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Abstract: Seasonal snowpack is an essential component in the hydrological cycle and plays a significant role in supplying 

water resources to downstream users. Yet the snow water equivalent (SWE) in seasonal snowpacks, and its space-time 

variation, remains highly uncertain, especially over mountainous areas with complex terrain and sparse observations, such as 

in High-Mountain Asia (HMA). In this work, we assessed the spatiotemporal distribution of seasonal SWE, obtained from a 10 

new 18-year HMA Snow Reanalysis (HMASR) dataset, as part of the recent NASA High-Mountain Asia Team (HiMAT) 

effort. A Bayesian snow reanalysis scheme previously developed to assimilate satellite derived fractional snow-covered area 

(fSCA) products from Landsat and MODIS platforms has been applied to develop the HMASR dataset (at a spatial 

resolution of 16 arc-second (~500 m) and daily temporal resolution) over the joint Landsat-MODIS period covering Water 

Years (WYs) 2000-2017. Based on the results, the HMA-wide total SWE volume is found to be around 163 km3 on average 15 

and ranges from 114 km3 (WY2001) to 227 km3 (WY2005) when assessed over 18 WYs. The most abundant snowpacks are 

found in the northwestern basins (e.g. Indus, Syr Darya and Amu Darya) that are mainly affected by the westerlies, 

accounting for around 66% of total seasonal SWE volume. When examining the elevational distribution over the HMA 

domain, seasonal SWE volume peaks at mid-elevations (around 3500 m), with over 50% of the volume stored above 3500 

m. This work brings new insight into understanding the climatology and variability of seasonal snowpack over HMA, with 20 

the regional snow reanalysis constrained by remote sensing data, providing a new reference dataset for future studies of 

seasonal snow and how it contributes to the water cycle and climate over the HMA region.   

1 Introduction 

The High-Mountain Asia (HMA) region consists of the major mountain ranges and headwaters of the largest rivers in Asia. 

It features extremely high elevation, complex topography and significant glacier and snow cover. In HMA, glacier melt and 25 

snowmelt are vital to the hydrological cycle and water supply, as they feed the major regional rivers with over one billion 

people living downstream (Barnett et al., 2005; Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Immerzeel and 

Bierkens, 2012; Lutz et al., 2014; Armstrong et al., 2019; Scott et al., 2019; Immerzeel et al., 2020). 
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Even though both seasonal snow and glaciers are crucial to hydrology and water availability, seasonal snow has arguably 

received less attention than glaciers in the HMA region. Many studies have addressed the status and changes in glaciers over 30 

HMA (e.g. Bolch et al., 2012; Kääb et al., 2012; Sorg et al., 2012; Yao et al., 2012; Lutz et al., 2014; Bolch et al., 2019; 

Rounce et al., 2020; Shean et al, 2020). For seasonal snow, previous studies have examined the snow extent (e.g. Dahe et al., 

2006; Pu et al., 2007; Immerzeel et al., 2009; Tahir et al., 2011; Basang et al., 2017; Wang et al., 2017; Notarnicola 2020), or 

snow mass and snow depth (e.g. Dahe et al., 2006; Che et al., 2008; Terzago et al., 2014; Dai et al., 2017; Stigter et al., 2017; 

Smith and Bookhagen, 2018. 2020; Ahmad et al., 2019; Kirkham et al., 2019; Xue et al., 2019). In the current literature 35 

involving seasonal snow, most of the studies have focused on snow covered area (or extent, which is readily available from 

satellite-borne remote sensing) instead of snow mass, or have been applied at relatively localized scales or coarse scales. The 

seasonal snow water storage and its spatiotemporal distribution at finer scales are highly uncertain in HMA, primarily due to 

the lack of in situ observations and fine-scale snow water equivalent (SWE) datasets over this large domain (Takala et al., 

2011; Kirkham et al., 2019). In fact, accurately estimating SWE (at scales of a few kilometers) remains a great challenge 40 

worldwide, and it is even more difficult in mountainous regions due to the terrain complexity (Lettenmaier et al., 2015; 

Dozier et al., 2016; Bormann et al., 2018).  

In situ measurements are usually expensive and difficult to install and maintain in HMA and are mostly located in low-lying 

valleys, thus resulting in a sparse and potentially nonrepresentative network (Winiger et al., 2005; Palazzi et al., 2013; 

Dozier et al., 2016; Kirkham et al., 2019). In recent decades, satellite observations can provide large-scale estimates of some 45 

snowpack properties. However, most of these measured properties, such as snow-covered area (SCA) based on visible and 

near infrared bands (e.g. Dozier, 1989, Hall et al., 2002, Painter et al., 2009), are only indirectly related to snow mass. While 

SWE and snow depth can be directly estimated from passive microwave sensors (using retrieval algorithms based on the 

brightness temperature; e.g. Chang et al., 1987), these estimates are at coarse spatial resolution (e.g. 25 km), and are 

generally negatively biased in deep snowpacks (Takala et al., 2011; Dozier et al, 2016). Recent applications of C-band 50 

synthetic aperture radar (SAR) techniques show promise for snow depth retrieval (Lievens et al., 2019) but are available only 

over recent years and do not directly provide SWE. 

Global atmospheric reanalysis products provide another approach to large-scale SWE estimates as by-products of their land 

surface schemes. Examples include the Global Land Data Assimilation System (GLDAS, Rodell et al., 2004), Modern-Era 

Retrospective analysis for Research and Applications (MERRA, Rienecker et al., 2011; MERRA-2, Gelaro et al., 2017), 55 

European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis products (ERA-Interim, Dee et al., 2011; 

ERA5, Hersbach et al., 2020), High Asia Refined analysis (HAR, Maussion et al., 2011; 2014), Japanese 55-year Reanalysis 

(JRA-55; Kobayashi et al., 2015), and others. SWE estimates in these datasets are found to be generally consistent in their 

interannual and seasonal variations, but can differ significantly in their magnitudes when evaluated over different regions 

(Mudryk et al., 2015; Wrzesien et al., 2019), where the uncertainties come from different land surface models and 60 

meteorological inputs (Mudryk et al., 2015; Mortimer et al., 2020; Kim et al., 2021). In addition, most reanalysis datasets are 

not specifically designed for SWE estimation, and usually do not assimilate snow observations. Bian et al. (2019) found 
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many reanalysis datasets overestimate SWE compared to ground observations in the Tibetan Plateau, although part of the 

differences may come from inconsistent spatial resolution and elevations between in situ and gridded datasets. The 

performance of these large-scale reanalysis datasets over the full HMA domain has not been fully assessed due to the sparse 65 

and uneven in situ station network.   

Recent works have contributed to the development of SWE (or snow depth) estimates covering the HMA region based on 

passive microwave (e.g. Talaka et al., 2011; Smith and Bookhagen, 2016; Dai et al., 2017; Pulliainen et al., 2020) or active 

microwave measurements (Lievens et al., 2019). Machine learning approaches have been explored to predict SWE using 

passive microwave data (e.g. Ahmad et al., 2019). Moreover, some studies have explicitly merged snow observations with 70 

modeling via data assimilation (DA) to provide more realistic SWE estimates, which is an effective approach in reducing 

SWE uncertainties especially over the mountains (Largeron et al., 2020). For example, the JRA-55 product assimilates both 

ground snow depth and satellite retrieved snow cover observations (Kobayashi et al., 2015), and its snow depth estimate is 

found to have good performance when evaluated over the Tibetan Plateau (Orsolini et al., 2019). The ERA5 dataset also 

employs in situ snow depth and satellite observed snow cover (limited to elevation below 1500 m) in its snow assimilation 75 

scheme. Xue et al. (2019) showed that assimilating SCA products can improve SWE estimates in the HMA region. Passive 

microwave retrieved SWE along with ground snow depth observations are also assimilated in the GlobSnow (Talaka et al., 

2011; Pulliainen et al., 2020) products to provide SWE and snow extent estimates, with mountain areas of high terrain 

complexity masked out. These are promising approaches to improve the accuracy in SWE estimates over HMA, yet 

currently there is still a need for large scale SWE datasets at higher resolutions, over longer periods and covering 80 

mountainous areas in this region. 

To better understand the spatiotemporal pattern and variability in seasonal snowpack over HMA, the so-called High-

Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) dataset, available for the joint Landsat-MODIS era between 

Water Years (WYs) 2000 to 2017 (which will be extended to present in later versions), was developed as part of the NASA 

High-Mountain Asia Team (HiMAT) activities. HiMAT is a multi-investigator effort in developing new datasets to 85 

understand cryosphere variability over HMA (Osmanoglu et al., 2017). The HMASR dataset provides daily estimates of 

SWE, fractional snow-covered area (fSCA) and other snow variables, at a 16 arc-second (~500 m) resolution. SWE 

estimates are derived by assimilating fSCA from Landsat and MODIS platforms using a previously developed snow 

reanalysis framework (Margulis et al., 2019), where the method has been shown in previous applications to provide realistic 

SWE estimates over mountainous domains in the Sierra Nevada (Margulis et al., 2016) and Andes (Cortés and Margulis, 90 

2017). The HMASR aims to fill the spatiotemporal gaps in existing SWE datasets and allow for better characterization of the 

distribution and changes in seasonal snow storage, and provide insights into the hydrologic cycle and water availability over 

HMA. Using this dataset, the spatial distribution of SWE climatology is examined at annual and seasonal scales over the 

HMA region, covering the highest mountain ranges and the Tibetan Plateau in Asia. Integrated SWE volumes over the full 

HMA domain and over the major river basins (e.g., Syr Darya, Amu Darya, Indus, Ganges-Brahmaputra, Yangtze, Yellow), 95 

and their variation with elevation, are also quantified in this work. The following scientific questions are addressed: 
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1) How much seasonal snow is stored across HMA? 

2) How is this snow storage distributed spatially across the major watersheds of HMA? 

3) What is the seasonal and interannual variability in amount of snow storage over HMA? 

4) How is the amount of snow distributed across elevation?  100 

2 Data and method 

This section describes the data and methods used in this study. Section 2.1 introduces the study domain, including the major 

river basins and mountain ranges in the region. Section 2.2 and 2.3 provide a brief description of the reanalysis method, input 

data and models used in the development of the HMASR. Finally, a non-seasonal snow and ice mask applied to mask out 

semi-permanent snow and ice for the assessment of seasonal snow is explained in Sect. 2.4. 105 

2.1 HMA domain 

The HMA domain used in this work is bounded from 27° N to 45° N, and from 60° E to 105° E (Fig. 1), covering the highest 

mountain ranges and plateaus (Tien Shan, Pamir, Hindu Kush, Karakoram, Himalayas, and Tibetan Plateau), as well as the 

headwaters of the main river basins (Syr Darya, Amu Darya, Indus, Ganges-Brahmaputra, Yangtze, and Yellow). Winter 

westerlies and the summer monsoon are the major moisture sources in this region, significantly influencing the 110 

spatiotemporal patterns in snowfall and glacier mass balance. More specifically, the northern and western HMA is 

dominated by westerlies and receives abundant winter snowfall, while the southern and eastern HMA is dominated by the 

Indian monsoon from June to September and receives a considerable amount of summer snowfall; the eastern edges of HMA 

are affected by the East Asia monsoon but with limited impact (Bookhagen and Burbank 2010; Yao et al., 2012; Bolch et al., 

2019). Note that in HMASR, outputs are provided for each regular 1° by 1° latitude-longitude tile (within which a regular 115 

computational grid of 16 arc-seconds is used), and only tiles likely to contain snow (with a tile-averaged elevation above 

1500 m) were selected and processed in the dataset (Fig. 1).  
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Figure 1: Map of HMA domain with HMASR tiles marked with black boxes. Major watersheds are delineated and colored on the 

map based on HydroSHEDS (Lehner et al., 2008). Major mountain ranges are labeled with reference to Bolch et al. (2019). A 120 
division of the HMA domain into Northwestern (NW), Northeastern (NE) and Southeastern (SE) sub-regions, which are used for 

descriptive purposes in this study, is shown in the inset.  

For convenience in presenting results herein, the HMA domain was divided into three large subregions, namely the 

Northwestern (NW), Southeastern (SE) and Northeastern (NE) subregions (Fig. 1). Major river basins are identified in each 

subregion, namely those located in NW (Syr Darya, Amu Darya and Indus), in SE (Ganges-Brahmaputra, Salween, Mekong 125 

and Yangtze), and in NE (Tarim, Inner Tibetan Plateau and Yellow). Similarly, the major mountain ranges are also identified 

in each subregion, namely those located in NW (e.g. Tien Shan, Pamir, Hindu Kush, Karakoram, western Himalayas), in SE 

(e.g. central and eastern Himalayas, Nyainqentanglha, Tanggula Shan and Hengduan Shan), and in NE (e.g. Kunlun Shan, 

Tibetan Interior, Eastern Tibetan and Qilian Shan), and are labelled in Fig. 1. 

2.2 Snow reanalysis scheme 130 

A previously developed snow reanalysis methodology (Margulis et al., 2019) is employed in deriving the HMASR. For 

brevity, only the key details are repeated here. Prior model and measurement estimates are obtained via the coupled 

Simplified Simple Biosphere model, version 3 snow model (SSiB3; Sun and Xue, 2001; Xue et al., 2003) and the Liston 

(2004) snow depletion curve (SDC). Specifically, an ensemble approach is used whereby the model generates prior estimates 

of snow states (i.e. SWE, snow depth, etc.) and predicted measurements (fSCA) and their uncertainties. Meteorological 135 
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forcing inputs are bias-corrected, downscaled to the modeling grid (16 arc-second) and perturbed with uncertainty in the 

ensemble approach, using the methods described in Durand et al. (2008) and Girotto et al. (2014).  

To constrain the prior snow estimates on the remotely sensed fSCA observations, a Bayesian update is performed using the 

Particle Batch Smoother (PBS; Margulis et al., 2015) approach, resulting in posterior snow estimates that are more consistent 

with the batch of observed fSCA in a given water year. More details on the method are described in Margulis et al. (2015) 140 

and Margulis et al. (2019). The lack of in situ SWE data over HMA prevents a thorough verification of the HMASR. 

However, previous applications of the snow reanalysis method in similarly complex terrain in the Sierra Nevada of the 

Western U.S. and the South American central Andes thoroughly compared reanalysis estimates vs. in situ and airborne-

derived SWE data. Performance in both domains were positive relative to in situ data with values of mean error, root-mean-

squared error and correlation coefficients of: ~ 3 cm, 13 cm and 0.95 for the Sierra Nevada (Margulis et al., 2016) and ~ 1 145 

cm, 29 cm and 0.73 for the Andes (Cortés and Margulis, 2017), respectively. In Margulis et al. (2019), comparison with the 

Airborne Snow Observatory (ASO) data yielded similar results (mean error, root-mean-squared error, and correlation 

coefficients of ~ 5 cm, 23 cm, and 0.84). 

2.3 Input data acquisition and processing 

2.3.1 Meteorological, topographic and land cover data 150 

In HMASR, prior surface meteorological inputs were obtained from MERRA-2 at its raw resolution (0.5° by 0.625° 

latitude–longitude), including precipitation, air temperature, solar radiation, specific humidity, surface pressure and wind 

speed. The uncertainty models and their parameters used to perform bias-correction and uncertainty perturbation are 

specified in Margulis et al. (2019) for the HMA region, except that prior ensemble precipitation is perturbed by a lognormal 

distribution with mean of 1.54 and coefficient of variation (CV) of 0.83 based on the results from Liu and Margulis (2019). 155 

Digital elevation model (DEM) data were obtained from the Shuttle Radar Topography Mission (SRTM, 

http://www2.jpl.nasa.gov/srtm/) 1 arc-second product, and aggregated to 16 arc-second (~500 m) resolution. Gaps in DEM 

data were filled by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 

Elevation Model (GDEM, version 2) 1 arc-second product (https://asterweb.jpl.nasa.gov/). Land cover data were obtained 

from the AVHRR global land cover classification dataset (Hansen et al., 2000). Forest cover information was obtained from 160 

the Tree Canopy Cover (TCC) product containing the Landsat Vegetation Continuous Fields 

(https://lcluc.umd.edu/metadata/global-30m-landsat-tree-canopy-version-4; Sexton et al., 2013).  

2.3.2 fSCA data 

The fSCA observations used to condition prior snow estimates were retrieved from Landsat and MODIS platforms, for their 

joint period of WYs 2000 to 2017 (e.g. where WY2000 corresponds to October 1, 1999 - September 30, 2000). The (nadir-165 

viewing) Landsat-based fSCA data were obtained from Landsat 5, 7 and 8 satellites, retrieved using a spectral unmixing 
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algorithm (Painter et al., 2003; Cortés et al., 2014), available at 30 m and every 16 days (excluding cloudy days). The (nadir- 

and off-nadir-viewing) MODIS-based fSCA data were obtained from the MODIS Snow Covered Area and Grain size 

(MODSCAG) product (Painter et al., 2009), available daily at 500 m, with a viewing angle between 0° and 55°. 

The HMASR dataset used fSCA from both satellites to increase the number of observations with good quality, because of 170 

the frequent cloud contamination in some areas of HMA (Margulis et al., 2019). Cloud screening was performed for both 

Landsat and MODIS images (as illustrated in Margulis et al., 2019), which were then aggregated to the modeling resolution 

(16 arc-second). For MODSCAG, erroneous fSCA observations are removed when the viewing angles are significantly off-

nadir, and a CDF-matching step is applied to reconcile the inconsistency with Landsat images. More details about the fSCA 

data used in HMASR are described in Margulis et al. (2019).  175 

It is worthwhile to note that the fSCA data availability is significantly affected by cloud contamination in some areas of 

HMA region, especially during the monsoon seasons (June-September) where fSCA measurements are limited over regions 

such as the Himalayas (Fig. 2). The lack of abundant fSCA data can be a potential limitation in assimilating fSCA 

observations for these monsoon-affected regions, and therefore leads to higher uncertainty and potential errors in posterior 

SWE estimates (i.e. where in the limit of no available observations, the posterior will, by construct, equal the prior estimate). 180 

 

Figure 2: Monthly total number of available (near-nadir) MODSCAG measurements averaged over 18 years, with cloud and 

viewing angle screening. Landsat measurements supplement these MODIS-derived measurements. 

2.4 Non-seasonal snow and ice mask 

A significant fraction of HMA is covered by glacier and semi-permanent snow owing to its extremely high elevation. Thus, 185 

it is important to distinguish seasonal vs. non-seasonal snow over land or glacier surfaces. In particular, the reanalysis 

method used in the development of the HMASR is best suited for seasonal snow characterization, because it relies on the 
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signal between fSCA depletion time series and SWE via the LSM-SDC model. Hence, those pixels where there is not a full 

melt-out of snow are expected to be potentially erroneous. So, while estimates are generated at all pixels in the domain, the 

aim to focus on seasonal snow requires masking out semi-permanent snow and ice. Glacier inventories from the Global Land 190 

Ice Measurements from Space (GLIMS; Raup et al., 2007) and the Randolph Glacier Inventory (RGI; Pfeffer et al., 2014; 

RGI Consortium, 2017) have been employed in previous studies to exclude glaciers from snow modeling domains (e.g. 

Wrzesien et al, 2019, Smith and Bookhagen et al., 2018). Other studies such as Mudryk et al. (2015) and Mortimer et al. 

(2020) excluded glaciers based on estimates from the MERRA land fraction mask. Armstrong et al. (2019) applied the 

MODIS Persistent Ice (MODICE; Painter et al., 2012) algorithm to derive a minimum snow and ice mask based on the 195 

MODSCAG product, and used it to distinguish seasonal snow from glaciers or persistent snow. 

Herein a combination method was used to exclude the non-seasonal snow and ice pixels in HMASR, based on: 1) a glacier 

mask derived from GLIMS to identify glacierized pixels and 2) a persistent snow mask derived from the HMASR dataset 

itself. To be more specific on the second mask, pixels with a significant amount of persistent snow were identified, by 

comparing the annual minimum SWE at a particular pixel to its annual maximum SWE in each year. If the minimum SWE 200 

exceeds 10% of the maximum SWE for more than once out of the 18 years, this pixel is considered to be a persistent snow 

pixel to be masked out in the computation of seasonal snow estimates. The derived glacier and persistent snow masks are 

combined into a non-seasonal snow and ice mask, which is applied when presenting the spatiotemporal patterns of seasonal 

SWE and SWE volumes in the following section.  

3 Results and discussion 205 

The HMASR dataset is designed to provide a reliable and consistent SWE product that can be used for assessing the 

spatiotemporal distribution of seasonal SWE over the recent remote sensing record. To present an overall assessment of 

seasonal snowpack variability in the HMA region using the HMASR dataset, the results are organized as follows: 1) the 

spatial distribution of seasonal snowpack climatology, at annual and seasonal scales; 2) the temporal distribution of seasonal 

snowpack volume at basin and domain-wide scales; 3) the elevational distribution of seasonal snowpack storage at the basin 210 

scale. 

3.1 Spatial distribution of peak seasonal SWE climatology 

The spatial distribution of SWE is valuable in assessing the regional water storage and how it varies in time. Given the 

strong seasonal signature of snowpack processes over much of the domain, the pixel-wise peak SWE is a useful metric to 

quantify the distribution of the maximum amount of snow water mass held in the seasonal snowpack in a given water year. 215 

The climatology (18-year average) of pixel-wise peak SWE over the HMA region is depicted in Fig. 3, where Fig. 3a 

presents only the results for seasonal snow pixels (where non-seasonal snow and ice pixels have been masked out), and Fig. 

3b presents the results for all pixels for illustration (where significantly higher amounts of SWE shows up in non-seasonal 
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snow and ice mask pixels, corresponding to glaciers or permanent snow). The non-seasonal SWE values (Fig. 3b) are 

expected to be unreliable because the initial conditions for SWE at those locations at the beginning of the dataset are 220 

unknown and the lack of full melt-out makes the relationship between fSCA depletion and peak SWE much less direct.  

 

Figure 3 (a): Map of pixel-wise peak seasonal SWE climatology, with non-seasonal snow and ice pixels masked out (grey). (b): Map 

of pixel-wise peak seasonal SWE climatology, without masking of non-seasonal snow and ice pixels for reference. 

In general, seasonal snow is most abundant in the NW region that is directly exposed to westerlies (Fig. 3a). Among the 225 

northwestern mountain ranges, the highest climatological peak SWE values are found in Pamir, Karakoram and the western 

Himalayas, with more than 1 m of peak SWE estimated. A significant amount of peak SWE is also estimated in Tien Shan 

and Hindu Kush, showing peak SWE values of 1 m or less in Tien Shan, and 0.5 m or less in Hindu Kush in general (Fig. 
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3a). The non-seasonal snow and ice is most notable in Karakoram but also evident in a few locations over the Pamir, Tien 

Shan and western Himalayas (Fig. 3b).   230 

In contrast, seasonal snowpack is less abundant in the SE HMA (Fig. 3a), in part because it only receives much of its 

precipitation in summer from the Indian and East-Asia monsoons, while the winter westerlies have minimum impact. 

Shallow snowpack exists over the Hengduan Shan and Tanggula Shan, with low values of SWE estimated (less than 0.2 m).  

For the Himalayas and Nyainqentanglha mountain ranges (Fig. 1), which exhibit extremely high elevation and receive 

significant summer precipitation from the monsoons, high values of SWE are estimated in some locations (Fig. 3b). 235 

However, those locations are masked out in the reanalysis through the non-seasonal snow and ice mask (Fig. 3a), because the 

fSCA observations are persistently high throughout the year (no observed melt-out), show irregular temporal patterns 

without a clear accumulation-depletion cycle (non-seasonal), or are obscured by clouds between June-Sept. (insufficient 

measurements), any of which can contribute to unreliable estimates of SWE.  

The least abundant seasonal snowpack is estimated in the NE (Fig. 3a), where SWE is only notable over a few mountain 240 

ranges such as the Qilian Shan, Kunlun Shan and Eastern Tibetan mountains. Despite their high elevations, most of the NE 

areas are snow-free or only have shallow and intermittent snow, as a result of being further away from the primary 

atmospheric moisture sources. 

Previous studies have also examined the spatiotemporal distribution in seasonal snowpack, regarding SCA (e.g. Pu et al., 

2007; Basang et al., 2017), snow depth and SWE (e.g. Terzago et al., 2014; Bian et al., 2019; Orsolini et al., 2019), and the 245 

overall finding is that most existing datasets present consistent spatial pattern at large scales (e.g. regional) but differ greatly 

in the magnitudes of SWE and snow depth, which implies large uncertainties in snow mass estimates over this data scarce 

region. Similarly, our dataset exhibits coherent spatial patterns compared to these previous efforts, yet the magnitudes of 

SWE still show significant uncertainty. A more comprehensive analysis of HMA SWE between multiple products will be 

addressed in an upcoming intercomparison paper using HMASR.  250 

3.2 Spatial distribution of peak SWE occurrence dates 

The timing of peak seasonal SWE occurrence is associated with climatological (e.g. precipitation) and topographic factors 

(e.g. elevation), and therefore shows significant heterogeneity over HMA. Figure 4 depicts the pixel-wise peak SWE day of 

water year (DOWY) climatology map. Highly intermittent snow pixels were excluded, as well as permanent snow and ice 

pixels via the non-seasonal snow and ice mask. Peak SWE generally occurs between DOWY 100 and DOWY 250 for 255 

seasonal snow. The median date of peak SWE is found on March 18th (DOWY 169), where the peak SWE occurs later than 

February 10th (DOWY 133) for over 90 percent of the domain, with peak SWE occurring later than May 5th (DOWY 217) 

for only 10 percent of the domain (Fig. 4). The peak SWE DOWY shows a bimodal distribution (Fig. 4, inset) with the 

earlier peak centered on DOWY 145 and the later peak centered on DOWY 192. 

For those mountain ranges in the NW, the northern and western mountain slopes of Tien Shan, the western foothills of 260 

Pamir, the entire Hindu Kush, as well as the foothills of the western Himalayas, all have relatively early peak SWE 
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occurrences between February 10th and March 18th (Fig. 4). In contrast, the southern mountain slopes of Tien Shan, the 

majority of the Pamir, Karakoram, and western Himalaya, show a relatively late peak SWE occurrence between March 18th 

and May 5th (Fig. 4). 

For those mountain ranges in the SE and NE, the peak SWE occurrence dates are more diverse (Fig. 4). In the SE, the central 265 

and eastern Himalayas, Nyainqentanglha, and Hengduan mountains generally have later peak SWE occurrences (between 

March 18th and May 5th), except in the southern foothills, where peak SWE tends to occur earlier (between February 10th 

and March 18th). In the NE, the Eastern Tibetan mountains show the earliest peak SWE occurrence dates (before February 

10th), while the Qilian Shan and Kunlun Shan show the latest peak SWE occurrences (after May 5th).  

 270 

Figure 4: Map of pixel-wise peak seasonal SWE DOWY climatology, with non-seasonal snow and ice pixels masked out (grey). The 

inset figure is the histogram of peak SWE DOWY. The three dates labeled in the colorbar (DOWY 133, DOWY 169 and DOWY 

217) correspond to the 10th, 50th and 90th percentile in the DOWY distribution, and are marked with vertical dashed lines in the 

inset histogram.  

3.3 Spatial distribution of seasonal SWE climatology 275 

The seasonal patterns of SWE, averaged over SON (September, October, November), DJF (December, January, February), 

MAM (March, April, May), JJA (June, July, August), are shown in Fig. 5. As expected, higher SWE amounts are generally 

found in winter (DJF) and spring (MAM), while lower SWE amounts are found in summer (JJA) and fall (SON). 

Throughout the year, mountains in NW hold the maximum amount of SWE compared to other regions. In SON, the entire 

HMA region exhibits minimal SWE magnitudes (0.1 m or below) and most regions are snow free (Fig. 5). During this 280 
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period, SWE starts accumulating in the Tien Shan, Pamir and western Himalayas that are directly facing the westerlies. SWE 

is also evident in Nyainqentanglha and Hengduan Shan that are associated with the summer monsoons. In DJF, both the 

overall magnitude and extent of SWE grow significantly, with mean SWE values up to 0.5 m found in Tien Shan, Pamir and 

western Himalayas (Fig. 5). The magnitude of SWE grows even larger in MAM, with up to 1 m SWE values estimated in the 

western HMA mountains, and up to 0.5 m SWE values estimated in Nyainqentanglha and the eastern Himalayas. 285 

Meanwhile, the extent of SWE shrinks significantly during MAM in the Hindu Kush and Tien Shan due to the weakened 

westerlies in spring. In JJA, both the magnitude and extent of SWE drop dramatically over most of the domain, with some 

exceptions of more persistent snowpack (with up to 0.3 m SWE) still evident in the Pamir, Karakoram and Nyainqentanglha, 

where snow melts out slower than the surrounding regions.  

 290 

Figure 5: Map of mean seasonal SWE climatology in SON (September, October, November), DJF (December, January, February), 

MAM (March, April, May) and JJA (June, July, August), with non-seasonal snow and ice pixels masked out (grey).   
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3.4 Temporal distribution of seasonal SWE volume 

The temporal variations in integrated seasonal SWE volume across the major river basins are quantified and examined from 295 

the 18-year average SWE seasonal cycle (i.e., daily time series shown in Fig. 6 and Fig. 7). Note again that the non-seasonal 

snow and ice mask has been applied when calculating the aggregated SWE volumes. The key statistics of annual peak SWE 

volumes are summarized for the entire HMA region and each basin in Table 1. Despite the significant literature on seasonal 

snowpack in this region, quantification of the regional scale SWE volume are more difficult to obtain, partly due to the large 

uncertainties in SWE estimation over this region.  300 

 

Figure 6: Daily time-series of seasonal SWE volume aggregated to (a) HMA-wide, (b) Northwestern (NW), (c) Southeastern (SE), 

and (d) Northeastern (NE) basin totals. 
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Figure 7: Climatological (18-year average) daily time series of seasonal SWE volumes, aggregated to a) HMA-wide, (b) 305 
Northwestern (NW), (c) Southeastern (SE), and (d) Northeastern (NE) basin totals.  

Over the record examined, the HMA-wide annual peak SWE volume (Fig. 6a and Fig. 7a) is found to be largest in WY2005 

with a value of 227.12 km3, smallest in WY2001 with a value of 114.10 km3, and an 18-year climatological mean value of 

162.58 km3. The climatological peak SWE volume was further assessed in each subregion, and compared against that over 

the entire HMA (Table 1; Fig. 7). The results show the highest peak SWE volume occurs in NW basins (107.42 km3, ~ 66% 310 

of domain-wide total), followed by SE basins (29.49 km3, ~18%), and NE basins (14.78 km3, ~ 9%), which is coherent with 

the spatial pattern shown in Fig. 3a. Note that around ~7% of HMA-wide SWE volume falls in the regions outside of the 

watersheds examined (mainly in the northmost regions shown in Fig. 1), which is why these basin-wide quantities do not 

sum up to 100% of the HMA-wide totals.  

For the NW basins, the maximum amount of SWE volume is found in the Indus basin, followed by Amu Darya and Syr 315 

Darya (Fig. 6b and Fig. 7b). Meanwhile, the peak SWE volume is found to occur earlier and disappear faster in the Syr 

Darya basin, followed by Amu Darya and Indus, with later melt-out corresponding to larger peak SWE volume magnitudes. 

When examining the peak SWE volumes in each basin (Fig. 6b and Fig. 7b), the Indus was found to have the highest value 

of 63.97 km3 in WY2009, and an average of 48.95 km3 across the 18 years; Amu Darya shows the highest peak SWE volume 

of 48.31 km3 in WY2017, and an average peak SWE volume of 37.31 km3 across all 18 years; Syr Darya shows a peak SWE 320 

volume of 21.16 km3 on average (Table 1).  

For the SE basins, higher SWE volumes are found in Ganges-Brahmaputra, followed by Yangtze, Salween and Mekong 

(Fig. 6c and Fig. 7c). As shown in Table 1, Ganges-Brahmaputra has an average peak SWE volume of 15.59 km3, with a 
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carry-over SWE volume of around 2 km3 at the end of the WY (Fig. 7c); the Yangtze basin has an average peak SWE 

volume of 8.02 km3, with a maximum of 14.79 km3 in WY2005; Salween and Mekong have much lower SWE volumes that 325 

are generally less than 5 km3, partly due to their small basin sizes (Fig. 1). 

For the NE basins over HMA, the overall magnitude of SWE volumes is smallest (Fig. 6d and Fig. 7d), with an average peak 

SWE volume of 8.78 km3 in Tarim, 3.65 km3 in Yellow, and 2.35 km3 in Inner Tibetan Plateau respectively (Table 1). These 

basins all have relatively large areas, but are mostly snow-free or covered by shallow snow as depicted in Fig. 3a.  

 330 

Table 1: Summary statistics for HMA-wide and basin-wide annual peak SWE volume assessed from the 18-year HMASR.  

Region Basin name 

Peak SWE volume 

Max 

(km3) 

Min 

(km3) 

Mean 

(km3) 

Standard 

deviation 

(km3) 

Max 

year 

Min 

year 

Total of 

subregional 

mean (km3) 

HMA-wide HMA-wide 227.12 114.10 162.57 26.53 2005 2001 
162.57 

(100%) 

Northwestern 

(NW) basins 

Syr Darya 29.88 13.61 21.16 5.19 2010 2000 
107.42 

(66%) 
Amu Darya 48.31 25.92 37.31 7.10 2017 2008 

Indus 63.97 23.71 48.95 10.27 2009 2001 

Southeastern 

(SE) basins 

Ganges-Brahmaputra 25.40 10.69 15.59 3.84 2005 2009 

29.49 

(18%) 

Salween 6.71 2.21 3.97 1.23 2005 2002 

Mekong 3.56 1.02 1.92 0.77 2000 2004 

Yangtze 14.79 3.32 8.02 2.97 2005 2015 

Northeastern 

(NE) basins 

Tarim 12.92 4.81 8.78 2.45 2017 2007 

14.78   

(9%) 
Inner Tibetan Plateau 4.98 0.57 2.35 0.99 2013 2004 

Yellow 6.10 1.76 3.65 1.25 2005 2004 

 

3.5 Elevational distribution of basin-wide peak SWE volume 

Finally, the domain-wide and basin-wide peak seasonal SWE and SWE volume climatology distribution vs. elevation was 

assessed (Fig. 8), obtained at the DOWYs when domain-wide or basin-wide SWE volumes reach their annual maximum 335 

(averaged over 18 years). The HMA-wide domain (Fig. 8a) and each basin (Fig. 8b, Fig. 8c and Fig. 8d) were divided into 5-

percentile elevation bins, so that the aggregated SWE volumes are calculated over comparable areas, following the method 
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in Smith and Bookhagen (2018). The non-seasonal snow and ice pixels were removed when calculating peak SWE volume, 

and its fractional areal coverage within a given elevation band, is computed to assess the relative elevational contributions to 

total seasonal SWE volume (Fig. 8). Similar work has been done in Smith and Bookhagen (2018) that assessed the SWE 340 

trends in different elevation bands over HMA-wide and basin-wide scales, while here we focus more on a quantitative 

assessment in the SWE volume distribution itself against elevation.  

 

Figure 8: (a) HMA-wide, (b) Northwestern (NW), (c) Southeastern (SE), (d) Northeastern (NE) basin-wide peak seasonal SWE 

climatology (first column), SWE volume climatology (second column), fractional areal coverage of non-seasonal snow and ice 345 
within each elevation band (third column), and cumulative fraction of SWE volume above the specified elevation (fourth column), 

where the elevation is discretized into 5% percentile bins.  

When examining the full HMA domain, the seasonal SWE volume was found to be most abundant at mid elevations (3000 - 

4000 m), with peak SWE values occurring at elevations around 3500 m (Fig. 8a). Meanwhile, the presence of non-seasonal 

snow and ice becomes evident at elevations above 3500 m, and it increases dramatically above 5000 m with a value up to 350 

35% (Fig. 8a). When assessing the cumulative fraction of SWE volume as a function of elevation, it was found that over 
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50% of seasonal SWE volume is stored at elevations above 3500 m, and less than 10% of seasonal SWE volume is stored at 

elevations below 2000 m (Fig. 8a). 

Within all NW basins (Syr Darya, Amu Darya and Indus; Fig. 8b) as well as Tarim in NE (Fig. 8d), and Ganges-

Brahmaputra and Yangtze in SE (Fig. 8c), both the SWE depth and SWE volumes increase with elevation (below ~4000 m) 355 

and then decline with elevation (above ~4000 m). This corresponds to an increase in non-seasonal snow and ice coverage (up 

to 60%) above 4000 m, which may be primarily responsible for the reduction in seasonal SWE volumes seen at high 

elevations. Other basins in SE (Salween, Mekong; Fig. 8c) and NE (Yellow, Inner Tibetan Plateau; Fig. 8d) generally show 

monotonically increasing SWE and SWE volumes against elevation. This is partly due to a much lower non-seasonal snow 

and ice coverage (mostly under 25%) at high elevations in those basins. For the cumulative fraction of SWE volumes above 360 

a specified elevation, the median values are found within 3000 to 4000 m in NW basins (Fig. 8b). Meanwhile, the median 

values are found at higher elevations for SE and NE (between 4000 - 5200 m) basins (Fig. 8c and Fig. 8d).   

4 Conclusions 

A first-order spatiotemporal analysis of seasonal SWE over the HMA region is presented in this paper, using a new 18-year 

snow reanalysis dataset (HMASR; Liu et al., 2021). This HMASR dataset is derived based on a previously developed snow 365 

reanalysis scheme (Margulis et al., 2019) that jointly assimilates fSCA observations from both Landsat and MODSCAG 

products, which has daily outputs of SWE and other snow variables, with a spatial resolution of 16 arc-second (~500 m), 

over the joint period of Landsat and MODIS from WYs 2000 to 2017.  

Several scientific questions were addressed in this work using the new HMASR dataset, such as how seasonal SWE and 

snow storage distribute with space, time and elevation. In terms of the spatial distribution, seasonal snow is most abundant in 370 

the NW, with over 1 m of peak SWE observed over the mountain ranges. Seasonal snow is also significant in the SE, where 

both relatively deep snowpacks (with peak SWE values up to 1 m or above) and shallow snowpacks (with peak SWE up to 

0.2 m) are found. Seasonal snow is less abundant in the NE where most areas are snow free, or only covered by shallow 

snowpacks (with peak SWE values below 0.2 m). The domain-wide median date of peak SWE is estimated to be March 18th 

with significant heterogeneity across this region, linked with climatological drivers and topography.  375 

When aggregating the total SWE volumes across the full HMA domain and its basins, the climatological peak seasonal SWE 

volume was found to be 163 km3, with NW basins accounting for around 66% of that volume, followed by SE (~18%) and 

NE (~9%) basins. This peak seasonal SWE volume showed a maximum value in WY2005 (227 km3) and a minimum value 

in WY2001 (114 km3) when assessed over the entire HMA region in the study period. The elevational distribution of 

seasonal peak SWE volume shows that SWE volume is most abundant at mid-elevations (3000 - 4000 m), with over 50% of 380 

the seasonal SWE volume stored at elevations above 3500 m, when assessed over the entire HMA region.  

This HMASR dataset is presented to augment the spatiotemporal gaps in previous SWE datasets and provide better 

characterization of spatiotemporal patterns in seasonal snowpack over the HMA region, especially over the mountainous 
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areas with complex terrain where existing products tend to underestimate SWE and present large uncertainties (Wrzesien et 

al., 2019; Kim et al., 2021). It should prove useful in providing more insight into the role of seasonal snowpack in the 385 

regional hydrological cycle, as a verification dataset for atmospheric and other models, and in other applications where a 

space-time continuous snow dataset constrained by remote sensing data is needed.   

A key limitation in the dataset is that, it is most effective in estimating seasonal snowpack, as the method requires a seasonal 

cycle of fSCA with a clear depletion signal. It is therefore not designed to provide estimates of SWE associated with glaciers 

or semi-permanent snow, and is generally expected to be less accurate in areas of intermittent and very shallow snowpack. In 390 

addition, limited fSCA observations due to cloud contamination during monsoon seasons may result in higher uncertainty in 

SWE estimation over affected sub-regions like the Himalayas. Other remote-sensing approaches (e.g., active microwave 

measurements) that could penetrate clouds may potentially aid in reducing the uncertainties for SWE estimation over those 

areas. More research can be done to address such issues and improve the accuracy of SWE estimates for those regions in the 

future.  395 

Data availability. The HMASR dataset used in this paper, is publicly available on National Snow and Ice Data Center 

(NSIDC) HiMAT data repository, entitled: ‘High-Mountain Asia UCLA Daily Snow Reanalysis, Version 1’. It can be 

accessed through https://nsidc.org/data/HMA_SR_D/ or https://doi.org/10.5067/HNAUGJQXSCVU (Liu et al., 2021). The 

dataset is provided as NetCDF files for each 1° x 1° tile shown in Fig. 1, available at 16 arc-second (~ 500 m) and daily 

resolution from WYs 2000 to 2017. Posterior estimates of other key snowpack properties (i.e. in addition to SWE) not 400 

focused on herein (e.g. snow depth, fSCA, snowmelt, sublimation, snow albedo, etc.) along with posterior forcing variables 

are included in this dataset. Data quality information, containing a classification mask and the non-seasonal snow/ice mask, 

can be found in the dataset as well. 
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