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Note to editors: 

The following co-authors will be added to the manuscript: Philip Marsh and Evan Wilcox. 

We thank all reviewers for the helpful and constructive comments that helped improve the 

manuscript. Two new figures were added to the manuscript introducing a new dataset in TVC 

with addition of Monte Carlo simulations involving 𝐶𝑉𝑠𝑑 and 𝜇𝑠𝑑. The 19 GHz frequency was 

also added in the GP simulation of Figure 7. See revised manuscript for updated numbering of 

figures. Every comment was addressed, and a detailed list of modifications is provided below.  

 

Reviewer’s comments  

Answers to reviewer 

Addition to text or original text with added text 

 

 

Reviewer: 1  

R1.C1 What is missing from the paper is some deeper inductive reasoning that could take the work 

farther and make it more general (and less about two particular tundra locations). Personally, I 

found Figure 3 the most interesting result in the paper and found myself wondering why the CV 

(as a function of the area measured) appeared to be asymptotic to 1. It was not that I doubted the 

data, but I wondered if that was some physical limitation to CV, or just some limitations in the 

available data. The authors stated in their discussion that: However, the resolution of SWE products 

like GlobSnow are much larger (25km); future investigation of CVsd values at those scales have 

the potential to help GlobSnow 3 (Pulliainen et al., 2020).  and I agree with this statement, but 

suggest we hardly need to wait for future investigations. I would suggest the authors could address 

this issue more thoughtfully in this paper using the knowledge base they already have. Let’s start 

(Table below) by examining some extreme depth distributions using Excel. For a completely 

homogeneous snow depth field, the CV approaches zero. For more realistic heterogeneous snow, 

and certainly most tundra snow fields, the CV rises with area because (I believe) of snow drifts. 

For example, in a landscape of mostly very thin snow with with a few very deep drifts I was able 

to produce values >4 (Case 7). This is exactly the type of situation that exists in tundra snow, 

particularly in the windier tundra areas (e.g. the Arctic Refuge in Alaska and in the Barrenlands of 

Canada) where wind scour and drifting is most extreme. I suspect CV values over 2 are often 



realized, for example the tundra landscape shown below (after the thin snow has melted):But the 

authors need not just deal with this CV issue in a theoretical framework: they should have access 

to the TVC lidar maps we produced in 2012. They could readily run a Monte Carlo simulation, 

varying the location and area examined, then plot the resultant mean depths and CVs thereby 

adding to the figure. Once that was done, they could move to more general application of CV to 

the full range of tundra snow. By the way, a quick look at Wikipedia indicates that for small 

samples, CV is low-biased. 

We agree this part of the paper is interesting and could be improved by Monte Carlo simulations 

using the Lidar dataset presented in Rutter et al. (2019). We followed the recommendations 

suggested and did Monte Carlo simulations varying the location and area of sampling using 

uniform randomly generated radius and location of a circle (mask) using the Lidar dataset. We 

also aggregated the multiple maps from TVC in 2018 (Walker et al., 2020) to perform the same 

analysis. Both the mean and CV were evaluated and are shown in the updated figure 3. Multiple 

addition in the text were done.  

First, the data section was modified to add the dataset TVC13-Lidar. See modified Table 1 and 

Table 4 in the revised manuscript for addition of TVC13-Lidar 

An airborne Lidar dataset of TVC snow depths (93 km2 at 10 m resolution) collected by an aircraft 

from April 2013 (Rutter et al., 2019) was also used. Monte Carlo simulations of both the 𝜇𝑠𝑑 and 

𝐶𝑉𝑠𝑑 were performed on each snow depth map. Simulations randomly selected pixels as the center 

of a circular mask with a random radius. The mask was used to select all pixels within the circle 

so the statistical parameters (𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑) could be calculated. 

This text was added in section 3.1 along with the new figure 3. Previous figure was removed. 

[…] the larger Lidar-derived snow map in TVC (TVC13-Lidar). Figure 3a shows snow 

accumulation of TVC13-Lidar and TVC18-RPAS with snow drift visible in dark blue and Sub-grid 

of 1km2 showed areas with high 𝐶𝑉𝑠𝑑 (Figure 3b) containing more drift. For both areas, 500 

Monte Carlo simulations were performed by randomly selecting sub-regions within each domain 

(Figure ) so the mean and variability as a function of coverage could be investigated. Simulations 

showed sub-sampling of 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 converged to the values of the full area. The mean of each 

area was similar in value with less variation in the simulations compared to 𝐶𝑉𝑠𝑑. A difference of 

0.2 between the full 𝐶𝑉𝑠𝑑 of the RPAS (5 km2) and Lidar (93 km2) maps (Figure ) was found. 



 

Figure 3: RPAS and Lidar dataset of snow depth at TVC (TVC13-Lidar and TVC18-RPAS). TVC13-Lidar is the 

largest dataset covering 93 km2. TVC18-RPAS is a smaller dataset within the area of TVC13-Lidar. In a) is shown 

the snow depth map at 10 m resolution from 2013. b) shows a sub grid of 1 km with 𝑪𝑽𝒔𝒅 for each cell; c) same as 

b) but for 𝝁𝒔𝒅. 

 



 

Figure 4: Snow depth mean (𝝁𝒔𝒅) (a and b) and variability (𝑪𝑽𝒔𝒅) (c and d) as a function of coverage 

for sampling area: a) and c) small area, b) and d) large area. Monte Carlo simulations were done using 

the two datasets in TVC. CB18-RPAS was also added in a) because of the similar coverage. The 𝝁𝒔𝒅 and 

𝑪𝑽𝒔𝒅 of both full areas are shown by the black dotted and dashed line.  

 

We initially thought the CV would increase as spatial coverage increased. Instead, the lack of data 

points hid high variability in CV for small areas found from the Monte Carlo simulation of both 

dataset (TVC18-RPAS and TVC13-Lidar). As mentioned by the reviewer, the CV values depends 

on whether there is enough drift capture in the area sampled. The following was added in the 

discussion to address Figure 4. 

We show that as spatial coverage increased, the 𝐶𝑉𝑠𝑑 parameter converged to the full area values 

(Figure 4). Monte Carlo simulations of snow depth distribution and coverage show high variation 

in 𝐶𝑉𝑠𝑑 (from 0.1 to 2) for areas < 10 km2. Snow accumulation varied at the meso scale (100 m to 

10 km) due to topography and vegetation (Pomeroy et al., 2002) by varying wind-flow direction 

(Liston and Sturm, 1998). At the meso scale, variability in 𝐶𝑉𝑠𝑑 was high due to topographic 

differences; plateau, slope and valley create favorable conditions from wind flow direction to 

promote snowdrift, scour and sublimation processes (Parr et al., 2020; Rutter et al., 2019). 



Vegetation facilitates snow holding capacities by decreasing wind speed near the ground within 

and downwind of shrub (Marsh et al., 2010; Sturm et al., 2001). Some areas include both extreme 

drifts and thin snow, resulting in high 𝐶𝑉𝑠𝑑 (dark green areas in Figure 3b) which are commonly 

found in TVC (Walker et al., 2020). 𝐶𝑉𝑠𝑑 was lower for areas without drifts (light green areas in 

Figure 3b).  In areas > 10 km2 (Figure 4d), variation in 𝐶𝑉𝑠𝑑 was reduced and yielded higher 

values > 0.6. 

Also, the following paragraph in the discussion was completely removed and modified as follow. 

Convergence to higher 𝐶𝑉𝑠𝑑 as spatial coverage increased matched the PMW optimized values 

found in this study using GP simulation (0.8 – 1.0). Our analysis in Figure  d) showed that 𝐶𝑉𝑠𝑑 

of TVC13-Lidar converged to 0.6 at 93 km2, but two in situ points from other studies at 625 km2 

had higher 𝐶𝑉𝑠𝑑 (0.9-1) due to larger coverage or different site characteristics. This indicates that 

a 𝐶𝑉𝑠𝑑 between 0.6-1.0 is desirable to represent snow depth variability in SWE retrievals for PMW 

SWE products at 25 km for the EASE GRID 2.0 and 625 km2 for GlobSnow 3.0 (Pulliainen et al., 

2020) . For active sensors (resolution < 1 km), the high variability in 𝐶𝑉𝑠𝑑 under 1 km2 due to 

high variation in snow depth (Figure b) can affect back scattering since active sensor at Ku band 

are also sensitive to volume scattering (King et al., 2018). The need for prediction of 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 

based on topography could become essential at these scales not only for microwave remote sensing 

but also to improve snow modelling or land data assimilation (Kim et al., 2021). 

--------------------------------------------------------------------------------------------------------------------- 

R1.C2 The other aspect of the paper that bears some thought, and is related to the above point, is 

how wind slab and depth hoar fractions must interact. Step 1 in approaching this would be to 

explain in greater detail how those types of snow were identified in the snow pits in this study. I 

was struck by the relatively close density values reported in the study for depth hoar and wind slab 

(means 266 vs. 335 kg/m 3 ). The former value is typical for mildly indurated tundra depth hoar, 

but the latter is quite low for tundra wind slab, which can exhibit values over to 550 kg/m 3 . Wind 

slabs of 300 kg m 3 are often soft and hardly wind-worked at all, and in addition, many less 

experienced field practitioners fail to note small and newly faceted grains in wind slab of this 

nature. Then there is the problem of “indurated depth” hoar (Sturm et al., 2008; Derksen et al., 

2009; Domine et al. 2018), snow layers that were wind slab but have metamorphosed into depth 

hoar. Presumably the critical aspect of differentiating these textures for microwave remote sensing 

is that the ornate, hollow and plate- like depth hoar grains scatter microwaves far better than the 

wind slab, hence subdividing the pack into those two fractions is critical. The relatively similar 

values of SSA (Figure 4a) for slab and hoar suggest to me the authors were dealing with a of 

properties rather than a truly distinct bimodal snow pack. I went back to the paper the authors 

referenced related to a two-component snow model they used:  

Saberi, N., Kelly, R., Toose, P., Roy, A., Derksen, C., 2017. Modeling the observed microwave 

emission from shallow multilayer Tundra Snow using DMRT-ML. Remote Sens. 9. 

https://doi.org/10.3390/rs9121327  

https://doi.org/10.3390/rs9121327


and was pleased to see that a long-forgotten paper of mine 

Sturm, Matthew, Thomas C. Grenfell, and Donald K. Perovich. "Passive microwave 

measurements of tundra and taiga snow covers in Alaska, USA." Annals of Glaciology 17 (1993): 

125-130. 

had been used in developing that model. That work showed that depth hoar volume scattering was 

more than 6X effective compared to windslab. It should be possible to go beyond the findings of 

Rutter et. al. (2019) for TVC, where the DHF was shown to stabilize at 30% for depths over 60 

cm, but not why. Figure 2 in this paper shows for both study sites long tails on the distributions 

out to 150 cm, while the mean depth appears to be 1/3 rd of that value. In a recent paper Parr et al. 

(2020) defined a drift depth threshold as being approximately the mean plus 1s, so that “extra” 

depth is statistically likely to be transported snow. A different way to look at Figures 5 and 6 is 

that for the mean snow depth half the pack is depth hoar; where the pack as been scoured (drift 

snow removed) that fraction is higher; where the snow is drifted, that fraction is lower. Perhaps 

the fraction where it is lower would be the mean plus 1s... I am not sure. But some attempt to 

understand the processes behind the statistics (Bayesian or otherwise) could help generalize the 

results beyond to very specific tundra locations. 

For the first part of the comment, we agree that a more detailed explanation of the DH/WS 

classification is necessary. We added details on the multiple layers found and how they were 

classified as slab and hoar. The relatively close peak of each distribution can be explained by the 

classification of indurated hoar as DH. Also, every layer that did not contain enough large crystals 

were considered WS which is more a general slab (soft to hard) rather than a wind slab with high 

density (> 400 𝑘𝑔 ⋅ 𝑚−3). The following was added in the result section 3.2. 

The goal was to classify DH as large grain snow (large facets, depth hoar cups and chains), then 

all other snow layers above the DH as wind slab (WS). Some layers were more difficult to classify 

as they contained mixed crystals or were a transitional slab-to-hoar layer (also referred to as 

indurated hoar) (Sturm et al., 2008). Slab that contained small faceted crystals (< 2 mm) were 

classified as WS. Indurated hoar, a wind slab metamorphosed into depth hoar, was classified into 

DH with a typical density ~ 300 𝑘𝑔 ⋅ 𝑚−3. Because of this reason, the peak of each distribution 

appeared close to each other in Figure 5 c) and d). For retrieval of snow properties using satellite 

remote sensing, a 2 layer model using WS and DH can be used to simplify much of the layer 

complexity found in arctic snowpacks (Rutter et al., 2019; Saberi et al., 2017). 

The second part refers to the relationship between DHF and snow depth and how we could go 

beyond the statistical fit by investigating the process behind the statistic by leveraging Parr et al. 

(2020). An attempt in understanding the process from your comments was added in section 3.2. 

Parr et al. (2020) found a key threshold of 𝜇𝑠𝑑 +  1𝜎𝑠𝑑  to define snow drifts in tundra 

environments. This threshold of > 0.6 – 0.8 m, based on data presented in Table 4, is an important 

metric in Figure 6 since above this depth, the variability and the mean DHF is greatly reduced as 



the snowpack is dominated by wind slab for larger depth. As defined in Parr et al. (2020), the 

transported snow from wind accumulates at these particular locations (drift) where it was scoured 

from wind affected area yielding lower depth with high DHF. 

--------------------------------------------------------------------------------------------------------------------- 

R1.C3 Figure 1: I tend to see light as high and dark as low. 

See revised manuscript for modification in figure 1. 

--------------------------------------------------------------------------------------------------------------------- 

R1.C4 Line 187: The black line is dashed not dotted. 

Done, see revised manuscript 

--------------------------------------------------------------------------------------------------------------------- 

R1.C5 Figure 4: The orange and blue fit lines are not defined. 

The following was added to the caption of figure 4 (5 new version). 

Figure 5: SSA and density variability of Surface Snow (SS), Wind Slab (WS) and Depth Hoar (DH) 

for the two studied sites (TVC and CB) and different dates (see Table 5). In c) the best log-normal 

fit distribution is shown in black; d) same as c) but for the normal fit distribution. In c) and d), the 

kernel density estimates (KDE) of the histogram of each layer are also shown (in color). 

--------------------------------------------------------------------------------------------------------------------- 

R1.C6 Figure 5b: For much of tundra snow, tussocks rather than shrubs, are a control on the DHF. 

Also, since shrubs can be layed down under the snow (and frequently are), a relationship between 

depth hoar and/or wind slab and NDVI seems tenuous at best. 

Agreed that the relation with NDVI can be tenuous but we still think it can help at regional scale 

as a measured of vegetation (shrub and tussock). Both vegetation can favor growth of depth hoar 

with a high DHF (table 2, Sturm et al., 2001) where both vegetation have a high DHF. The point 

we were trying to make with this figure is that DHF potentially follows vegetation and latitudes at 

the regional scale. It matches nicely with a recently found results from figure 5 in Royer et al. 

(2021). The following was added in section 3.2. 

However, at the regional scale, differences are evident between both regions, where mean NDVI 

and DHF are greater at TVC (NDVI = 0.5, DHF = 0.54) than CB (NDVI = 0.27, DHF = 0.38). 

This finding is in agreement with Royer et al. (2021) over a northeastern latitudinal gradient, 

showing that sites with shrubs and tussocks have a greater DHF than those without.  

--------------------------------------------------------------------------------------------------------------------- 

R1.C7 Figure 6: My ignorance...but does the Bayesian approach really improve the model much 

over just using the results of Figure 5? 



No it probably doesn’t improved simulation other than the relation found in figure 5 (old version). 

A classical approach could be used as well but our approach provides uncertainties for our 

simulations from the variability in DHF found at both sites. Also, a Bayesian gaussian process 

could be implemented in current SWE retrieval framework based on Bayesian framework (Takala 

et al., 2011). The following was added in the discussion about the method. 

The amount of scatterers (snow grain and structure) within the radiometer’s footprint is adjusted 

via the DHF predicted from snow depth (𝐶𝑉𝑠𝑑). The relationship found in Figure 6 used to predict 

DHF (Figure 7) could also be used deterministically with the mean function (𝜙1) or with a linear 

relation of DHF decreasing from 50% to 20%. However, the Bayesian gaussian process was used 

because SWE retrievals are currently implemented in a Bayesian framework (Takala et al., 2011).  

--------------------------------------------------------------------------------------------------------------------- 

R1.C8 Figure 7: In these simulations, are the amalgamated results for the sub-grid pixels combined 

linearly, and if so, is that what happens in a microwave sensor? Is it possible to have the net result 

a non-linear combinations? 

The following was added to specify our assumption about the effect of the sub-pixel within the 

sensor. We have no evidence to support our claim that the sub-pixel combined linearly but it is the 

assumption that we chose. 

To represent the signal measured by the sensor, the mean of the simulated 𝑇𝐵 was chosen and it 

was assumed that the sub-pixels effect combined linearly at this scale. Because the simulated TB37V 

distribution was not exactly a normal distribution, it appeared that the mean 𝑇𝐵 of this distribution 

increased when 𝐶𝑉𝑠𝑑 increased (Figure 8b) 

--------------------------------------------------------------------------------------------------------------------- 

R1.C9 Line 335: “... while the mean depth (sd) is dependent on precipitation at a larger scale...”. 

This is categorically NOT true for much tundra snow, wear I would contend that wind plays as 

strong, and sometimes stronger, role than the mean precipitation within a domain. 

This statement was removed from the sentence and now reads as follow. 

while the mean depth (𝜇𝑠𝑑) is assimilated by in situ measurements at weather stations in data 

assimilation schemes  

--------------------------------------------------------------------------------------------------------------------- 

R1.C10 Line 344: “...potential underestimation of the CVsd parameter.” See above discussion of 

CV. The issue of what constitutes a representative domain (or snow landscape) is thorny. Clearly 

if a domain fails to include, say drifts, the CV will be too low. Likewise, if the domain is limited 

to a coupled drift and scour zone it will be too high. 

See addition from R1.C1 



Also, this part of the conclusion was modified as follow. 

Monte Carlo simulations were applied to investigate 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 as a function of spatial 

coverage. An increase in 𝐶𝑉𝑠𝑑 matched increased spatial coverage of snow depth sampling, 

indicating that a higher 𝐶𝑉𝑠𝑑 (0.6-0.9) is more suited to estimate snow depth variation in the 3.125 

km resolution EASE-Grid 2.0. Also, simulations showed high variation in 𝐶𝑉𝑠𝑑 (> 0.9) for areas 

< 10 km2 suggesting a need for topography-based prediction of 𝜇𝑠𝑑 and 𝐶𝑉𝑠𝑑 at this scale. 

--------------------------------------------------------------------------------------------------------------------- 

 

Reviewer: 2 

R2.C1 Line 120, could you provide more details in the ocean/lake effect removal? Although the 

SSMIS observations has been downscaled to 3.125 km resolution, however considering the bigger 

footprint of 36.5 GHz (4*6 km^2), can the water effect truly be excluded in the pixels near the 

ocean/lake? As can be seen from Figure 1, at CB for example, there are truly only a few grids that 

are lake free. How the influence of lake was considered? 

Agreed, the influence of ocean or liquid water from deep lakes cannot be excluded if the pixel is 

25 km (full resolution) from the coast. The snowpit area is within 25 km from the ocean so another 

area just outside 25 km was chosen. We skipped over this explanation originally. Our goal was to 

select a typical “arctic snow” area with so we could evaluate the 𝐶𝑉𝑠𝑑 and DHF effect in PMW 

simulation. The following was added in section 2.3 to clarify water contribution.  

For CB, an area with the same spatial coverage but a slightly different location was used since 

the snowpit area was within 25 km (resampled pixel resolution of SSMIS) from the ocean. The 

lakes in CB shown in Figure 1 were not considered in the soil emission contribution because most 

of the water was frozen (𝜀′ ≈ 4-6) (Mironov et al., 2010), which had a similar permittivity to frozen 

soil (𝜀′ ≈ 2-4) (Mavrovic et al., 2021) than liquid water (𝜀′ > 25). 

--------------------------------------------------------------------------------------------------------------------- 

R2.C2 Line 120, also, the snowpit measurements were at point scale whereas the Tb data is at 

3.1.25 km. Why and how the Tb data was averaged to match the point scale measurements? To 

which resolution was it averaged? 

The following was added in section 2.3. 

for both TVC and CB regions. A single value of measured 𝑇𝐵 (per frequency) were used by 

averaging all pixels within snow pits area (CB: 24 pixels, TVC: 14 pixels for 37 GHz). Each pixel 

with at least one snow pit inside was used. Since all snow pits were aggregated to obtain mean 

value and distribution of snow properties for SMRT, averaged 𝑇𝐵 covering the snow pits area was 

used. 

--------------------------------------------------------------------------------------------------------------------- 



R2.C3 Line 249: this line reads like the density and SSA of each of the two layers were estimated 

as a function of snow depth and DHF, too. 

This sentence was removed for clarity. 

--------------------------------------------------------------------------------------------------------------------- 

R2.C4 To my understand, the DHF was determined only by one parameter, i.e., the snow depth. 

The prior information is the probability distribution of snow depth and the relationship between 

DHF and snow depth described in Figure 5. Therefore, the generated DHF (posterior DHF field) 

described in Figure 6 has also some random characteristics. In other words, Figure 6 is only a 

realization of DHF, one of the possibilities. The scatter points are not fixed, determined values. 

Therefore, will a different realization influence your TB simulation results? 

Your understanding is correct. Different realizations are shown by the ± 2𝜎 region in Figure 8 and 

9. It is not explained in the text but the uncertainty (2𝜎) is estimated by generating the same 

experiment of simulating 𝑇𝐵 for the 𝐶𝑉𝑠𝑑 range of 0.1 to 1 (basically Figure 7b) 20 times. The 

mean and std of those 20 simulations are shown by the middle line and the 2𝜎 range of those 

realizations. 

--------------------------------------------------------------------------------------------------------------------- 

R2.C5 Figure 7, it will be more interesting to provide an estimation of distribution of TB difference 

between 18.7 and 36.5 GHz. The authors need to explain why the TBthat considers the sub-pixel 

variability is higher when the standard deviation of snow depth is higher. Is it because when the 

snow depth is higher, the reduced variability of DHF will result in less samples of strong volume 

scattering, such that the TB at 36.5 GHz will increase? In addition, will this result be influenced 

by the soil emission background? 

We decided to briefly add 19 GHz in figure 7 (old version) so the small effect (negligeable) from 

CV on 19 GHz simulation could be shown. See addition from comment R2.C1 about soil 

contribution and the addition of 19 GHz in the data section. Figure 7 was updated so 37 and 19 

GHz are both shown for TVC18. 



 

This part was added to the result section 3.4. 

The addition of snow variability in simulation (Figure 8c and d) of 19 GHz has negligeable effect 

on 𝑇𝐵19 and shows a constant simulation across the 𝐶𝑉𝑠𝑑 range of 0.1 to 1. Simulation of 𝑇𝐵19 

shows higher biases at horizontal polarization then vertical polarization. 

To address the second questions in the comment, the following paragraph was added in the 

discussion (section 4) 

Considering that the difference between 19 and 37 GHz is used in SWE retrievals (Takala et al., 

2011), using the 𝐶𝑉𝑠𝑑 to account for variability of scatterers only affected simulation of 37 GHz 

with weak effect on 19 GHz (Figure 8). If standard deviation of snow increases (more drift) then 

relatively fewer large scatterers from depth hoar are present within the footprint due to a low DHF 

generally observed in large drifts. The net result is then an increase in 𝑇𝐵 at 37 GHz resulting 

from an increase in 𝐶𝑉𝑠𝑑 (Figure 8). 

--------------------------------------------------------------------------------------------------------------------- 

R2.C6 How the effect of vegetation was considered in the simulation? 

The effect of vegetation was not considered because it is not accounted in tundra snow retrievals 

(Saberi et al., 2020). Shrubs and tussock are not considered as trees or tall vegetation with 

significant interaction. Some studies do account for vegetation interaction with PMW but in sub-

arctic areas with trees (Derksen et al., 2012; Larue et al., 2018; Roy et al., 2012). The interaction 



is based on vegetation product like Leaf Area Index which are not available for small vegetation 

like shrub. 

--------------------------------------------------------------------------------------------------------------------- 

R2.C7 Line 25: Snow depth simulations ---> do you mean the retrieved snow depth, or the 

brightness temperature simulations? 

This sentence was modified. 

SMRT simulations using a 𝐶𝑉𝑠𝑑 of 0.9 best matched 𝐶𝑉𝑠𝑑 observations […] 

--------------------------------------------------------------------------------------------------------------------- 

R2.C8 Line 40: dielectric properties ---> suggested to change to radiometric properties 

Modification done. 

--------------------------------------------------------------------------------------------------------------------- 

R2.C9 Line 75: More words is need to explain the Gaussian Process (GP) when this term first 

appears here. Maybe it is better to first mention it between lines 60-65. 

The following sentence was modified by removing Gaussian Processes to avoid confusion. 

which suggested the use of a term involving variation in snow depth and microstructure within the 

footprint instead of a uniform snow depth. 

This sentence was also modified in the next introduction paragraph when stating the objectives of 

the study. 

Finally, we perform a Gaussian Process fit to estimate depth hoar fraction (DHF) from snow depth 

and used probability density functions of snow depth to add variation of snow depth and 

microstructure within the footprint. 

--------------------------------------------------------------------------------------------------------------------- 

R2.C10 Line 81: are the snow microstructure and density values used here single values or 

probability distributions? Are they determined according to the in-situ snowpit observations? 

We presented probability distributions of microstructure and density values, but single values 

(mean values) were used in the final simulation. The distributions are shown so they can be used 

in future MCMC retrievals as priors. 

This sentence was modified as follows. 

Secondly, we presented in situ measurements of snow microstructure and density in both main 

tundra snow layers (depth hoar and wind slab), mean ratios of layer thickness and the depth 

hoar fraction (DHF) relative to snow depth. 

--------------------------------------------------------------------------------------------------------------------- 



R2.C11 Figure 5(b) was not described in the caption. 

The following was added in the caption. 

b) DHF is shown as a function of NVDI from the snowpit area with the mean DHF and NDVI 

shown by dashed lines and the gaussian distributions of DHF by the solid lines. 

--------------------------------------------------------------------------------------------------------------------- 
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