Characterizing Tundra snow sub-pixel variability to improve brightness temperature
estimation in satellite SWE retrievals

Manuscript ID: tc-2021-156

Note to editors:
The following co-authors will be added to the manuscript: Philip Marsh and Evan Wilcox.

We thank all reviewers for the helpful and constructive comments that helped improve the
manuscript. A new figure was added to the manuscript introducing a new dataset in TVC with
addition of Monte Carlo simulations involving CV,; and pg,. The 19 GHz frequency was also
added in the GP simulation of Figure 7. See revised manuscript for updated numbering of
figures. Every comment was addressed, and a detailed list of modifications is provided below.

Reviewer’s comments
Answers to reviewer

Addition to text or original text with added text

Reviewer: 1

R1.C1 What is missing from the paper is some deeper inductive reasoning that could take the work
farther and make it more general (and less about two particular tundra locations). Personally, |
found Figure 3 the most interesting result in the paper and found myself wondering why the CV
(as a function of the area measured) appeared to be asymptotic to 1. It was not that | doubted the
data, but I wondered if that was some physical limitation to CV, or just some limitations in the
available data. The authors stated in their discussion that: However, the resolution of SWE products
like GlobSnow are much larger (25km); future investigation of CVsd values at those scales have
the potential to help GlobSnow 3 (Pulliainen et al., 2020). and | agree with this statement, but
suggest we hardly need to wait for future investigations. | would suggest the authors could address
this issue more thoughtfully in this paper using the knowledge base they already have. Let’s start
(Table below) by examining some extreme depth distributions using Excel. For a completely
homogeneous snow depth field, the CV approaches zero. For more realistic heterogeneous snow,
and certainly most tundra snow fields, the CV rises with area because (I believe) of snow drifts.
For example, in a landscape of mostly very thin snow with with a few very deep drifts | was able
to produce values >4 (Case 7). This is exactly the type of situation that exists in tundra snow,
particularly in the windier tundra areas (e.g. the Arctic Refuge in Alaska and in the Barrenlands of
Canada) where wind scour and drifting is most extreme. | suspect CV values over 2 are often



realized, for example the tundra landscape shown below (after the thin snow has melted):But the
authors need not just deal with this CV issue in a theoretical framework: they should have access
to the TVC lidar maps we produced in 2012. They could readily run a Monte Carlo simulation,
varying the location and area examined, then plot the resultant mean depths and CVs thereby
adding to the figure. Once that was done, they could move to more general application of CV to
the full range of tundra snow. By the way, a quick look at Wikipedia indicates that for small
samples, CV is low-biased.

We agree this part of the paper is interesting and could be improved by Monte Carlo simulations
using the Lidar dataset presented in Rutter et al. (2019). We followed the recommendations
suggested and did Monte Carlo simulations varying the location and area of sampling using
uniform randomly generated radius and location of a circle (mask) using the Lidar dataset. We
also aggregated the multiple maps from TVC in 2018 (Walker et al., 2020) to perform the same
analysis. Both the mean and CV were evaluated and are shown in the updated figure 3. Multiple
addition in the text were done.

First, the data section was modified to add the dataset TVC13-Lidar. See modified Table 1 and
Table 4 in the revised manuscript for addition of TVC13-Lidar

A Lidar dataset of TVC snow depths (93 km? at 10 m resolution) from April 2013 (Rutter et al.,
2019) was also used. Monte Carlo simulations of both the ., and CV,,; were performed on each
snow depth map. Simulations randomly selected pixels as the center of a circular mask with a
random radius. The mask was used to select all pixels within the circle so the statistical parameters
(usq and CVy,) could be calculated.

This text was added in section 3.1 along with the new figure 3. Previous figure was removed.

[...] the larger lidar derived snow map from TVC in 2013 was used. Figure 3a) shows snow
accumulation of TVC13-Lidar and TVC18-RPAS with snow drift visible in dark blue and Sub-grid
of 1km? showed areas with high CV;, (Figure 3b) containing more drift. For both areas, 500
Monte Carlo simulations were performed by randomly selecting sub-regions within each domain
(Figure 4) so the mean and variability as a function of coverage could be investigated. Simulations
showed sub-sampling of u,; and CV,,; converged to the values of the full area. The mean of each
area was similar in value with less variation in the simulations compared to CV,,. A difference of
0.2 between the full CV,, of the RPAS (5 km?) and Lidar (93 km?) maps (Figure 4) was found.
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Figure 1: RPAS and Lidar dataset of snow depth at TVC (TVC13-Lidar and TVC18-RPAS). TVC13-Lidar
is the largest dataset covering 93 km? TVC18-RPAS is a smaller dataset within the area of TVC13-Lidar.

In &) is shown the snow depth map at 10 m resolution from 2013. b) and c) show a sub grid of 1 km with
CV 4 and pgq Within each cell.
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Figure 4: Snow depth mean (us4) and variability (CVq) as a function of coverage for sampling area.
Monte Carlo simulations were done using the two datasets in TVC from Figure 3, TVC13-Lidar and TVC18-
RPAS. The multiple maps from TVC18-RPAS, CB18-RPAS and in-situ sampling from other studies were
also added (yellow square and red cross). The pugq and CV4 of both full areas are shown by the black
dotted and dashed line.

We initially thought the CV would increase as spatial coverage increased. Instead, the lack of data
points hid high variability in CV for small areas found from the Monte Carlo simulation of both
dataset (TVC18-RPAS and TVC13-Lidar). As mentioned by the reviewer, the CV values depends
on whether there is enough drift capture in the area sampled. The following was added in the
discussion to address Figure 4.

As spatial coverage increased, the CV,,; parameter converged to the full area values (Figure 4).
Simulations showed high variation in CV,4 (from 0.1 to 2) for areas < 10 km?. Snow accumulation
varied at the meso scale (100 m to 10 km) due to topography and vegetation (Pomeroy et al., 2002)
by varying wind-flow direction (Liston and Sturm, 1998). At the meso scale, variability in CVy,
was high due to topographic differences; plateau, slope and valley create favorable conditions
from wind flow direction to promote snowdrift, scour and sublimation processes (Parr et al., 2020;
Rutter et al., 2019). Vegetation facilitates snow holding capacities by decreasing wind speed near



the ground within and downwind of shrub (Marsh et al., 2010; Sturm et al., 2001). Some areas
include both extreme drifts and thin snow , resulting in high CV,, (dark green areas in Figure 3b)
which are commonly found in TVC (Walker et al., 2020). CV;,; was lower for areas without drifts
(light green areas in Figure 3b). In areas > 10 km? (Figure 4d), variation in CV, is reduced and
yielded higher values.

Also, the following paragraph in the discussion was completely removed and modified as follow.

Convergence to higher CV,, as spatial coverage increased matched the PMW optimized values
found in this study using GP simulation (0.8 — 1.0). Our analysis in Figure d) showed that CVg,
of TVC13-Lidar converged to 0.6 at 93 km?, but two in situ points from other studies at 625 km?
had higher CV,, (0.9-1). This indicates that a CV;,; between 0.6-1.0 is desirable to represent snow
depth variability in SWE retrievals for PMW SWE products at 25 km for the EASE GRID 2.0 and
625 km? for GlobSnow 3.0 (Pulliainen et al., 2020) . For active sensors (resolution < 1 km), the
high variability in CV;, under 1 km? due to high variation in snow depth (Figure b) can affect back
scattering since active sensor at Ku band are also sensitive to volume scattering (King et al., 2018).
The need for prediction of u,; and CV,,; based on topography could become essential at these
scales not only for microwave remote sensing but also snow modelling or land data assimilation
(Kim et al., 2021).

R1.C2 The other aspect of the paper that bears some thought, and is related to the above point, is
how wind slab and depth hoar fractions must interact. Step 1 in approaching this would be to
explain in greater detail how those types of snow were identified in the snow pits in this study. |
was struck by the relatively close density values reported in the study for depth hoar and wind slab
(means 266 vs. 335 kg/m 3). The former value is typical for mildly indurated tundra depth hoar,
but the latter is quite low for tundra wind slab, which can exhibit values over to 550 kg/m 3 . Wind
slabs of 300 kg m 3 are often soft and hardly wind-worked at all, and in addition, many less
experienced field practitioners fail to note small and newly faceted grains in wind slab of this
nature. Then there is the problem of “indurated depth” hoar (Sturm et al., 2008; Derksen et al.,
2009; Domine et al. 2018), snow layers that were wind slab but have metamorphosed into depth
hoar. Presumably the critical aspect of differentiating these textures for microwave remote sensing
is that the ornate, hollow and plate- like depth hoar grains scatter microwaves far better than the
wind slab, hence subdividing the pack into those two fractions is critical. The relatively similar
values of SSA (Figure 4a) for slab and hoar suggest to me the authors were dealing with a of
properties rather than a truly distinct bimodal snow pack. | went back to the paper the authors
referenced related to a two-component snow model they used:

Saberi, N., Kelly, R., Toose, P., Roy, A., Derksen, C., 2017. Modeling the observed microwave
emission from shallow multilayer Tundra Snow using DMRT-ML. Remote Sens. 9.
https://doi.org/10.3390/rs9121327

and was pleased to see that a long-forgotten paper of mine


https://doi.org/10.3390/rs9121327

Sturm, Matthew, Thomas C. Grenfell, and Donald K. Perovich. "Passive microwave
measurements of tundra and taiga snow covers in Alaska, USA." Annals of Glaciology 17 (1993):
125-130.

had been used in developing that model. That work showed that depth hoar volume scattering was
more than 6X effective compared to windslab. It should be possible to go beyond the findings of
Rutter et. al. (2019) for TVC, where the DHF was shown to stabilize at 30% for depths over 60
cm, but not why. Figure 2 in this paper shows for both study sites long tails on the distributions
out to 150 cm, while the mean depth appears to be 1/3 rd of that value. In a recent paper Parr et al.
(2020) defined a drift depth threshold as being approximately the mean plus 1s, so that “extra”
depth is statistically likely to be transported snow. A different way to look at Figures 5 and 6 is
that for the mean snow depth half the pack is depth hoar; where the pack as been scoured (drift
snow removed) that fraction is higher; where the snow is drifted, that fraction is lower. Perhaps
the fraction where it is lower would be the mean plus 1s... | am not sure. But some attempt to
understand the processes behind the statistics (Bayesian or otherwise) could help generalize the
results beyond to very specific tundra locations.

For the first part of the comment, we agree that a more detailed explanation of the DH/WS
classification is necessary. We added details on the multiple layers found and how they were
classified as slab and hoar. The relatively close peak of each distribution can be explained by the
classification of indurated hoar as DH. Also, every layer that did not contain enough large crystals
were considered WS which is more a general slab (soft to hard) rather than a wind slab with high
density (> 400 kg - m~3). The following was added in the result section 3.2.

The goal was to classify DH as large grained snow (large facets, depth hoar cups and chains),
then all other snow layers above the DH as wind slab (WS). Some layers were more difficult to
classify as they contained mixed crystals or were a transitional slab-to-hoar layer (also referred
to as indurated hoar) (Sturm et al., 2008). Slab that contained small faceted crystals (< 2 mm)
were classified as WS. Indurated hoar, a wind slab metamorphosed into depth hoar, was classified
into DH with a typical density ~ 300 kg - m~3. Because of this reason, the peak of each distribution
appeared close to each other in Figure 5 ¢) and d). For retrieval of snow properties using satellite
remote sensing, a 2 layer radiative transfer model using WS and DH can be used to simplify much
of the layer complexity found in arctic snowpacks (Rutter et al., 2019; Saberi et al., 2017).

The second part refers to the relationship between DHF and snow depth and how we could go
beyond the statistical fit by investigating the process behind the statistic by leveraging Parr et al.
(2020). An attempt in understanding the process from your comments was added in section 3.2.

Parr et al. (2020) found a key threshold of ug; + 1los; to define snow drifts in tundra
environments. This threshold of > 0.6 — 0.8 m, based on data presented in Table 4, is an important
metric in Error! Reference source not found.6 since above this depth, the variability and the
mean DHF is greatly reduced as the snowpack is dominated by wind slab for larger depth. As
defined in Parr et al. (2020), the transported snow from wind accumulates at these particular



locations (drift) where it was scoured or removed from wind affected area yielding lower depth
with high DHF.

R1.C3 Figure 1: | tend to see light as high and dark as low.

See revised manuscript for modification in figure 1.

R1.C4 Line 187: The black line is dashed not dotted.

Done, see revised manuscript

R1.C5 Figure 4: The orange and blue fit lines are not defined.
The following was added to the caption of figure 4 (5 new version).

Figure 5: SSA and density variability of Surface Snow (SS), Wind Slab (WS) and Depth Hoar (DH)
for the two studied sites (TVC and CB) and different dates (see Table 5). In ¢) and d), the best fit
distribution is shown in black with the kernel density estimate (KDE) of the histogram of each
layer.

R1.C6 Figure 5b: For much of tundra snow, tussocks rather than shrubs, are a control on the DHF.
Also, since shrubs can be layed down under the snow (and frequently are), a relationship between
depth hoar and/or wind slab and NDV1 seems tenuous at best.

Agreed that the relation with NDVI can be tenuous but we still think it can help at regional scale
as a measured of vegetation (shrub and tussock). Both vegetation can favor growth of depth hoar
with a high DHF (table 2, Sturm et al., 2001) where both vegetation have a high DHF. The point
we were trying to make with this figure is that DHF potentially follows vegetation and latitudes at
the regional scale. It matches nicely with a recently found results from figure 5 in Royer et al.
(2021). The following was added in section 3.2.

However, at the regional scale differences are evident between both regions, where mean NDVI
and DHF are greater at TVC (NDVI = 0.5, DHF = 0.54) than CB (NDVI = 0.27, DHF = 0.38).
This may add to the latitudinal gradient in Royer et al. (2021) where DHF follows a gradient along
a northward transect of arctic sites in Québec and Nunavik. Sites at lower latitudes and with
shrubs and tussocks, had higher DHF.

R1.C7 Figure 6: My ignorance...but does the Bayesian approach really improve the model much
over just using the results of Figure 5?



No it probably doesn’t improved simulation other than the relation found in figure 5 (old version).
A classical approach could be used as well but our approach provides uncertainties for our
simulations from the variability in DHF found at both sites. Also, a Bayesian gaussian process
could be implemented in current SWE retrieval framework based on Bayesian framework (Takala
etal., 2011). The following was added in the discussion about the method.

The amount of scatterers (snow grain and structure) within the radiometer’s footprint is adjusted
via the DHF predicted from snow depth (CV,). The relationship found in Figure 6 used to predict
DHF (Figure 7) could also be used deterministically with the mean function (¢,) or a linear
relation of DHF decreasing from 50% to 20%. However, the Bayesian gaussian process was used
because SWE retrievals are currently implemented in a Bayesian framework (Takala et al., 2011).

R1.C8 Figure 7: In these simulations, are the amalgamated results for the sub-grid pixels combined
linearly, and if so, is that what happens in a microwave sensor? Is it possible to have the net result
a non-linear combinations?

The following was added to specify our assumption about the effect of the sub-pixel within the
sensor. We have no evidence to support our claim that the sub-pixel combined linearly but it is the
assumption that we chose.

To represent the signal measured by the sensor, the mean of the simulated Tz was chosen and it
was assumed that the sub-pixels effect combined linearly at this scale in the sensor. Because the
simulated Tgas7v distribution was not exactly a normal distribution, it appeared that the mean Ty
of this distribution increased when CV,, increased (Figure 8b)

R1.C9 Line 335: “... while the mean depth (sd) is dependent on precipitation at a larger scale...”.
This is categorically NOT true for much tundra snow, wear | would contend that wind plays as
strong, and sometimes stronger, role than the mean precipitation within a domain.

This statement was removed from the sentence and now reads as follow.

while the mean depth (1) is assimilated by in situ measurements at weather stations in data
assimilation schemes

R1.C10 Line 344: “...potential underestimation of the CVsd parameter.” See above discussion of
CV. The issue of what constitutes a representative domain (or snow landscape) is thorny. Clearly
if a domain fails to include, say drifts, the CV will be too low. Likewise, if the domain is limited
to a coupled drift and scour zone it will be too high.

See addition from R1.C1



Also, this part of the conclusion was modified as follow.

Monte Carlo simulations were applied to investigate u,; and CVy,; as a function of spatial
coverage. An increase in CV,; matched increased spatial coverage of snow depth sampling,
indicating that a higher CV,, (0.6-0.9) is more suited to estimate snow depth variation in the 3.125
km resolution EASE-Grid 2.0. Also, simulations showed high variation in CV,; (> 0.9) for areas
< 10 km? indicating a need for topography-based prediction of i, and CV, at this scale.

Reviewer: 2

R2.C1 Line 120, could you provide more details in the ocean/lake effect removal? Although the
SSMIS observations has been downscaled to 3.125 km resolution, however considering the bigger
footprint of 36.5 GHz (4*6 km”2), can the water effect truly be excluded in the pixels near the
ocean/lake? As can be seen from Figure 1, at CB for example, there are truly only a few grids that
are lake free. How the influence of lake was considered?

Agreed, the influence of ocean or liquid water from deep lakes cannot be excluded if the pixel is
25 km (full resolution) from the coast. The snowpit area is within 25 km from the ocean so another
area just outside 25 km was chosen. We skipped over this explanation originally. Our goal was to
select a typical “arctic snow” area with so we could evaluate the CV,,; and DHF effect in PMW
simulation. The following was added in section 2.3 to clarify water contribution.

For CB, an area with the same spatial coverage but a slightly different location was used since
the snowpit area was within 25 km (resampled pixel resolution of SSMIS) from the ocean. The
lakes in CB shown in Error! Reference source not found. were not considered in the soil emission
contribution because most of the water was frozen (4-6) (Mironov et al., 2010), which had a similar
permittivity to frozen soil (2-4) (Mavrovic et al., 2021) than liquid water.

However, this simplification had importance for 19 GHz given that soil emission has a greater
influence on the signal at this frequency, hence the composition of frozen water and soil derived
from landcover information should be used instead. Since 37 GHz is more sensitive to snow volume
scattering, this step was neglected. The 19 GHz frequency was briefly used in this study in Error!
Reference source not found. only for TVC in 2018 to investigate the effect of snow variability
which modifies the amount of snow scatterers inside the radiometer’s footprint.

R2.C2 Line 120, also, the snowpit measurements were at point scale whereas the Th data is at
3.1.25 km. Why and how the Tb data was averaged to match the point scale measurements? To
which resolution was it averaged?

The following was added in section 2.3.



for both TVC and CB regions. A single value of measured Ty (per frequency) were used by
averaging all pixels within snow pits area (CB: 24 pixels, TVC: 14 pixels for 37 GHz). Each pixel
with at least one snow pit inside was used. Since all snow pits were aggregated to obtain mean
value and distribution of snow properties for SMRT, averaged T covering the snow pits area was
used.

R2.C3 Line 249: this line reads like the density and SSA of each of the two layers were estimated
as a function of snow depth and DHF, too.

This sentence was removed for clarity.

R2.C4 To my understand, the DHF was determined only by one parameter, i.e., the snow depth.
The prior information is the probability distribution of snow depth and the relationship between
DHF and snow depth described in Figure 5. Therefore, the generated DHF (posterior DHF field)
described in Figure 6 has also some random characteristics. In other words, Figure 6 is only a
realization of DHF, one of the possibilities. The scatter points are not fixed, determined values.
Therefore, will a different realization influence your TB simulation results?

Your understanding is correct. Different realizations are shown by the £ 2¢ region in Figure 8 and
9. It is not explained in the text but the uncertainty (20) is estimated by generating the same
experiment of simulating T for the CV,,; range of 0.1 to 1 (basically Figure 7b) 20 times. The
mean and std of those 20 simulations are shown by the middle line and the 20 range of those
realizations.

R2.C5 Figure 7, it will be more interesting to provide an estimation of distribution of TB difference
between 18.7 and 36.5 GHz. The authors need to explain why the TBthat considers the sub-pixel
variability is higher when the standard deviation of snow depth is higher. Is it because when the
snow depth is higher, the reduced variability of DHF will result in less samples of strong volume
scattering, such that the TB at 36.5 GHz will increase? In addition, will this result be influenced
by the soil emission background?

We decided to briefly add 19 GHz in figure 7 (old version) so the small effect (negligeable) from
CV on 19 GHz simulation could be shown. See addition from comment R2.C1 about soil
contribution and the addition of 19 GHz in the data section. Figure 7 was updated so 37 and 19
GHz are both shown for TVC18.
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This part was added to the result section 3.4.

The addition of snow variability in simulation (Error! Reference source not found. c-d) of 19
GHz has negligeable effect on Tz, and showed a constant simulation across the CVy,; range of
0.1 to 1. Simulation of Tz,9 showed higher biases at horizontal polarization then vertical
polarization.

To address the second questions in the comment, the following paragraph was added in the
discussion (section 4)

Considering that the difference between 19 and 37 GHz is used in SWE retrievals (Takala et al.,
2011), using the CV,, to account for variability of scatterers only affected simulation of 37 GHz
with no effect on 19 GHz (Error! Reference source not found.). If standard deviation of snow
increases (more drift) then relatively fewer large scatterers from depth hoar are present within the
footprint due to a low DHF in large drifts. The net result is then an increase in Ty at 37 GHz
resulting from an increase in CV,; (Error! Reference source not found.).

R2.C6 How the effect of vegetation was considered in the simulation?

The effect of vegetation was not considered because it is not accounted in tundra snow retrievals
(Saberi et al., 2020). Shrubs and tussock are not considered as trees or tall vegetation with
significant interaction. Some studies do account for vegetation interaction with PMW but in sub-



arctic areas with trees (Derksen et al., 2012; Larue et al., 2018; Roy et al., 2012). The interaction
is based on vegetation product like Leaf Area Index which are not available for small vegetation
like shrub.

R2.C7 Line 25: Snow depth simulations ---> do you mean the retrieved snow depth, or the
brightness temperature simulations?

This sentence was modified.

SMRT simulations using a CV, of 0.9 best matched CVi, observations [ ...]

R2.C8 Line 40: dielectric properties ---> suggested to change to radiometric properties

Modification done.

R2.C9 Line 75: More words is need to explain the Gaussian Process (GP) when this term first
appears here. Maybe it is better to first mention it between lines 60-65.

The following sentence was modified by removing Gaussian Processes to avoid confusion.

which suggested the use of a term involving variation in snow depth and microstructure within the
footprint instead of a uniform snow depth.

This sentence was also modified in the next introduction paragraph when stating the objectives of
the study.

Finally, we perform a Gaussian Process fit to estimate depth hoar fraction (DHF) from snow
depth, using probability density functions of snow depth to add variation of snow depth and
microstructure within the footprint.

R2.C10 Line 81: are the snow microstructure and density values used here single values or
probability distributions? Are they determined according to the in-situ snowpit observations?

We presented probability distributions of microstructure and density values, but single values
(mean values) were used in the final simulation. The distributions are shown so they can be used
in future MCMC retrievals as priors.

This sentence was modified as follows.

Secondly, we presented in situ measurements of snow microstructure and density in both main
tundra snow layers (depth hoar and wind slab), mean ratios of layer thickness and the depth
hoar fraction (DHF) relative to snow depth.




R2.C11 Figure 5(b) was not described in the caption.
The following was added in the caption.

b) DHF is shown as a function of NVDI from the snowpit area with the mean DHF and NDVI
shown by dashed lines and the gaussian distributions of DHF by the solid lines.
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