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Abstract. The surface mass balance (SMB) of the Greenland Ice Sheet is subject to considerable uncertainties which compli-

cate predictions of sea level rise caused by climate change. We examine the SMB of the Greenland Ice Sheet in the 21st century

with the surface energy and mass balance model BESSI. To estimate the uncertainty of the SMB, we conduct simulations for

four greenhouse gas emission scenarios using the output of a wide range of earth system models (ESMs) from the sixth phase

of the Coupled Model Intercomparison Project (CMIP6) to force BESSI. In addition, the uncertainty of the SMB simulation5

is estimated by using 16 different parameter sets in our SMB model. The median SMB across ESMs and parameter sets, in-

tegrated over the ice sheet, decreases over time for every emission scenario. As expected, the decrease in SMB is stronger for

higher greenhouse gas emissions. The regional distribution of the resulting SMB shows the most substantial SMB decrease in

western Greenland for all ESMs, whereas the differences between the ESMs are most pronounced in the north and around the

equilibrium line. Temperature and precipitation are the input variables of the snow model that have the largest influence on10

the SMB and the largest differences between ESMs. In our ensemble, the range of uncertainty in the SMB is greater than in

previous studies that used fewer ESMs as forcing. An analysis of the different sources of uncertainty shows that the uncertainty

caused by the different ESMs for a given scenario is larger than the uncertainty caused by the climate scenarios. In comparison,

the uncertainty caused by the snow model parameters is negligible, leaving the uncertainty of the ESMs as the main reason for

SMB uncertainty.15

1 Introduction

The Greenland ice sheet (GrIS) currently experiences a net mass loss through changes in surface mass balance (SMB) and

dynamical processes such as solid ice discharge: In 2005-2017, the GrIS contributed almost as much to sea level rise as all

glaciers worldwide (Sasgen et al., 2020). There is substantial uncertainty in the magnitude of sea level rise that will be caused

by the GrIS in the future (Goelzer et al., 2020). According to Slater et al. (2020), the contribution of melt to sea level rise in20

2007-2017 exceeded the highest estimates of the IPCC Fifth Assessment Report sea level predictions, whereas for dynamic ice

loss the lower or middle estimates were met. The influence of SMB on the total mass loss becomes more important in the future

because outlet glaciers will retreat above sea level (Fettweis et al., 2013). The uncertainty in ice discharge is not as substantial
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as the uncertainties of climate projections and in SMB (Aschwanden et al., 2019).

25

SMB simulations are subject to uncertainty from multiple sources, such as the spatial resolution of the ice sheet model, the

parametrisation of processes like melt-albedo feedback and the forcing of the SMB model (Goelzer et al., 2013). The latter can

be separated into the uncertainty about the radiative forcing pathway (hereafter climate scenario), and the climate projection

uncertainty, which can be assessed with the projections of different earth system models (ESMs), although their similarities

limit the validity of this approach (Knutti et al., 2013). The influence of climate projection uncertainty on the SMB of the30

GrIS has been simulated with SMB models of different complexities. Positive degree-day (PDD) models apply an empirical

relationship between melt and temperature. Several ESMs from the third generation of the Coupled Model Intercomparison

Project (CMIP3) have been used to force an ice sheet model in which the SMB is calculated by the PDD method (Graversen

et al., 2011). Yan et al. (2014) employed another ice sheet model that also uses the PDD method for the SMB calculations and

forced it with CMIP5 ESMs. However, PDD models are calibrated to match the present state of the climate and so their validity35

in a warming climate is limited (Vizcaino, 2014). This is less of a concern in regional climate models (RCMs), coupled with

a snow model where many physical processes are resolved. These are used to downscale ESM simulations, which often do

not have the spatial resolution needed to simulate the SMB with sufficient accuracy. However, RCMs are expensive, limiting

their use to downscaling only a few ESMs (Fettweis et al., 2008; Franco et al., 2011; Fettweis et al., 2013; Hanna et al., 2020).

Fettweis et al. (2008) utilized RCM simulations forced with a subset of CMIP3 simulations and performed a multilinear re-40

gression for the SMB changes as a function of temperature and precipitation to calculate the SMB changes for CMIP3 models

not used as forcing. For CMIP6, Hanna et al. (2020) simulated the SMB of Greenland using the output of five ESMs. Hofer

et al. (2020) showed that the predicted climate from these representatively selected ESMs leads to a larger GrIS SMB decrease

in CMIP6 than in CMIP5. While their results already include some variability between ESMs, their selection from the CMIP6

model pool is necessarily incomplete, and the relative importance of climate simulation as compared with other sources of45

uncertainty remains unclear.

We address some of those open questions in this study with the surface energy and mass balance model “BErgen Snow

SImulator” (BESSI) (Born et al., 2019; Zolles and Born, 2021), which simulates energy exchange processes at the snow or ice

surface and is therefore more physically correct than PDD models, while requiring fewer computational resources than RCMs.50

To assess the uncertainty of the radiative forcing, we consider four climate scenarios that lead to different extents of climate

change. We simulate the SMB for these climate scenarios using the output of 26 ESMs from CMIP6 to take into account the

uncertainty of climate projections. To estimate the uncertainty of the parametrisation, we conduct all simulations with 16 sets

of parameters for BESSI (Born et al., 2019; Zolles and Born, 2021). While this approach cannot substitute a comparison of

different SMB models as in Fettweis et al. (2020), it enables us to assess the relative importance of climate and snow-related55

parameters in a coherent framework. We compare the different uncertainties and study spatial variations in the simulated SMB

and the importance of the different input variables in different parts of Greenland (Sect. 3), after a description of our methods

(Sect. 2). Finally, we compare our results to previous studies (Sect. 4).
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2 Methods

2.1 Snow Model60

The BErgen Snow SImulator (BESSI) (Born et al., 2019; Zolles and Born, 2021) is a surface energy and mass balance model

for glaciated regions with a flexible spatial domain. In this study, the domain is Greenland with an equidistant resolution of

10 km. The topography of the ice sheet is based on ETOPO1 (Amante and Eakins, 2009) and remains fixed throughout the

simulations. The vertical dimension consists of up to 15 snow or firn layers that are adjusted by splitting or merging layers

depending on the snowmass in each grid cell (Born et al., 2019; Zolles and Born, 2021). The five daily input variables are air65

temperature and dew point at 2 m above ground, the amount of precipitation, and surface downwelling shortwave and long-

wave radiation. The top layer changes its mass and energy according to the the forcing of the input variables. Precipitation

falls as snow when the air temperature is below 0 oC, and as rain otherwise. Melt water percolates down into deeper layers and

refreezes. Horizontal exchanges of mass or energy are deemed negligible on the 10 km grid. When there is no more snow left to

melt, the excess energy is used to melt ice. Corrections are made when the melt exceeds the existing amount of ice (Appendix70

A). For a detailed description of the snow model, see Born et al. (2019) and Zolles and Born (2021). The performance of BESSI

has been compared with other SMB models in Fettweis et al. (2020): Although snowfall and runoff are lower in BESSI than

in other SMB models, the SMB and its trend are consistent with most other studied models, because both biases cancel each

other out.

75

BESSI uses parametrisations of several physical processes. In this study, we vary the albedo and turbulent heat exchange

parameters (Table C1), which contribute to the parameter uncertainty discussed below. The albedo changes caused by aging of

the snow are parametrised depending on temperature, whereas the aging is accelerated at 0 oC depending on the liquid water

content (Bougamont et al., 2005; Zolles and Born, 2021). Thus, the albedo of the snow can take values between the prescribed

albedos of fresh snow and firn. Ice is assigned a separate albedo. The turbulent sensible heat flux depends on the difference80

between air and surface temperature, and on the turbulent heat exchange coefficient, which is a model parameter describing

both changes in wind speed and efficiency of the turbulent exchange (Zolles and Born, 2021).

The model parameters of BESSI are calibrated to the RACMO SMB (Noël et al., 2016). Here, we use an ensemble of equally

plausible model parameter settings based on a multivariate calibration (Zolles et al., 2019). For the calibration, BESSI was run85

for 500 years with ERAinterim as forcing data using different parameter combinations. The performance of the simulation is

compared to the RACMO SMB over the period 1979-2017 on an annual basis. We are using seven measures of goodness of

fit, based on the bias, the mean absolute deviation (MAD) and the root mean square error (RMSE) of the SMB. The bias is the

difference between the ice-sheet wide integrated SMB between RACMO and BESSI, while we calculate three representations

of RMSE and MAD. The first calculates the Greenland wide SMB and its temporal MAD over the years, the second one90

calculates a temporal MAD for each grid point and averages them over all grid points, with the last being the MAD over

all points in space and time. A similar approach is used for the RMSE. In total we are using seven objective functions for
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the multivariate optimization. We evaluate the performance of BESSI relative to all the objective functions. In a non-ideal

world not all objectives can be minimized simultaneously. This yields multiple equally plausible optimal solutions, where one

objective function can not be improved without compromising another one. The ensemble of these optimal solutions is referred95

to as Pareto optimal set. Similar to the method used by Zolles et al. (2019) we calculate the Pareto optimal set. This yields a

total of 16 different solutions whose parameter ranges are given in Table C1.

2.2 Earth System Models

We use ESM output of CMIP6 for the period of 2015-2100 (Eyring et al., 2016). The Tier 1 scenarios (with increasing radiative

forcing: SSP126, SSP245, SSP370 and SSP585) from ScenarioMIP are selected for this study because they encompass a wide100

range of future forcing possibilities (O’Neill et al., 2016) and are available for many different ESMs. We selected 26 ESMs

that provide all of BESSI’s input variables for at least two scenarios (Table Appendix B1), with the exception of the dew point,

which is calculated from the relative humidity if necessary.

The input variables are interpolated linearly to the 10 km BESSI grid. ESM biases are calculated based on the delta method105

(Beyer et al., 2020) by comparing the daily mean of the historical simulation and the daily mean of the ERA-Interim reanalysis

in the period of 1979-2014, in which both datasets are available. For all input variables except precipitation, the differences

between the daily means are subtracted from the future projection. These differences also include discrepancies in topography,

so the dependence of e.g. temperature on elevation is accounted for in the additive bias correction. As mentioned in Sect.

2.1, BESSI uses ETOPO1 and accounts for the differences to the ERA-Interim topography by performing a correction with a110

constant moist adiabatic lapse rate. Precipitation is bias corrected by the ratio of ERA-Interim and historical mean precipitation

because its high variability would lead to negative values if the difference was used. During the winter, shortwave radiation

may be very weak so that the bias correction can lead to localised, small negative values. These values are set to zero. The daily

means of precipitation are affected by individual intense precipitation events due to the short length of the historical period.

The monthly biases are less affected by these events and therefore we multiply the projected precipitation with the ratio of the115

monthly mean precipitation of the historical reference and the reanalysis data to perform bias correction instead of the daily

means.

Throughout the 21st century, the median air temperature over all ESMs rises in every scenario except in the scenario with

the smallest increase in greenhouse gases (SSP126), where it remains almost constant during the second half of the century120

(Fig. 1a). While shortwave radiation decreases slightly, precipitation, longwave radiation and dew point increase over the

course of the century (Fig. 1b-e). The stronger the greenhouse gas forcing, the larger the change in these variables. For each

variable except precipitation, there are distinct differences in ESM medians between all scenarios at the end of the century, and

the differences between scenarios are of similar magnitude as the interquartile ranges. The trends in precipitation are weaker

compared to the ranges of values between the ESMs.125
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2.3 Simulations and Ensemble Design

We conduct two different kinds of SMB simulations: (1) In the main ensemble, the forcing data for four climate scenarios are

taken from different ESMs, and the snow model parameters are varied. It illustrates the temporal and spatial behaviour of the

SMB and it enables us to separate the different uncertainty components. (2) The “single forcing” ensemble shows the influence

of the individual input variables.130

The main ensemble uses 96 selected ESM-scenario combinations (Table B1). In addition, we conduct 26 simulations for the

historical reference period (1979-2014), i.e. one for each ESM. Each of the simulations is conducted with 16 different snow

model parameter sets, resulting in 1952 simulations. The selection process of the parameter combinations is described in Sect.

2.1. The firn cover is initialised by forcing BESSI with ERA-Interim reanalysis data for 540 years, to reach a dynamically and135

thermodynamically stable firn cover at the year 2014. The long response time of the firn cover requires an initialisation period

of several hundred years, which is realised by forcing the model with the ERA-Interim data 15 times back and forth (Zolles

and Born, 2021). For the historical time period, the initialization ends in 1979 after 14 ERA-Interim cycles back and forth. For

every parameter set, the same initialised firn cover is used to save computation time, but the bias caused by this inconsistency

is generally overcompensated after a few years of climate forcing.140

In the single forcing simulations, the transient ESM simulations are used as input for only one variable, and the daily ERA-

Interim climatology for the others to assess the influence of each variable on the SMB. The scenario SSP585 is chosen because

it is available for all 26 ESMs, and we used the snow model parameter set that produces the best results in the calibration

with RACMO (Sect. 2.1). For precipitation, the daily ERA-Interim climatology cannot be used as it overestimates the surface145

albedo due to unrealistic small amounts of snowfall every day (Sodemann et al., 2008). This leads to an overestimation of the

mass balance of up to 40 % (Zolles and Born, in prep). Instead we use the monthly precipitation climatology and distribute the

ERA-Interim monthly average Pm
ERAi following the temporal distribution of precipitation in the ESM simulation:

P d
year,clim =

P d
year ·Pm

ERAi

Pm
year,model

(1)

where P stands for precipitation, m for monthly mean, d for daily mean and year stands for the point in time of the simulation.150

Therefore, the climatological daily precipitation distribution differs for each ESM, but the monthly averages are identical. For

each of the 26 ESMs, we conducted 6 simulations for the SMB: a reference simulation with the historical climatology and 5

simulations with different transient variables (air and dew point temperature, precipitation, shortwave and longwave radiation).

We need a separate reference simulation for each ESM because the precipitation distribution differs for each ESM according

to Eq. 1.155
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Table 1. Median and quartiles over all ESM and snow model parameter combinations of the 2091-2100 SMB mean value for different

scenarios.

Scenario Historical SSP126 SSP245 SSP370 SSP585

Median SMB (1979-2014 or 2091-2100) / Gtyr−1 399 318 254 42 -226

75 % quantile SMB / Gtyr−1 415 384 308 194 -1

25 % quantile SMB / Gtyr−1 378 257 104 -308 -623

3 Results

3.1 Scenario Surface Mass Balance Simulations

In this section, we show temporal and spatial differences between the ESMs and climate scenarios of the median SMB over

all parameter combinations. The median SMB at the end of the century over the ESMs and snow model parameters is shown

for the different climate scenarios in Table 1. The surface mass balance decreases relative to the historical simulations in all160

scenarios (Fig. 2). In the moderate scenario SSP126, the SMB is relatively stable to the end of the century. Higher emissions

of greenhouse gases (stronger forcing) lead to a lower SMB (SSP245, SSP370, SSP585). With stronger warming, the range

in simulated SMB for different ESMs increases, although the range in input variables except precipitation does not seem

to depend on the scenario (Fig. 1). For precipitation, the interquartile range between the ESMs increases only slightly with

stronger greenhouse gas forcing. Precipitation variability alone cannot explain the larger interquartile range in SMB in the165

warmer scenarios. The reason for the increasingly dissimilar SMBs with stronger greenhouse gas forcing is that larger changes

in the input variables have a larger cumulative effect on the SMB (Sect. 3.3). When BESSI is forced with ERA-Interim data

(Fig. 2, orange), a relatively low SMB in the early 21st century is apparent. This correlates with more frequent Greenland

blocking (Sasgen et al., 2020). A similar reduction in SMB is not observed when forcing BESSI with historical ESM data

(Fig. 2, black), because the coarse horizontal resolution hampers the representation of the observed blocking and its increased170

activity (Davini and D’Andrea, 2020).

Spatial anomalies for the last decade of the SMB in the low emission scenario SSP126 and the high emission scenario

SSP585 are shown in Fig. 3. In the west of Greenland, the SMB in the 2090s is lower than in ERA-Interim (1979-2014),

independent of the scenario (Fig. 3a, b). In this region, higher temperatures lead to increased melt. In the centre of the ice175

sheet, the SMB is slightly higher than in ERA-Interim, especially in the southeast. There, heavier precipitation occurs under

a warmer climate. However, the SMB increase in the centre is outweighted by the SMB decrease at the margin of the ice

sheet. These SMB changes are much more pronounced in the high-end scenario SSP585 because of the enhanced change in the

input variables. Currently observed SMB changes are dominated by amplified melting in the west and by snowfall in the east

(Sasgen et al., 2020). In the north, the temperatures are too low for much melt at the present day, but with an average increase180

of temperature over the ice sheet of approximately 6 K in SSP585 (Fig. 1a), melt increases considerably there. At the margin
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of the ice sheet, the standard deviation of the SMB between the ESMs is largest (Fig. 3c, d). The relative standard deviation

of the SMB reaches highest values near the equilibrium line (Fig. 3e, f), so the choice of ESM is decisive for the SMB in this

region. In the high emission scenario SSP585, the equilibrium line is subject to substantial uncertainty, which is greater than in

the moderate scenario SSP126 (Fig. 4). Equilibrium line changes show that the differences between ESMs driven by the same185

scenario increase with stronger greenhouse gas forcing (Fig. 2).

3.2 Estimation of Uncertainties

Having examined the spatial variations between ESMs, we next study the variance of the full ensemble containing ESMs,

emission scenarios and snow model parameters. We split the variance in spatially integrated SMB over all simulations into

four different components using a method based on Hawkins and Sutton (2009) and described in more detail in Appendix C: A190

fourth degree polynomial fit is applied to the decadal running mean of spatially integrated SMB for each individual simulation

to separate trends from variations on small time scales. The residuals of the fits are considered as the internal variability of the

system, for example fluctuations in SMB caused by alternating dry and wet periods. The law of total variance is applied to the

whole ensemble of polynomials to split the total variance into three independent components for each year. These components

are the variances caused by ESMs, climate scenarios and BESSI parameters (albedo of fresh snow and firn, turbulent heat195

exchange coefficient). These variances quantify three relevant sources of uncertainty, with internal variability being the fourth.

The sum of the different uncertainty components increases strongly over the course of the century (Fig. 5a). The relative

contributions of the different uncertainty components are shown in Fig. 5b by normalising with the sum of all components. In

the first years of the simulations, the internal variability is the largest source of uncertainty, showing that it is most important200

in the absence of external forcing. While the scenario uncertainty has the smallest contribution in the beginning, its importance

increases in the second half of the century, as decarbonisation measures and the adaption of the climate system take time (Davy

and Outten, 2020). The parameter uncertainty is slightly larger than the scenario uncertainty at first, but its relative importance

decreases in time. Its overall small contribution to uncertainty indicates that the results of our SMB simulations are almost

independent of the specific parameter combination of BESSI. The parameter uncertainty does not depict the total snow model205

uncertainty, because the approach to calculate the SMB is the same regardless of the parameter combination, whereas differ-

ences in the ESMs are caused by different ways of simulating the processes. The spatial resolution necessarily contributes to

the uncertainty in SMB modeling, because elevation and associated temperature differences on the sub-grid scale can lead to

unrealistically high temperatures prescribed above the ablation zone, reducing the SMB (Goelzer et al., 2013). Furthermore,

the calculation of precipitation and runoff is less accurate in BESSI compared to other snow models, and these biases could210

increase in a warming climate (Fettweis et al., 2020), which is not represented in the parameter uncertainty either.

A few years into the simulation, the ESM uncertainty becomes the largest contributor to the uncertainty and the share of the

internal variability decreases rapidly. However, our uncertainty quantification may erroneously attribute a part of the internal

variability of the climate simulations to ESM uncertainty (Lehner et al., 2020). In order to estimate this error, we forced BESSI215

7



with ten different realisations of the ESM ACCESS-ESM1-5 (Table B1) and applied the method by Hawkins and Sutton (2009)

replacing the different ESMs with the different realisations of a single ESM. This shows a non-negligible bias in the attribution

of the uncertainty in the first decades, up to 35 %, adding a caveat to the relative uncertainties in Fig. 5b for this time period.

Note, however, that multiple realisations are available for only about half of the ESMs so that we cannot systematically inves-

tigate this effect. More importantly for the results of this study the method bias is small at the end of the century, which means220

that the ESM uncertainty is robustly shown to be greater than the scenario uncertainty. In other words, in the scenarios with

strong forcing, there are some ESMs that induce only small SMB changes, while other ESMs lead to a much stronger SMB

decrease. This pronounced uncertainty is larger than the differences between the medians over the ESMs for each scenario. At

the end of the century, the ESM uncertainty is about 62 % and the scenario uncertainty is about 35 % of the total variance,

whereas the snow model parameter uncertainty and the internal variability represent about 3 % combined.225

The separation of variances can be generalised to every grid cell of the GrIS. The total variance of the 1952 simulations is

largest at the margin of the ice sheet, where the SMB changes considerably (Fig. 6a, b). The total variance increases by several

orders of magnitude from the middle to the end of the century. At the middle of the century, the ESM uncertainty is the most

important component at the margin and in the centre of the ice sheet (Fig. 6c). Only in the north and at higher altitudes in230

the west, the internal variability is largest. Compared to the other components, the scenario uncertainty is insignificant at the

middle of the century (Fig. 6e). At the end of the century, the scenario uncertainty becomes more pronounced, especially at

the western margin, where the amount of melt differs considerably between the scenarios (Fig. 6d). The area where the ESM

uncertainty has the largest share increases even more at the end of the century, mainly at the expense of the regions where

the internal variability is important at the middle of the century. The scenario uncertainty is of similar magnitude as the ESM235

uncertainty only at the margins of the ice sheet and in the area where the total variance is low.

3.3 Single Forcing and Regional Analysis

In the single forcing simulations, we run the snow model using only one input variable from each CMIP model simulation.

This variable is hereafter called the transient variable. For the other variables, daily means of the historical period of ERA-

Interim data is used in the simulation, except for precipitation, whose temporal distribution is again adapted as described in240

Sect. 2.3. We study the influence of the different input variables on the SMB across the entire GrIS and show three regions

previously used by Zolles and Born (2021) (Fig. 7). These regions are selected because they illustrate the spatial differences in

the behaviour of the SMB.

The SMB increases when precipitation is the transient variable due to an increase in snowfall (Fig. 1c). In the simulation245

with transient dew point, the SMB also increases through an increase in desublimation, but the effect is smaller. When the

downwelling longwave radiation increases, the snow temperature rises, which leads to more melt. The effect of melting caused

by increased air temperature is stronger than that of increased longwave radiation except for the east where the SMB change

is dominated by precipitation changes. The interquartile range is largest when temperature or precipitation are the transient
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variables except for the east where the dew point has a larger interquartile range than the temperature. Consequently, these250

variables dominate the uncertainty of the SMB simulations. Shortwave radiation alone has a negligible influence on the SMB

in the idealised experiments performed. This does not agree with Hofer et al. (2017), who found a link between amplified melt

and recent increases in shortwave radiation through shifts in NAO and Greenland blocking. However, the ESMs used in this

study predict a decrease in shortwave radiation, which could explain the disagreement. In addition, Greenland blocking is not

well represented in ESMs (Davini and D’Andrea, 2020).255

The sum of all individual changes does not equal the fully transient simulation driven by the SSP585 scenario (Fig. 7). This

highlights non-linearities that amplify the SMB reduction. For example, air temperature and precipitation often covary so that

the increased precipitation compensates the increased melt only partly. If heavier precipitation delivers more rain, the energy

required to refreeze the additional rain in the snowpack increases its heat. We conclude that when air temperature and longwave260

radiation rise together in a warmer and cloudier future, more energy is available at the surface and due to the non-linearity of

the SMB, increased melt is detected than from each of these forcing components individually. The impact of the increasing

amount of longwave radiation decreases with rising surface temperature because the net flow of sensible heat depends on the

temperature difference between air and snow surface. Since the sublimation is driven by the saturation pressure difference

between lower atmosphere and surface, sublimation increases for a warmer surface while it decreases for a higher dew point265

temperature. In the different ESMs, the SMB reduction is amplified to different extents by the described non-linear effects.

Therefore, the interquartile range in the fully transient simulation is larger than the interquartile range in each of the single-

forcing simulations.

In the western region, the SMB and its different components follow a similar course as for the entire GrIS, except for the270

amount of SMB decrease per area which is in the fully transient simulation about five times as high (Fig. 7). Additionally, the

internal variability is not as important as in the total GrIS, and the scenario uncertainty is slightly higher (Fig. 8a). This shows

a high dependence of surface melt on the climate scenario in this region.

In the northern region, the SMB increases with transient precipitation and transient dew point to the same extent (Fig. 7c).275

Desublimation and sublimation are important contributors to the SMB in this dry region. This is in line with Box and Steffen

(2001) who show that 28 % of the accumulation is caused by desublimation at one station in the northeast at 2113 m above sea

level. Even the precipitation increase will not dominate in the north by the end of the century. In the fully transient simulation

and in the simulation with transient temperature, the SMB decreases strongly and non-linearly at the end of the century (Fig.

7c, orange line). The decrease in SMB is rather late because of the low temperatures in the north at present day. However, when280

the temperatures rise high enough, ice can be exposed at the surface, which is not always covered by the scarce snowfall and

thus triggers a strong albedo feedback. The uncertainty associated with the choice of ESM has a larger share in the north than

Greenland wide because the temperature differences between ESMs are more pronounced, which suggests discrepancies in the

9



simulated sea ice cover. As a consequence, the scenario uncertainty is reduced (Fig. 8b).

285

In the east, the SMB with transient precipitation follows the SMB with all variables transient closely, showing that the main

cause for SMB changes is the precipitation (Fig. 7d). Fettweis et al. (2013) also found increased precipitation in the east because

the reduced sea ice cover leads to a moister atmosphere. The uncertainty ranges between ESMs for transient precipitation and

the fully transient simulation are also very similar, therefore the ESM uncertainty is mostly a precipitation uncertainty. The

internal variability has a large contribution to uncertainty (Fig. 8c) because the total uncertainty of all other components is290

small (not shown). The ESM uncertainty is still the largest component, showing an increase at the end of the century (Fig. 8c)

when the fully transient SMB stagnates (Fig. 7d).
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Figure 1. Input variables for BESSI, which are interpolated and bias-corrected ESM data, for different scenarios, averaged over the Greenland

ice sheet. The solid line is the median over all ESMs for one scenario, the shaded area between the 25 % and 75 % percentiles represents

half of the ESMs. (a) Temperature at 2 m above ground. (b) Dewpoint at 2 m above ground. (c) Amount of precipitation. (d) Surface

downwelling longwave radiation. (e) Surface downwelling shortwave radiation. The vertical line indicates the boundary between the common

time period of the historical ESM simulations and ERA-Interim (1979-2014), and the future projection time period (from 2015). Please note

the precipitation unit, 1 kgm−2d−1 equals 1 mm (WE) per day; WE=Water equivalent.
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Figure 2. Surface mass balance simulations forced with ERA-Interim reanalysis data, historical ESM simulations and scenario climate

simulations, median over the SMB for all snow model parameter combinations. The solid line is the median of all ESMs, the shading the 25

% and 75 % percentiles. Orange: SMB forced with ERA-Interim with mean value.
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Figure 3. Anomaly of the median SMB over all parameter combinations (2090-2099 mean) with respect to ERA-Interim (1979-2014 mean)

(a, b) with standard deviation (c, d) and relative standard deviation (e, f) for the scenarios SSP126 (a, c, e) and SSP585 (b, d, f). (a, b): The

contour line indicates a mass balance of zero. Note the different scales for positive and negative values. (e, f): In the shaded area, the absolute

value of the surface mass balance is smaller than 50 kgm−2, which is considered to be close to zero, and so the relative standard deviations

are invalid.
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Figure 4. Equilibrium lines of the median SMB over all parameter combinations (temporal mean for the period of 2090-2099) for different

ESMs and the scenarios SSP126 (a) and SSP585 (b).
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Figure 5. (a) Total and (b) relative variances of the different uncertainty components: Choice of ESM (blue), different emission scenarios

(green), different snow model parameters (grey), and internal variability (orange). The time period does not extend to 2100 because the

variance splitting approach is applied to the decadal running means of the yearly SMB.
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Figure 6. (a, b) Total variance, consisting of ESM uncertainty, scenario uncertainty, snow model parameter uncertainty and internal variabil-

ity. (c, d) Ratio of ESM uncertainty and sum of the uncertainties. (e, f) Ratio of scenario uncertainty and sum of the uncertainties. (g, h) Ratio

of internal variability and sum of the uncertainties. (a, c, e, g) show the mean over the years 2047-2056, (b, d, f, h) the mean over the years

2087-2096. The latter is the last decade that the variance splitting approach is valid for because it is applied to the decadal running mean of

the yearly SMB. The years 2047-2056 are chosen as a decade in the middle of the 21st century.
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Figure 7. SMB for single forcing simulations, for the entire GrIS (a) and selected regions (b-d). The variable named in the legend is transient

for scenario SSP585, while all other variables are the ERA-Interim mean. “All variables”: all variables transient, same as Fig. 2. “Reference”:

historical climatology for all variables with precipitation distribution as in CMIP. (e) Positions of the selected regions. Regions “North” and

“West” are at elevations of 1000-2000 m. The southeast is precipitation driven and the change in SMB with altitude is less developed,

therefore the region “East” is at elevations of 1000-3000 m.
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Figure 8. Relative variances of the different uncertainty components for 3 different regions of the GrIS: Uncertainty associated with the

choice of ESM (blue), uncertainty caused by different emission scenarios (green), uncertainty of different parameter combinations of the

snow model (grey), and internal variability (orange), being the variance of the residues of a fourth degree polynomial fit to the decadal mean

integrated SMB. The calculations are described in Appendix C. The time period does not extend to 2100 because the variance splitting

approach is applied to the decadal running means of the yearly SMB.

17



4 Summary and Discussion

We simulated the SMB of the GrIS with the snow model BESSI for most of the available climate simulations in the CMIP6

database, using four different climate scenarios, and 16 parameter configurations of our snow model. In the high emission295

scenario (SSP585), the surface mass loss accelerates and the integrated SMB is about -230 Gtyr−1 at the end of the 21st cen-

tury, whereas in the low emission scenario SSP126 the integrated SMB is only slightly lower than in the historical time period

and approximately constant (Table 1, Fig. 2). Taking into account the ice discharge, which amounts to almost 500 Gtyr−1

between 2005 and 2019 (Mankoff et al., 2020), our historical simulations result in a negative total mass balance. Assuming an

approximately unchanged discharge, the median SMB in all scenarios implies more substantial mass loss in the future.300

The regions with the most pronounced changes in SMB are the west and the north of Greenland. In the west, the SMB is

already dominated by melt, and in the north, additional melt is not fully compensated by the scarce precipitation. In the east,

we simulate a higher SMB than at present day because of a warmer and moister climate in future projections. We find that the

choice of ESM has the largest overall influence on the uncertainty in SMB projection, exceeding even the variance between305

climate scenarios. This effect is localised mostly near the the equilibrium line and can be primarily attributed to differences in

simulated surface air temperature, followed by differences in the simulated precipitation. Note that we did bias correct all ESM

simulations based on their performance in the period that overlaps with ERA-Interim (1979-2014), but that no further quality

control was performed on the CMIP6 simulations. We speculate that a narrower selection of ESMs, e.g. based on their ability

to simulate precipitation patterns and frequencies, could lead to a significant reduction in ESM uncertainty.310

The results presented here are in good agreement with previous studies. All ice sheet models in Goelzer et al. (2020)

simulated an accelerated mass loss with stronger greenhouse forcing. They used the high-end scenario in CMIP5 with a repre-

sentative concentration pathway (RCP) that leads to a radiative forcing of 8.5 Wm−2 at the end of the 21st century (RCP8.5),

comparable to the SSP585 pathway we used here. Detailed SMB estimates are also available from the regional climate model315

MAR forced by a selection of CMIP6 ESMs (Hanna et al., 2020). This study also finds the familiar acceleration in mass loss.

However, four of the five ESMs used to force MAR have an above-average equilibrium climate sensitivity (ECS, Meehl et al.

(2020)), so that temperature changes are probably exacerbated. Comparing our simulations with those of MAR that were forced

by the same CMIP6 models, we find that in four out of five cases BESSI simulates a higher SMB than MAR (Fig. 9a). This

is plausible because BESSI has a stronger bias to higher SMBs than MAR (Fettweis et al., 2020). Notwithstanding this small320

disagreement, the primary contribution of our study is not the comparison with more complex models, but the fact that the

high numerical efficiency of BESSI enables a more comprehensive analysis of model uncertainty, for example by extending

the ESM pool to 26. The difference between the highest and lowest SMB in the last simulated years in our ensemble is more

than three times as large as in Hanna et al. (2020) (Fig. 9a).

325
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Similar to our high emission scenario simulations with BESSI, Fettweis et al. (2013) also find a non-linear SMB decrease in

simulations with MAR for the high-end scenario of CMIP5 (RCP8.5) (Fig. 9b). Likewise, the roughly linear trend in the MAR

simulations forced by the moderate scenario RCP4.5 is qualitatively analogous to scenario SSP245. The differences between

ESMs in the SMB simulations of Fettweis et al. (2013) are comparable to the interquartile range of our study. Another moderate

scenario simulation with MAR was performed by Fettweis et al. (2008) for the CMIP3 A1B scenario (Fig. 9b), which is an in-330

termediate scenario with greenhouse gas emissions between those in SSP245 and SSP370 (Fettweis et al., 2008; O’Neill et al.,

2016). It also shows an approximately linear decrease in SMB, however with a smaller uncertainty range than in our moderate

SSP245 scenario simulation with BESSI. The multilinear regression performed in Fettweis et al. (2008), which approximates

SMB changes as a linear combination of changes in temperature and precipitation, can reduce the uncertainty, as non-linear

effects are not included there. Additionally, the smaller variations between ESMs in CMIP3 compared to CMIP6 can have an335

effect on the uncertainty of the snow model simulations because of the smaller variability in sensitivity to the carbon dioxide

forcing (ECS) (Meehl et al., 2020).

The uncertainty in snow model parameters is negligibly small compared to the other uncertainty components, so that our

results hardly depend on the specific set of parameters in BESSI. However, this does not represent the total uncertainty of SMB340

modelling, as analysed in Fettweis et al. (2020). To address this question fully, our simulations would have to be repeated with

every SMB model of that earlier study. This is not practicable because for some of the SMB models the computational require-

ments are too high to conduct several hundred simulations. Additionally, even RCMs fail in accurately predicting the snowline

in years with much melt, leading to substantial biases in SMB prediction because of the albedo difference between snow and

ice (Ryan et al., 2019). We expect a larger bias in BESSI, because Fettweis et al. (2020) showed that BESSI underestimates the345

size of the bare ice area and the ablation zone already today. In addition, the total variance of our ensemble is a conservative

approximation because our bias correction reduces the variations between the historical simulations of different ESMs and

thus also the variability of the climate projections. Furthermore, our assumption of constant topography leads to a bias in SMB

projections in 2100 of approximately 10% (Vizcaino, 2014). Moreover, our simulations neglect the diurnal cycle, which could

underestimate refreezing (Krebs-Kanzow et al., 2021). Finally, Greenland blocking leads to increased melt (Hanna et al., 2020),350

but ESMs do not seem to simulate the blocking correctly (Davini and D’Andrea, 2020). Therefore, our future SMB projections

are conservative because the ESMs do not fully represent the expected increase of Greenland blocking in a warming climate.

In spite of these caveats, the substantial difference between the ESM and snow model parameter uncertainties suggests that the

ESM uncertainty is the largest source of error in the future projections of the GrIS SMB. This key result has two consequences:

First, future SMB estimates based on multiple ESMs should explicitly address the quality of the individual simulations in the355

target region and consider using this skill metric to scale the weight of the individual ensemble members. Secondly, studies

that only include a subset of the plausible climate projections and do not quantify the quality of these selected representations

may produce an incomplete picture.

19



2020 2030 2040 2050 2060 2070 2080 2090 2100
year

3000

2000

1000

0

SM
B 

(G
t y

r
1 )

(a)

BESSI CMIP6 SSP585 quartiles
MAR CMIP6 SSP585 (Hanna et al., 2020)
BESSI CMIP6 SSP585
BESSI CMIP6 SSP585 min and max

1980 2000 2020 2040 2060 2080 2100
year

800

600

400

200

0

200

400

600

SM
B 

(G
t y

r
1 )

(b)

BESSI CMIP6 SSP245
BESSI CMIP6 SSP585
MAR CMIP5 RCP8.5 (Fettweis et al., 2013)
MAR CMIP5 RCP4.5 (Fettweis et al., 2013)
MAR CMIP3 A1B (Fettweis et al., 2008)

Figure 9. (a) SMB simulated by the regional climate model MAR (blue; Hanna et al. (2020), Fig. 11) and the mean of our simulations

(black), forced by the same CMIP6 models, scenario SSP585. The red shading illustrates the minimum and the maximum of SMB for our

entire ensemble for this scenario, and the dashed lines are 25 % and 75 % percentiles. (b) Comparison of our simulations with BESSI,

Fettweis et al. (2013), Fig. 4a, and Fettweis et al. (2008), Fig. 7a. Fettweis et al. (2013) uses three different ESMs as input, so that there are

three grey lines for every scenario. The shading are 25 % and 75 % percentiles.
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Appendix A: Treatment of melted ice in the snow model results

The snow model calculates the SMB for every grid cell on the land surface of Greenland. In the results, only grid cells should360

be considered which belong to the Greenland ice sheet. The snow model was tuned with the comprehensive RCM RACMO2.3,

therefore the RACMO-ice mask (Noël et al., 2016) is used to identify the grid cells with ice. In addition, we restrict the

analysis to grid cells that have an ice thickness of at least 50 m according to the ice sheet topography used in BESSI, which

is based on ETOPO1 (1 arc-minute resolution) (Amante and Eakins, 2009). The 50 m threshold is chosen to exclude snow caps.

365

Because we do not simulate ice dynamics, the ice thickness stays constant throughout the simulations with the snow model.

For each timestep, BESSI calculates the ice that potentially melts at each grid box, regardless of whether ice is actually present

or not. The combination of melt of ice, melt of snow, refreezing, snow, rain and runoff is the mass balance. Therefore, grid

cells with thin ice cover can distort the mass balance, when melt of ice which has already melted is added to the mass balance.

This needs to be corrected.370

To determine in which grid cells the ice has melted entirely, we subtract the melted ice from the initial ice topography and

also consider the inflow by convergence of the lateral steady state flux. If the result is negative, which means that more ice has

melted than would be possible, the grid cell is not considered in the calculation of the mass balance. The ice thickness dh that

is added to each grid cell by ice flux is calculated by the advection equation:375

dh=−∇ · (v · d)dt (A1)

where d is the thickness of the ice in the initial topography and dt is the time step. We use the mean ice velocity v from Nagler

et al. (2015) and assume that it is constant. Negative values of dh are treated as zero for this correction. In grid cells with

thinner ice than a certain threshold, here 50 m, we cannot assume that the ice velocity is constant and therefore we do not take

them into account in the SMB calculation.380

This simplified calculation of the ice flow results in a lower SMB compared to neglecting the ice flow, because it provides ice

replenishment that may still melt. The difference amounts to less than 40 Gtyr−1 for all scenarios in the ESM and parameter

median averaged over the last ten years of the simulation. In a fully dynamical ice sheet model, the ice outflow from grid cells

would be incorporated, which could cause the ice supply to empty more quickly, leading to a more positive SMB, as empty grid385

cells are not considered. Presumably, however, the lowering effect of melt-elevation feedback, which is not considered in this

study, on the SMB is more substantial. The uncertainty related to the simplified representation of the ice flow is not addressed

further.
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Appendix B: Earth system models from CMIP6

Several ESMs show strong oversaturation of humidity in areas with very low temperatures while only small oversaturation390

occurs in nature due to a lack of freezing nuclei. In ESMs, large oversaturations can be caused by e.g. interpolation from the

ESM levels to near-surface output. Some climate modelling groups truncate the relative humidity to 100 % before they make

the data available (Ruosteenoja et al., 2017). To obtain physically realistic values, we truncated the relative humidity to 100 %

in all ESMs used in this study. The ESMs HadGEM3-GC31-LL, HadGEM3-GC31-MM and UKESM1-0-LL have a 360 day

calendar, thus five days (spread evenly over the year) are taken twice. We used only one ensemble member of each ESM.395
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Table B1. CMIP6-Models (Eyring et al., 2016) used in this project. For each of the listed models, we use the scenarios SSP126, SSP245,

SSP370 and SSP585 to force BESSI; except for some missing ESM-scenario combinations. FGOALS-g3 misses SSP126, GFDL-CM4:

SSP126 and SSP370, GFDL-ESM4: SSP245, HadGEM3-GC31-LL: SSP370, HadGEM3-GC31-MM: SSP245 and SSP370, and NESM3:

SSP370. Data downloaded from https://esgf-node.llnl.gov/search/cmip6/.

Model Institution Grid DOI

ACCESS-CM2
Collaboration for Australian Weather and Climate Research 144x192 10.22033/ESGF/CMIP6.4271

10.22033/ESGF/CMIP6.2285

ACCESS-ESM1-5 Collaboration for Australian Weather and Climate Research 145x192 10.22033/ESGF/CMIP6.4272

10.22033/ESGF/CMIP6.2291

BCC-CSM2-MR Beijing Climate Center 160x320 10.22033/ESGF/CMIP6.2948

10.22033/ESGF/CMIP6.1732

CanESM5 Canadian Centre for Climate Modelling and Analysis 64x128 10.22033/ESGF/CMIP6.3610

10.22033/ESGF/CMIP6.1317

CESM2 National Center for Atmospheric Research 192x288 10.22033/ESGF/CMIP6.7627

10.22033/ESGF/CMIP6.2201

CESM2-WACCM National Center for Atmospheric Research 192x288 10.22033/ESGF/CMIP6.10071

10.22033/ESGF/CMIP6.10026

CMCC-CM2-SR5 Euro-Mediterranean Centre on Climate Change 192x288 10.22033/ESGF/CMIP6.3825

10.22033/ESGF/CMIP6.1365

CNRM-CM6-1 Centre National de Recherches Météorologiques 128x256 10.22033/ESGF/CMIP6.4066

10.22033/ESGF/CMIP6.1384

CNRM-ESM2-1 Centre National de Recherches Météorologiques 128x256 10.22033/ESGF/CMIP6.4068

10.22033/ESGF/CMIP6.1395

EC-Earth3 EC-Earth consortium 256x512 10.22033/ESGF/CMIP6.4700

10.22033/ESGF/CMIP6.251

EC-Earth3-Veg EC-Earth consortium 256x512 10.22033/ESGF/CMIP6.4706

10.22033/ESGF/CMIP6.727

FGOALS-g3 State Key Laboratory of Numerical Modeling for Atmo-

spheric Sciences and Geophysical Fluid Dynamics, Institute

of Atmospheric Physics

80x180 10.22033/ESGF/CMIP6.3356

10.22033/ESGF/CMIP6.2056

GFDL-CM4 Geophysical Fluid Dynamics Laboratory 180x288 10.22033/ESGF/CMIP6.8594

10.22033/ESGF/CMIP6.9242

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory 180x288 10.22033/ESGF/CMIP6.8597

10.22033/ESGF/CMIP6.1414

HadGEM3-GC31-LL Hadley Centre for Climate Prediction and Research 144x192 10.22033/ESGF/CMIP6.6109

10.22033/ESGF/CMIP6.10845

400
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Model Institution Grid DOI

HadGEM3-GC31-MM Hadley Centre for Climate Prediction and Research 324x432 10.22033/ESGF/CMIP6.6112

10.22033/ESGF/CMIP6.10846

IPSL-CM6A-LR Institut Pierre Simon Laplace 143x144 10.22033/ESGF/CMIP6.5195

10.22033/ESGF/CMIP6.1532

MIROC6 University of Tokyo, Japan Agency for Marine-Earth Sci-

ence and Technology

128x256 10.22033/ESGF/CMIP6.5603

10.22033/ESGF/CMIP6.898

MIROC-ES2L University of Tokyo, Japan Agency for Marine-Earth Sci-

ence and Technology

64x128 10.22033/ESGF/CMIP6.5602

10.22033/ESGF/CMIP6.936

MPI-ESM1-2-LR Max Planck Institute for Meteorology 96x192 10.22033/ESGF/CMIP6.6595

10.22033/ESGF/CMIP6.793

MPI-ESM1-2-HR Max Planck Institute for Meteorology 192x384 10.22033/ESGF/CMIP6.6594

10.22033/ESGF/CMIP6.2450

MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological

Agency

160x320 10.22033/ESGF/CMIP6.6842

10.22033/ESGF/CMIP6.638

NESM3 Nanjing University of Information Science and Technology 96x192 10.22033/ESGF/CMIP6.8769

10.22033/ESGF/CMIP6.2027

NorESM2-LM Norwegian Climate Center 96x144 10.22033/ESGF/CMIP6.8036

10.22033/ESGF/CMIP6.604

NorESM2-MM Norwegian Climate Center 192x288 10.22033/ESGF/CMIP6.8040

10.22033/ESGF/CMIP6.608

UKESM1-0-LL UK Met Office, NERC research centres 144x192 10.22033/ESGF/CMIP6.6113

10.22033/ESGF/CMIP6.1567

Appendix C: Uncertainty estimation

To separate the different sources of uncertainty in our projections, we employ the approach by Hawkins and Sutton (2009).

Between the different ESMs M , scenarios S and perturbed snow model parameters in BESSI B, this analysis covers 1952

simulations. The snow model parameters varied in this study are shown in Table C1. Assuming that the running average405

decadal mean of the simulated SMB XB,M,S,t can be expressed as the result of these uncertainty contributors and time t, as

indicated by the subscripts, the snow model output can be divided into a smooth fit with a fourth degree polynomial PB,M,S,t

and a deviation εB,M,S,t from that fit:

XB,M,S,t = PB,M,S,t + εB,M,S,t. (C1)
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Table C1. Parameters in BESSI that are varied in this study. “Standard” stands for the simulations with only one parameter combination. All

parameter combinations use the same albedo routine from Bougamont et al. (2005), and an ice albedo of 0.4.

Parameter Standard Minimum Maximum

Fresh snow albedo 0.848 0.766 0.891

Firn albedo 0.554 0.480 0.696

Turbulent heat exchange coefficient / Wm−2 K−1 5.2 5.2 12.2

Figure C1. (a) Decadal running means of SMB for every parameter-scenario-ESM-combination. (b) Fourth degree polynomial fits of the

curves in (a). (c) Deviations of the curves in (a) from the fit in (b).

We analyse the running average decadal means to facilitate the polynomial fit. The polynomial P can be further divided into a410

constant reference SMB iM that only depends on the ESM, and a deviation xB,M,S,t:

XB,M,S,t = xB,M,S,t + iM + εB,M,S,t. (C2)

We perform the analysis with xB,M,S,t so that we do not have to account for the constant ESM offset. The reference SMB iM is

the mean of the annual mean values from the time period 1979-2014, averaged over all BESSI configurations. The spread of the

fit matches the spread of the SMB, and the deviations from the fit are only large for few simulations at the end of the simulated415

period (Fig. C1). We give more weight to the ESMs that perform well in the historical period compared to ERA-Interim which

we use as a reference. For the calculation of the weights, the average over the SMB of all different parameter combinations

for the same ESM is determined first. The absolute deviation of the ESM simulation from ERA-Interim is the difference of

the mean SMB over the historical period for all parameter combinations: SMBM,79−14−SMBE,79−14. Additionally, the

performance of the ESMs is also measured by taking the difference in SMB change over the time period between the ESM and420

ERA-Interim. For every ESM, the total deviation dM is obtained through the Euclidian distance of the absolute deviation and

the deviation of the change:

dM =

√
(SMBM,79−14−SMBE,79−14)2 +((SMBM,04−14−SMBE,04−14)− (SMBM,79−89−SMBE,79−89))2. (C3)
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Figure C2. Variance components, normalised with the total variance of the fit. (a) Calculated with Eq. C5. (b) Calculated with Eq. C6.

M stands for ESM, E for ERA-Interim, and the numbers for the years. The weights are obtained from the deviation like this:

wM =
1

dM
. (C4)425

The weights are normalised through dividing by their sum, and the normalised weights are denoted WM . The variance of the

SMB can be split into components according to the law of total variance. There are 6 possibilities how the split is performed

exactly:

Var(x) = ES,B [VarM (x|S,B)] +ES [VarB(EM [x|S,B]|S)] +VarS(EB,M [x|S]) (C5)

Var(x) = ES,B [VarM (x|S,B)] +EB [VarS(EM [x|S,B]|B)] +VarB(ES,M [x|B]) (C6)430

Var(x) = ES,M [VarB(x|S,M)] +ES [VarM (EB [x|S,M ]|S)] +VarS(EM,B [x|S]) (C7)

Var(x) = ES,M [VarB(x|S,M)] +EM [VarS(EB [x|S,M ]|M)] +VarM (ES,B [x|M ]) (C8)

Var(x) = EM,B [VarS(x|M,B)] +EM [VarB(ES [x|M,B]|M)] +VarM (ES,B [x|M ]) (C9)

Var(x) = EM,B [VarS(x|M,B)] +EB [VarM (ES [x|M,B]|B)] +VarB(ES,M [x|B]) . (C10)

The possibilities C8, C9 and C10 are discarded because expectation values of variances between scenarios are calculated.435

However, we assume that there should be differences between the scenarios because of their different extents of external forc-

ing. We base our analysis on C7, but the results of C5 and C6 do not deviate much (Fig. 5 and Fig. C2).

The internal variability V (t) is the variance of the residues of the polynomial fit. It is considered time-dependent because

the spread between the different simulations in Fig. C1c changes in time. Therefore, it is calculated for every point in time t440

over the 20 years around t (t±10a) and over all scenarios and BESSI parameters. The weighted mean of this variance over all

ESMs yields the internal variability:

V (t) =
∑
M

WMVarB,S,t±10a(εB,M,S,t±10a) . (C11)
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The sum of the internal variability and the other uncertainty components (Eq. C7) that are considered as the ESM uncertainty

M(t), scenario uncertainty S(t) and the snow model parameter uncertainty B(t) is the total variance of the SMB T (t):445

T (t) = V (t)+M(t)+S(t)+B(t) . (C12)

For the ESM uncertainty, the weighted variance VarwM of the ESMs over the mean parameter configuration is averaged over

the scenarios:

M(t) = ES,B [Var
w
M (x|S,B)] =

1

Ns

∑
s

VarwM

(
1

NB

∑
B

xB,M,S,t

)
. (C13)

For the scenario uncertainty, the variance of the weighted multimodel mean of the mean parameter configuration is taken:450

S(t) = EB [VarS(E
w
M [x|S,B]|B)] = VarS

(∑
M

WM

(
1

NB

∑
B

xB,M,S,t

))
. (C14)

The BESSI uncertainty is the mean uncertainty of all parameters:

B(t) = VarB(E
w
S,M [x|B]) =

1

NS

∑
S

∑
M

WMVarB(xB,M,S,t). (C15)
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