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Abstract.  

Topography and vegetation play a major role in sub-pixel variability of Arctic snowpack properties, but are not considered in 

current passive microwave (PMW) satellite SWE retrievals. Simulation of sub-pixel variability of snow properties is also 

problematic when downscaling snow and climate models. In this study, we simplified observed variability of snowpack 

properties (depth, density, microstructure) in a two-layer model with mean values and distributions of two multi-year tundra 15 

dataset so they could be incorporated in SWE retrieval schemes. Spatial variation of snow depth was parametrized by a log-

normal distribution with mean (𝜇𝑠𝑑) values and coefficients of variation (𝐶𝑉𝑠𝑑). Snow depth variability (𝐶𝑉𝑠𝑑) was found to 

increase as a function of the area measured by a Remotely Piloted Aircraft System (RPAS). Distributions of snow specific area 

(SSA) and density were found for the wind slab (WS) and depth hoar (DH) layers. The mean depth hoar fraction (DHF) was 

found to be higher in Trail Valley Creek (TVC) than Cambridge Bay (CB) where TVC is at a lower latitude with a sub-arctic 20 

shrub tundra compared to CB which is a graminoid tundra. DHF were fitted with a gaussian process and predicted from snow 

depth. Simulations of brightness temperatures using the Snow Microwave Radiative Transfer (SMRT) model incorporating 

snow depth and DHF variation were evaluated with measurements from the Special Sensor Microwave/Imager and Sounder 

(SSMIS) sensor. Variation in snow depth (𝐶𝑉𝑠𝑑) is proposed as an effective parameter to account for sub-pixel variability in 

PMW emission, improving simulation by 8K. SMRT simulations using a 𝐶𝑉𝑠𝑑 of 0.9 best matched 𝐶𝑉𝑠𝑑 observations from 25 

spatial datasets for areas > 3 km2, which is comparable to the 3.125 km pixel size of the Equal-Area Scalable Earth (EASE) 

grid 2.0 enhanced resolution at 37 GHz. 
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1 Introduction 30 

Snow cover is known to be highly variable at the local scale (10 – 1000 m) due to wind redistribution, sublimation (Liston and 

Sturm, 1998; Winstral et al., 2013) and vegetation trapping (Sturm et al., 2001). Physical properties of snow such as 

measurement of stratigraphy (Fierz et al., 2009) can be aggregated into layers, but their spatial distribution is highly variable 

given their dependence on total depth and surface roughness (Liljedahl et al., 2016; Rutter et al., 2014). Such variability leads 

to uncertainties in the retrievals of snow state variables such as snow water equivalent (SWE) using microwave remote sensing 35 

from local scales (King et al., 2018; Rutter et al., 2019) to global scales (Pulliainen et al., 2020). Improving our empirical 

understanding of the processes governing this variability would improve space-borne snow monitoring, especially in Arctic 

regions where ground measurements and weather station networks are sparse.  

Measurement of SWE using passive microwave satellite data (Larue et al., 2018; Pulliainen, 2006) is possible using a radiative 

transfer model to simulate snow emission at various frequencies, from which an inversion of the model can produce global 40 

estimates of snow depth (Takala et al., 2011). More specifically, passive microwave brightness temperatures (𝑇𝐵) are governed 

by radiometric properties of the layered snowpack. As such, each layer has its own absorption and scattering properties; the 

amount of scattering is proportional to snow total mass where the scattering and emission is frequency-dependent (Kelly et al., 

2003). Scattering at higher frequencies such as 37GHz, will lead to lower 𝑇𝐵 so differences between 𝑇𝐵 at two frequencies (37-

19 GHz) is related to snow mass (Chang et al., 1982). Arctic snowpack mainly consists of two distinct layers (wind slab and 45 

depth hoar), where each layer has unique scattering properties (Derksen et al., 2010). Complexity of the layered properties 

(density, temperature and microstructure) strongly influence radiative transfer modelling (King et al., 2015; Rutter et al., 2014). 

Furthermore, recent developments in radiative transfer modelling (SMRT: Picard et al., 2018, DMRT: Tsang et al., 2000 and  

MEMLS: Wiesmann and Mätzler, 1999), microstructure representation (Royer et al., 2017), and in situ measurement of 

snowpack properties (Gallet et al., 2009; Montpetit et al., 2012; Proksch et al., 2015) have provided significant agreement 50 

between models and in situ measurements. However, spatial distribution and heterogeneity of total snow depth and stratigraphy 

remains challenging to implement and is not considered for large scale monitoring of SWE in tundra environments. Rutter et 

al. (2019) and Saberi et al. (2020), using three- and two-layer models respectively, demonstrated a relationship between the 

ratio of depth hoar and wind slab with respect to total depth, enabling the usage of proportion of these two layers with total 

snow depth. Working with a simplified layer representation of a snowpack with well-defined physical properties may 55 

adequately characterize snowpack for large scale SWE retrievals. 

Two dominant processes governing snow depth variability in the Arctic are 1) wind redistribution with topography (Sturm and 

Wagner, 2010; Winstral et al., 2002) and 2) vegetation trapping (Domine et al., 2018; Sturm et al., 2001). Liston (2004) 

described snow depth heterogeneity using a log-normal distribution with a coefficient of variation of snow depth (𝐶𝑉𝑠𝑑), the 

ratio between standard deviation (𝜎𝑠𝑑) and the mean of snow depth (𝜇𝑠𝑑), indicating the extent and spread of a distribution 60 

(i.e. high variability over thin snow will lead to high values of 𝐶𝑉𝑠𝑑). Also, Liston (2004) proposed 9 categories of 𝐶𝑉𝑠𝑑 with 
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values ranging from 0.9 to 0.06 for mid-latitude treeless mountains to ephemeral snow, where arctic tundra type was 0.4. Snow 

depth variability is based on a parametrization of 𝜇𝑠𝑑, 𝐶𝑉𝑠𝑑 on the log-normal distribution scale parameters (λ, ζ). Gisnas et 

al. (2016) adapted that approach using scale parameters (α, β) of the gamma distribution. In all cases, 𝐶𝑉𝑠𝑑 is used to describe 

subgrid variability (Clark et al., 2011), but its value remains challenging to quantify given that regional trends are linked to 65 

topography, vegetation and climate (Winstral and Marks, 2014). In this context, 𝐶𝑉𝑠𝑑 is used to quantify spatial heterogeneity 

of snow in climate modelling, but so far has not been used in microwave SWE retrievals. 

In SWE retrievals, snow depth is assumed to be uniform and the mean depth is used to optimize brightness temperature and 

derive SWE from depth and assumed density (Kelly, 2009). There is potential for 𝐶𝑉𝑠𝑑 to be used as an effective parameter to 

estimate sub-pixel variability in brightness temperature. Bayesian frameworks are used in inversion schemes for SWE 70 

retrievals (Durand and Liu, 2012; Pan et al., 2017; Saberi et al., 2020) using a priori information (density, microstructure and 

temperature) from regional snowpack characteristics  and inversion of radiative transfer models (Saberi et al., 2020). An 

iterative approach based on Bayesian theory is used (Takala et al., 2011) to match observed brightness temperature with 

modelled brightness temperature by iterating a priori information of the snowpack in order to derive snow depth and SWE. 

Saberi et al. (2020) conducted a case study for snow depth retrievals using a two layer model from airborne microwave 75 

observations using a Bayesian framework (or Marko Chain Monte Carlo) over tundra snow. However, high uncertainty (21.8 

cm) in retrieved snow depth (via 𝑇𝐵) resulted, which suggested the use of a term involving variation in snow depth and 

microstructure within the footprint instead of a uniform snow depth. 

To address this research gap, we used a multi-year snow dataset from two Arctic locations to quantify sub-pixel variability of 

snow depth and microstructure and used 𝐶𝑉𝑠𝑑 as an effective parameter that controls snow sub-pixel variability. Firstly, we 80 

evaluate tundra snow depth spatial variability using probability density functions (log-normal and gamma) and its parameters, 

𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑. Secondly, we present from in-situ observations distinct snow microstructure and density values of both tundra 

main layers (depth hoar and wind slab), mean ratios of layer thickness and the depth hoar fraction (DHF) relative to snow 

depth. Finally, we perform a Gaussian process fit to estimate depth hoar fraction (DHF) from snow depth, using probability 

density functions of snow depth to add variation of snow depth and microstructure within the footprint. Then we compare 85 

mean pixel snow properties with simulations of sub-pixel variation in snow properties to evaluate biases between measured 

𝑇𝐵 from a satellite sensor at 37 GHz, and 𝑇𝐵 simulated by inversion of a radiative transfer model. 

2 Methods 

2.1 Study site 

Data were collected in two regions of the Canadian Arctic, with different topography and vegetation yielding different snow 90 

depth distributions. Trail Valley Creek (TVC) research watershed, Northwest Territories (68°44’ N, 133°33’ W), located at 
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the southern edge of arctic shrub-tundra, is dominated by herbaceous tundra and dwarf shrubs and characterized by gently 

rolling hills with steep slopes. Greiner Lake watershed, Cambridge Bay (CB), Nunavut (69°13’ N, 104°53’ W), located within 

arctic tundra, is characterized by dwarf shrub and calcareous tills on upland sites with gently rolling hills and small ponds and 

lakes. TVC is considered to have more sub-arctic attributes with predominant vegetation than CB given its proximity to the 95 

Northern edge of the boreal forest. Topographic maps (Figure 1; ArcticDEM), show slightly higher variation in elevation at 

TVC with plateau and steep slopes compared to CB which is dominated by ponds and small variation in topography.  

 

Figure 1: Locations of study areas in the Canadian Arctic, Cambridge Bay and Trail Valley Creek site. Grid shown is the 

enhanced 3.125 km EASE grid 2.0 used for satellite data. The ArcticDEM is a 2 m-resolution (Morin et al., 2016) derived from 100 
stereo high-resolution visible imagery for the entire Arctic domain, freely available. 

2.2 Data 

Snow pits (315) at each site (TVC: 68, CB: 248) provided information on snow layering, vertical profiles of geophysical 

properties (includes temperature, grain type classification, hardness, density, microstructure, and depth). Measurements of 

visual stratigraphy and grain type classification was conducted following Fierz et al. (2009). Density was measured using 100 105 

cm3 density cutters and digital scales. Snow specific surface area (SSA) was measured using an InfraRed Integrating Sphere 

(IRIS) (Montpetit et al., 2012b) in Cambridge Bay, and an A2 Photonic Sensors IceCube in TVC, both based on 1300 nm laser 

reflectometry (Gallet et al., 2009). Snow depth measurements, linear transects and circular transect around snow pits, used a 
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magnaprobe from SnowHydro LLC (Sturm and Holmgren, 2018), which is equipped with a standard GPS unit. Measured 

snow depth distributions were used to identify subsequent pit locations (on site) from a predefined transect across CB 110 

watershed in order to ensure the snow pit locations were representative of wider spatial variability (Table 1). For TVC, pit 

locations were chosen based on previous snow depth distribution (2016), slope and elevation. Multiple snow depth maps at 

1m resolution from RPAS surveys conducted in March 2018 (Walker et al., 2020) were used to estimate snow depth 

distribution in TVC with total spatial coverage of 5.3 km2. A Lidar dataset of TVC snow depths (93 km2 at 10 m resolution) 

from April 2013 (Rutter et al., 2019) was also used. Monte Carlo simulations of both the μsd and CVsd were performed on each 115 

snow depth map. Simulations randomly selected pixels as the center of a circular mask with a random radius. The mask was 

used to select all pixels within the circle so the statistical parameters (μsd and CVsd) could be calculated. Also, a small RPAS 

map is available for CB with spatial coverage of 0.2 km2 at 1 m resolution. of normalized difference vegetation index (NDVI) 

were created from Sentinel-2 (10 m resolution) images from late summer (2019-09-01 for TVC and 2019-09-08 for CB).  

 120 

 

Table 1: Summary of number of snow depth measurements (Magnaprobe and RPAS) and snow pit sites per year. The availability 

of SSA and density measurements across sites and years are also noted (x). See Table 2 for full dates. 

Site Date Magnaprobe Snowpit SSA Density 

TVC March 15 -25, 2019  8541 32 x x 

  March 15 -23, 2018 7190 36 x x 

TVC18-RPAS 
March 12- April 22, 

2018 

Pixels : 6 325 365 

Resolution : 1m 
  

TVC13-Lidar April, 2013 
Pixels : 969 168 

Resolution : 10m 
  

CB18-RPAS April 15, 2018 
Pixels : 72 902 

Resolution : 1m 
  

CB April 15-29, 2019 982 64 x x 

 April 12-24, 2018 - 50 x x 

 May 1-8, 2017 4045 51  x 

 April 2-10, 2016 3403 35  x 

  April 9-16, 2015 12 282 48   x 

 

2.3 Measured brightness temperatures and Snow Microwave Radiative Transfer (SMRT)  125 

Microwave 𝑇𝐵  were used to evaluate simulations from SMRT at 37 GHz and 19 GHz from the Special Sensor 

Microwave/Imager and Sounder (SSMIS) sensor, EASE 2.0 grid resampled at 3.125 km (6.25 km for 19 GHz) resolution 

(Brodzik et al., 2018), for both TVC and CB regions. 𝑇𝐵 were estimating by averaging all pixels within sow pit area (CB: 24 
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pixels, TVC: 8 pixels for 37 GHz). Each pixel with at least one snow pit inside was used. Since all snow pits were aggregated 

to obtain mean value and distribution of snow properties for SMRT, averaged TB covering the snow pits area was used. 130 

 

The area was also filtered to remove any contribution from sea or deep lakes, as pixels with liquid water exhibit large biases 

even if the signal at 37 GHz is mostly sensitive to snow (Derksen et al., 2012). For CB, an area with the same spatial coverage 

but a slightly different location was used since the snow pit area was within 25 km (full resolution of SSMIS) from the ocean. 

𝑇𝐵 were temporally averaged to match times of field measurements, representing peak winter snow accumulation (Table 2). 135 

Also, 𝑇𝐵 were corrected for atmospheric contributions using the linear relation with precipitable water from the 29 atmospheric 

NARR layers (Vargel et al., 2020; Roy et al., 2013).  

 

A multi-layered snowpack radiative transfer model (SMRT,  Picard et al., 2018) was used to simulate snow emission at 37 

GHz. Model inputs are snow temperature, density and microstructure of each snow layer. Correlation length of snow 140 

microstructure in each layer was estimated from mean density and SSA measurements of each layer (WS and DH) using 

Debye’s equation scaled by a factor (𝜅 = 1.39) for arctic snow as suggested by Eq. (3b) and (4) in Vargel et al. (2020) with 

the Improved Born Approximation (IBA-Exp) configuration. Soil emission was simulated using the Wegmüller and Mätzler 

(1999) model with permittivity and roughness values from a field study of frozen soil emission based in CB (Meloche et al., 

2020). The soil parameters from CB (Meloche et al., 2020) closely match values from a study in TVC (King et al., 2018) and 145 

were used for both sites simulation. The lakes in CB shown in Figure 1 were not considered in the soil emission contribution 

because most of the water was frozen (4-6) (Mironov et al., 2010), which had a similar permittivity to frozen soil (2-4) 

(Mavrovic et al., 2021) than liquid water.  

 

However, this simplification had importance for 19 GHz given that soil emission has a greater influence on the signal at this 150 

frequency, hence the composition of frozen water and soil derived from landcover information should be used instead. Since 

37 GHz is more sensitive to snow volume scattering, this step was neglected. The 19 GHz frequency was briefly used in this 

study in Figure 8 only for TVC in 2018 to investigate the effect of snow variability which modifies the amount of snow 

scatterers inside the radiometer’s footprint.  

 155 

The basal layer temperature was set to the mean soil-DH interface measurements from snow pits of each site.  The temperature 

of the WS layer was estimated from the North American Regional Reanalysis (NARR) air surface temperature, which closely 

matched snow pit surface layer temperature. NARR air surface temperatures were used because it provides a global estimate 

that matches spatial coverage of the EASE grid, which is continuous (spatially and temporally) compared to the sparse snow 

pit observations.  160 
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Table 2: Summary of mean basal and air surface temperatures for SMRT simulations, precipitable water (PWAT) used for 

atmospheric correction and measured (corrected) 𝑻𝑩 at both polarization vertical (V) and horizontal (H) by the SSMIS sensor 

(platform F18). 

Sites 𝑻𝒃𝒂𝒔𝒆 (K)  𝑻𝒔𝒖𝒓𝒇𝒂𝒄𝒆 NARR (K) PWAT (mm) 𝑻𝑩 37H (K) 𝑻𝑩 37V (K) 

CB (April 15-29, 2019) 257 261.5 3.61 195.3 211.0 

CB (April 12-24, 2018) 257 260.1 3.72 179.3 195.7 

CB (May 1-8, 2017) 263 261.3 3.33 187.1 205.0 

CB (April 2-10, 2016) 256 258.8 2.80 190.1 215.4 

CB (April 9-16, 2015) 254 256.2 2.34 193.0 215.9 

TVC (March 15 -25, 2019) 266 261.8 7.04 177.0 199.5 

TVC (March 15 -23, 2018) 264 261.8 4.21 176.6 197.6 

 165 

2.4 Gaussian Processes 

Gaussian Processes (GP) are a non-parametric Bayesian method used in regression models. These processes are effective and 

flexible tools to fit complex functions with small training datasets (Quiñonero-Candela and Rasmussen, 2005). Gaussian 

processes provide uncertainties on predictions, using training data and prior distributions to produce posterior distributions for 

predictions. Mean (𝑚(𝑥)) and covariance (𝑘(𝑥, 𝑥′)) functions from the multi-variate Gaussian distribution are used to fit data 170 

(x: snow depth, y: ratio of layers). The 𝑚(𝑥) function describes the expected value of the distribution and the 𝑘(𝑥, 𝑥′) 

describes the shape of the correlation between data points (𝑥𝑖). Different mean and covariance kernels can be chosen to fit the 

data. From Bayes rule in Eq. (1) where y (ratio of layer) and X (snow depth) are observed data and f the GP function, posterior 

predictions of ratios of layers can be produced. Posterior predictions were calculated using the standard method of Markov 

Chain Monte Carlo (MCMC) sampling using PyMC3 (Salvatier et al., 2016). 175 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⋅𝑃𝑟𝑖𝑜𝑟

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
    =     𝑝(𝑓|𝑦, 𝑋) =

𝑝(𝑦|𝑋, 𝑓)⋅𝑝(𝑓)

𝑝(𝑦|𝑋)
                                                                     (1) 

𝑓(𝑥) ∼  𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′), 𝜙(𝑥))                                                                                                                (2) 

Equation 2 defined 𝑓 as a function of 𝑚(𝑥), 𝑘(𝑥, 𝑥′). A mean function 𝑚(𝑥), following an inverse logic function (𝜙) (Eq. 3), 

was chosen due to the close fit with observations. The covariance function 𝑘(𝑥, 𝑥′) determines correlation between data points 

(𝑥𝑖). This function is a classic Gaussian white noise covariance function and is defined with noise (𝜎) and the Kronecker delta 180 

function (𝛿𝑥,𝑥,) (Eq. 4), to best fit the observations. By using a scaling function (𝜙), the covariance function (uniform noise in 

this case) can be modified as a function of x. The scaling function used is also an inverse logic function (𝜙) that takes the same 

form as Eq. (3). Finally, a deterministic transformation is applied to the prior (GP) to constrain values to a ratio (0,1). The 

likelihood of DHF observation is defined by a Beta distribution (0,1). 
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𝑚(𝑥) = 𝜙(𝑥) = 𝑐 + 𝑏 [
𝑒𝑎(𝑥−𝑥0)

1+𝑒𝑎(𝑥−𝑥0)]                                                                                                                                  (3) 185 

𝑘(𝑥, 𝑥′) =  𝜎2𝛿𝑥,𝑥′𝜙(𝑥)                                                                                                                            (4) 

3. Results 

3.1. Snow depth distribution 

Distributions of snow depth are needed when integrating over large areas to calculate sub grid snow variability for distributed 

models (Clark et al., 2011; Liston, 2004). The 𝜇𝑠𝑑 and the 𝐶𝑉𝑠𝑑 of snow depth are used as parameters in probability density 190 

functions to estimate the shape of the log-normal and gamma distributions. To find which distribution best fits the depth 

observations, we tested the log-normal and gamma distributions using the Kolmogorov-Smirnov two sample test with snow 

depth observations (shown in blue in Figure 2). The statistical fits for each distribution are shown in Table 3. For both the log-

normal and gamma distributions the null hypothesis is validated at the 5% significance level  from p-value > 0.05 (i.e. the two 

samples were drawn from the same distribution), which agrees with previous assessments of Arctic snow (Clark et al., 2011; 195 

Gisnas et al., 2016).  

 

Table 3: Kolmogorov-Smirnov (KS) test for 2 samples of probability distribution function (PDF).  

Site PDF KS stats p-value 

TVC log-normal 0.029 0.41 

  gamma 0.039 0.11 

CB log-normal 0.024 0.63 

 gamma 0.017 0.95 
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 200 

Figure 2: Log-normal and gamma distribution fit to the measured snow depths. 

 

 

Distributions with parameterization using measured 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 (Figure 2) differ from the best fit with regular parameters, 

especially compared with log-normal distribution in CB (black dashed line in Figure 2b). Liston (2004) reported 𝐶𝑉𝑠𝑑 of 0.4 205 

for Arctic tundra snow, which is in close agreement with the values of 0.43 for TVC and 0.56 for CB. These values were also 

obtained from spatially distributed snow depth measurements around snow pits. For comparison, maps of snow depth, derived 

using photogrammetry from a RPAS, for TVC (n = 6 325 365 with total spatial coverage of 5.3 km2) shows a much larger 

𝐶𝑉𝑠𝑑= 0.78 than magnaprobe data (n=15 731) with 𝐶𝑉𝑠𝑑 = 0.43 (Table 4). A RPAS dataset is also available for CB but with a 

much smaller spatial coverage (0.2 km2) showing a 𝐶𝑉𝑠𝑑 of 0.49. In Error! Reference source not found., we investigated the 210 

relationship between spatial coverage of sampling and the 𝐶𝑉𝑠𝑑  parameter. Datasets include RPAS-derived data at TVC 

(TVC18-RPAS) containing 7 areas with various size from 1- 3 km2, CB18-RPAS map of 0.2 km2 and the larger lidar derived 

snow map in TVC (TVC13-Lidar) was used. Figure 3a) shows snow accumulation of TVC13-Lidar and TVC18-RPAS with 

snow drift visible in dark blue and Sub-grid of 1km2 showed areas with high CVsd (Figure 3b) containing more drift. For both 

areas, 500 Monte Carlo simulations were performed by randomly selecting sub-regions within each domain (Figure 4) so the 215 

mean and variability as a function of coverage could be investigated. Simulations showed sub-sampling of μsd  and CVsd 

converged to the values of the full area. The mean of each area was similar in value with less variation in the simulations 

compared to CVsd. A difference of 0.2 between the full CVsd of the RPAS (5 km2) and Lidar (93 km2) maps (Figure 4) was 

found. In-situ (magnaprobe) with variable high-density sampling over different spatial extents at Daring Lake, NWT (Derksen 

et al., 2009; Rees et al., 2014), Puvirnituq, QC (Derksen et al., 2010) and at Eureka, NU (Saberi et al., 2017). The two points 220 

at the limit coverage scale correspond to areas of respectively 625 km2 (𝑪𝑽𝒔𝒅 = 1; Daring Lake site; C. Derksen personal 

communication) and 198 km2 (𝑪𝑽𝒔𝒅 = 0.89, Eureka site; Saberi et al., 2007). 
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Table 4: Statistical parameters of snow depth distributions. 

Site n 𝜇 (m) 𝜎 (m) 𝐶𝑉𝑠𝑑  

TVC19 8 541 0.44 0.14 0.33 

TVC18 7 190 0.39 0.21 0.54 

TVC 15 731 0.42 0.19 0.43 

TVC18-RPAS 6 325 365 0.46 0.36 0.78 

TVC13-Lidar 969 168 0.40 0.23 0.58 

CB19 982 0.42 0.17 0.40 

CB18 577 0.34 0.18 0.53 

CB18-RPAS 7290 0.39 0.19 0.49 

CB17 4 045 0.42 0.19 0.46 

CB16 3 403 0.28 0.16 0.61 

CB15 12 282 0.32 0.18 0.57 

CB 20 712 0.36 0.18 0.52 
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 225 

   

Figure 3: RPAS and Lidar dataset of snow depth at TVC (TVC13-Lidar and TVC18-RPAS). TVC13-Lidar is the largest dataset 

covering 93 km2. TVC18-RPAS is a smaller dataset within the area of TVC13-Lidar. In a) is shown the snow depth map at 10 m 

resolution from 2013. b) and c) show a sub grid of 1 km with 𝑪𝑽𝒔𝒅 and 𝝁𝒔𝒅 within each cell. 
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 230 

Figure 4: Snow depth mean (𝝁𝒔𝒅) and variability (𝑪𝑽𝒔𝒅) as a function of coverage for sampling area. Monte Carlo simulations were 

done using the two datasets in TVC. CB18-RPAS was also added in a) because of the similar coverage. The 𝝁𝒔𝒅 and 𝑪𝑽𝒔𝒅 of both 

full areas are shown by the black dotted and dashed line. 

 

3.2. Analysis of SSA and density per layer 235 

After combining measurements from all snow pits at TVC and CB (n = 315) the mean proportion of DH layer thickness was 

46% and WS was 54%. The goal was to classify DH as large grained snow (large facets, depth hoar cups and chains), then all 

other snow layers above the DH as wind slab (WS). Some layers were more difficult to classify as they contained mixed 

crystals or were a transitional slab-to-hoar layer (also referred to as indurated hoar) (Sturm et al., 2008). Slab that contained 

small faceted crystals (< 2 mm) were classified as WS. Indurated hoar, a wind slab metamorphosed into depth hoar, was 240 

classified into DH with a typical density ~ 300 kg ⋅ m−3. Because of this reason, the peak of each distribution appeared close 
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to each other in Figure 5 c) and d). For retrieval of snow properties using satellite remote sensing, a 2 layer radiative transfer 

model using WS and DH can be used to simplify much of the layer complexity found in arctic snowpacks (Rutter et al., 2019; 

Saberi et al., 2017). A small amount of surface fresh snow (SS) was present in some pits but was not included in this calculation 

as this type of snow was a short-lived layer, combining fresh precipitation that rapidly transformed into rounded grains due to 245 

destructive metamorphism and defragmentation by wind. Distributions of SSA are more distinct between layers then density 

(Figure 5a and b), c.f. Rutter et al. (2019). Figure 5 c) and d) show that the mean values for density of WS (335 kg ⋅ m−3) and 

DH (266 kg ⋅ m−3) were closer together. SSA distributions also showed a gap between both mean values (WS: 19.7 m2kg−1  

and DH: 11.1 m2kg−1) (Figure 5, Table 5). Even if snow properties can show high heterogeneity at local scales, simple 

distributions approximate this variability well. Temporal (year) and spatial (regional between site) variation is low and snow 250 

properties (density and SSA) can be approximated by a distribution for each distinct layer, WS and DH as in Figure 5. 

Therefore, snow properties were simplified in distributions for each layer (WS and DH) representing tundra snow. 

 

 

 255 

Figure 5: SSA and density variability of Surface Snow (SS), Wind Slab (WS) and Depth Hoar (DH) for the two studied sites (TVC 

and CB) and different dates (see Table 5). In c) and d), the best fit distribution is shown in black with the kernel density estimate 

(KDE) of the histogram of each layer. 

 

 260 
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Table 5: Parameters for best fitting distribution of SSA and density for layers of DH and WS. 

 
 

 
Snow property Best fit PDF   𝜇 𝜎 

SSA (𝒎𝟐𝒌𝒈−𝟏) log-normal 
DH 11.1 3.8 

WS 19.7 7.8 

     𝜇 𝜎 

Density (𝒌𝒈 𝒎−𝟑)  normal 
DH 266.3 48.9 

WS 335.2 57.1 

 

Parr et al. (2020) found a key threshold of μsd +  1σsd to define snow drifts in tundra environments. This threshold of > 0.6 

– 0.8 m, based on data presented in Table 4, is an important metric in Figure 6 since above this depth, the variability and the 265 

mean DHF is greatly reduced as the snowpack is dominated by wind slab for larger depth. As defined in Parr et al. (2020), 

the transported snow from wind accumulates at these particular locations (drift) where it was scoured or removed from wind 

affected area yielding lower depth with high DHF. 

 

 270 

Figure 6: a) Depth hoar fraction (DHF) as a function of total depth for snow pit data from 2015-2019 in Cambridge Bay and 2018-

2019 for Trail Valley Creek. Both datasets were separated in equal bins (10 cm) to estimate the mean value shown with dashed 

line. The black line represents the mean for both site with the 95% interval. b) DHF is shown as a function of NVDI from the 

snowpit area with the mean DHF and NDVI per sites shown by dashed lines and the gaussian distributions of DHF by the solid 

lines. 275 

 

Vegetation also strongly influenced variability of DHF in shallower snowpacks, where arctic shrubs and tussocks promote 

depth hoar formation (Domine et al., 2016; Royer et al., 2021; Sturm et al., 2001). However, there is no clear link between 

DH ratios and NDVI (a proxy for vegetation type) at local scales (Figure 6b). Since shrubs provide shelter to snow up to 

their own height (Gouttevin et al., 2018), vegetation height rather than type would be required. However, at the regional 280 
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scale differences are evident between both regions, where mean NDVI and DHF are greater at TVC (NDVI = 0.5, DHF = 

0.54) than CB (NDVI = 0.27, DHF = 0.38). This may add to the latitudinal gradient in Royer et al. (2021) where DHF 

follows a gradient along a northward transect of arctic sites in Québec and Nunavik. Sites at lower latitudes and with shrubs 

and tussocks, had higher DHF. 

 285 

3.3. DHF predictions using snow depth with Gaussian Processes 

The impact on microwave scattering of variability of layer microstructures with snow depth was previously accounted for in 

Saberi et al. (2020) by defining two categories, a high scattering thin snow layer (high DHF) and a thicker self-emitting layer 

(low DHF). Instead, using Gaussian Processes (GP), DHF were fitted and predicted based on snow depth values (Figure 7). In 

order to use GP, the mean function 𝑚(𝑥), following an inverse logic function (𝜙1: Eq. 3), was chosen with parameters: a = -290 

5, 𝑥0 = 0.6, b = 0.35 and c = 0.2 to best match the mean line observation for both sites in Figure 6. The mean function set the 

mean value across the snow depth range. The correlation function was set to a uniform noise, but this noise was reduced from 

depth > 40 cm by using a scaling function (𝜙2: a=-5, 𝑥0 = 0.6, b = 1.5 and c = 0.25). An inverse logic function (𝜙1, 𝜙2) was 

used twice in the fitting 1) for the mean value and 2) to reduce the variability (noise) as snow depth increased. The snow pit 

dataset (n=315, Figure 6) was used to build posterior predictions using MCMC sampling. 295 

For prediction of DHF, any number of snow depths can feed into the posterior prediction or GP fit. Snow depths were generated 

from a log-normal distribution with parameters (𝜇𝑠𝑑, 𝐶𝑉𝑠𝑑) from previous section in Table 4. Posterior predictions of DHF 

were similar to observed data (Figure 7) and followed closely posterior probability representation in red (GP fit). Again, higher 

variability in DHF was reproduced for depths < 0.5 m, which was then reduced for depths > 0.5m following the red posterior 

prediction representation in Figure 7. 300 
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Figure 7: Prediction on DHF (cyan) using a GP fit trained on observed data (black). Snow depth were samples from a log-normal 

distribution with parameters from Table 4. The GP fit is illustrated in red where darker red represents high posterior probability 

that follows the mean function. 305 

3.4. SMRT simulation of sub-grid variability within sensor footprint 

SMRT simulations using measured snowpack properties were compared with the satellite measurements of 𝑇𝐵 . Two 

simulations were evaluated using: 1) mean measured depth, each layer’s density and SSA, and DHF, and 2) a log-normal 

distribution of snow depth and the GP fit (predicted DHF). We hypothesized that the 3.125 x 3.125 km EASE 2.0 grid pixel 

for 37 GHz can be separated into n smaller sub-grid pixels. Sub-grid pixels (n = 500) represent the observed snow variability, 310 

where n snow depths will follow a log-normal distribution with parameters 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑. The ratio of each layer is predicted 

using the GP fit with depth as input from the log-normal distribution. Mean SSA (DH: 11  m2kg−1, WS: 20 m2kg−1) and 

density (DH: 266 kg m−3, WS: 335 kg m−3) per layer were determined from measurements (Figure 5).  

 

For one standard EASE-grid pixel, a distribution of sub-grid  𝑇𝐵 were simulated to reproduce a realistic distribution of 𝑇𝐵 315 

within the radiometer footprint. This variability was derived from spatially distributed observations from snow pits and snow 

depths observation. Snow depths followed a log-normal distribution with the mean measured depth (𝜇𝑠𝑑) of each region (Table 

4) and a depth variability (𝐶𝑉𝑠𝑑) that was evaluated from a range of 0.1 to 1. The GP mean function from Figure 6 was used 

to predict the DHF for each region.  When using 𝐶𝑉𝑠𝑑 = 0.7, the simulated distribution showed a wide sub-pixel variability (± 

40K) with a mean value of TB37V = 194.7 K (blue line in Figure 8a), very close to the satellite-measured TB37V of 196.5K (green 320 

dotted line in Figure 8a). In this case, the TB value simulated from the mean measured snow depth and mean DHF was slightly 

lower (190.7 K, i.e., a bias of 5.8 K) (black dotted line in Figure 8a). To represent the signal measured by the sensor, the mean 

of the simulated TB was chosen and it was assumed that the sub-pixels effect combined linearly at this scale in the sensor. 



   

 

17 

 

Because the simulated TB37V distribution was not exactly a normal distribution, it appeared that the mean 𝑇𝐵 of this distribution 

increased when 𝐶𝑉𝑠𝑑  increased (Figure 8b).  This meant that snow depth variability (𝐶𝑉𝑠𝑑) must be accounted for when 325 

estimating the average 𝑇𝐵 at 37 GHz, in addition to the mean snow depth values. The influence of the GP simulation on the 

mean simulated  𝑇𝐵37𝑉 was approximately 10 K (Figure 8b) as 𝐶𝑉𝑠𝑑 varies from 0.1 to 1. The addition of snow variability in 

simulation (Figure 8 c-d) of 19 GHz has negligeable effect on TB19 and showed a constant simulation across the CVsd range of 

0.1 to 1. Simulation of TB19 showed higher biases at horizontal polarization then vertical polarization. 

 330 

 

 

Figure 8: Brightness temperature variability simulation a)-c) distribution of simulated 𝑻𝑩  within a pixel, where vertical lines 

represent the mean of this distribution for V pol (blue), measured by satellite (green) and TB value simulated from the mean 

measured snow depth and mean DHF (black). In b)-d), the mean of the simulated 𝑻𝑩 for H pol (red) and V pol (blue) as a function 335 
of 𝑪𝑽𝒔𝒅 with mean values (dotted black lines). The 𝑪𝑽𝒔𝒅 that minimized biases is located at the red/blue-green intersection. Shaded 

blue and red areas correspond to a 2𝝈 range representing uncertainty inherent from our Bayesian simulations in estimating the 

mean of simulated 𝑻𝑩 for the pixel. 
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GP simulation reduced biases by 5K with a higher optimized 𝐶𝑉𝑠𝑑 (intersection of red/blue - green line, Figure 8b). A similar 340 

pattern was observed for CB (not shown here) but the measured 𝑇𝐵 at CB was much higher than the GP simulation resulting 

in large bias for CB (~20K) compared to TVC (Table 6). Both sites suggested a larger 𝐶𝑉𝑠𝑑, which agreed with a  𝐶𝑉𝑠𝑑 for 

larger spatial coverage measured in Figure 4. Observed large biases at CB vary over the years from 5K to 29K. The total 

RMSE of both sites and years linearly decreased as a function of 𝐶𝑉𝑠𝑑  (Figure 9). Total RMSE is minimized with higher 𝐶𝑉𝑠𝑑 

(0.8-0.9) typical of large sampling scale (over 4 km2) as shown in Figure 4.  345 

 

Table 6: Bias between SMRT simulated and measured Tb from SSMIS sensor at each site. 

  Bias (K)   

  CB TVC RMSE (K) 

SMRT simulation type Year H pol V pol H pol V pol H pol V pol 

mean depth and DHF 

2019 28.2 25.9 6.9 10.3 17.8 19.1 

2018 8.0 5.3 5.1 6.8   

2017 19.9 18.9 - -   

2016 16.9 23.2 - -   

2015 24.7 29.1 - -   

GP simulation CV = 0.9 

2019 18.6 15.7 -4.4 -1.2 9.7 10.4 

2018 -3.7 -6.2 -4.9 -3.2   

2017 10.4 9.3 - -   

2016 7.1 13.5 - -   

2015 10.0 13.9 - -   

 

 

 350 

Figure 9: Overall RMSE (year and site) with the mean simulation and the GP simulation in blue as a function of the coefficient of 

variation. 
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4. Discussion 

As spatial coverage increased, the CVsd parameter converged to the full area values (Figure 4). Simulations showed high 

variation in CVsd (from 0.1 to 2) for small areas < 10 km2. Snow accumulation varies at the meso scale (100 m to 10 km) due 355 

to topography and vegetation (Liston and Sturm, 1998; Pomeroy et al., 2002). At this scale (< 10 km2), the variability in CVsd 

was high because those areas contained plateau, slope and valley that are subject to snowdrift, scour and sublimation processes 

(Parr et al., 2020; Rutter et al., 2019) and vegetation that facilitates accumulation of snow (Sturm et al., 2001). Some areas 

include more extreme drift and thin snow combined resulting in high CVsd (dark green areas in Figure 3b) which are commonly 

found in TVC (Walker et al., 2020). The CVsd was lower for area without drift (light green areas in Figure 3b). The evaluation 360 

of CVsd can varied a lot depending on how much extreme drift (> 3 m) and thin snowpacks were accounted in the sub-sampling 

area due to topographic and vegetation features. For coverage ( > 10 km2 ) in Figure 4 d), variation in CVsd is reduced and 

yielded higher value  going into the macro scale (10 km – 1000 km) which is mostly affected by latitude, elevation and water 

bodies (Pomeroy et al., 2002). 

 365 

The convergence to higher CVsd as spatial coverage increased matched the PMW optimized values found in this study using 

GP simulation (0.8 – 1.0). Our analysis in Figure 4 d) showed that CVsd of TVC13-Lidar converged to 0.6 at 93 km2 but had 

two in situ points from other studies at 625 km2 with higher CVsd (0.9-1). This indicates that a CVsd between 0.6-1.0 is desirable 

to represent snow depth variability in SWE retrievals since the true resolution of PMW products are 25 km or 625 km2 for the 

EASE GRID 2.0 and SWE products like GlobSnow 3.0 (Pulliainen et al., 2020) ; future investigations of CVsd values at those 370 

scales have the potential to help GlobSnow 3.0. For active sensor (resolution < 1 km), the high variability in CVsd under 1 km2 

can affect back scattering because high variation in snow depth was observed (Figure 4b). The need for prediction of μsd and 

CVsd  based on topography could become essential at those scale not only for microwave remote sensing but other snow 

modelling or improve land data assimilation (Kim et al., 2021). 

 375 

Spatial complexities of Arctic snowpacks can be adequately characterized with distributions of snow depth (Figure 2) and 

simplified by considering density and SSA of two main layers (Figure 5). Such simplifications could be potentially useful for 

satellite SWE retrievals across Arctic tundra regions. Since Bayesian SWE optimization needs a strong first guess from 

regional a priori information, multiple distributions of snow depth, density and SSA presented here can be used for tundra 

type snow in MCMC sampling (Pan et al., 2017; Saberi et al., 2020). Additionally, a similar approach to our GP simulation 380 

can be added so the 𝐶𝑉𝑠𝑑 parameter can also be used as a priori information with a distribution from 0.8 to 1, since it improved 

TB RMSE by ~8K (Figure 9). This approach improved 𝑇𝐵  simulation compared to using only mean values of snowpack 

properties by adding variability within the footprint. The 𝐶𝑉𝑠𝑑  parameter (describing variation in snow depth) has a 

considerable effect on brightness temperature (10 K) when used as an effective parameter to account for sub-pixel variability 

of snow depth. The amount of scatterers (snow grain and structure) within the radiometer’s footprint is adjusted via the DHF 385 
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predicted from snow depth (𝐶𝑉𝑠𝑑). The relationship found in Figure 6 used to predict DHF (Figure 7) could also be used 

deterministically with the mean function (ϕ1) or a linear relation of DHF decreasing from 50% to 20%. However, the Bayesian 

gaussian process was used because SWE retrievals are currently implemented in a Bayesian framework (Takala et al., 2011). 

 

Considering that the difference between 19 and 37 GHz is used in SWE retrievals (Takala et al., 2011), using the CVsd to 390 

account for variability of scatterers only affected simulation of 37 GHz with no effect on 19 GHz (Figure 8). If standard 

deviation of snow increases (more drift) then relatively fewer large scatterers from depth hoar are present within the footprint 

due to a low DHF in large drifts. The net result is then an increase in TB at 37 GHz resulting from an increase in CVsd (Figure 

8). 

 395 

This idea of modulating the amount of scatterers based of DHF prediction and a distribution of snow depth (𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑) can 

be extended to future active Ku-band mission (Garnaud et al., 2019; King et al., 2018) as it known that microwave spatial 

variability affects backscatter signal (King et al., 2015) and SWE retrievals (Vander Jagt et al., 2013). The 𝐶𝑉𝑠𝑑 parameter is 

proposed as an effective parameter to account for variability inside the grid cell, while the mean depth (𝜇𝑠𝑑) is assimilated by 

in situ measurements at weather stations in data assimilation schemes (Takala et al., 2011), or by physical snow model (Larue 400 

et al., 2018). The 𝐶𝑉𝑠𝑑 could be optimized or predict using relations with spatial coverage (Figure 4) and statistical topographic 

regression (Grünewald et al., 2013). Future works would need dataset covering large area where 𝜇𝑠𝑑  and 𝐶𝑉𝑠𝑑  could be 

investigated with topography in smaller sub areas. 

4. Conclusion 

This study evaluated the use of parameters controlling snow depth distributions to improve passive microwave SWE retrievals 405 

by characterizing tundra snow sub-pixel variability. In shrub and graminoid tundra environments, mean values of snow depths 

(𝜇𝑠𝑑 = 0.33-0.44m) and coefficient of variations (𝐶𝑉𝑠𝑑 = 0.4-0.8) were similar to those previously reported in Arctic tundra 

(Derksen et al., 2014; Liston, 2004; Sturm et al., 2008). Monte Carlo simulations were applied to investigate μsd and CVsd as 

a function of spatial coverage. An increase in CVsd matched increased spatial coverage of snow depth sampling, indicating that 

a higher CVsd (0.6-0.9) is more suited to estimate snow depth variation in the 3.125 km resolution EASE-Grid 2.0. Also, 410 

simulations showed high variation in CVsd (> 0.9) for areas < 10 km2 indicating a need for topography-based prediction of μsd 

and CVsd at this scale. The 𝐶𝑉𝑠𝑑 was shown to be an effective parameter to account for snow depth variability in simulation of 

snow 𝑇𝐵 . A two-layer snowpack model (depth hoar and wind slab), which contains snowpack properties simplified into 

distributions, was used to initialize the SMRT model via a GP fit of the DHF related to snow depth. DHF is fitted to snow 

depth using a Bayesian Gaussian Process, which accounts for variation in snow scattering using 𝐶𝑉𝑠𝑑. The parametrization of 415 

the Improved Born Approximation (𝜅37 = 1.39) microstructure model and grain size (Vargel et al. 2020) was used successfully 
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to simulate satellite 𝑇𝐵 , but there is still substantial uncertainties in the simulated values which are likely to be linked to 

microstructural properties not captured by SSA (Krol and Löwe, 2016). SMRT simulations of 𝑇𝐵 were reduced by 8 K after 

optimizing 𝐶𝑉𝑠𝑑 to higher values (0.8-1.0), thereby matching 𝐶𝑉𝑠𝑑 of spatially distributed snow depth from TVC18 – RPAS 

accounting for variation in snow properties inside the footprint of satellite sensor. The 𝐶𝑉𝑠𝑑  parameter is proposed as an 420 

effective parameter to account for variability inside the footprint to minimize the difference between microwave measurements 

and simulations in SWE retrievals algorithm. Difference minimization would be beneficial to the data assimilation scheme of 

the European Space Agency: GlobSnow product (Takala et al., 2011) and modelled large scale climate trend products 

(Mortimer et al., 2020; Pulliainen et al., 2020) of tundra snow. 

 425 
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