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Abstract. Landfast sea ice (fast ice) is an important though poorly-understood component of the cryosphere on the Antarctic

continental shelf, where it plays a key role in atmosphere-ocean-ice sheet interaction and coupled ecological and biogeo-

chemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice

distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period

2000 to 2018. This reveals a) an overall trend of -882 ± 824 km2/y
:::
year

:
(-0.19 ±0.18 %/y

:::
year); and b) eight distinct regions5

in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18 y
::::
year period and four

negative. Positive trends are seen in East Antarctica and in the Bellingshausen sea, with this region claiming the largest positive

trend of +1,198 ± 359 km2/y
:::
year

:
(+1.10 ± 0.35 %/y

::::
year). The four negative trends predominantly occur in West Antarctica,

with the largest negative trend of -1,206 ± 277 km2/y
:::
year

:
(-1.78 ± 0.41 %/y

::::
year) occurring in the Victoria and Oates Lands

region in the eastern Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our10

knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system that is vulnerable to

climate variability and change. It will also inform a wide range of other studies.

1 Introduction

Around Antarctica, landfast or fast ice is a stationary and consolidated form of sea ice which is attached to, and held in place by,

the coastline or floating ice shelf fronts (World Meteorological Organization, 1970) and icebergs grounded in waters shallower15

than approximately 400 m (Giles et al., 2008; Fraser et al., 2012). As such, Antarctic fast ice forms only on the continental shelf,
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typically in narrow (50 to 250 km wide) bands adjacent to the coast and/or upstream of protrusions into the westward Antarctic

Coastal Current that intercept encroaching (drifting) pack ice (Fraser et al., 2012; Nihashi and Ohshima, 2015). Depending

on location, Antarctic fast ice can range in persistence from annual through perennial to multi-decadal (e.g., Massom et al.,

2010a), with certain regions being highly variable and breaking out and reforming several times per year (e.g., Massom et al.,20

2009; Fraser et al., 2012).

Antarctic fast ice is not only a sensitive bellwether of climate change and variability , given its intimate linkage and

interaction with the high-latitude ocean and atmosphere (Massom et al., 2009; Fraser, 2011; Aoki, 2017). Its
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(given its intimate linkage and interaction with the high-latitude ocean and atmosphere, Massom et al., 2009; Fraser, 2011; Aoki, 2017),

:::
but

::
its distribution also influences the size of adjacent coastal polynyas (Massom et al., 1998, 2001; Nihashi and Ohshima, 2015;

Fraser et al., 2019), affecting regional rates of sea-ice production, water mass modification and the formation of globally-25

important Antarctic Bottom Water in certain key locations (e.g., Kusahara et al., 2017; Ohshima et al., 2013). Moreover, recent

work has shown the importance of fast ice in mechanically bonding and stabilising vulnerable outer margins of floating glacier

tongues and ice shelves (Massom et al., 2018; Massom et al., 2015; Massom et al., 2010a), and also in controlling the seasonal

dynamics and discharge rate of certain outlet glaciers (Greene et al., 2018). Fast ice is also of major ecological importance as a

key breeding habitat for emperor penguins and Weddell seals (Kooyman and Burns, 1999; Massom et al., 2009), plays a role in30

structuring shallow coastal benthic ecosystems (Clark et al., 2017) and is a region of high primary productivity (concentrated

ice algal growth (Meiners et al., 2018)). Coastal fast ice also constitutes a reservoir of nutrients (de Jong et al., 2013) which can

substantially enhance primary production in the coastal zone when released into the water column upon fast-ice breakout/melt

(particularly for thick, multi-year fast ice, e.g., Shadwick et al., 2013). Finally, fast ice can either facilitate or impede aviation

and station resupply activities, depending on its location, extent and thickness (The Council of Managers of National Antarctic35

Programs (COMNAP), 2015). It follows that change and/or variability in Antarctic fast-ice distribution and seasonality have

wide-ranging ramifications, and characterisation of where and how fast ice is changing is a high priority.

Accurate, consistent, long-term and year-round time-series mapping of Antarctic fast ice at a high spatio-temporal resolution

and on a circumpolar scale requires satellite observation, but is technically challenging (Fraser et al., 2009, 2010; Nihashi and

Ohshima, 2015; Fraser et al., 2020; Kim et al., 2018, 2020; Li et al., 2020). Knowledge of its distribution and trends has been40

identified as a major gap (Vaughan et al., 2013; Meredith et al., 2019). This has severely limited our understanding of the

important coastal icescape and key interactive physical, biological and biogeochemical processes therein. Fraser et al. (2012)

released an 8.8 y dataset of East Antarctic fast ice extent from 2000 to 2008, but this dataset has not been updated. Using

passive microwave satellite data, Nihashi and Ohshima (2015) subsequently produced a dataset of circum-Antarctic fast ice

extent from 2003 to 2011, but at a relatively coarse resolution of 6.25 km/pixel, and this technique does not detect and include45

young fast ice (Fraser et al., 2019). Li et al. (2020) recently released a high spatial resolution circum-Antarctic dataset of fast

ice covering November only in the years 2006-11 and 2016-17 using synthetic aperture radar (SAR) image analysis. However,

since November is a month characterised by regionally-variable fast ice retreat (Fraser et al., 2012), it is inadequate for analysis

of long term trends in extent.

As such, detailed circumpolar characterisation of fast ice has not been possible due to the lack of a
:

suitable underlying50

dataset. This gap has recently been filled by the publication of a new time series of fast ice extent from March 2000 to
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March 2018 (Fraser et al., 2020). This dataset contains 432 contiguous maps of fast ice extent at a 1 km and 15 d
:::
day

:
res-

olution, generated by compositing cloud-free visible and thermal infrared imagery from NASA Moderate Resolution Imag-

ing Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites (Fraser et al., 2009, 2010).
::::
The

::::::
process

:::
of

::::::::
generating

::::
the

:::::::::
cloud-free

:::::::::
composite

:::::::
imagery

:::::
relies

:::::
upon

:::
the

::::::::
MOD35

:::::
cloud

:::::
mask

:::::::
product

::::::::::::::::::::
(Ackerman et al., 2006),

::::::
which55

:::::::
performs

:::::::::
brightness

:::::::::::
temperature

:::
and

:::::::::::::::
reflectance-based

:::::::
spectral

::::
tests

:::
to

::::::::
determine

::::
the

:::::::::
probability

:::
of

:::::
cloud

:::::::::::::
contamination.

::::
This

::::::
product

::::
has

:::::::::
limitations,

:::::::::
especially

::::::
during

:::::
polar

:::::
night

::::::::::::::::
(Fraser et al., 2010),

::::
and

:::
the

:::::::::
procedure

:::
for

:::::::::
composite

:::::::::
generation

:::
may

:::
be

::::::::
improved

:::::
using

:::::::
machine

::::::::::::
learning-based

::::::::::
techniques

::::
such

::
as

:::::
those

:::::::::::
demonstrated

:::
by

:::::::::::::::::::::::
Paul and Huntemann (2020).

:::::
Such

:::::::::::
improvements

::::
may

:::
be

:::::::::::
implemented

::
in

:
a
:::::
future

::::
fast

:::
ice

:::::::
product.

Here, we use this
:::
the newly-released

:::
fast

:::
ice dataset to perform a first detailed characterisation of circum-Antarctic fast ice60

distribution, change and variability. We first identify eight distinct regions in terms of fast ice co-variability, which form the

basis of the new analysis of fast ice trends around Antarctica. These regions differ from those
::
the

:::::::
sectors more traditionally

used in Antarctic sea ice analyses (Zwally et al., 1983). We then present the overall extent time series and annual climatology,

spatial characterisation of mean fast ice persistence, age and timing of minimum/maximum extent across the 18 y
:::
year

:
dataset.

We also analyse fast ice persistence in concert with bathymetric depth, and interpret this regionally, to more widely assess and65

determine the linkages between fast ice and grounded icebergs, which act both as stable anchor points for fast ice formation

(e.g., Massom et al., 2009; Li et al., 2020) and to intercept and retain encroaching pack ice, thus encouraging fast ice formation

upstream (Massom et al., 2001; Massom, 2003).

2 Datasets and methods

15 day temporal resolution fast ice maps were obtained from a recently-published NASA Moderate Resolution Imaging Spec-70

troradiometer (MODIS)-derived 18 y
::::
year record of Antarctic fast ice extent (Fraser et al., 2020). This dataset consists of 432

contiguous maps of fast ice extent at a 1 km spatial resolution. This dataset is freely available at http://dx.doi.org/doi:10.26179/5d267d1ceb60c.

In this dataset, fast ice maps were constructed following a semi-automated method whereby persistent edges over a 15 d
:::
day

period were taken to be the fast ice edge. Manual intervention was required for times and regions where cloud cover per-

sisted throughout the 15 d
::
day

:
window. However, semi-automation was achieved, with 58% of fast ice edge pixels able to be75

automatically retrieved, marking an advance over earlier, more subjective large-scale fast ice maps (e.g., Fraser et al., 2012).

To underpin definition of new regions of fast ice co-variability, fast ice anomaly time series are produced for each 1/4◦

of longitude by subtracting the observed 1/4◦ total fast ice from its repeating climatological cycle. New fast
:::
Fast

:
ice regions

are defined by performing a spatial cross-correlation of these 1/4◦ longitude fast ice anomaly time series. Nearby regions

exhibiting similar anomaly co-variability are indicated by positive correlation “pockets”, and these are grouped manually to80

define regions. Automated region selection using a decorrelation length scale minimum-based approach to region delineation,

as in Raphael and Hobbs Raphael and Hobbs (2014), was unable to be implemented due to extensive coastal regions with no

fast ice
::
We

::::
aim

::
to

::::::
select

::::::
regions

::::
with

::::
high

::::::::::
correlation

:::::
within

::::
the

:::::
region

::::
and

:::
low

::::::::::
correlation

::::::
outside

::
of

::::
the

:::::
region. The final

step of manual regional selection a) allows grouping of fast ice regions across gaps; and b) avoids excessive partitioning of
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broader regions.
::::::
Region

::::::::
selection

:::::
using

:
a
::::::::::::
decorrelation

:::::
length

:::::
scale

::::::::::::::
minimum-based

::::::::
approach

::
to

::::::
region

::::::::::
delineation,

::
as

:::
in85

::::::::::::::::::::::
Raphael and Hobbs (2014),

::::
was

::::::
unable

::
to

::
be

:::::::::::
implemented

::::
due

::
to

::::::::
extensive

::::::
coastal

::::::
regions

::::
with

:::
no

:::
fast

::::
ice. This selection of

new regions of fast ice co-variability is detailed in Appendices A and B.

Fast ice persistence distribution is characterised by calculating the the fraction of the time series which each pixel is covered

by fast ice, after Fraser et al. (2012). This “per-pixel” mapping is also exploited to visualise per-pixel a) timing of minimum

and maximum fast ice extent, b) fast ice age and c) trends in extent. The per-pixel trend map is constructed by fitting a90

linear trend to each pixel’s 18 y
:::
year

:
time series of extent, and plotting the slope (trend) for each pixel. The map of timing of

minimum/maximum fast ice extent is constructed by fitting a Fourier series with fundamental (yearly) component as well as 2nd

to 4th harmonics
::::
(first

::::
four

::::::
Fourier

:::::::::::
components) to the time series of fast ice extent for each pixel. The Fourier parameters are

chosen by Levenberg-Marquardt least-squares minimisation (Markwardt, 2009)
:
,
:::::::::::
implemented

::::
here

:::
due

::
to

:::::
speed

::
of

:::::::::
execution

:::
over

::::
the

::::
large

:::::::
dataset. The resulting timing of minimum/maximum extent is then extracted from the Fourier fit. Here, we95

prefer to display timing information in this “day of minimum/maximum” format rather than the traditional maps of “day of

advance/retreat” used in other sea ice seasonality studies (e.g., Massom et al., 2013) due to the event-based formation and

breakout of fast ice, in contrast to the more fine-grained advance/retreat of sea ice. The mean fast ice age map is constructed

by calculating the mean time between fast ice formation and subsequent breakout.

We characterise the distribution of fast ice over bathymetry of varying depth by constructing 2D probability distribution100

functions of International Bathymetric Chart of the Southern Ocean (IBCSO, Arndt et al. (2013))-derived bathymetric depth

(50 m bins) vs fast ice persistence (5 % bins). We use this circum-Antarctic bathymetry compilation despite the caveat that all

such compilations suffer from a scarcity of data in fast ice-infested waters, owing to a lack of shipboard sonar measurements

(Smith et al., 2021). We retrieve the modal value for each persistence bin, then compute the persistence-weighted mean of these

modal values to characterise modal formation depth on a circumpolar basis, as well as within the new regions defined here.105

We also use sea ice concentration from the National Oceanic and Atmospheric Administration/National Snow and Ice Data

Center Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3
::::::::::::::::::::::::::::::
(Peng et al., 2013; Meier et al., 2017), to

compare timing of sectoral fast ice extent to that of overall sea ice. For this timing comparison, we exploit a new technique

to model the seasonal cycle of both sea ice and fast ice presented by Handcock and Raphael (2020). This technique, which

models each year’s annual cycle as an invariant
:
a
:
smoothed spline plus a smoothed trend over time, allows daily-resolution110

calculation of timing statistics even when the input dataset (i.e., the fast ice dataset) has a ∼
:::
has

:
a
:
bi-weekly resolution, thus

facilitating a robust timing comparison between fast ice and overall sea ice extent.
:::
The

:::::::
method

:::
can

:::::::
estimate

:::
the

::::::
smooth

:::::::
cyclical

:::::
spline

:::::
based

::
on

:::
an

:::::::
arbitrary

::::::
and/or

:::::::
irregular

::::
data

:::::::
interval.

:::
We

::::::
treated

:::
the

:::
fast

:::
ice

::::::
extent

::::
value

:::
as

:
if
::
it
::::
was

:
a
:::::
point

:::::::::::
measurement

::
on

:::
the

:::
day

:::
at

:::
the

:::::::
midpoint

:::
of

:::
the

::
15

::::
day

:::::
cycle.

:::
For

::::::::
example,

::
if

:::
the

::::
start

::::::::::
day-of-year

::::
was

::
61

::::
and

:::
the

:::
end

::::::::::
day-of-year

::::
was

:::
75,

::
we

::::::::
modeled

::
it

::
as

::
if

:::
we

:::
had

::
a

:::::
single

:::::::::::
measurement

::
at
::::::::::
day-of-year

:::::::::::
(61+75)/2.

:::::
Here,

:::
we

:::
use

:::
the

::::::::
invariant

:::::
cycle

::::::::
described

:::
by115

:::::::::::::::::::::::::
Handcock and Raphael (2020),

:::::
rather

::::
than

:::
the

:::::
more

:::::::
complex

::::::::
amplitude

::::::
and/or

:::::
phase

:::::::::
modulated

::::::
cycles,

:::::
since

:::
we

:::::::
describe

:::
the

:::::::::::
climatological

:::::::
average

:::::
rather

::::
than

:::::::::
individual

:::::
years.

Circumpolar and regional fast ice trends are computed by calculating the sectoral
::::::
regional

:
total fast ice extent, computing

the climatological cycle, removing the climatological cycle from the observed totals to form the sectoral
:::::::
regional anomalies,
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and fitting a linear trend to the anomalies in each sector
:::::
region. Trend confidence is determined by calculating 95% confidence120

intervals using the t-distribution. In the calculation of trends, pixels experiencing ice shelf retreat or advance during the 18 y

:::
year

:
period are removed from this calculation to remove the strong trend contributions caused by these processes.

3 Results

3.1 Climatological patterns

For the analyses in the following sections, we consider only the eight newly-defined
::
fast

:::
ice

:
regions (as detailed in the Appen-125

dices A and B), plus circumpolar total statistics. Fig. 1 shows the total circumpolar
::
fast

:::
ice

:
extent time series (a) and its climato-

logical annual cycle (b). A strong annual cycle is evident, with a relatively broad maximum (∼ 601,000 km2) occurring through-

out late winter/early spring (day-of-year 273; late September on average), and a well-defined minimum in March (∼221,000

km2, day-of-year 71; mid-March). This indicates that fast ice experiences a seasonal approx.
::::::::::
approximate threefold increase in

extent. As with overall sea ice (Eayrs et al., 2019; Parkinson, 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Eayrs et al., 2019; Parkinson, 2019; Simmonds and Li, 2021),130

fast ice displays an asymmetrical annual cycle, experiencing on average ∼ 7 months of advance and 5 months of retreat. As

such, fast ice as a percentage of overall sea ice area (extent) varies between a maximum of 12.8 % (8.5 %) in early-mid Febru-

ary (coinciding with the overall sea ice minimum in early-mid February) and around 4.0 % (3.2 %) throughout the winter

(mid-July
:::
mid

::::
July

:
to late November). The largest fast ice contribution is from East Antarctica, with the Western Indian Ocean,

Eastern Indian Ocean and Australia regions together contributing over half of all fast ice in terms of areal coverage despite135

only covering 119◦ of longitude (Table 1).

Circumpolar fast ice extent, DOY 061-075, 2000 to DOY 046-060, 2018
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Figure 1. a) Bold black line: circumpolar total fast ice extent time series, Mar 2000 - Mar 2018. The gray shading indicates the uncertainty

in the underlying dataset, and the thin green line shows the repeating annual cycle. b) Climatological cycle of total fast ice extent by day of

year
:::

(i.e.,
::
the

:::::
same

::
as

::
the

:::::::
repeating

:::::
green

:::
line

::
in

::::
panel

::
a,

:::
but

:::
with

::::::::
expanded

::::::
temporal

:::::
scale).

Fig. 2 shows the circumpolar fast ice persistence distribution (as a percentage of average residence time )
:::
time

::::::::
covering

::::
each

::::
pixel, averaged across the 18 y

::::
year dataset. This highlights three broad-scale characteristics: a) widespread regions of

intermediate persistence (<∼75%, indicating considerable seasonal growth and decay); b) a zonal width of typically ∼ 50 -
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Fast ice: Extent (103 km2) Sea ice: Extent (103 km2)
:::
Fast

:::
ice

::::
trend

:

Region and DOY (brackets) at and DOY (brackets) at
::
and

:::::::::
confidence

Minimum Maximum Minimum Maximum
::::::
interval

::::::
(%/year)

:

Circumpolar 221 (71) 601 (273) 3,213 (50) 18,900 (264)
:::
-0.19

::
±
::::
0.18

Dronning M. L. (19◦ W - 18◦ E) 4.7(73) 21 (294) 99 (51) 3,122 (269)
:::
1.80

::
±

::::
0.47

West Ind. Ocn (27◦ E - 71◦ E) 33 (72) 111 (264) 134 (58) 2,252 (290)
:::
0.41

::
±

::::
0.30

East Ind. Ocn (74◦ E - 103◦ E) 24 (74) 72 (275) 122 (54) 1,362 (265)
:::
-1.38

::
±
::::
0.43

Australia (103◦ E - 146◦ E) 53 (70) 139 (260) 173 (53) 1,112 (275)
:::
1.10

::
±

::::
0.35

Vict. Oates L. (146◦ E - 172◦ E) 31 (67) 85 (285) 312 (49) 1,118 (230)
:::
-1.78

::
±
::::
0.41

Amundsen Sea (102◦ W - 158◦ W) 36 (66) 66 (246) 581 (51) 2,766 (258)
:::
-2.00

::
±
::::
0.45

Bellings. Sea (60◦ W - 102◦ W) 23 (79) 64 (275) 237 (65) 1,244 (242)
:::
2.81

::
±

::::
0.50

Weddell Sea (27◦ W - 60◦ W) 20 (56) 41 (280) 1,164 (50) 2,768 (241)
:::
-2.59

::
±
::::
0.69

Table 1. Mean extent (in 103 km2) and mean timing (day-of-year, or DOY) of minimum/maximum extent of both fast ice (left) and overall

sea ice (right
:::::
centre) for the entire continent and the eight newly-defined fast ice regions detailed

:::
used

::::
here.

:::
The

::::
right

::::::
column

::::
gives

:::
the

::::
trend

in
::
fast

:::
ice

:::::
extent

:::::
across the Appendix

::
18

:::
year

::::::
dataset. Dronning M. L. is Dronning Maud Land, West Ind. Ocn is Western Indian Ocean, East

Ind. Ocn is Eastern Indian Ocean, Vict. Oates L. is Victoria and Oates Lands, and Bellings. Sea is Bellingshausen Sea.

100 km, but up to 250 km (occurring east of the Mertz Glacier Tongue, ∼145◦ E); and c) localised regions of near-100%140

persistence likely corresponding to multi-year fast ice (which is mapped later in the analysis of fast ice mean age).

Table 1 indicates that both minimum and maximum fast ice extent (day-of-year 71 and 273, respectively) occur later than

the corresponding timings for overall sea ice (comprising both pack and fast ice), which are day-of-year 50 (mid-February) and

264 (mid-September), respectively. Regionally, the result of later fast ice minimum is consistent across all regions, however,

a later fast ice maximum only occurs in five of eight newly-defined
:::
fast

:::
ice regions (although this may be a consequence145

of this considerable regional variability in the timing of overall sea ice extent maximum). Maps of timing of minimum and

maximum fast ice extent are presented to provide a more localised context for regional studies involving fast ice (Fig. 3).

These reveal remarkable differences within neighbouring areas. For example a) Enderby Land fast ice (39◦ to 52◦ E) achieves

a minimum in April whereas along the Mawson Coast (55◦ to 71◦ E) this occurs in February-March; and b) fast ice on the

western side of the Antarctic Peninsula reaches minimum later (April) than that on the eastern side (February-March). Regional150

changes in maximum extent timing are more variable than minimum extent timing, likely due to the broad fast ice peak in the

climatological cycle (Fig. 1b). No latitudinal gradient is apparent in either timing metric.

The map of fast ice mean age is presented in Figure 4a. Regions of multi-year fast ice (i.e., mean age >12 months) are

typically located either east (upstream) of physical barriers to the westward drift of pack ice in the Antarctic Coastal Current,

within deep, sheltered embayments (e.g., Lützow-Holm Bay,∼40◦ E), or adjacent to coastal flaw leads indicating the presence155

of a shear zone (especially in the southern Weddell Sea). As such, the majority is in East Antarctica (e.g., along the Banzare

Coast, ∼130◦ E), although major areas are found throughout the Weddell Sea region and along the Marie Byrd Land coast
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Figure 2. Distribution of fast ice persistence, expressed as a percentage of time covering each pixel from Mar 2000 to Mar 2018. Traditional

oceanic sectors
:::
Fast

::
ice

:::::
region

:::::::::
boundaries

:
are indicated by red boundaries, and newly-defined regions in blue

::::
radial

::::
lines. Gaps between

newly-defined regions occur in areas of minimal fast ice coverage. The 403 m isobath, corresponding to the weighted-mean circumpolar fast

ice depth, is indicated as a gray contour. DML is Dronning Maud Land ,
:::
and VOL is Victoria and Oates Lands. The early-2000 position of

large tabular, grounded iceberg A23A is indicated here in black outline, in the southern Weddell Sea.
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Figure 3. Per-pixel average timing of minimum (a) and maximum (b) fast ice extent. For each pixel, color saturation is weighted by annual

cycle magnitude (i.e., pixels with persistent multi-year fast ice or no fast ice are transparent.)8



:::::
Coast (∼134 - 159◦ W). Multi-year ice is generally synonymous with highly-persistent fast ice (i.e., red pixels corresponding

to near-100% persistence in Fig. 2), however we find limited regions where relatively low-persistence fast ice (e.g., persisting

through 80% of the year on average) can be multi-year (e.g., north of the Wilkins Ice Shelf, ∼74◦ W), indicating a change to160

the annual cycle throughout the 18 y
:::
year

:
study period.

3.2 Fast ice extent anomalies and linear trends

The circumpolar total anomaly time series (Fig. 5a) indicates the presence of extended periods with only transient departures

from the climatological mean (e.g., 2000 to mid-2007; mid-2008 to 2012), as well as three more persistent departures: extended

positive anomalies occurring in mid-2007 to mid-2008; throughout 2013 and 2014; and a negative anomaly from mid-2015165

onwards. A marginally-significant (p'0.04) negative trend of −882±823 km2/y
::::
year

:
(-0.19 ± 0.18 %/y

:::
year) is reported

across Antarctica for the 18 y
::::
year time series. Under the new region definition, and as

:::
As shown in Fig. 5b-i

:::
and

:::::
Table

::
1, all

regions exhibit statistically-significant trends, further indicating that the methodology for defining partitions is robust, even at

an inter-decadal time-scale. Four regions show positive trends (Dronning Maud Land, Western Indian Ocean, Australia and

Bellingshausen Sea regions), with the remainder negative. Strong and opposing trends are frequently observed to occur in170

adjacent regions indicating that this new partitioning supports preservation of these opposing regional signals.

Per-pixel trends in fast ice extent (Fig. 4b) in excess of ±8 %/y
:::
year

:
are observed, corresponding to pixels exhibiting an

extreme change in fast ice cover across the study period. These occur in areas exhibiting major icescape change, e.g., both up-

stream and downstream of the Mertz Glacier Tongue (∼144◦ E), which calved in 2010 Fogwill et al. (2016)
::::::::::::::::
(Fogwill et al., 2016),

and in the Weddell Sea between the Ronne-Filchner Ice Shelf and grounded iceberg A23A, which has gradually drifted north-175

ward (Li et al., 2020). Broader regions of similar signed (but weaker) trend are also apparent, e.g., the positive trend across

much of the western half of East Antarctica (i.e., the Dronning Maud Land and Western Indian Ocean sectors
::::::
regions), in-

dicating a consistent fast ice response to environmental forcing over a large spatial scale.
:::::
Given

:::
the

::::::::::
widespread

::::::::::
distribution

::
of

:::
the

:::::::
positive

:::::
trend

:::::
along

:::
the

::::::
eastern

::::
part

::
of
::::

the
:::::::
Weddell

:::::
Gyre,

:::
we

::::::::
speculate

::::
that

::::
this

::::::::::::
environmental

:::::::::
association

::
is
::::::

likely

::::::
oceanic

::
in

::::::
nature.

:::
We

::::
also

::::
note

:::
that

::::
this

:
is
::
a
:::::
region

::
of

:::::::::
increasing

:::::::::::
summertime,

:::::::::
springtime

:::
and

::::::::::
wintertime

:::
sea

::
ice

::::::::::::
concentration180

::::::::::::::::::::::::::::
(Fig. 2 of Simmonds and Li, 2021),

::::::
which

::::
may

:::::
favour

:::::::::
formation

::
of

::::
more

::::::::
extensive

::
or

::::::
longer

:::::::
duration

::
of

:::
fast

:::
ice

::::::::
coverage,

::::
i.e.,

:::
this

:::
fast

:::
ice

:::::
trend

::::
may

::
be

:::::::::
associated

::::
with

::
an

:::::::
oceanic

::::
trend

::::::
which

:::
has

::::::::::
atmospheric

:::::::
drivers.

3.3 Bathymetric controls on fast ice distribution

Analysis of the bathymetric distribution of fast ice provides fundamental knowledge on the formation mode of fast ice (i.e.,

iceberg-associated vs formation within embayments). Circumpolar fast ice persistence as a two-dimensional histogram, binned185

by bathymetric depth is given in Fig. 6. This analysis indicates that the weighted (by persistence) mean depth of fast ice

persistence occurs at ∼403 m, in line with earlier estimates linking fast ice extent with grounded icebergs in East Antarctica

(Massom et al., 2001). The 403 m bathymetric contour is shown on Figure 2 as a solid grey line. This isobath only bears visual

resemblance to areas containing persistent fast ice for much of East Antarctica (20◦ W to 172◦ E) and the Ross Sea (172◦

E to 130◦ W), indicating regional variability in either the actual iceberg grounding depth or the reliance of fast ice on the190
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Figure 4. a) Mean fast ice age over the 18 y
:::
year study period. White to blue pixels indicate seasonal fast ice. The color break from a blue

hue to a red hue at 12 months is chosen to highlight regions of multi-year fast ice (red-yellow hues). b) Per-pixel trends in fast ice extent

(%/y
::::
year).
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Figure 5. Fast ice extent anomalies (black line) and linear trends (red line) for the eight newly-defined fast ice regions. Trend magnitude ,

:::
and bootstrapped 95% confidence interval and trend p-value are indicated in the title of each sub-plot. Note the y-axis scale is the same for

all plots except panels a and b. All trends are significant, with a p-value of '0.00 for all trends except for the circum-Antarctic (panel a;

p'0.04) and Western Indian Ocean (panel c; p'0.01) regions.

stability provided by grounded icebergs. Fig. S3
::
C1

:
shows persistence-weighted histograms of fast ice formation depth for the

eight newly-defined fast ice regions. Remarkable variability is observed across the regions, with the weighted mean of modal

bathymetric depth ranging from >420 m (four contiguous regions from the Eastern Indian Ocean to the Amundsen Sea) to as

shallow as ∼ 200 m (Bellingshausen Sea sector
:::::
region), confirming that the ∼400 m isobath is

::::
only useful as an indicator of

fast ice propensity only for certain regions.195

4 Discussion

4.1 Fast ice distribution, age and trends

Overall, a significant and negative trend was found in circumpolar total sea
:::
fast ice extent (-882 ± 823 km2/y

::::
year or -0.19

±0.18 %/y
:::
year, Fig. 5a). When partitioned into appropriate regions, opposing trends are observed in most neighbouring re-

gions (Fig. 5b-i): positive trends in the Dronning Maud Land, Western Indian Ocean, Australia and Bellingshausen Sea regions;200

negative elsewhere. Fraser et al. Fraser et al. (2012) found that a significant positive trend was observed in the Indian Ocean

sector (20 - 90◦ E) from March 2000 - Dec 2008. Here, we find that this trend, largely represented by the Western Indian Ocean

region, did not persist after 2008 (see Fig. 5b
:
c). Furthermore, persistent (e.g., 12 months or greater duration) “events” are evi-
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Histogram of fast ice persistence vs bathymetric depth
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Figure 6. Two-dimensional histogram of circumpolar fast ice persistence (y-axis) versus bathymetryic depth (x-axis, taken from the Interna-

tional Bathymetryic Chart of the Southern Ocean (Arndt et al., 2013)). For each fast ice persistence bin (5% wide bins), the most frequent

(modal) depth value is highlighted with a red square. The persistence-weighted mean of these modal values is indicated with the red vertical

line, here corresponding to a bathymetryic depth of ∼403 m.

dent in many anomaly plots (e.g., Fig. 5d
:
e, exhibiting a positive anomaly persisting from 2013 to 2014 in the Australia region,

and contributing to the positive circumpolar total anomaly at the same time, Fig. 5a). Investigation of drivers of both regional205

trends and significant events within these regions is planned for the future. We note that the time series of circumpolar fast ice

anomaly (Fig. 5a) bears close resemblance to that of overall sea ice extent (time series given in Fig. 2B of Parkinson (2019))
:::
for

::
the

:::::
same

::::
time

::::::
period

::::::::::::::::::::::::::::::::::::::::
(time series given in Fig. 2B of Parkinson, 2019), with positive anomalies in 2007/08 and 2013/14, with

a decline from 2014-2017. This association will also be explored more comprehensively in future work.
:::
We

::::
also

::::
note

::::
that

::::::
regions

:::::::::::
experiencing

::::::
positive

::::
fast

::
ice

::::::
trends

:::
also

:::::::
coincide

::::
with

:::::::
regions

::::::::::
experiencing

::::::
trends

::::::
toward

:::::
higher

:::
sea

:::
ice

::::::::::::
concentration.210

:::::
While

:::
the

::::
time

::::::
periods

:::
of

:::
the

:::::::::::::::::::::::::
Simmonds and Li (2021) paper

:::::
differ

::
to

::::
that

::::::::
presented

:::::
here,

::
we

::::
can

::::::
indeed

:::
see

:::
that

:::
the

:::::::
general

:::::::::
distribution

::
of
:::::::

positive
:::::
trend

::::::::
coincides

::::
with

::::
the

:::::::
southern

::::::::::
hemisphere

:::::
trend

::
in

:::::::::::
concentration

:::::
from

::::
1979

:::
to

::::
2020

::
in
:::::::::

Sept-Nov

::::::::::::::::::::::::::::::::::::::::
(Fig. 2B, bottom row of Simmonds and Li, 2021),

::::
but

:::
this

::::
link

::
is

:::::::::
somewhat

:::
less

::::::::::
convincing

:::
for

::::
other

::::::::
seasons.

::::::
Nearby

:::::
pack

::
ice

::::::::::::
concentration

::
is

:::::::
thought

::
to

::::::
buffer

:::
fast

:::
ice

:::::::
against

::::::::::::
wave-induced

:::::::
breakout

::::::::::::::::::::::::::
(Crocker and Wadhams, 1989),

::::
and

::::
may

::::
also

::::::
indicate

::::
that

:::::::
common

::::::::::::
environmental

::::::
forcing

::
is
:::::::::
favourable

:::
for

:::
sea

:::
ice

:::::::::::::::::::
formation/preservation.

::::
That

:::
this

::::::::::
relationship

::
is

::::::::
strongest215

:
is
:::::::::
September

::
to
:::::::::
November

::
is
:::
not

:::::::::
surprising,

:::::
since

:::
this

::::::
season

::::::::
coincides

::::
with

:::::::::
maximum

:::
fast

:::
ice

::::::
extent.

We find here an approximately threefold difference between maximum and minimum fast ice extent, with a minimum

occurring in mid-March and a maximum in late September. The circumpolar seasonal cycle is much lower in amplitude that

:::
than

:
that of overall sea ice extent (with a wintertime maximum extent nearly six times higher than its summertime minimum,
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(Eayrs et al., 2019; Parkinson, 2019)), a likely manifestation of the relatively large portion of fast ice which is multi-year220

combined with the limit of maximum fast ice extent imposed by the distribution of grounded icebergs.

4.2 Timing of maximum and minimum extent

The circumpolar fast ice cycle is delayed relative to that of overall sea ice, with the fast ice minimum (maximum) occurring

21 (nine) days later than the that of sea ice (shown in Table 1), in agreement with the findings of Fraser et al. (2012). In the

absence of particular case studies, which are out of scope here, we speculate that this lag may be due to one or more of the225

following reasons: a) adjacent pack ice may act as a protective buffer against dynamically-induced breakout (e.g., swell may

be attenuated by adjacent pack, protecting the fast ice (Ushio, 2006)); b) the presence of pack ice at the fast ice edge may

reduce “mode-3” summertime solar heating of the surface water (Jacobs et al., 1992), leading to lower basal melt rates under

the fast ice (Arndt et al., 2020) and higher mechanical strength (Fedotov et al. (1998) estimate only 20-30% of wintertime

flexural fast ice strength remains by the time basal melt becomes widespread); or c) fast ice is simply able to persist longer into230

the summer due to the inherent shelter afforded by its formation within certain embayments (e.g., Lützow-Holm Bay, ∼40◦ E,

(Ushio, 2006)
:::::::::::::::::::::
(Ushio, 2006; Aoki, 2017)).

Regarding timing of maximum extent, Fraser et al. (2012) found that fast ice maximum occurs earlier than
::
the overall sea ice

::::::::
maximum

:
in the Indian Ocean and the Western Pacific Ocean sectors (covering much of East Antarctica). We find here that this

result holds for only three of eight newly-defined regions (Table 1), and that the timing in maximum extent is far more regionally235

variable (range: 48 d) than that of minimum extent (range: 13 d), a result also indicated spatially in Fig. 3. This is likely related

to the bathymetric limit imposed on maximum fast ice extent, i.e., fast ice coverage around the outermost grounded icebergs

is generally achieved by midwinter, and limited further growth occurs only upstream of obstacles to the coastal current, until

September. Such growth is likely stochastic and event-based, imparting variability to the timing of maximum extent.

Based on a dataset covering the years 2006–2011 and 2016–2017, Li et al. (2020) found a mean November extent of240

∼495,000 km2, which is much lower than the mean maximum extent found here (∼601,000 km2). However, we have shown

that November is after maximum fast ice extent in every region, so we suggest that circumpolar studies of maximum fast ice

extent are best conducted around late September. Full consideration of the seasonality (i.e., timing of formation, breakout, and

presence duration; and change in these quantities) of fast ice is outside of the scope of this paper, however complex regional

patterns have been identified in an analysis of overall East Antarctic sea ice seasonality (Massom et al., 2013), so future work245

on this is planned using the fast ice dataset (Fraser et al., 2020).

4.3 Bathymetric controls on fast ice distribution

We have shown large regional variability in the formation depth of fast ice, ranging from ∼200 m to ∼450 m (Fig. S3
:::
C1).

Such regional variability has not been identified in earlier work (e.g., Massom et al., 2001; Fraser et al., 2012). This regional

dependence on bathymetry may also suggest fundamental regional differences in fast ice formation mode. As an example of250

this, consider the distribution of fast ice persistence by depth in the Bellingshausen Sea (Fig. S3
::
C1, cyan line). In this region,

relatively few grounded icebergs exist (Figure 4 in Li et al. (2020)), so fast ice predominantly forms between coastal margins
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(including islands), and is known as “regime 1” fast ice (Fraser et al., 2012). By contrast, in the Eastern Indian Ocean and

Australia regions, “regime 2” fast ice predominates (Fraser et al., 2012), and a close relationship is found between grounded

icebergs and persistent fast ice (Li et al., 2020). In East Antarctica, icebergs have been observed to ground at depths up255

to around 400 m Massom (2003); Massom et al. (2009)
::::::::::::::::::::::::::::::
(Massom, 2003; Massom et al., 2009), although there is evidence for

deeper grounding (in excess of 500 m) in some regions of the East Antarctic continental shelf (Beaman and Harris, 2005),

and indeed newly-calved icebergs with keels of up to 600 m are known to calve from fast flowing outlet glaciers (Dowdeswell

and Bamber, 2007). More detailed understanding of the mechanism of fast ice formation, as provided here, is crucial for

development of the next generation of prognostic regional fast ice models which require tuning of tensile strength (Lemieux260

et al., 2016).

4.4 Future work

Massom et al. (2010b)
::::::::::::::::::::::::::::
Massom and Stammerjohn (2010) discussed a future scenario in which an increase in iceberg discharge

from Antarctic ice shelves results in an increase in fast ice extent. In light of our analysis of fast ice persistence in the context

of bathymetry, we suggest that this increase would occur only in those regions where few icebergs are currently available to265

ground on the shallow bathymetry, i.e., the Bellingshausen Sea and Dronning Maud Land regions, as well as continental shelf

shoals in the central Ross and Weddell seas (see 403 m bathymetric contour on Figure 2). Most other regions may already

have sufficient density of grounded icebergs to act as fast ice anchors, as detailed in (Li et al., 2020). We also consider a

future scenario in which the recently-detailed marine ice cliff instability mechanism is initiated (Pollard et al., 2015), whereby

glacier/grounding line retreat results in high (>∼90 m) ice cliffs at the glacier terminus, resulting in calving of icebergs with270

extremely deep (in excess of 800 m) keels. Evidence for this process exists in the form of very deep sediment scours around

Pine Island Glacier (∼101◦ W, (Wise et al., 2017)), estimated to have occurred in the early Holocene. Presence of such deeply-

keeled icebergs around the Antarctic continental shelf would allow the grounding of icebergs in new regions, completely

altering the distribution of fast ice. For this reason, the next generation of coupled Antarctic ice/ocean models with fast ice

should consider prognostic iceberg calving and grounding. Near-coastal bathymetric data paucity, leading to high uncertainty275

in current Antarctic bathymetric compilations, is also a limiting factor for this kind of study, so should be addressed as a priority

(Smith et al., 2021). In addition to fields of smaller grounded bergs, it is also worth re-iterating the profound and unpredictable

effects that large tabular icebergs can have on regional fast ice extent (e.g., Fogwill et al. (2016)), particularly when grounded

for several decades.

Compared to the earlier dataset covering only East Antarctica from 2000 to 2008 (Fraser et al., 2012), this new 18 y
::::
year280

time series (Fraser et al., 2020) is a much more comprehensive dataset from which to gauge long-term change in fast ice

extent. However, we note that the more recent dataset is still shorter than the 30 y
::::
year

:
“climate” threshold defined by the

World Meteorological Organisation (Arguez and Vose, 2011). Indeed, the residence times of large grounded icebergs which

have profound effects on fast ice distribution can be as long as several decades (e.g., B09B which was grounded at ∼148◦ E

from 1992 to 2010 (Leane and Maddison, 2018); A23A which has been grounded in the central Weddell Sea since 1991, i.e.,285
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currently 29 y
::::
years (Paul et al., 2015)). As such, the 30 y

::::
year threshold may also be appropriate to apply to Antarctic fast ice,

in order to preclude undue influence of stochastic large iceberg grounding, giving a strong impetus to extend this dataset.

Although our fast ice analysis is circum-Antarctic in extent, performed at a high spatio-temporal resolution and covers

18 y
::::
years, it is still only limited to extent/distribution. The underlying dataset (Fraser et al., 2020) does not consider other

physical fast ice properties, including freeboard/thickness, thickness of overlying snow, roughness or albedo. Complete physical290

characterisation of fast ice requires such data. Giles et al. (2008), working with synthetic aperture radar (SAR) imagery of East

Antarctic fast ice, indicated that thickness and roughness are likely closely related, ascribing values of 1.7 and 5.0 m thickness

to “smooth” and “rough” fast ice, respectively, however this is an overly-simplistic methodology for estimating thickness. Work

is underway on addressing this knowledge gap by remotely sensing circum-Antarctic fast ice roughness and thickness from

altimetric satellite data.295

5 Conclusions

Here, using a newly-released, long-term (18 y
::::
year), high-quality and high-resolution dataset of circum-Antarctic fast ice, we

have for the first time:

– Presented the baseline characterisation of fast ice mean persistence, annual cycle, mean age, and timing of minimum and

maximum extent;300

– Defined eight new fast ice regions based on fast ice anomaly co-variability;

– Determined and discussed fast ice extent trends in these eight regions, revealing marked regional variability in trend (as

well as inter-annual variability in fast ice extent within each region); and

– Discussed fast ice characteristics in terms of its links with bathymetric depth, indicating formation modes within each

region.305

Although this work greatly advances the state of knowledge on Antarctic fast ice distribution and variability, deeper under-

standing of Antarctic fast ice is still limited by a paucity of studies on the environmental factors driving changes in fast ice

extent. One-dimensional thermodynamic studies have indicated the sensitivity of fast ice to environmental drivers, including

both the atmosphere and the ocean (e.g., Heil, 2006; Lei et al., 2010; Hoppmann et al., 2015; Brett et al., 2020), however

drivers of change in horizontal fast ice distribution are relatively poorly understood. Of the limited studies of fast ice ex-310

tent formation/breakout, a wide range of potential drivers have been identified (including remote atmospheric teleconnections

(Aoki, 2017)
:::::::::::::::::::::::::
(Aoki, 2017; Sato et al., 2021), a range of local atmospheric parameters (Fraser, 2011; Zhai et al., 2019; Leonard

et al., 2021), swell-induced breakup and anomalous snow cover (Ushio, 2006) and basal melt (Arndt et al., 2020)), however no

unifying picture has emerged. Work is planned to use the new circumpolar fast ice dataset (Fraser et al., 2020) in conjunction

with datasets of atmospheric and oceanic parameters to address this shortcoming, in order to elucidate such drivers. Due to315

regionally-specific drivers, we suggest that coupled ocean/sea ice models capable of realistically forming Antarctic fast ice are

an important tool for studing fast ice variability, and urgently need to be developed.
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Data availability. The fast ice dataset analysed here is freely available at http://dx.doi.org/doi:10.26179/5d267d1ceb60c. Sea ice concen-

tration data were obtained from the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3, and are

available at https://doi.org/10.7265/N59P2ZTG.320

Appendix A: Sectoral anomalies and trends

In the main text, we focus on fast ice characteristics in
::::
eight

:
newly-defined regions, as defined in the following section. Here,

however,
:

we report the fast ice extent anomaly (observation minus repeated climatological cycle) and linear trend for the

five commonly-used oceanic sectors (Zwally et al., 1983), in order to assess their suitability for partitioning fast ice. These

are shown in Fig. A1. Two sectors show significant trends: the Ross Sea (-1.43 ± 0.26 %/y
:::
year) and the Bellingshausen and325

Amundsen seas sectors (0.67± 0.55 %/y)
::::
year)

::::::
sectors. The remainder are insignificant, which may either be genuine features,

or may indicate inappropriate (for fast ice) region selection (i.e., regions defined in this way may split areas of fast ice which

co-vary).

Appendix B: Selection of new
:::
fast

:::
ice

:
regions

To investigate a more appropriate regional split, we perform cross-correlation on 1/4◦ longitude fast ice extent anomaly time-330

series (Fig. B1). Regions which co-vary exhibit high cross-correlation. Investigation of the fast ice anomaly cross-correlation

matrix as a function of longitude indicates that eight regions are needed to appropriately partition fast ice, indicated as

blue boxes.
::
As

::::
with

::::
the

::::
new

::::::::
definition

::
of

::::
sea

:::
ice

::::::
sectors

::
in

:::::::::::::::::::::::
Raphael and Hobbs (2014),

:::
this

::::
was

::::::
largely

::
a
:::::::
manual

:::::::
process,

:::::::::
constrained

:::
by

:::
the

:::::::
content

::
in

::::
Fig.

:::
B1.

::
In

::::
the

::::
case

::
of

:::::::::::::::::::::::
Raphael and Hobbs (2014),

::::
their

::::::::
selection

::::
was

::::::
guided

::
by

::::::::
functions

:::
of

:::
sea

:::
ice

:::::
extent

:::::::
standard

::::::::
deviation

::::
and

:::::::::::
decorrelation

::::::
length

:::::
scale,

:::
i.e.,

::::
two

:::::::::
quantities

:::::
whose

::::::::::
boundaries

:::
did

:::
not

::::::
always

::::::
match335

:::::::
spatially,

:::::::::::
necessitating

:
a
:::::::::
subjective

:::::::
decision.

:::::::::::
Furthermore,

:::::::::::::::::::::::::::
Raphael and Hobbs (2014) select

:::::::::
boundaries

:::::
based

:::
on

::::
local

:::::::
minima

::
of

::::
these

:::::::::
quantities,

::::::::
however

:::
the

:::::
choice

:::
of

:::::
which

:::::
local

::::::::
minimum

::::::
should

:::
be

:::::::
selected,

:::::
when

:::::
more

::::
than

:::
one

::::::
option

:::::
exists

:::::
(e.g.,

::
the

:::::::::
boundary

:::::::
between

:::
the

::::
Ross

::::
and

::::::::::::::::::::::
Bellingshausen/Amundsen

::::::
regions

::
in

:::::
their

:::
Fig

:::
1),

:
is
:::::::::

somewhat
:::::::::
subjective.

::::
This

::::::::
parallels

:::
our

:::::::
selection

::::
and

:::
the

::::::::
subjective

::::::::
elements

::::::
within.

:::
As

::::
with

::::::::::::::::::::::
Raphael and Hobbs (2014),

:::::
most

::::::
section

:::::::::
definitions

::::
here

::::
were

:::::
quite

:::::::
objective

:::::
(e.g.,

:::
the

::::::::
Australia

::::::
region:

:::
Fig

:::
B1

:::::
shows

::::
that

:::
this

::::
box

:::::::
contains

::::
only

::::
blue

::::::
pixels,

::::::::
indicating

:::::::
positive

::::::::::::::
cross-correlation340

:::::
within

::::
this

::::::
region,

:::
and

::
is

:::::::::
surrounded

:::
by

:::
red

::::::
pixels,

::::::::
indicating

::::::::
negative

:::::::::::::::
cross-correlation).

::::::::
However,

:::
we

:::::::
concede

:::
that

:::
for

:::::
more

:::::::::::::::::::
gradually-decorrelating

::::::
regions

:::::
(e.g.,

:::
the

::::::::::
demarcation

:::::::
between

:::
the

:::::::
Eastern

::::::
Indian

:::::
Ocean

::::
and

:::::::
Western

:::::
Indian

::::::
Ocean

::::::::
regions),

::
the

:::::::::
subjective

:::::::
element

::
is

::::::
higher.

:::
We

::::
also

:::
add

:
a
::::::
caveat

:::
that

:::
the

::::::
region

::::::::
selection

::::::
process

::
is

:::::::::
performed

::
in

::
an

::
a
::::::::
posteriori

::::::
fashion

::
(as

:::
in

:::::::::::::::::::::::
Raphael and Hobbs (2014)),

::::
i.e.,

:::::::
obtained

:::
by

:::::::::
analysing

::::::
regions

::::::
which

:::::::
co-vary,

:::::
rather

:::::
than

::::
from

::::::::
physical

:::::::::
principals,

:::::
which

::::
may

:::::::
enhance

::::::::
statistical

:::::::::::
significance

::
of

:::
the

:::::
trends

::::::::
reported

::::
here.

::::
We

::::::
suggest

::::
that

:::
this

::
is
::::::::::

appropriate
::
in
:::

the
:::::::

absence
:::

of345

::::::
detailed

:::::::::
large-scale

::::::::::
knowledge

::
of

:::::::
physical

:::
fast

:::
ice

:::::::::
formation

::::::::::
mechanisms.

:

Although this fundamental new region definition is based on a simple and robust methodology, its implementation and the

resulting regional definition in Antarctica require discussion. Firstly, since it is based on the cross-correlation of longitudinal

slices, it is unable to separate distinct fast ice areas which share a longitude but differ in latitude. Such cases are encountered
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Figure A1. Fast ice extent anomaly time series for the 18 y
::::
year period. Only the Bellingshausen and Amundsen seas and Ross Sea sectors

show significant trends.

around a) 163 - 171◦ E (Victoria and Oates Land coasts); and b) 60 - 61◦ W (the eastern side of the Antarctic Peninsula).350

Although our technique is too simple to account for this longitudinal degeneracy, we note that in both cases, similar trends

(Fig. 3b in the main text) are encountered at both areas of fast ice within the longitude zone (i.e., weak negative in the former,

and positive in the latter), giving confidence that the region definition is unaffected by this caveat.

Our region selection methodology indicates that the fast ice on the eastern side of the Antarctic Peninsula should be consid-

ered a part of the Bellingshausen Sea sector
:::::
region, rather than the Weddell Sea sector

:::::
region. This is somewhat surprising given355

the oceanic connection from this region to the rest of the Weddell Sea. However, this ice is much more proximal to the western

side of the Antarctic Peninsula than it is to the fast ice in the eastern flank of the Weddell Sea region, indicating that localised

atmospheric conditions may be a dominant driver here. This hypothesis is supported by the positive fast ice trend encountered

in the Bellingshausen Sea region – a region which has experienced a trend toward cooler surface air temperatures since the late

1990s (Turner et al., 2016)
::::::::::::::::::::::::::::::::::::::
(Turner et al., 2016; Sato and Simmonds, 2021).360
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We also consider that the boundary between the Australia and Victoria and Oates Lands regions (at 146◦ E) may be an

artefact of the “ice-scape” regime shift which occurred in the region after the ungrounding of iceberg B09B and subsequent

calving of the Mertz Glacier Tongue in 2010 (Leane and Maddison, 2018). To determine the influence of this event, the

regional selection algorithm was re-run using only pre-calving
:::
and

::::
only

:
post-calving fast ice anomaly data, with the result

that the boundary location is correctly located in the pre-calving regime, but the fast ice variability off the Adélie/George V365

Land coast becomes somewhat more homogeneous in the post-calving regime, as expected following the removal of a major

dynamical barrier, with the apparent regime boundary shifting to ∼160◦ E (not shown).

:::
We

::::
note

::::
here

::::
that

:::
the

::::::
region

:::::::
selection

::
is
:::::::::::::::

non-conservative
::::
(i.e.,

:::::
some

:::::::::
longitudes

::::
with

::::::::
minimal

:::
fast

:::
ice

::::::::
coverage

:::
are

::::
not

:::::::
assigned

:
a
:::::::
region).

:::::::
Without

::::::::
extensive

::::
fast

::
ice

:::::::::
coverage,

::::
these

:::::::::
longitudes

:::::
were

::::::
unable

::
to

::
be

::::::::
assigned

:
a
::::::
region.

::
If

::::
such

:::::::
regions

:::::
retain

::::::::
extensive

:::
fast

:::
ice

:::::
cover

::
in

:::
the

:::::
future

::::
(e.g.,

::
in
::::::::
response

::
to

:::::
major

::::::::
icescape

::::::
change

::::
such

::
as

:::
the

:::::::::
grounding

::
of

:
a
:::::
large

::::::
tabular370

:::::::
iceberg)

:::
then

:::::
such

::::::::
longitudes

::::
may

:::::
need

::
to

::
be

::::::::
assigned

:
a
::::::
region.

Appendix C: Regional bathymetric constraints on fast ice formation

In addition to the two dimensional histogram of fast ice persistence by bathymetric depth presented in the main text, we

present in Fig C1 the projection of this two dimensional histogram onto the x-axis, linearly weighted by persistence (so that

high-persistence fast ice contributes more). We also present this histogram for each newly-defined fast ice region (colored375

:::::::
coloured lines).
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Figure B1. Fast ice anomaly cross-correlation matrix. Red vertical lines indicate the traditional sea ice sectors. Blue vertical lines and blue-

outlined boxes highlight newly-defined
:::
fast

:::
ice

:::::
regions

::::::::
consisting

::
of
:

pockets of high cross-correlation, indicating regions which co-vary.

::::
DML

::
is

:::::::
Dronning

:::::
Maud

::::
Land

:::
and

::::
VOL

::
is

::::::
Victoria

:::
and

::::
Oates

::::::
Lands.
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Normalised PDF of fast ice formation depth
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Figure C1. Normalised histograms of persistence-weighted fast ice formation depth for the eight newly-defined
:::
fast

:::
ice regions. Mean

formation depth for each region is indicated in the legend.
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