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Abstract. Grounded in-situ, or invasive, cosmic ray neutron sensors (CRNSs) may allow for continuous, unmanned measurements over the 15 
entire winter; and allow measurements that are representative of spatially variable Arctic snow covers, but few studies have tested these 

types of sensors or considered their applicability at remote sites in the Arctic. During the winters of 2016/17 and 2017/18 we tested a 

grounded in-situ CRNS system at two locations in Canada; a cold, low- to high-SWE environment in the Canadian Arctic and at a warm, 

low-SWE landscape in Southern Ontario that allowed easier access for validation purposes. Five CRNS units were applied in a transect to 

obtain continuous data for a single significant snow feature, additionally, CRNS moderated neutron counts were compared to manual snow 20 
survey SWE values obtained during both winter seasons. The data indicates that grounded in-situ CRNS instruments appear able to 

continuously measure SWE with sufficient accuracy utilizing both a linear regression and non-linear formulation. Grounded in-situ CRNS 

have important applications for measuring SWE in a variety of environments, including remote Arctic locations. These sensors can provide 

important SWE data for testing snow and hydrological models, water resource management applications, and the validation of remote-

sensing applications.  25 
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1. Introduction 

The Arctic tundra snow cover is typified by low snow depth and low snow water equivalent (SWE) when averaged 

over areas of a few km2, but extreme spatial variability in depth and SWE over distances of less than 10 m (Sturm et, 1995, 30 

2001; Rees et al., 2014). These features are due to a combination of low winter snowfall, wind that redistributes snow across 

the landscape, and high rates of sublimation during these blowing snow events. For example, total SWE is often less than 300 

mm over the long winter, with up to 40% of this snowfall sublimating during blowing snow events. Blowing snow also results 

in wind scoured uplands characterized by shallow, low density snow cover (< 0.7 m; < 300 kg/m3) and deep, high density 

snow drifts (up to 10 m; up to 600 kg/m3) located on steep hillslopes (Marsh and Pomeroy, 1996). Within the tundra-taiga 35 

ecotone, deep drifts also occur in small shrub or tree patches. Although deep drifts are small in area, they often contain a large 

portion of the total landscape SWE (Gray et al., 1974; Marsh and Woo, 1981; Gray et al. 1989; Marsh and Pomeroy, 1996; 

Sturm et al., 2001). This spatially variable snow cover exerts important controls on many aspects of the tundra environment, 

including soil and permafrost temperature, permafrost processes such as ice wedge cracking, streamflow hydrology, lake level, 

and wildlife habitat for example. However, monitoring this snow cover remains extremely challenging (Kinar and Pomeroy, 40 

2015).  

The Arctic snow observing system has very few ground-based monitoring stations, and these are often located in 

areas not representative of the broader Arctic. For example, the majority of Arctic stations are typically chosen to be located 

at town sites; for search and rescue bases/stations; to improve military capabilities; to function as entities that legitimize 

national or sovereign claims; and to engage in multilateral actions to protect Arctic infrastructures (Goodsite et al., 2016). 45 

Since the 1970’s many purely research-purpose Arctic environmental monitoring stations have been permanently closed 

(Schiermeier, 2006; Rees et al., 2014). As such, standard measurements used at these stations are either prone to considerable 

errors, not representative of the surrounding area, or not measured at all. For example, snowfall measurements are prone to 

large errors due to under catch during high winds (Pan et al., 2016), while sublimation is seldom measured. Measurements of 

snow depth are typically not representative of the surrounding natural terrain as they are limited to point observations using 50 

ruler measurements or acoustic distance systems (Kinar and Pomeroy, 2015). Recent advances in methodology allow 
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measurement of SWE using gamma attenuation (Kirkham et al., 2019) or global positioning systems (Koch et al., 2019), but 

again are limited to point or campaign-based measurements. To overcome these deficiencies, practitioners and researchers still 

use traditional, manual snow surveys in order to document average snow depth, density and SWE across Arctic landscapes. 

Snow survey methods have well known limited accuracy in tundra areas (Goodison et al., 1981; Pomeroy and Gray, 1995; 55 

Steufer et al., 2013; Kinar and Pomeroy, 2015) and do not allow for mapping snow cover as is needed for many Arctic research 

studies.   

Satellite and aircraft remote sensing provide methods to partially overcome some of the limitations outlined above 

through the mapping of both snow cover extent and SWE. Although current satellite methods are well suited to assessing 

climate change impacts on snow across the entire Arctic (Derksen and Brown, 2012; Rees et al., 2014; Hori et al., 2017; 60 

Tollefson, 2017; Bush and Lemmen, 2019) and for large scale water resource needs, they are not suited for providing snow 

data at the high spatial resolution needed for many research needs. Airborne remote sensing methods are able to provide high 

resolution snow data, but also have certain limitations. For example, methods to map snow depth at high resolutions are 

available (Deems et al, 2013; Walker et al., 2020), but mapping of snow density or SWE are not (Koch et al., 2019). SWE 

along flight transects is available using airborne gamma methods but have limited applicability in the Arctic due to the high 65 

cost associated with campaign-based measurements. Airborne radar methods, such as LiDAR, have promise for mapping SWE 

at moderate resolutions, but are also primarily utilized as campaign-based measurements and remain in the research stage 

(Derksen et al., 2017).  

Grounded in-situ cosmic ray attenuation methods – where the sensor is always in contact with the soil-interface, and 

specifically in our works, is not buried, have not been extensively tested but may fill a needed gap between existing ground-70 

based and remote sensing snow monitoring methods. Kodama et al. (1979) first described the use of a grounded in-situ, or 

invasive, cosmic ray neutron sensor (CRNS) to measure SWE by burying a shielded neutron sensor below the ground surface 

and allowing snow to accumulate upon it. This method records neutrons in the fast (~1 MeV) to epithermal (~0.025 eV) range 

which are generated by galactic cosmic rays that interact with atmospheric particles, snow and soil (Kodama et al., 1979; 

Howat et al., 2018; Gugerli et al., 2019). As hydrogen in water molecules absorbs neutrons, higher SWE snowpacks will 75 
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attenuate larger numbers of neutrons, leading to lower neutron counts below deeper snow packs. For a neutron sensor placed 

at ground level, the sensor footprint is essentially a point source on the scale of the instrument (in our case, a 130 cm tube), 

and the relationship between neutron counts is inversely proportional to the amount of SWE on the ground. Currently, we are 

aware of two such grounded in-situ CRNS systems that are used operationally or are commercially available. One is deployed 

by Électricité de France (Paquet and Laval, 2005; Paquet et al., 2008; Delunel et al., 2014) in the French Alps and used in 80 

estimating snow cover runoff for operational hydroelectric power generation. A second CRNS system is the SnowFoxTM (SF) 

system commercially available from Hydroinnova (Howat et al., 2018; Gugerli et al., 2019).  The SF uses a single neutron 

measuring tube placed immediately below or at the ground surface prior to winter, allowing the snowpack to accumulate atop 

of it.  

Since the SF can measure SWE from near zero to as high as four meters, and potentially up to 10 meters (Howat et 85 

al., 2018; Gugerli et al., 2019), the SF is capable of measuring SWE across deep snow drifts by employing multiple instruments 

in a transect. Such a network of CRNS sensors has the potential to fill a significant measurement gap between traditional 

ground-based measurement systems and remote sensing. This paper will focus on the SF, simply called a CRNS for the 

remainder of the paper, with an objective to test the potential of this CRNS to provide continuous measurements of SWE 

accumulation and melt along transects where SWE varies greatly, and over full snow seasons.  90 

2. Materials and Methods 

2.1 Cosmic Ray Neutron Sensor (CRNS) 

The CRNS has a single neutron sensor tube, installed on the ground surface, that provides an estimate of SWE across 

a small footprint that is assumed to be a “point” measurement. The CRNS used in this study has a 130 cm cylindrical neutron 

detector tube with a separate control module incorporating a Hydroinnova QDL2100 data logger and an iridium satellite 95 

communication device. The neutron detector tube is moderated (shielded) by a polyethylene casing to reduce the sensitivity of 

the detector gas and to increase the sensitivity towards the fast and epithermal ranges – where the CRNS principally measures 

neutrons after they traverse the overlying snowpack (Delunel et al., 2014; Woolf et al., 2019). Between this energy range, a 
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neutron collision with the CRNS polyethylene casing causes the neutron to reach thermal equilibrium with the moderator and 

be easily absorbed by the detector. An absorber in the detector tube captures the neutron and splits into two charged particles 100 

which trigger an ionization pulse in the tube, this is noted as one neutron count (Bartol, 1999). Counts are recorded over a pre-

set interval and the counting rate (i.e. relative neutron intensity) can be retrieved manually from the data logger and are also 

posted in near real-time on a private web portal hosted by the manufacturer. The fundamental process of the CRNS is that a 

baseline moderated neutron counting rate is established during the initial snow-free setup, and any deviations from this baseline 

would be inversely proportional to the amount of near-surface water content. This near-surface water content is primarily 105 

attributed to SWE during snow covered periods, and to soil moisture during snow-free periods. A single neutron tube can be 

used individually, or a number of neutron sensor tubes can be connected to a single data logger to provide measurements along 

a transect up to several hundred meters in length. Due to the fundamental operation of the CRNS, when setting up multiple 

neutron sensor tubes in a transect, it is recommended that a similar moderated neutron counting rate is used as the baseline for 

each unit. 110 

2.2 Determination of Snow Water Equivalent using a Cosmic Ray System 

To estimate SWE from the CRNS neutron data, the raw moderated neutron counts (NRAW) must be corrected for 

barometric pressure (Fp) and the temporal variation of incoming neutrons (Fi). Since these correction factors (Fp and Fi) 

represent a change from one point in time to another, they are unitless. The corrected moderated neutron counts (N) is 

calculated as: 115 

 

N =  NRAW ×  Fp × Fi                          (1)               

 

N is then updated as a running average over 12 timesteps in order to reduce the noise associated with the hourly moderated 

neutron data. Fp is given by: 120 
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 Fp = 𝑒𝑒𝑒𝑒𝑒𝑒 �P−P0
L
�                          (2)    

            

where 𝑒𝑒𝑒𝑒𝑒𝑒  is the natural exponential, P is the observed air pressure (hPa) recorded by a pressure sensor on the CRNS 

instrument, and P0 represents a reference air pressure, set to 1000 hPa. The mass attenuation length, L (g/cm2), was provided 125 

by the manufacturer and is based on latitude (Desilets, 2021). Fi is then calculated as: 

 

Fi =  Nref
Nnm

                                    (3)               

 

where Nref is the average incoming neutron count over an arbitrary counting period (e.g. the first month of data after the initial 130 

snow-precipitation of the winter season) and Nnm is the hourly incoming neutron count during the time of interest (snow 

covered season). Numerous non-invasive CRNS studies (Zreda et al., 2012; Chrisman and Zreda, 2013; Schattan et al. 2017; 

Schattan et al., 2019) have used incoming cosmic ray fluxes from the Jungfraujoch Neutron Monitor in Switzerland to estimate 

Fi. However, incoming cosmic rays are location dependent, and neutron monitoring stations with higher geomagnetic latitudes 

are known to have a greater sensitivity to the lower end of the neutron monitor energy range when compared to midlatitude or 135 

low-latitude stations (Kuwabara et al., 2006). As a result, it is preferable to use a nearby neutron monitor, and we therefore use 

incoming neutron fluxes from the monitoring station located at the Aurora Research Institute, Inuvik, Northwest Territories, 

and available from the Neutron Monitor Database (Klein et al., 2010). SWE (mm) can then be estimated as follows (Desilets, 

2010): 

 140 

SWE = −10 × (𝛬𝛬) × ln � N
N0
�                              (4)               

 

where ln is the natural logarithm, N is the corrected and 12-h averaged moderated neutron count from Eq. (1), and N0 represents 

the averaged neutron count 7-14 days prior to the initial snow accumulation of the season. N0 serves as the instrument’s 
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moderated neutron count baseline, establishing a crucial initial relationship between the pre-snowfall neutron count and a near-145 

surface water content while the SWE is zero. Any deviations from the baseline counting rate are inversely proportional to the 

amount of near-surface water content. This is the fundamental operating process of the CRNS instrument. The near-surface 

water content range for this grounded in-situ CRNS has not been quantified in literature, however, it is primarily attributed to 

SWE during snow covered periods and soil moisture during snow-free periods (Paquet and Laval, 2005; Paquet et al., 2008; 

Howat et al, 2018). The attenuation coefficient,  1
𝛬𝛬
  , is then calculated as:   150 

 

 1
𝛬𝛬

= 1
𝛬𝛬𝑚𝑚𝑚𝑚𝑚𝑚

+
� 1
𝛬𝛬𝑚𝑚𝑚𝑚𝑚𝑚

 − 1
𝛬𝛬𝑚𝑚𝑚𝑚𝑚𝑚

 �

�1+𝑒𝑒𝑒𝑒𝑒𝑒�− 
�N−𝑚𝑚1N0 �

𝑚𝑚2
��

𝑚𝑚3                  (5)     

 

The instrument manufacturer provided two sets of calibration parameters, used in Eq. (5), for the CRNS instrument. The Λmax 

value represents the rapid attenuation of neutrons, while the Λmin value represents a more gradual attenuation. 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3 155 

are factory-fitting parameters determined by the manufacturer through calibration and field validation experiments.  

For details regarding the CRNS parameters, refer to Sect. 3.3. 

3. Study Sites and Methods 

3.1 Study Sites 

CRNSs were installed at two locations across Canada; a warm, low SWE agricultural field located in southern Ontario, 160 

and a cold, high SWE environment located within a tundra shrub patch in the western Canadian Arctic (Fig. 1). The southern 

site allowed frequent field visits during the winter period, and the combination of two sites allowed testing of the CRNS over 

a range of SWE, climate, and soil conditions. The southern Ontario study site is located at 300 masl, near Elora, Ontario (43.6˚ 

N, 80.3˚ W) (Fig. 1). This site typically has warm, shallow snowpacks with low SWE and low spatial variability. A dominant 
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feature of the Elora site is the absence of a consistent average annual snowpack, numerous snowfall events, and numerous melt 165 

and refreeze events that affect the SWE.  

The Arctic study site is located at 30 masl in the Trail Valley Creek research observatory (TVC) (Fig. 1) (68.4˚ N, 

133.3˚ W), 50 km north of Inuvik, Northwest Territories. The TVC site is characterized by continuous permafrost with a 

shallow active layer. It is dominated by Arctic tundra vegetation, with the ground cover consisting of a highly porous organic 

layer and a large water storage capacity (Quinton and Marsh, 1999; Wrona, 2016). Patches of tall shrubs (birch, alder, and 170 

willow) and black spruce trees are scattered across the tundra. Snow cover forms in October and persists until May, with few 

or no melt periods over the winter. This snow cover is shallow in the wind-blown upland areas and deep snow drifts form on 

lee hillslopes, along stream channels and lake edges, and in tall shrub patches (Marsh and Pomeroy, 1996).  

 
Figure 1. Locations of the southern Canada (Elora) and western Canadian Arctic (Trail Valley Creek) sites used in this study. The 175 
Elora site is located on an agricultural field and has a shallow, temperate snow cover. The Trail Valley Creek site is typical of the 
tundra-taiga ecotone with snow that is highly variable in depth, density and SWE. 
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3.2 CRNS Installations 

A single CRNS was placed in the centre of the Elora field (Fig. 2). Installation of the CRNS occurred on February 

11, 2017 for the 2016/2017 winter season, and on December 5, 2017 for the 2017/2018 winter season. The CRNS experienced 180 

a power issue and did not record data from January 13 to 23, 2018.   

 
 

Figure 2. (a) Location of CRNS at the Elora site during the 2016/17 and 2017/18 seasons (© Google Earth Pro 2020). (b) The location 
of the sensor tube is indicated by the blue arrow. 185 
 

Five CRNSs were installed at TVC on August 5, 2016 along a 50 m transect that traversed from a tundra-shrub 

interface to alder shrubs (up to 2.5 m in height) and back to a tundra-shrub interface. The CRNSs were installed concurrently, 

approximately eight meters apart (Fig. 3) and were connected to a single data logger. This shrub patch accumulates a deep 

snowdrift each winter that is representative of snow accumulation typical to shrub patches found in the tundra-taiga transition 190 

zone. Each CRNS was installed on the ground surface prior to the accumulation of snow. The batteries for both the Elora and 

TVC systems were recharged by solar panels. However, at TVC, they provided limited power to the batteries during much of 

the winter. From the start of the TVC snow season in October, until March 4, 2017 and May 3, 2018, a low power sampling 

mode was used, with four, one-hour recordings obtained per day. After these dates, sufficient sun allowed the solar panels to 

recharge the batteries, and the CRNS system measurement frequency adjusted to 24, one-hour recordings per day. During the 195 

winter period, we used a 12-timestep running average to estimate SWE; resulting in a three-day averaged SWE which was 
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used in our analysis. After March 4, 2017 and May 3, 2018, we used a 12-hour running average SWE. The TVC CRNS system 

experienced a power failure from November 10 to 27, 2017, and as a result, no data is available for this period.  

 

Figure 3. CRNS transect at Trail Valley Creek during the 2016/17 and 2017/18 field seasons. (a) Site transect during winter sampling. 200 
(b) Site during snow-free conditions, this image displays the tall alder shrub vegetation (green) and tundra vegetation (orange). Each 
sensor tube is the same size and style as shown in Fig. (2b). 

3.3 CRNS Parameters 

The standard terrestrial parameters (Table 1) were used for the Elora study site. However, the TVC snow cover is 

underlain by a high porosity soil matrix with an active layer thickness of 0.5 to 1.0 m (Wilcox et al., 2019), this active layer is 205 

typically saturated with liquid water prior to freeze up, and therefore has a high ice content during the winter season (Wrona, 

2016). As a result, we applied the manufacturer suggested glacier parameters (Table 2) to this Arctic site. However, we 

increased the 𝑎𝑎1 parameter in order to create a site-specific calibration which addressed the factor that the TVC subsurface 

was not pure water/ice, but had mineral and organic properties and was highly porous and permeable – typical of an Arctic 

landscape. We used a systematic approach on each of the parameters and observed a significant increase in data quality, relative 210 

to field measurements, when adjusting only the 𝑎𝑎1  parameter. Howat et al. (2018) and Gugerli et al. (2019) tested a similar 

CRNS model on the Greenland Ice sheet and the Glacier de la Plaine Morte in Switzerland, and were successful using the 
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manufacturer-provided glacier parameters. Although they tested a non-invasive CRNS model, findings from Schattan et al. 

(2017), Schrön et al. (2017), and Wallbank et al. (2021) suggest that adjusting the fitting parameters may lead to improved 

results, and in discussion with the manufacturer, it was confirmed that adjusting the fitting parameters for this grounded in-215 

situ CRNS model may also lead to improved results. Future research is recommended to investigate the impact of each 

parameter and to explore the potential of a standard set of factory-fitting parameters for an Arctic landscape. 

Table 1. Factory-fitting parameters for Eq. (5) were used for the Elora site. Values were obtained from the CRNS manufacturer and 
are representative of a terrestrial landscape.  

 220 
Elora 

Λmax 134.7 
Λmin 20.0 
𝑎𝑎1 0.612 
𝑎𝑎2 0.073 
𝑎𝑎3 0.598 

 

Table 2. Factory-fitting parameters used for Eq. (5) for the Trail Valley Creek shrub site. Values were obtained from the CRNS 
manufacturer and are representative of a glacier landscape. 𝒂𝒂𝟏𝟏 parameter was adjusted from 0.313 to 0.355 to represent the high 
porosity, saturated soils of the study site.  
 225 

Trail Valley Creek 
Λmax 114.4 
Λmin 14.1 
𝑎𝑎1 0.355 
𝑎𝑎2 0.083 
𝑎𝑎3 1.117 

 

3.4 Snow Surveys 

A total of five snow surveys were conducted at the Elora site during accumulation and melt conditions from February 11 

to March 14, 2017, and 11 surveys from December 23, 2017 to February 20, 2018. The snow surveys consisted of a snow-core 

campaign utilizing an ESC30 style snow-corer from SnowHydro which features a cross sectional area of 30 cm2 for measuring 230 

snow depth and density. The snow cores were transferred to a plastic bag and weighed on-site with an electronic scale (A&D 

HT-3000). The depth and density of each snow sample was recorded and used to calculate the SWE. Snow surveys at this site 
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consisted of three to four snow core samples taken within a one meter proximity to the CRNS. Snow core results were averaged 

to represent a single value for that date. Results from Turcan and Loijens (1975), Peterson and Brown (1975), Goodison et al. 

(1981), Sturm et al. (2010) and Royer et al. (2021) state that the standard measurement error associated with using this type of 235 

snow-corer ranges from 1-10 %.  

Snow surveys were performed at the TVC site during the 2016/2017 winter season from December 13, 2016 to June 6, 

2017 and April 28, 2018 to June 7, 2018 during the 2017/2018 season. 17 surveys were conducted in 2016/17 and 28 in the 

2017/18 winter season. The snow-core campaign included accumulation and snowmelt conditions and consisted of 10 

measurements (approximately equally spaced apart) along the 50 meter transect (Fig. 3). Again, a SnowHydro snow-corer was 240 

used. Using the same approach as the Elora site, samples had their depth and weight recorded immediately after collection and 

were used to calculate SWE. Data from this site was used in two ways,  

1) SWE calculated from the five CRNS instruments was averaged and this single averaged value was used to represent 

the total snowdrift for that date; and 

2) SWE calculated for each CRNS was compared with the snow survey measurement obtained nearest to the specific 245 

CRNS of interest. This allowed the CRNSs to be compared to one-another within the snowdrift over the course of the 

snow covered season. 

4. Results and Discussion 

4.1 Relationship between Neutron Counts and SWE 

Corrected, moderated neutron counts, N from Eq. (1) (simply referred to as counts, or neutron counts, for the 250 

remainder of the paper), were assessed in relation to SWE as follows. 

The relationship between neutron counts and SWE at Elora was assessed in two ways. First, the N0-calibration function (Eq. 

(4) and Eq. (5)) was used to estimate SWE from the neutron counts and compared to snow survey measurements of SWE. 

Using this approach, the R2 was 0.74 when combining data from the winters of 2016 and 2017 (Fig. 4), and improved to 0.93 

with the exclusion of an outlier from the 2017/18 dataset.  255 
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Figure 4. Snow survey SWE vs CRNS-estimated SWE at Elora during both winter seasons. Outlier from 2017/18 is outlined. 
 

Second, we carried out a bivariate analysis directly between neutron counts and SWE from the snow surveys using a linear 

regression (Fig. 5a). Although the N0-calibration function (Eq. (4) and Eq. (5)) is commonly utilized due to the non-linearity 260 

of the cosmic ray attenuation method, the manufacturer notes that a linear approximation may have potential to be effectively 

utilized for grounded in-situ CRNS up to 15 cm of SWE. Past this value, the non-linearity of the N0-calibration function 

becomes more pronounced (Fig. A1) and should be accounted for. Additionally, although they tested a different CRNS model, 

findings from Siguoin and Si (2016) and Bogena et al. (2021) state that the linear regression methodology is able to determine 

the SWE of the snow pack reasonably well.  265 

Utilizing this approach provided a best fit linear regression that varied between each study year as follows: 

 

SWEElora2016/17 =  −0.084(𝑁𝑁)  +  112.00                      (6)     

 

and 270 
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SWEElora2017/18 =  −0.144(𝑁𝑁)  +  191.99                         (7)     

 

Where 𝑁𝑁 is the 12-h averaged counts (N) from Eq. (1) which has already been normalized by the snow-free near-surface 

water content from Eq. (4). The statistical analysis (Table 3) suggests a strong correlation to the linear regression equations 275 

and indicates a high probability of predicting future responses, suggesting that the linear regression equations may be well 

transferable in time. The RMSE of the CRNS-measured maximum SWE was exceptionally low; 2.0 mm in 2016/17 and 1.6 

mm in 2017/18.   

Table 3. Statistical analysis summary of the Elora linear regressions 
 280 

Elora, 2016-2017 Elora, 2017-2018 
−0.084(𝑁𝑁)  +  112.00     −0.144(𝑁𝑁)  +  191.99    

R2 0.92 R2 0.94 
Pearson -0.95 Pearson -0.97 
RMSE 2.0 mm RMSE 1.6 mm 

 

However, the slope and y-intercept values for 2016 vs 2017 (Eq. (6) and (7)) are considerably different. The 

discrepancy in the y-intercept is believed to be related to the CRNS being installed later in the winter season in 2016/17 

(February 11, 2017) after the first accumulation of snow at the site. As a result, the sensors neutron count baseline does not 

incorporate the near-surface water content prior to the initial winter freeze-up, and therefore, based on Eq. (4), 285 

underrepresents the actual SWE at this site. The majority of this unaccounted water content is likely stored in the first few 

centimeters of soil. In 2017/18 however, the CRNS was installed on December 4, 2017, before the first accumulation of 

snow on the ground and the initial soil freeze-up. This means the CRNSs’ baseline between the two seasons are likely to be 

different. To consider if this explanation is reasonable, we followed the approach of Sigouin and Si (2016), also noted by 

Royer et al. (2021), where the authors applied a correction based on soil water storage in the top 10 cm of the soil profile and 290 

adjusted their SWE values accordingly. To follow this approach, we used an estimated water capacity of the top 10 cm soil 

layer to be up to 2 mm/cm (Blencowe, 1960; Ball, 2001) and assumed a 50% soil moisture. This provided an estimated soil 
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water storage of up to five millimeters. Adding this value to the non-zero SWE from snow surveys conducted in 2016/17 and 

conducting a second regression to the 2016/17 data provided a best fit equation of:  

 295 

 SWEElora2016/17adjusted =  −0.107(𝑁𝑁)  +  143.9                     (8)     

 

As shown in Fig. 5b, this adjusted equation provides a slope and y-intercept that is closer to that of the 2017/18 equation (Eq. 

(7)). This illustrates the significance of installing CRNS prior to the start of the snow covered season. However, due to this 

late season installation, we were able to reasonably estimate the antecedent soil water capacity by comparing the regression 300 

trendlines from year-to-year. This comparison between snow-seasons is possible because the soil water storage directly impacts 

the N0 value (or N when SWE is zero). In practice, this further indicates that a linear regression function is well transferable 

in time at sites with similar soil water storage capacity – such as Elora. In a broader approach, this allows researchers and 

operators to set up the CRNS, even after the initial snowfall and subsequent soil freeze-up, and capture accurate SWE data, so 

long as it is corrected for soil moisture conditions afterwards (Royer et al., 2021). Additionally, another significant advantage 305 

of utilizing a linear regression approach is that it is considerably more time efficient than fitting the full N0-calibration function. 

This approach is most practical for cosmic ray neutron attenuation up to ~15 centimeters of SWE; past this point, the 

non-linearity of the effective attenuation length vs. SWE (Eq. (5)) becomes more pronounced. Considering that the maximum 

SWE for both winter seasons at Elora was well below 15 centimeters, the linear regression approach provided reasonably 

accurate results. Bogena et al. (2021) notes that, to date, there is no consensus on which single method is best suited to convert 310 

neutron intensity data into SWE. This section demonstrates that a grounded in-situ CRNS utilizing a linear regression approach 

is able to reasonably measure SWE. Future research is recommended to assess the linear regression analysis vs the non-linear 

approach in order to quantify the measurement accuracy discrepancy between the two approaches at low, moderate, and high 

SWE sites using grounded in-situ CRNS. Considering that the grounded in-situ CRNS requires virtually zero maintenance and 

can be set-up by one person in under an hour, the regression equation methodology may be an effective approach for quickly 315 

estimating SWE at remote sites and at sites where soil moisture is rather consistent. 
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Figure 5. Comparison between counts (N) and average snow survey SWE at the Elora site. (a) Shows both 2016/17 and 2017/18, 
with red and blue lines showing the regression Eq. (6) and (7). (b) Shows 2016/17 and 2017/18, but with the regression equation for 
2016/17 SWE values adjusted to account for the antecedent water content in the top few centimeters of soil. Red line represents 320 
Eq. (7) and blue, Eq. (8). Zero SWE values represent snow-free conditions and the error bars represent the standard deviations. 
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4.2 Temporal Snow Cover Development and Melt 

Using Eq. (4), the CRNS instrument allowed for the continuous measurement of SWE over an entire winter 

accumulation and melt season at one point at the Elora site, and for multiple sites across the TVC snow drift. Figure 6 shows 325 

changes in SWE at the Elora site for both study years, and illustrates the potential for the CRNS approach to measure key 

aspects of the winter SWE, including: maximum SWE, rapid changes in SWE due to both snowfall accumulation and 

snowmelt, and the timing of snowpack removal due to melt. For example, during the 2016/17 winter season the maximum 

SWE peaked briefly at 31 mm in mid-February and 42 mm in late January 2017/18 (Fig. 6), and then rapidly decreased over 

the next few days due to snowmelt. Measuring such rapid changes in SWE would be very challenging using manual snow 330 

survey measurements, and only a few other instruments, such as gamma snow sensors, allow this type of high-temporal 

resolution, point SWE observations. The CRNS also shows that in 2016/17, the site became snow free numerous times over 

the winter (Fig. 6), and the snow cover was removed for the last time on March 14. In 2017/18 there was a continuous snow 

cover from December to late January, and the snow cover was then removed on February 20 and did not form again that winter. 

The small, short duration fluctuations in SWE in both years (Fig. 6) likely represent the periods of snowfall, snowmelt, 335 

sublimation, and wind erosion/transport. In addition, small fluctuations are likely also due to the inherent measurement error 

of the CRNS. This error has yet to be definitively quantified but is assumed to average below 7% (Kodama et al., 1979; Howat 

et al., 2018; Gugerli et al., 2019). Figure 6, at some intervals, shows negative SWE during both winters, this implies that the 

CRNS is recording a higher number of counts (N) than was originally measured during its baseline (N0). Meaning that the 

CRNS is sensing a lower amount of near-surface water content than was recorded at the start of the winter season. This is 340 

directly due to the CRNS fundamental measurement basis where any deviations from the baseline counting rate are inversely 

proportional to the amount of near-surface water content (Eq. (4)). In these cases, the negative values imply that the snow has 

melted, infiltrated past the measurement scope of the CRNS, and therefore the immediate surrounding environment is drier 

than it was just before the onset of the winter season’s first snowfall and initial soil freeze-up. 

 345 
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Figure 6. Continuous measurement of SWE at the low-SWE, Elora site during the (a) 2016/17 and (b) 2017/18 winter season. 
When SWE values are negative, the CRNS is recording a lower near surface water content than its baseline. CRNS SWE values 350 
were calculated using Eq. (4). 

 



19 
 
 

 

One example of the advantage of using a CRNS system is shown during 2017/18 (Fig. 6b) when there was a notable 

discrepancy on January 23, 2018 between the observed and estimated SWE. The CRNS estimated 16 mm of SWE, while the 

snow survey conducted on the same day resulted in a SWE of zero millimeters. This discrepancy occurred because a warm 355 

spell led to rapid snowmelt between January 21-22, immediately followed by a return to below freezing temperatures. This 

resulted in the formation of a thick ice layer covering the site, which the snow survey was not able to measure. However, the 

CRNS was able to record the SWE of this ice layer.  

Figure 7 shows a similar time series for SWE at the TVC site. In this example, the SWE from the five CRNS 

instruments were estimated using Eq. (4), averaged to represent a single value, and compared to snow survey data across the 360 

same transect. The initial snow-precipitation events of the 2016/17 season occurred in late November 2017, but a month earlier 

in 2017/18. During both years, SWE continued to increase for the remainder of the winter. Unlike the Elora site, there were 

no midwinter melt events, but the small decreases in SWE are likely due to removal of snow from the transect by blowing 

snow erosion. The maximum average SWE across the transect in 2016/17 was 370 mm. Peak SWE occurred on May 9th, a few 

weeks prior to the onset of snowmelt. Small, high frequency SWE fluctuations during this period are primarily due to the 365 

change in the sampling rate of the CRNS. This change occurred when we switched the CRNS system from winter power 

conservation mode, where the sampling rate was four, one-hour interval recordings per day, to the default sampling rate, which 

was 24, one-hour interval recordings per day. The maximum SWE at TVC in the 2017/18 season was 369 mm (May 13th), and 

once again, occurred shortly prior to the initial onset of the spring snowmelt. Since the CRNS system measures total SWE 

(including liquid water within the snowpack), it does not identify when surface snowmelt begins, but instead detects when 370 

meltwater begins to leave the base of the snowpack and SWE begins to decline. This ability allows the direct measurement of 

snowmelt runoff from the snow cover and is an exceptionally useful parameter for studying snowmelt runoff and for testing 

the performance of snow models used for modelling snowmelt runoff.  
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Figure 7. Continuous measurement of a snowdrift at TVC in the (a) 2016/17 and (b) 2017/18 winter season. CRNS-measured SWE 375 
was averaged from the 5 CRNS and values were calculated using Eq. (4).  
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4.3 Snow Accumulation and Melt at locations across a Snow Drift 

Figure 8 shows snow accumulation and melt at each of the five CRNSs across the TVC drift (Fig. 3). In the winter of 

2016/17 (Fig. 8a), the snow drift began to form in the centre of the shrub patch in early December, while significant 380 

accumulation did not begin in the southern edge of the patch until a few weeks later. Over the rest of the winter, the snow 

cover in the centre of the shrub patch (CRNS 3 and 4) continued to accumulate rapidly as blowing snow was deposited in the 

drift, and these sites ended up with the largest SWE at the end of winter. In this case, the centre of the patch had 555 mm of 

SWE at the end of winter in 2016/17 and 645 mm at the end of winter in 2017/18. Other parts of the shrub patch also had 

similar maximum SWE values in comparison to one another from both years (Fig. 8a and 8b). As described earlier, the 385 

noisiness shown in Fig. 8 is due to a change in frequency of the sampling rate.  

Spring snowmelt begins in mid-May at TVC, however, the early season melt is likely retained within the snowpack 

as liquid water is refrozen into ice (Wrona, 2016). Early spring snowmelt, primarily from the snowpack surface or near-surface, 

is known to refreeze during infiltration of deep snowpacks (Pomeroy and Gray, 1995; Marsh and Pomeroy, 1996), this 

infiltration refreeze is amplified when temperatures fluctuate between freezing and above freezing – as is common during 390 

spring snowmelt. Temperature data from 2017-2018 (Fig. B1) confirm that early spring temperatures tended to fluctuate 

between freezing and above freezing. Early into the spring season snow-core campaign, we visually noticed the snowpack 

surface and near-surface melting, and later in the season, noticed distinct variability in the amount of water saturation within 

the snow-cores on different days. After sufficient melt and subsequent snowpack saturation, water is available to infiltrate the 

soil or runoff laterally (Quinton et al., 2010), it is likely that at this point the melt began to exit the measurement footprint of 395 

the grounded in-situ CRNS and led to the rapid decrease in SWE (Fig. 8a).  

Loss of SWE begins first at CRNS 1 (May 16), at the edge of the shrub patch where the snow is shallower.  As melt 

progressed, snow mass is removed from each location in the following order: CRNS 5 on May 17, CRNS 2 and 3 on May 20 

and lastly, CRNS 4 on May 23. By June 7, all five CRNSs indicated that the snow overlying them has melted. In both seasons, 

CRNS 5 accumulated a higher SWE than CRNS 2 (Fig 8a and 8b) but began to melt days earlier. At the same time, as CRNS 400 

5 is melting, CRNS 2, 4, and to a lesser extent, CRNS 3, experienced a slight increase in SWE, likely attributed to a lateral 
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redistribution of snowmelt from the margin of the shrub site (CRNS 5) to the interior of the patch (CRNS 2, 3, 4). Using these 

changes in SWE from the CRNSs provides continuous detailed snow accumulation and melt across a snowdrift for a complete 

winter season. This type of unique data set can be expanded and would be particularly useful for prominent snowdrifts or 

features. For example, a significant snowdrift in a known watershed at critical locations along several margin points and semi-405 

margin points, as well as in the relative centre, would allow for the collection of continuous data regarding the rate of 

accumulation, melt, and snow transport (e.g., due to blowing snow), with essentially no maintenance and minimal user 

operation – ideal for certain water resource management applications. 
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Figure 8. Change in SWE at TVC from each CRNS throughout the (a) 2016/17, and (b) 2017/18 winter season. CRNS 1 and 5 are 
located at the edges of the shrub patch, and CRNS 2 to 4 are located in the centre of the patch.   
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4. Conclusion 

Grounded in-situ CRNSs were tested at a temperate low-SWE agricultural field in Elora, Ontario and high-SWE 

Arctic tundra site in Trail Valley Creek, Northwest Territories. A strong negative correlation was found between the counts 415 

and the manual SWE measurements obtained from snow surveying. The relationship implies that when SWE increases, the 

moderated neutron counts decrease. An empirical equation for estimating SWE at the Elora site appeared to indicate that low-

SWE sites with similar annual soil water storage may provide reasonable SWE accuracy and are well transferable in time. 

Additionally, the comparison of annual regression trendlines at a single site may be used to reasonably estimate soil water 

storage. This allows researchers and operators to set up the CRNS, even after the initial snowfall and subsequent soil freeze-420 

up, and capture accurate SWE data, so long as it is corrected for soil moisture conditions afterwards. Another significant 

advantage of utilizing a linear regression approach is that it is considerably more time efficient than fitting the full N0-

calibration function.  

By applying five CRNS units in a transect, we were able to obtain continuous accumulation and melt data for a single 

snow feature, including a comparison of accumulation and melt within the snowdrift itself. We were able to determine the 425 

exact date of the peak SWE and of the onset, and completion, of snowmelt. The transect data appeared to indicate that blowing 

snow and lateral redistribution of meltwater through infiltration have a considerable influence on Arctic snowdrifts, however, 

further research is needed to quantify the impact of each process. Future research is recommended to assess the linear 

regression analysis vs the non-linear formulation to quantify the measurement accuracy discrepancy between the two 

approaches at low, moderate, and high SWE sites using grounded in-situ CRNS. 430 

A unique advantage of CRNS systems is that ice layers and wet-snow from mid-winter melt events do not impact the 

sensor measurement accuracy and the CRNS measures all components of the snowpack SWE, including dry snow, ice layers, 

and wet snow. Using a CRNS for monitoring SWE provides a unique ability to continuously measure SWE and these systems 

can be installed in remote locations and in areas where performing regularly scheduled manual measurements are costly and 

logistically impractical. As such, the CRNS system replaces the need of manually conducting snow surveys and requires 435 

virtually zero operational maintenance.  
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Since it was found that soil water in the top soil profile directly surrounding the CRNS affected the neutron intensity, 

future research involving a CRNS should examine at what soil depth the CRNS is impacted by soil water content, or 

alternatively, could be installed so that meltwater infiltration is shallow enough that water does not infiltrate past the base of 

the sensor. Additionally, we noted that the terrestrial set of parameters appeared to record low-SWE environments 440 

exceptionally well, however, the glacier set of calibration parameters appeared to have some flexibility. This seems to indicate 

that site specific calibration may not apply only to the conventional parameters, such as the snow-free moderated neutron count 

(N0), but also for the CRNS fitting parameters as well. Future research is recommended to investigate the impact of each 

factory-fitting parameter and to explore the potential of a standard set of factory-fitting parameters for an Arctic landscape. 

SWE data from the CRNS could be used for validating surface mass balance models, verifying remote sensing approaches, 445 

and to better understand the effects of a changing climate on snowfall, mid-winter thaws, blowing snow, expanding shrubs 

capturing blowing snow, spatial variability in snow depth and snow water equivalent (SWE), and the rate of spring melt – all 

of which are poorly known. Future works are recommended to utilize grounded in-situ CRNS in a transect for a significant 

snowdrift by incorporating a CRNS unit at critical locations along several margin and semi-margin points, as well as in the 

relative centre to allow for the collection of continuous data in vital watersheds for water resource management applications. 450 
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Appendix A 

 

Figure A1. Grounded in-situ CRNS measurement approximation relative to SWE and N/N0. 

 

Appendix B 465 

 

Figure B1. October 2017- June 2018 ambient air temperature at TVC. 
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