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Abstract. Icebergs account for half of all ice loss from Antarctica and, once released, present a hazard to maritime 

operations. Their melting leads to a redistribution of cold fresh water around the Southern Ocean which, in turn, influences 

water circulation, promotes sea ice formation, and fosters primary production. In this study, we combine CryoSat-2 satellite 

altimetry with MODIS and Sentinel-1 satellite imagery to track changes in the area, freeboard, thickness, and volume of 10 

the B30 tabular iceberg between 2012 and 2018. We track the iceberg elevation when it was attached to Thwaites Glacier 

and on a further 106 occasions after it calved using Level 1b CryoSat data, which ensures that measurements recorded in 

different modes and within different geographical zones are consistently processed. From these data, we mapped the 

icebergs freeboard and estimated its thickness taking snowfall and changes in snow and ice density into account. We 

compute changes in freeboard and thickness relative to the initial average for each overpass and compare this time series 15 

to precisely located tracks using the satellite imagery. This comparison shows that our time series of iceberg freeboard 

change is in good agreement with the geolocated overpasses (correlation coefficient 0.87), and suggests that geolocation 

reduces the uncertainty by 1.6 m. We also demonstrate that the snow layer has a significant impact on iceberg thickness 

change. Changes in the iceberg area are measured by tracing its perimeter and we show that alternative estimates based on 

arc lengths recorded in satellite altimetry profiles and on measurements of the semi-major and semi-minor axes also capture 20 

the trend, though with a 48 % overestimate and a 15 % underestimate, respectively. Since it calved, the area of B30 has 

decreased from 1500 +/- 60 to 426 +/- 27 km2, its mean freeboard has fallen from 49.0 +/- 4.6 to 38.8 +/- 2.2 m, and its 

mean thickness has reduced from 315 ± 36 to 198 ± 14 m. The combined loss amounts to an 80 +/- 16 % reduction in 

volume, two thirds (69 ± 14 %) of which is due to fragmentation and the remainder (31 ± 11 %) is due to basal melting. 
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1 Introduction 25 

Iceberg calving accounts for roughly half of all ice loss from Antarctica (Depoorter et al., 2013; Rignot et al., 2013). At 

any time about 50-90 large icebergs are tracked in the Southern Ocean containing 7 000 to 17 000 km3 of ice in total 

(Tournadre et al., 2015). For maritime operators it is essential to know the location of icebergs in order to reduce the risk 

of collision (Bigg et al., 2018; Eik and Gudmestad, 2010). The thickness of an iceberg determines if and where it will 

ground on the seabed, which has implications for maritime operations as well as for marine geophysics. Iceberg thickness 30 

also influences a wide range of physical and biological interactions with the Antarctic environment. Grounded icebergs 

can, for example, alter the local ocean circulation (Grosfeld et al., 2001; Robinson and Williams, 2012), melting of the 

adjacent ice shelves (Robinson and Williams, 2012), and prevent local sea ice from breaking up (Nøst and Østerhus, 2013; 

Remy et al., 2008). This, in turn, can impact the local primary production(Arrigo et al., 2002; Remy et al., 2008) and pose 

an obstacle to penguin colonies on their way to their feeding grounds (Kooyman et al., 2007). Temporarily grounded 35 

icebergs leave plough marks on the sea floor which can be an important geological record (Wise et al., 2017), but also 

impact on marine benthic communities (Barnes, 2017; Gutt, 2001). Therefore, iceberg thickness is an important parameter.  

Changes in iceberg thickness are also important, because they control the quantity of cold fresh water and terrigenous 

nutrients released into the ocean as icebergs melt (Gladstone et al., 2001; Silva et al., 2006). The release of relatively cold 

fresh water facilitates sea ice growth (Bintanja et al., 2015; Merino et al., 2016), immediately lowers the sea surface 40 

temperature (Merino et al., 2016), and has been found to even influence ocean water down to 1500 m depth (Helly et al., 

2011) as well as lead to upwelling of deep ocean properties (Jenkins, 1999). In terms of nutrients, icebergs have shown to 

be the main source of iron in the Southern Ocean (Laufkötter et al., 2018; Raiswell et al., 2016; Wu and Hou, 2017) and 

therefore foster primary production in the proximity of icebergs (Biddle et al., 2015; Duprat et al., 2016; Helly et al., 2011), 

which in turn increases the abundance of krill and seabirds (Joiris, 2018; Smith et al., 2007) around icebergs. Furthermore, 45 

a range of studies have demonstrated that including more realistic iceberg distributions, trajectories and volumes in climate 

models leads to a redistribution of fresh water and heat flux, which agrees better with observations than models that only 

include small icebergs or that treat iceberg discharge as coastal runoff (Jongma et al., 2009; Martin and Adcroft, 2010; 

Rackow et al., 2013; Schloesser et al., 2019). To investigate each of these processes and interrelations, knowledge of 

iceberg thickness and volume and their change over time is required (England et al., 2020; Merino et al., 2016). Moreover, 50 

monitoring iceberg melting also presents an opportunity to gain insights into the response of glacial ice to warmer 

environmental conditions, which may develop at ice shelf barriers in the future (Scambos et al., 2008; Shepherd et al., 

2019). 

The first detailed studies on iceberg melting were performed in the 1970’s and 1980’s, and were mainly based on laboratory 

experiments or ship-based observations (Hamley and Budd, 1986; Huppert and Josberger, 1980; Neshyba and Josberger, 55 
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1980; Russell-Head, 1980). These studies found that iceberg melting to first order is proportional to the water temperature 

and that breakage dominates over melting for large icebergs. More recently, for example Silva et al. (2006) and Jansen et 

al. (2007) modelled melting of giant icebergs and the associated fresh water fluxes. The latter found that melting does not 

only depend on ocean temperature, but also on iceberg drift speed and the surrounding ocean currents. Scambos et al. 

(2008) installed a range of measurement tools including a GPS receiver, a pre-marked accumulation mast and buried 60 

bamboo poles observed with a camera on a large Antarctic iceberg to monitor melting. They differentiate between three 

kinds of mass loss: rift calving, edge wasting and rapid disintegration. While rift calving can occur at any time within the 

iceberg life cycle along pre-existing fractures, edge wasting is only observed outside the sea ice edge. Rapid disintegration 

is caused by surface melting and the formation of surface lakes.  

The advent of satellite remote sensing greatly increased our capability to study icebergs. A wide range of studies have 65 

employed repeat satellite imagery to track changes in iceberg area (Bouhier et al., 2018; Budge and Long, 2018; Han et al., 

2019; Li et al., 2018; Mazur et al., 2019; Scambos et al., 2008). The most common approach to measure iceberg thickness 

is using satellite altimeter measurements of their freeboard, which began in the late 1980’s (McIntyre and Cudlip, 1987). 

Since then, a range of studies have employed laser and radar altimetry to study freeboard change: Jansen et al. (2007) 

studied the A-38B iceberg in the Weddell and Scotia Sea with a combination of laser and radar altimetry, and Scambos et 70 

al. (2008) also include three Ice, Cloud and land Elevation Satellite (ICESat) overpasses over the A22A iceberg to derive 

its thickness change. Both studies make use of satellite imagery to geolocate the altimetry tracks and to compare similar 

areas in terms of freeboard change. In contrast, Tournadre et al. (2015) employ altimetry measurements from Envisat, 

Jason1 and Jason2 to analyse freeboard change of the C19A iceberg without any geolocation. Bouhier et al. (2018) analyse 

thickness changes of the B17A and C19A icebergs in open water using altimetry data without geolocation, Li et al. (2018) 75 

calculate freeboard change of the C28A and C28B icebergs for two years at the intersections of CryoSat-2 overpasses, and 

Han et al. (2019) also used intersecting CryoSat-2 tracks to calculate freeboard change of the A68 iceberg in the Weddell 

Sea. When thickness and area changes are combined it is possible to detect changes in iceberg volume (Bouhier et al., 

2018; Han et al., 2019; Tournadre et al., 2015). However, studies to date have been limited to selected icebergs, have 

focussed on the Weddell Sea, and have employed a variety of approaches to account for the irregular sampling of altimetry 80 

tracks including manual geolocation of entire tracks relative to the initial surface (Jansen et al., 2007), geolocation of 

intersecting tracks (Han et al., 2019; Li et al., 2018), and with no geolocation at all (Bouhier et al., 2018; Tournadre et al., 

2015). More recently, satellite stereo photogrammetry (Enderlin and Hamilton, 2014; Sulak et al., 2017) and interferometry 

(Dammann et al., 2019) have been employed to measure iceberg thickness and volume as an alternative approach, though 

both methods are labour intensive. In this study, we quantify changes in the area, freeboard, thickness and volume of the 85 

B30 iceberg, which has been adrift in the Southern Ocean since it calved from the Thwaites Glacier 8.5 years ago (Budge 
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and Long, 2018; Fig. 1), and we also assess the agreement between estimates of freeboard change determined relative to 

the average initial surface and using precise geolocation with the aid of near-coincident satellite imagery. The next chapter 

introduces the remote sensing data used in this study and explains our methodology; the third chapter presents our results 

on iceberg area, freeboard, thickness and volume change in turn and discusses our findings. We close with conclusions and 90 

a brief outlook in chapter four. 

2 Data and Methods 

To chart the iceberg area change over time we delineate its extent in a sequence of Moderate Resolution Imaging 

Spectroradiometer (MODIS) optical satellite imagery and Sentinel 1 synthetic aperture radar (SAR) satellite imagery. We 

then use CryoSat-2 satellite radar altimetry to determine changes in the iceberg freeboard and thickness, assuming that it 95 

is floating in hydrostatic equilibrium, and making use of the iceberg orientation relative to its initial position using near-

coincident satellite imagery on some occasions. We account for snow accumulation and model variations in snow and ice 

density when converting iceberg freeboard to thickness. Finally, we combine both data sets to estimate the iceberg’s volume 

change over time.  

2.1 Iceberg location  100 

We use daily archived iceberg positions from the Antarctic Iceberg Tracking (AIT) database provided by the Brigham 

Young University (Budge and Long, 2018) as a baseline estimate of the B30 iceberg location since it calved in 2012 

(Fig. 1). The AIT database makes use of coarse-resolution passive microwave scatterometer imagery in which icebergs are 

manually detected and the central position is recorded daily. It includes icebergs longer than 6 km adrift in the Southern 

Ocean between 1987 and 2019, augmented with estimates of position and the semi minor and major axes lengths of icebergs 105 

longer than 18.5 km that are tracked operationally by the U.S. National Ice Center (NIC) using a combination of visible, 

infrared and SAR imagery. 
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Figure 1: Trajectory of the B30 iceberg as recorded by the Antarctic Iceberg Tracking Database (Budge and Long, 2018): After 110 
calving from the Thwaites ice shelf in 2012, it followed the coastal current westwards, started drifting north in 2017 and 

eventually disintegrated in 2019. Black dots mark the positions where CryoSat-2 overflights over the iceberg are available, circles 

depict the positions of the MODIS and Sentinel 1 images used in this study 

2.2 Initial iceberg shape, size and calving position 

To determine the initial shape, size and calving position of B30, we use MODIS images acquired before and after the 115 

calving event to identify which section of the Thwaites ice shelf calved to form the iceberg. MODIS is an instrument on 

the Terra and Aqua satellites by NASA launched on 18th December 1999 and 4th May 2002, respectively. The instrument 

measures radiance in the visible and infrared range with a spatial resolution of 250 m to 1 km and covers the entire Earth 

in 1-2 days, though cloud occlusions and the absence of daylight reduce data availability for many applications. For this 

study we use bands 1 (red), 4 (green) and 3 (blue) of the MODIS Level 1B calibrated radiances at 500 m resolution 120 

(MOD02HKM). As B30 broke off on 24 May 2012 (Budge and Long, 2018) in Antarctic winter, during darkness, the 
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closest useful MODIS imagery is from the preceding autumn and subsequent spring. We use several MODIS images 

acquired in the subsequent spring after calving to determine the initial shape, as it is difficult to unambiguously distinguish 

the berg from clouds and sea ice in a single image. The initial perimeter (Figure 2a, 3a) was then shifted and rotated to fit 

the situation before calving to identify the part of the Thwaites ice shelf that formed B30 (Fig. 4). The initial size of the 125 

iceberg is 1500 km2. 

2.3 Iceberg area 

We employ three approaches to estimate the iceberg area; (i) manual delineation in sequential satellite imagery scenes, (ii) 

using measurements of the semi-major and semi-minor axes provided by the NIC and (iii) using measurements of their arc 

lengths recorded in satellite altimetry. While manual delineation provides the most consistent and accurate area estimate, 130 

the axes and arc length approaches are much simpler to implement and can be fully automated. 

Our main approach to determine iceberg area is manual delineation using a sequence of 32 Sentinel-1 SAR and 8 MODIS 

optical imagery. Sentinel 1A and 1B are companion imaging radar satellites launched by the European Space Agency on 

3rd April 2014 and 25th April 2016, respectively. Together, they provide repeat sampling of the Earth’s surface every 6 

days. For this study, we use Level 1 Ground Range Detected (GRD) data. Depending on availability, both interferometric 135 

wide (IW) and extra wide (EW) swath mode are used, but over the open ocean only EW data are acquired. We employ the 

Sentinel Application Platform (SNAP) toolbox to apply the orbital and radiometric corrections. The SAR images were 

multi-looked with a factor of six to reduce speckle and computation time, leading to a spatial resolution of 240 m. Finally, 

a terrain correction was applied using the GETASSE30 (Global Earth Topography And Sea Surface Elevation at 30 arc 

second resolution) digital elevation model. The resulting backscatter values are scaled between their 5th and 95th percentiles 140 

and translated to a polar stereographic projection. The MODIS optical imagery were required prior to the launch of 

Sentinel-1A in 2014.  

To chart changes in the iceberg area over time, we delimit its outline as a polygon in each subsequent image (Fig. 2). When 

the iceberg is drifting in open water its outline can be detected automatically using boundary detection techniques. 

However, in the presence of sea ice the iceberg could not be separated using this approach, and so we instead delimit its 145 

outline manually on such occasions. To estimate the accuracy of our delineations we shrink and expand the polygons by 

one pixel (500 m for MODIS images and 240 m for multi-looked Sentinel 1 images) and calculate the resulting difference 

in area. This gives a mean relative difference of 3.6 %. 
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Figure 2: Outlines of the B30 iceberg derived from satellite imagery. a) Initial shape (red polygon) of the B30 iceberg determined 150 
from MODIS images after calving; the background is a MODIS image on 11 September 2012. b) Polygon outlines derived from 

further MODIS and Sentinel 1 imagery and used to calculate area change of the B30 iceberg.  

Our second method of estimating the iceberg area is based on 228 measurements of the semi-major and semi-minor axes 

lengths. Although iceberg area is most accurately calculated from delineation of their full perimeter in satellite images, the 

downside of this approach is that it requires a high degree of time-consuming manual interaction and clear imagery. This 155 

also makes it less reproducible and subject to individual judgement. We estimate the size of an ellipse calculated from the 

semi major and minor axis provided by the NIC and compare this with our imagery-based iceberg area calculations. The 

NIC operationally tracks icebergs longer than 18.5 km using a combination of visible, infrared and SAR imagery. 

Observations are made weekly but especially in the early days longer data gaps exist and not every estimate of semi axes 

length is based on a new manual observation, but some are just duplicated from the previous observation. Their estimates 160 

of semi axes lengths are also rounded to nautical miles (1.852 km), leading to a stepwise evolution of iceberg area with 

only 8 different estimates. We base our trend estimate and analysis solely on these 8 estimates, because we are confident 

that these are unique observations. The uncertainty of this approach is governed by the assumption of an elliptical iceberg 

shape and the irregular, rounded updates. 

Our third and final method of estimating the iceberg area is to make use of 106 CryoSat-2 satellite altimeter overpasses 165 

that record arc lengths of the iceberg and by assuming the iceberg has a circular shape. Depending on the position and 

relative orientation of the iceberg with respect to each overpass, CryoSat-2 will occasionally sample the long axis, but more 

often a shorter corner. This leads to significant variations in the area estimates, and in general an underestimation. We 
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employ a ten-point moving mean to reduce the variability. The principal uncertainty of this approach is because one-

dimensional arc lengths cannot reliably represent a two-dimensional area especially when the shape is evolving and if it is 170 

unknown which part of the shape was sampled. 

2.4 Iceberg orientation 

To track the iceberg shape and rotation in later images relative to its initial orientation, we record the iceberg’s orientation 

in all satellite images that are near-coincident in time with CryoSat-2 overflights and therefore used for geolocation. To 

orientate the iceberg, we manually click the coordinates of one corner of the initial iceberg polygon outline at the time of 175 

each new overpass and adjust the rotation angle to align all images to a common orientation (Fig. 3). This allows us to 

transform the iceberg coordinates at the time of each image acquisition relative to the equivalent position at the time just 

before it calved. 

        

 180 

Figure 3: Satellite imagery with near-coincident CryoSat-2 tracks of iceberg freeboard and the manually transformed initial 

polygon shape plotted on top. The initial polygons are used to determine the relative position of each new overpass. 

2.5 Initial iceberg freeboard  

We use CryoSat-2 satellite altimetry to determine freeboard and thickness of the B30 iceberg. CryoSat-2 is a satellite radar 

altimeter that employs SAR processing to achieve along track resolution of 250 m. It was launched by the European Space 185 
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Agency on 8 April 2010 in a 369-day repeat period with a 30-day sub cycle. We use Level 1B data from the CryoSat-2 

Science server and apply the Centre for Polar Observation and Modelling sea ice processing system (Tilling et al., 2018) 

to deduce surface height. For consistency, a common threshold retracker is applied to measurements acquired in both SAR 

and SAR interferometric mode and over all surface types. Using Level 1B data is important, because the Level 2 products 

are generated using different retrackers and using different biases for different modes and surface types, and so the signals 190 

acquired during different parts of the iceberg trajectory are not comparable. Iceberg freeboard is calculated by subtracting 

the adjacent mean sea surface height from the iceberg surface height.  

Although satellite altimeters only sample icebergs along 1-dimensional profiles beneath their ground track while they are 

drifting, it is possible to build up a detailed 2-dimensional picture of their surface over time prior to calving while their 

movement is relatively modest. To map the initial freeboard height of B30, we combine all CryoSat-2 tracks recorded 195 

within almost 5 months (1 January 2012 to 24 May 2012) before it calved (Fig. 4a). The Thwaites Glacier ice shelf flows 

at 3.9 km per year on average (Mouginot et al., 2019), and so we adjust earlier tracks to account for this movement. Because 

the ice shelf has rugged surface topography, the point-of-closest-approach (POCA) varies. To make different overpasses 

more comparable, we remove outliers by deleting freeboard heights greater than 60 m or below 20 m freeboard, and by 

deleting freeboard heights falling either below the median minus one standard deviation or below the 5-point moving mean 200 

minus the 5-point moving standard deviation. The mean initial unfiltered iceberg freeboard is 45.5 m above the adjacent 

sea level with a wide spread of 8.1 m standard deviation. When crevasses are excluded, the mean freeboard is 49.0 m with 

a much lower standard deviation of 4.6 m. Because the resulting freeboard measurements are still quite sparse, we average 

them within 5 km grid cells to obtain a continuous reference surface (Fig. 4). The number and standard deviation of the 

gridded freeboards give an indication of the variance within each grid cell. The mean standard deviation within each grid 205 

cell is 3.3 m, the standard deviation across different grid cells is 3.1 m and the overall standard deviation of all heights 

within the polygon is 4.6 m. We compare the gridded initial freeboard to measurements from the first CryoSat overpass 

when the iceberg is adrift, acquired shortly after calving, to check they are consistent, and find a mean difference of -0.4 m. 

As this value is significantly lower than the iceberg freeboard variability, we conclude that the ice shelf was floating freely 

prior to calving also, and that the gridded heights are representative of the initial freeboard. 210 
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Figure 4: Initial freeboard heights of the B30 iceberg overlain on a MODIS image on 19 March 2012 (before calving). a) Filtered 

CryoSat-2 measurements of 145 days before calving, b) Gridded CryoSat-2 data, c) Standard deviation of the gridding, d) 

Number of measurements per grid cell 

2.6 Iceberg freeboard change 215 

When icebergs are adrift, their motion is sufficiently large to mean that they are only sampled in 1-dimensional profiles 

along satellite altimeter ground tracks (Fig. 3). We extract surface heights over the B30 iceberg when it is adrift (e.g. Fig. 5) 

using the position from the AIT database as an initial estimate of its location. However, because the AIT positions and 

timings are approximate and the iceberg has a significant extent, we investigate all CryoSat-2 ground tracks that pass within 

1-degree latitude and 2-degrees longitude of the database position. Track segments are truncated to exclude altimeter echoes 220 

from targets where the first or last freeboard height is more than 3 m, to exclude measurements from the nearby continent, 

and we also exclude tracks that do not contain freeboard measurement between 20 and 60 m, to ensure that they sample 

the iceberg. We consider all freeboard heights between the first and last echo falling in the range 20 to 60 m as potential 

iceberg measurements (Tournadre et al., 2015). To avoid including adjacent icebergs or berg fragments, we exclude 

segments with more than 10 measurements of ocean or sea ice, identified as surface heights in the range -3 to +3 m, between 225 

potential iceberg measurements.  We also remove crevasses and other rugged features using the same editing steps applied 

to determine the surface height prior to calving.  As a final check, we calculate the distance of these remaining heights to 

the AIT database location, and discard measurements that are further away than half the iceberg length (28 km) to ensure 

we are tracking B30. 
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We apply two different techniques to calculate changes in the iceberg freeboard. For 12 tracks we are able to calculate 230 

precise changes in freeboard with spatial definition by making use of near-coincident satellite imagery to account for the 

rotation and translation of the iceberg relative to its initial position prior to calving and consider the estimated movement 

between the time of the nearest satellite image and altimeter acquisitions. At 94 other times, we compute the freeboard 

height change as the difference of mean freeboard from each new overpass relative to the initial mean surface height. While 

these observations are of poorer certainty, they provide denser temporal sampling and fill gaps between the geolocated 235 

measurements. The first “co-location” method assigns both the initial heights and the new measurements to their closest 

5 km grid cell and averages them to ensure that the same locations are compared. We account for the iceberg drift between 

the times of the satellite acquisitions, allowing a maximum separation of 72 hours (though most overpasses are separated 

by less than 24 hours). We assume a translational uncertainty of 3 km per day (Scambos et al., 2008) and a rotational 

uncertainty of 15° per day. Both are scaled by the time difference between the image and the CryoSat overpass. We then 240 

perform a Monte Carlo simulation to assess how these positional uncertainties translate to uncertainty in freeboard change. 

This is combined with the standard deviation of the gridded CryoSat-2 freeboard data to yield an uncertainty estimate for 

the geolocated tracks. The second method ignores the relative position and orientation of the iceberg at the time of the 

altimeter overpasses, and simply compares the mean freeboard along each new track to the mean surface height before 

calving. Although this method is easiest, since it does not rely on additional image data to locate the track, it cannot account 245 

for potential spatial variations in the iceberg freeboard. Because of this, we restrict the new overpasses to those including 

at least 20 measurements, as tracks sampling only the edges of an iceberg tend to be inaccurate. As uncertainty estimate 

we combine the standard deviation of each new overpass with the standard deviation of the initial height. 
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Figure 5: Example of CryoSat-2 freeboard measurements along one track. The blue line shows which heights were identified as 250 
iceberg and the red line shows the remaining heights after filtering out crevasses. 

2.7 Iceberg thickness 

We compute iceberg thickness 𝐻 from our estimates of iceberg freeboard heights ℎfb assuming hydrostatic equilibrium 

and that CryoSat-2 does not penetrate through the snow layer (Eq. 1; Moon et al., 2018). Besides these freeboard heights, 

iceberg thickness also depends on column-average densities of sea-water  𝜌𝑤 , ice 𝜌𝑖 and snow 𝜌𝑠 as well as snow depth 255 

ℎ𝑠. Including a snow layer in this equation is important, because the snow layer adds to the observed freeboard and disguises 

a part of the ice freeboard change. On the other hand the additional load of the snow layer pushes the iceberg downwards. 

Both effects are taken into consideration. We assume sea-water density to be 1024 kg m-3 (Fichefet and Morales Maqueda, 

1999) and set its uncertainty to 2 kg m-3. Due to the long life cycle of the B30 iceberg of 6.5 years and the changing 

environmental conditions it experiences during this time, we allow the ice and snow densities to evolve with time. Snow 260 

depth is also time-varying, and estimates of this and of snow and ice density are introduced successively. 

𝐻 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
ℎfb − 

(𝜌𝑤−𝜌𝑠)

𝜌𝑤−𝜌𝑖
ℎ𝑠             (1) 

To estimate the thickness of the snow layer, we download hourly ERA5 Reanalysis snowfall, snowmelt and snow 

evaporation data (Copernicus Climate Change Service, 2018), accumulate it daily and interpolate it in space and time to 

the iceberg’s trajectory. Snowmelt and snow evaporation are subtracted from the snowfall to retrieve the additional snow 265 
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accumulation since calving. However, this snow estimate does not account for snow being blown off the iceberg or onto 

the iceberg from the continent. To convert SWE to snow depth, we need to know snow density. 

Snow density is time variable because snow compacts gradually during the iceberg’s life time of several years as a function 

of snow depth ℎ𝑠 [m] , the mean air temperature 𝑇 [°C] and the mean wind speed 𝑣 [m · s−1]  (Eq. 2; International 

Organization for Standardization, 1998). We use hourly ERA5 Reanalysis 2 m air temperature data and calculate wind 270 

speed from the ERA5 Reanalysis 10 m eastwards and northwards wind components (Copernicus Climate Change Service, 

2018). Both are interpolated to the iceberg’s trajectory and averaged since the day of calving. Because snow density 

depends on snow depth and snow depth depends on snow density, we calculate both iteratively starting with a snow density 

of 300 kg m-3. We set the uncertainty in snow density to 50 kg m-3 (Kurtz and Markus, 2012) and the uncertainty in snow 

depth to 20%. 275 

𝜌𝑠 = (90 + 130 · √ℎ𝑠) ∙ (1.5 + 0.17 · √𝑇
3

) ∙ (1 + 0.1 · √𝑣)          (2) 

To calculate the iceberg’s ice density profile we follow the approach by Tournadre et al. (2015), and determine two 

parameters V and R to fit the surface density and the depths of the critical density levels (550 kg m-3 and 830 kg m-3) of 

the Thwaites Ice Shelf, from which it calved, as given in Ligtenberg et al. (2011; Eq. 3). 𝜌𝑔 is the density of pure glacial 

ice (915 kg m-3). Since the mean ice density depends on ice thickness and ice thickness depends on the mean ice density, 280 

we iterate over both equations. We also account for ice density changes over the iceberg’s life cycle by calculating new 

mean densities as the iceberg thins. This incrementally reduces the average ice density as the densest ice is melted at the 

bottom. As ice density uncertainty we take 10 kg m-3. 

𝜌𝑖 =
1

𝐻
 ∫ (𝜌𝑔 − 𝑉 ∙ 𝑒𝑅∙𝑧𝐻

0
) 𝑑𝑧             (3) 

3 Results and Discussion 285 

We first assess changes in the B30 iceberg area using boundaries mapped from satellite imagery, and we compare the 

observed trend to more approximate estimates derived from arc-lengths and semi-major axes. Next, we determine the 

change in iceberg freeboard and we assess the impact of employing precise geolocation using near-coincident satellite 

imagery. Iceberg thickness changes are then computed from freeboard changes using time-varying estimates of snow 

accumulation and snow and ice densities derived from atmospheric reanalyses. Finally, iceberg area and thickness changes 290 

are combined to derive the change in volume and mass. 
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3.1 Iceberg Area Change 

When the B30 iceberg first calved in May 2012, it was 1500 ± 60 km2 large. Over the following 6.5 years it lost 1075 ± 66 

km2 of its extent, which corresponds to a 72 ± 11 % reduction at an average rate of 149 ± 5 km2 per year (Fig. 6). However, 

because delineating iceberg outlines requires a high degree of time-consuming manual interaction, we also evaluate the 295 

efficacy of two alternative methods based on measurements of their orthogonal (semi-major and semi-minor) axes by the 

NIC and on arc lengths recorded in satellite altimetry which are considerably less laborious. Although these approaches 

also yield progressive reductions in area (Fig. 6), they exhibit significant positive (138 km2, 14%) and negative (-426 km2, 

45%) biases, respectively, due to under-sampling of the iceberg geometry and the necessary approximation of a regular 

shape (ellipses and circles, respectively). While an ellipse overestimates the area compared to most shapes with the same 300 

axes, arc lengths yield an underestimate because corners are sampled more often than the major axis. One idea for 

improvement would be to use the maximum or to filter out tracks that only sample one corner, but the main problem 

remains that a one-dimensional length measurement cannot be translated into a reasonable area estimate without knowing 

the iceberg shape, which changes over time. Nevertheless, both the orthogonal axes and arc-length approaches yield area 

estimates that are reasonably well correlated (r>0.90) with those determined from our manual delineation. Area trends are 305 

overestimated by 16% and underestimated by 48%, respectively. While manual delineation provides the most consistent 

and most accurate area estimate, tracking iceberg axes or arc lengths yields area and area change estimates that are within 

48% and is considerably less time consuming.  
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Figure 6: Area change of the B30 iceberg from polygons delineated in satellite imagery (red) and approximations using 310 
orthogonal axes provided by the National Ice Center (NIC) assuming an elliptical shape (blue) or using the arc lengths of 

CryoSat-2 overflights assuming a circular shape (black) over time (a) and as scatter plot. To fit the NIC trend line in (a) we only 

use unique values of orthogonal axes length (thick blue dots). These also define the dates of comparison in (b).  

The rate of iceberg area loss from B30 was approximately constant until 2018, after which time it started to lose larger 

sections and more rapidly. Although its area has reduced steadily over time, it is less obvious which sections have been 315 

lost during individual calving events. However, by aligning the initial polygon to each subsequent image (Fig. 3) it is 

possible to identify when and where changes occur. The iceberg shape already appears altered on 30 th November 2014, 

after bumping into the adjacent ice shelf which likely caused the first chunks to break off. B30 continued to lose smaller 
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sections along its edges over the next year – either through melting at the sides or smaller wastings – when it was drifting 

along the coastal current. In 2018 bigger sections are lost more rapidly, as the iceberg is drifting northwards in open water. 320 

Rift calving can occur at any time within an iceberg life cycle along pre-existing fractures (Scambos et al., 2008), while 

edge wasting is typically only observed when icebergs are travelling outside the sea ice pack. B30 was heavily crevassed 

prior to calving (e.g. visible in Fig. 3g and i), and so even the smaller wastings along its edges could reflect rift calving 

events rather than edge wastings. Another possibility is the ‘footloose mechanism’ (Wagner et al., 2014), which can become 

a main driver of iceberg decay in warm waters when wave erosion at the waterline forms a sub-surface foot, creating a 325 

buoyancy stress that can lead to calving. Although it is not possible to investigate the effects of wave erosion using satellite 

data, the effect could in principle have caused the larger break-ups that occurred in 2018. 

3.2 Iceberg Freeboard Change 

To assess the change in freeboard over the survey period, we compare differences between the new overpasses and the 

initial heights in space and time (Fig. 7). For the spatial analysis we chart the freeboard difference between each new 330 

geolocated overpass (Fig. 3) and the gridded initial height (Fig. 4b) at the same relative iceberg position. This comparison 

shows that the change in freeboard height across the iceberg is relatively homogenous at each epoch (Fig. 7a-l). We then 

average these differences per CryoSat-2 track and chart the variation over time alongside the less accurate (but more 

abundant) estimates determined without geolocation (Fig. 7m). Because the observations without geolocation are relatively 

imprecise, we apply a 10-point moving mean to the data and we also fit a polynomial of 3rd order (and starting at zero) to 335 

model the trend. Overall, the B30 iceberg freeboard has reduced by 9.2 ± 2.2 m during the 6.5 years since it calved.  

To assess the importance of geolocation, we compare freeboard changes calculated with and without this step (Fig. 7n). 

The estimates are well correlated (r=0.87) and the root mean square difference is 1.6 m, which is a measure of the 

improvement in certainty associated with geolocation and equal to the difference in mean uncertainty of geolocated tracks 

(4.7 m) versus tracks without geolocation (6.3 m). Also, the temporal variation of freeboard changes computed from 340 

observations with and without geolocation are in good overall agreement (Figure 5a), and we conclude that for this iceberg 

we can combine the two and make use of the entire set of CryoSat-2 measurements. This finding should hold for other 

tabular icebergs where the topographic variability is smaller than the observed thinning. The variability of freeboards 

computed within each 5 km grid cell and across different grid cells are also of the same order – 3.3 m and 3.1 m, respectively 

– and this is likely to have reduced the impact of geolocation uncertainties. 345 
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Figure 7: Freeboard change of the B30 iceberg. a) mean difference of each new overpass along time. CryoSat-2 tracks that have 

been geolocated are marked with a diamond, but all available CryoSat-2 overpasses have been used to calculate a moving mean 

and fit a polynomial; b-m) freeboard difference in each grid cell sampled by geolocated CryoSat-2 overpasses; the Δt values give 

the time difference between the CryoSat-2 overpass and the corresponding satellite image as an indication of the geolocation 350 
uncertainty due to iceberg drift; n) scatter plot of freeboard change from geolocated CryoSat-2 tracks versus the same tracks 

used without geolocation  

3.3 Iceberg Thickness Change 

We compute the iceberg thickness from our measurements of its freeboard (using the moving mean, red line in Fig. 7m) 

and by assuming that it is floating in hydrostatic equilibrium within the surrounding ocean with a surface snow layer. 355 

Accounting for the snow layer is important because it affects the ice freeboard and the iceberg buoyancy, and we take both 

effects into consideration. Based on hourly snowfall, evaporation and snowmelt derived from ERA5 reanalyses 
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(Copernicus Climate Change Service, 2018), we estimate that the iceberg accumulates 4.6 m of snow water equivalent 

during the 6.5 year survey period (Fig. 8). The rate of accumulation is quite linear. The iceberg thickness also depends on 

densities of the snow layer, the iceberg, and the sea-water and we allow the snow layer and iceberg densities to evolve over 360 

time due to the changing environmental conditions it experiences during its long lifecycle. The mean iceberg density 

reduces from an initial estimate of 864 kg m-3 to a final value of 835 kg m-3 as a consequence of basal ice melting (Fig. 8a). 

The mean firn densification in West Antarctica has been estimated to be 2.78 cm per year on floating ice (Zwally et al., 

2005); applying this rate gives a total of 18 cm after 6.5 years, which is significantly smaller than the observed freeboard 

loss of 9.2 m, so we don’t apply it. The snow layer compacts over time due to its accumulation and warming, and we 365 

estimate that its average density rises from 252 to 616 kg m-3 which yields a 7.2 m thick layer after 6.5 years (Fig. 8b). We 

also investigate the impact of surface thawing; although the iceberg surface does experience temperatures above freezing 

every summer and for a total of 218 degree hours (number of hours above zero degrees Celsius times the temperature above 

zero degrees Celsius) since calving (Fig. 8c), in situ observations (Scambos et al., 2008) suggest that this translates into 

only 8 to 16 cm of snow melting and this has negligible impact on the iceberg freeboard.  370 
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Figure 8: Evolution of the B30 iceberg properties: a) Ice density and snow density, b) Snow water equivalent (SWE) and snow 

depth accumulation on the B30 iceberg, c) Degree hours that the B30 iceberg experienced and d) Thickness change of the B30 

iceberg with snow accumulation taken into consideration or without. Uncertainties are plotted as shaded areas. 375 

We estimate the initial iceberg thickness to be 315 ± 36 m, on average, reducing to 198 ± 14 m after 6.5 years (Fig. 8d). 

This amounts to 117 ± 38 m of thinning at an average rate of 17.3 ± 1.8 m per year. Previous studies have recorded iceberg 

thinning rates of up to 10 m per year when drifting within the sea ice extent close to the coast (Han et al., 2019; Jansen et 

al., 2007; Li et al., 2018; Scambos et al., 2008) and much higher rates in excess of 20 m per year when in warmer open 

water (Hamley and Budd, 1986; Jansen et al., 2007; Li et al., 2018; Scambos et al., 2008; Tournadre et al., 2015). The B30 380 

iceberg has spent most of its lifetime close to the coast (Fig. 1), and so our estimated average thinning rate is in line with 

the results from other studies. To assess the impact of including a snow layer in the thickness calculation, we also compute 

https://doi.org/10.5194/tc-2021-13
Preprint. Discussion started: 5 March 2021
c© Author(s) 2021. CC BY 4.0 License.



20 

 

thickness change assuming no snow has accumulated since calving (Fig. 8d); this scenario leads to an estimated 90 ± 39 m 

reduction in iceberg thickness, 23 % lower than the rate determined when the snow layer is included, which illustrates its 

importance. Apart from the snow layer, the iceberg density is also a significant factor in our thickness change calculation, 385 

and while we have attempted to model the evolutions of ice density, snow density, snow accumulation and surface thawing, 

their uncertainties are difficult to quantify. 

3.4 Iceberg Volume and Mass Change 

Having calculated changes in the B30 iceberg thickness associated with snowfall and basal melting and changes in area 

due to fragmentation, we combine both to determine the overall change in volume (Fig. 9). To do this, we multiply each 390 

thickness estimate (Fig. 8d) with the imagery-based area estimates (Fig. 6) interpolated to the times of the CryoSat-2 

overpasses. The proportion of the total volume changes associated with melting and fragmentation are calculated by 

keeping area and thickness constant (and equal to their average), respectively. To compute changes in mass we multiply 

the volume change due to fragmentation by the column-average iceberg density at each point in time, because this ice is 

lost at the sides. In contrast, we multiply the volume change due to basal melting by the density of pure ice (915 kg m-3), 395 

since this ice is lost at the bottom where ice density is highest. The total mass change is the sum of both components. 

Uncertainties are calculated by propagating the uncertainties of thickness change, area change and ice density.  

The initial volume of B30 at the time of its calving was 472 ± 57 km3 and after 6.5 years it has lost 378 ± 57 km3 of ice, 

corresponding to a 80 ± 16 % reduction. Fragmentation accounts for two thirds (69 ± 14 %) of the total volume loss and 

basal melting is responsible for the remainder (31 ± 11 %). However, volume changes due to fragmentation become the 400 

dominant source of ice loss towards the end of our survey, consistent with previous findings (Bouhier et al., 2018). The 

two icebergs studied by Bouhier et al., (2018) also show similar fractions of ice loss due to fragmentation (60% for the 

B17a iceberg and 75% for the C19a iceberg). In terms of mass, the iceberg has lost 325 ± 44 Gt of ice in total at an average 

rate of 46 ± 4 Gt per year. The loss due to basal melting (106 ± 35 Gt) can be used as a lower estimate of the freshwater 

flux from B30. Some of the mass lost due to changes in area - in particular melting at the sides and smaller edge wastings 405 

- will probably melt locally and add to the freshwater flux, but bigger calving events create smaller icebergs which can 

survive and travel on their own. To calculate the total freshwater flux, the melting of all fragments has to be considered.  
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Figure 9: Volume change of the B30 iceberg divided into loss due to basal melting (thickness change, blue) and due to 

fragmentation (area change, red), as well as total volume loss (black).  410 

4 Conclusions 

In this study we have derived changes in the area, freeboard, thickness and volume of the B30 iceberg using a combination 

of satellite altimetry and satellite imagery. During the 6.5 years after the iceberg calved in May 2012, its area reduced from 

1500 ± 60 km2 to 426 ± 27 km2 at an average rate of 149 ± 5 km2 per year. The iceberg freeboard lowered by 9.2 ± 2.2 m 

over the same period. Using estimates of the snow accumulation and changes in snow and ice density, we estimate that the 415 
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iceberg thinned by 117 ± 38 m at a mean rate of 17.3 ± 1.8 m per year. Altogether, the iceberg lost 378 ± 57 km3 of ice, 

and this equates to an estimated 325 ± 44 Gt reduction in mass.  

We investigated the capability of automated approaches to approximate iceberg area and area change by comparing them 

to manually-derived estimates. Although the most reliable method of charting iceberg area change is through manual 

delineation in satellite imagery, we show that less time-consuming estimates derived from measurements of the icebergs 420 

orthogonal axes or arc-lengths are also able to capture the area and area change over time, albeit with poorer certainty. 

Orthogonal axes lead to estimates of area and area trends that are 14 % and 16 % higher, respectively, and arc-lengths lead 

to estimates of area and area trends that are 45% and 48% lower, due to the necessary approximate of the iceberg shape.  

We also presented a new thorough methodology to investigate iceberg freeboard and thickness change, using a densely 

sampled time series of consistently processed Level 1 CryoSat data and assessed the importance of geolocation. Using a 425 

subset of 12 instances with geolocation, we find that omitting this step leads to a small deterioration in the certainty of 

detected freeboard change for the B30 iceberg, but the densely sampled time series is in good agreement with the geolocated 

tracks. We expect this finding also holds for other large tabular Antarctic icebergs with uniform topography, when the 

observed freeboard change exceeds the topography and when enough tracks are averaged. In this case, it suggests that the 

procedure for tracking changes in iceberg thickness could be automated, given reliable estimates of their position (Budge 430 

and Long, 2018).  

Finally, we developed a methodology to account for snowfall and variations in snow and ice density due to changing 

environmental conditions that large icebergs experience during their multi-annual drift. We found that the impact of 

snowfall on the retrieval of iceberg thickness increases over time, and after 6.5 years we estimate that 7.2 metres of snow 

have accumulated which leads to a 27 m adjustment to the iceberg thickness change. Iceberg thickness change is also 435 

strongly dependent on the density profile which we derive from the depths of critical density levels (Ligtenberg et al., 

2011), and so in situ observations would help to assess the reliability of this relationship. Likewise, direct measurements 

of the near-surface firn will help to assess the reliability of our reanalyses-based estimate of snow loading.  

More icebergs - including the fragments lost from B30 - need to be studied to generalise the results we have and to constrain 

both the fresh water flux, which influences water circulation (Grosfeld et al., 2001; Jenkins, 1999) and promotes sea ice 440 

formation (Bintanja et al., 2015; Merino et al., 2016), and input of terrigenous nutrients such as glacial iron into the 

Southern Ocean, which fosters primary production (Biddle et al., 2015; Duprat et al., 2016; Helly et al., 2011). Finally, 

studying icebergs as they drift through warmer water may give unique insights into the response of glacial ice to 

environmental conditions which may become commonplace at the ice shelf front in the future (Scambos et al., 2008; 

Shepherd et al., 2019).  445 
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