Figure 4: SSA and density variability of Surface Snow (SS), Wind Slab (WS) and Depth Hoar (DH) for the two studied sites (TVC 220 
and CB) and different dates (see Table 5). 

 

Table 5: Parameters for best fitting distribution of SSA and density for layers of DH and WS. 

 
 

 
Snow property Best fit PDF   𝜇 𝜎 

SSA (𝒎𝟐𝒌𝒈−𝟏) log-normal 
DH 11.1 3.8 

WS 19.7 7.8 

     𝜇 𝜎 

Density (𝒌𝒈 𝒎−𝟑)  normal 
DH 266.3 48.9 

WS 335.2 57.1 

 

Layer ratios, as a proportion of total depth, showed higher variability in shallow snowpacks (Figure 5). This corroborates 225 

measurements from Rutter et al. (2019) that suggested high variability in the DHF stabilizing at 20-30% with increasing snow 

depth. Deeper snowpacks, up to 17% of the TVC basin (King et al., 2018), are a consequence of snow accumulation  from 
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wind redistribution and compaction, explaining why deeper snowpacks (topographic drift) are dominated by wind slabs 

(Benson and Sturm, 1993; Rutter et al., 2019). Also, deep snowpacks are characterized by lower temperature gradients and 

consequently a reduction of kinetic growth metamorphism given the higher thermal conductivity of dense snow (Colbeck, 230 

1983); shallower snowpacks will promote kinetic growth leading to a higher percentage of depth hoar. The mean ratio starts 

around 50% (< 20cm) and reduces to 20% as snow depth increases (>1m). 

 

Figure 5: Depth hoar fraction (DHF) as a function of total depth for snow pit data from 2015-2019 in Cambridge Bay and 2018-

2019 for Trail Valley Creek. Both datasets were separated in equal bins (10 cm) to estimate the mean value shown with dashed 235 
line. The black line represents the mean for both site with the 95% interval. 

 

Vegetation also strongly influenced variability of DHF in shallower snowpacks, where arctic shrubs promote depth hoar 

formation (Domine et al., 2016; Royer et al., 2021; Sturm et al., 2001). However, there is no clear link between DH ratios and 

NDVI (a proxy for vegetation type) at local scales (Figure 5b). Since shrubs provide shelter to snow up to their own height 240 

(Gouttevin et al., 2018), vegetation height rather than type would be required. However, at the regional scale differences are 

evident between both regions, where mean NDVI and DH ratio are greater at TVC (NDVI = 0.5, DHF = 0.54) than CB (NDVI 

= 0.27, DHF = 0.38). 

 

3.3. DHF predictions using snow depth with Gaussian Processes 245 

The impact on microwave scattering of variability of layer microstructures with snow depth was previously accounted for in 

Saberi et al. (2020) by defining two categories, a high scattering thin snow layer (high DHF) and a thicker self-emitting layer 

(low DHF). Snowpack properties (layer extent, density, SSA) were related to snow depth via DHF (Figure 5) instead of using 

two categories. Using Gaussian Processes (GP), DHF were fitted and predicted based on snow depth values (Figure 6). In 

order to use GP, the mean function 𝑚(𝑥), following an inverse logic function (𝜙1: Eq. 3), was chosen with parameters: a = -250 
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5, 𝑥0 = 0.6, b = 0.35 and c = 0.2 to best match the mean line observation for both sites in Figure 5. The mean function set the 

mean value across the snow depth range. The correlation function was set to a uniform noise, but this noise was reduced from 

depth > 40 cm by using a scaling function (𝜙2: a=-5, 𝑥0 = 0.6, b = 1.5 and c = 0.25). An inverse logic function (𝜙1, 𝜙2) was 

used twice in the fitting 1) for the mean value and 2) to reduce the variability (noise) as snow depth increased. The snow pit 

dataset (n=315, Figure 5) was used to build posterior predictions using MCMC sampling. 255 

For prediction of DHF, any number of snow depths can feed into the posterior prediction or GP fit. Snow depths were generated 

from a log-normal distribution with parameters (𝜇𝑠𝑑, 𝐶𝑉𝑠𝑑) from previous section in Table 4. Posterior predictions of DHF 

were similar to observed data (Figure 6) and followed closely posterior probability representation in red (GP fit). Again, higher 

variability in DHF was reproduced for depths < 0.5 m, which was then reduced for depths > 0.5m following the red posterior 

prediction representation in Figure 6. 260 

 

 

Figure 6: Prediction on DHF (cyan) using a GP fit trained on observed data (black). Snow depth were samples from a log-normal 

distribution with parameters from Table 4. The GP fit is illustrated in red where darker red represents high posterior probability 

that follows the mean function. 265 

3.4. SMRT simulation of sub-grid variability within sensor footprint 

SMRT simulations using measured snowpack properties were compared with the satellite measurements of 𝑇𝐵 . Two 

simulations were evaluated using: 1) mean measured depth, each layer’s density and SSA, and DHF, and 2) a log-normal 

distribution of snow depth and the GP fit (predicted DHF). We hypothesized that the 3.125 x 3.125 km EASE 2.0 grid pixel 

for 37 GHz can be separated into n smaller sub-grid pixels. Sub-grid pixels (n = 500) represent the observed snow variability, 270 

where n snow depths will follow a log-normal distribution with parameters 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑. The ratio of each layer is predicted 
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using the GP fit with depth as input from the log-normal distribution. Mean SSA (DH: 11  m2kg−1, WS: 20 m2kg−1) and 

density (DH: 266 kg m−3, WS: 335 kg m−3) per layer were determined from measurements (Figure 4).  

 

For one standard EASE-grid pixel, a distribution of sub-grid  𝑇𝐵 were simulated to reproduce a realistic distribution of 𝑇𝐵 275 

within the radiometer footprint. This variability was derived from spatially distributed observations from snow pits and snow 

depths observation. Snow depths followed a log-normal distribution with the mean measured depth (𝜇𝑠𝑑) of each region (Table 

4) and a depth variability (𝐶𝑉𝑠𝑑) that was evaluated from a range of 0.1 to 1. The GP mean function from Figure 5 was used 

to predict the DHF for each region.  When using 𝐶𝑉𝑠𝑑 = 0.7, the simulated distribution showed a wide sub-pixel variability (± 

40K) with a mean value of TB(H) = 175.5 K (red line in Figure 7a), very close to the satellite-measured TB(H) of 176.6 K 280 

(green dotted line in Figure 7a). In this case, the TB value simulated from the mean measured snow depth and mean DHF was 

slightly lower (171.5 K, i.e., a bias of 5.1 K, Table 6) (black dotted line in Figure 7a). Because the simulated TB distribution 

was not exactly a normal distribution, it appeared that the mean 𝑇𝐵 of this distribution increased when 𝐶𝑉𝑠𝑑 increased (Figure 

7b).  This meant that snow depth variability (𝐶𝑉𝑠𝑑) must be accounted for when estimating the average 𝑇𝐵, in addition to the 

mean snow depth values. The influence of the GP simulation on the mean simulated  𝑇𝐵 was approximately 10 K (Figure 7b) 285 

as 𝐶𝑉𝑠𝑑 varies from 0.1 to 1.  

 

 

Figure 7: Brightness temperature variability simulation a) distribution of simulated Tb within a pixel, where vertical lines represent 

the mean of this distribution for H pol (red), measured by satellite (green) and TB value simulated from the mean measured snow 290 
depth and mean DHF (black). In b), the mean of the simulated Tb for H pol (red) and V pol (blue) as a function of 𝑪𝑽𝒔𝒅 with mean 

values (dotted black lines). The 𝑪𝑽𝒔𝒅 that minimized biases is located at the red/blue-green intersection. Shaded blue and red areas 

correspond to a 2𝝈 range (± 1K) representing uncertainty inherent from our Bayesian simulations in estimating the mean of 

simulated 𝑻𝑩 for the pixel. 

 295 

GP simulation reduced biases by 5K with a higher optimized 𝐶𝑉𝑠𝑑 (intersection of red/blue - green line, Figure 7b). A similar 

pattern was observed for CB (not shown here) but the measured 𝑇𝐵 at CB was much higher than the GP simulation resulting 
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in large bias for CB (~20K) compared to TVC (Table 6). Both sites suggested a larger 0.9- 𝐶𝑉𝑠𝑑, which agreed with a  𝐶𝑉𝑠𝑑 

of 0.9 for larger spatial coverage measured in Figure 3. Observed large biases at CB vary over the years from 5K to 29K. The 

total RMSE of both sites and years linearly decreased as a function of 𝐶𝑉𝑠𝑑  (Figure 8). Total RMSE is minimized with higher 300 

𝐶𝑉𝑠𝑑 (0.8-0.9) typical of large sampling scale (over 4 km2) as shown in Figure 3.  

 

Table 6: Bias between SMRT simulated and measured Tb from SSMIS sensor at each site. 

  Bias (K)   

  CB TVC RMSE (K) 

SMRT simulation type Year H pol V pol H pol V pol H pol V pol 

mean depth and DHF 

2019 28.2 25.9 6.9 10.3 17.8 19.1 

2018 8.0 5.3 5.1 6.8   

2017 19.9 18.9 - -   

2016 16.9 23.2 - -   

2015 24.7 29.1 - -   

GP simulation CV = 0.9 

2019 18.6 15.7 -4.4 -1.2 9.7 10.4 

2018 -3.7 -6.2 -4.9 -3.2   

2017 10.4 9.3 - -   

2016 7.1 13.5 - -   

2015 10.0 13.9 - -   

 

 305 

 

Figure 8: Overall RMSE (year and site) with the mean simulation and the GP simulation in blue as a function of the coefficient of 

variation. 
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4. Discussion 

A strong link between spatial coverage and 𝐶𝑉𝑠𝑑 was found. As spatial coverage increased to 3-4 km2, the 𝐶𝑉𝑠𝑑 parameter also 310 

increased to values of ~0.9 which matches the optimized values found in this study using GP simulation. This indicates that a 

𝐶𝑉𝑠𝑑  between 0.8-0.9 is desirable to represent snow depth variability in SWE retrievals since the pixel size of passive 

microwave products are 3.125 km for the EASE GRID 2.0 at 37 GHz. However, the resolution of SWE products like GlobSnow 

3.0 are much larger (25km); future investigation of 𝐶𝑉𝑠𝑑  values at those scales have the potential to help GlobSnow 3.0 

(Pulliainen et al., 2020). For small areas (< 0.5 km2), 𝐶𝑉𝑠𝑑 values were low around 0.3-0.4 and similar to the mean simulation 315 

(Figure 8). This indicates that at scales of < 0.5 km2, the mean of snow depth is sufficient to represent snow in SMRT (passive 

mode), but as the spatial coverage increases variability also increases and suggests a second parameter (𝐶𝑉𝑠𝑑) is needed to 

represent snow variability. The link between spatial coverage and snow depth variability can be used to improve land data 

assimilation (Kim et al., 2021) depending on the scale used for the application. 

 320 

Spatial complexities of Arctic snowpacks can be adequately characterized with distributions of snow depth (Figure 2) and 

simplified by considering density and SSA of two main layers (Figure 4). Such simplifications could be potentially useful for 

satellite SWE retrievals across Arctic tundra regions. Since Bayesian SWE optimization needs a strong first guess from 

regional a priori information, multiple distributions of snow depth, density and SSA presented here can be used for tundra 

type snow in MCMC sampling (Pan et al., 2017; Saberi et al., 2020). Additionally, a similar approach to our GP simulation 325 

can be added so the 𝐶𝑉𝑠𝑑 parameter can also be used as a priori information with a distribution from 0.8 to 1, since it improved 

TB RMSE by ~8K (Figure 8). This approach improved 𝑇𝐵  simulation compared to using only mean values of snowpack 

properties by adding variability within the footprint. The 𝐶𝑉𝑠𝑑  parameter (describing variation in snow depth) has a 

considerable effect on brightness temperature (10 K) when used as an effective parameter to account for sub-pixel variability 

of snow depth. The amount of scatterers (snow grain and structure) within the radiometer’s footprint is adjusted via the DHF 330 

predicted from snow depth (𝐶𝑉𝑠𝑑). This idea of modulating the amount of scatterers based of DHF prediction from a GP and 

a distribution of snow depth (𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑) can be extended to future active Ku-band mission (Garnaud et al., 2019; King et 

al., 2018) as it known that microwave spatial variability affects backscatter signal (King et al., 2015) and SWE retrievals 

(Vander Jagt et al., 2013). The 𝐶𝑉𝑠𝑑 parameter is proposed as an effective parameter to account for variability inside the grid 

cell, while the mean depth (𝜇𝑠𝑑) is dependent on precipitation at a larger scale, in situ measurements at weather stations in data 335 

assimilation schemes (Takala et al., 2011), or by physical snow model (Larue et al., 2018). The 𝐶𝑉𝑠𝑑  could be set using 

relations with spatial coverage (Figure 3) or estimated from statistical topographic relation (Grünewald et al., 2013). 
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4. Conclusion 

This study evaluated the use of parameters controlling snow depth distributions to improve passive microwave SWE retrievals 

by characterizing tundra snow sub-pixel variability. In shrub and graminoid tundra environments, mean values of snow depths 340 

(𝜇𝑠𝑑 = 0.33-0.44m) and coefficient of variations (𝐶𝑉𝑠𝑑 = 0.4-0.6) were similar to those previously reported in Arctic tundra 

(Derksen et al., 2014; Liston, 2004; Sturm et al., 2008). However, a substantial difference in TVC-2018 between point 

observations of snow depth (magnaprobe; 𝐶𝑉𝑠𝑑 = 0.54) and the spatial maps of snow depth (RPAS; 𝐶𝑉𝑠𝑑 = 0.78) indicates a 

potential underestimation of the 𝐶𝑉𝑠𝑑 parameter. An increase in 𝐶𝑉𝑠𝑑  matches increase in spatial coverage of snow depth 

sampling, indicating that a higher 𝐶𝑉𝑠𝑑 (0.9) is more suited to estimate snow depth variation in the 3.125 km resolution EASE-345 

Grid 2.0. The 𝐶𝑉𝑠𝑑 was shown to be an effective parameter to account for snow depth variability in simulation of snow 𝑇𝐵. A 

two-layer snowpack model (depth hoar and wind slab), which contains snowpack properties simplified into distributions, was 

used to initialize the SMRT model via a GP fit of the DHF related to snow depth. DHF is fitted to snow depth using a Bayesian 

Gaussian Process, which accounts for variation in snow scattering using 𝐶𝑉𝑠𝑑. The parametrization of the Improved Born 

Approximation (𝜅37 = 1.39) microstructure model and grain size (Vargel et al. 2020) was used successfully to simulate satellite 350 

𝑇𝐵, but there is still substantial uncertainties in the simulated values which are likely to be linked to microstructural properties 

not captured by SSA (Krol and Löwe, 2016). SMRT simulations of 𝑇𝐵 were reduced by 8 K after optimizing 𝐶𝑉𝑠𝑑 to higher 

values (0.8-1.0), thereby matching 𝐶𝑉𝑠𝑑 of spatially distributed snow depth from RPAS, and acting as an effective parameter 

to compensate for variation in snow properties inside the footprint of satellite sensor. The 𝐶𝑉𝑠𝑑 parameter is proposed as an 

effective parameter to account for variability inside the footprint to minimize the difference between microwave measurements 355 

and simulations in SWE retrievals algorithm. Difference minimization would be beneficial to the data assimilation scheme of 

the European Space Agency: GlobSnow product (Takala et al., 2011) and modelled large scale climate trend products 

(Mortimer et al., 2020; Pulliainen et al., 2020) of tundra snow. 

 

 360 
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