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Abstract. The future of the Antarctic Ice Sheet in response to climate warming is one of the largest sources of uncertainty

in estimates of future changes in global mean sea level (∆GMSL). Mass loss is currently concentrated in regions of warm

circumpolar deep water, but it is unclear how ice shelves currently surrounded by relatively cold ocean waters will respond to

climatic changes in the future. Studies suggest that warm water could flush the Filchner-Ronne (FR) ice shelf cavity during the

21st century, but the inland ice sheet response to a drastic increase in ice shelf melt rates, is poorly known. Here, we use an ice5

flow model and uncertainty quantification approach to project the GMSL contribution of the FR basin under RCP emissions

scenarios, and assess the forward propagation and proportional contribution of uncertainties in model parameters (related to

ice dynamics, and atmospheric/oceanic forcing) on these projections. Our probabilistic projections, derived from an extensive

sample of the parameter space using a surrogate model, reveal that the FR basin is unlikely to contribute positively to sea level

rise by the 23rd century. This is primarily due to the mitigating effect of increased accumulation with warming, which is capable10

of suppressing ice loss associated with ocean–driven increases in sub-shelf melt. Mass gain (negative ∆GMSL) from the FR

basin increases with warming, but uncertainties in these projections also become larger. In the highest emission scenario RCP

8.5, ∆GMSL is likely to range from −103 to 26 mm, and this large spread can be apportioned predominantly to uncertainties

in parameters driving increases in precipitation (30%) and sub-shelf melting (44%). There is potential, within the bounds of

our input parameter space, for major collapse and retreat of ice streams feeding the FR ice shelf, and a substantial positive15

contribution to GMSL (up to approx. 300 mm), but we consider such a scenario to be very unlikely. Adopting uncertainty

quantification techniques in future studies will help to provide robust estimates of potential sea level rise and further identify

target areas for constraining projections.

1 Introduction

Ice loss from the Antarctic Ice Sheet has accelerated in recent decades (Rignot et al., 2019; Shepherd et al., 2018) and the20

evolution of the ice sheet in response to future climate warming is one of the largest sources of uncertainty for global mean

sea level rise. Current projections suggest that the ice sheet may contribute anywhere between −7.8 and 30 cm to sea level rise

by 2100 under Representative Concentration Pathway (RCP) 8.5 scenario forcing (Seroussi et al., 2020). This large spread of
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potential sea level rise is primarily due to uncertainties in ocean–driven thinning of ice shelves, which could initiate a positive

feedback of rapid, unstable retreat and ultimate collapse of the the West Antarctic Ice Sheet (Feldmann and Levermann, 2015).25

The Filchner-Ronne (FR) basin is a region of Antarctica that has undergone little change in recent decades, and hence has

not been the focus of substantial research compared to regions of Antarctica that have already begun to contribute more dramat-

ically to sea level rise. However, the future of this region in response to climate and ocean changes remains highly uncertain.

The Filchner-Ronne ice shelf (hereafter FRIS) is the second largest floating ice shelf in Antarctica, spanning approximately

400× 103 km2, and terminating in the Weddell Sea (Figure 1). Currently the ice shelf discharges approximately 200 Gt yr−130

(Gardner et al., 2018) of sea level relevant ice mass into the surrounding ocean. Ice from the interior of the Antarctic ice

sheet flows into the FRIS primarily via 11 fast-flowing ice streams (Figure 1). These ice streams are marine-based, i.e. their

bed topography rests substantially below sea level, which has implications for marine ice sheet instability (Ross et al., 2012).

Throughout this paper we refer to the FR basin as the combined area of the two major drainage basins (Jpp-K, J-Jpp) as defined

by Rignot et al. (2019) that encompass a number of smaller ice-stream catchments that drain into the FRIS.35

Current mass loss from the Antarctic Ice Sheet is concentrated in regions where warm circumpolar deep water propagates on

the continental shelf (e.g. Amundsen Sea Embayment (ASE): Jacobs et al., 2011; Jenkins et al., 2010; Schmidtko et al., 2014).

Warm water in the ASE has been linked to recent ice shelf thinning (Pritchard et al., 2012; Paolo et al., 2015), grounding line

retreat (Rignot et al., 2014), and increased ice discharge (Mouginot et al., 2014; Shepherd et al., 2018; Rignot et al., 2019).

In contrast, water entering the FRIS cavity is relatively cold (< 0◦C), high-salinity shelf water, and as a result, sub-shelf melt40

rates are an order of magnitude lower than those in the ASE. The FR basin is also a region of Antarctica that has not undergone

significant change during the modern observational period. Over the past four decades (1979–2017), the FR basin has remained

relatively stable (accumulation is balanced by discharge) (Rignot et al., 2019), alongside a negligible change (1− 3 cm yr−1)

in surface elevation (Shepherd et al., 2019) and no significant long-term speed up of the major ice streams (Gudmundsson and

Jenkins, 2009; Gardner et al., 2018).45

Recent work suggests that melt rates beneath the FRIS could greatly increase in response to a tipping point in the neighbour-

ing Weddell Sea. Studies have now shown that 21st century changes in atmospheric conditions and sea ice concentration could

redirect relatively warm deep water beneath the FRIS via the Filchner trough (Figure 1: Hellmer et al., 2012, 2017; Hazel and

Stewart, 2020). This would cause the FR cavity to switch from what is widely referred to as a ’cold-state’, to a ’warm-based’

cavity, similar to the ice shelf cavities (e.g. Pine Island and Thwaites) in the ASE. Ultimately, this warm water could be directed50

towards highly buttressed regions of the ice shelf close to the grounding line (Reese et al., 2018a) via deep cavity bathymetry

(e.g. Foundation Ice Stream: Rosier et al., 2018), and dramatically increase melt rates under the FRIS. A loss of resistive stress

at the grounding line as a result of ocean–induced melt could force dynamic imbalance and grounding line retreat of the ice

streams feeding the FRIS.

Most previous studies have only assessed uncertainties in sea level contribution, on an ice sheet wide scale, rather than55

individual drainage basins (with the exception of Schlegel et al., 2018). These Antarctic wide ensemble simulations also rely

on coarse grid resolution to be computationally feasible, and as a result may not capture small scale processes or accurate

grounding line migration relevant on regional scales. Some studies have performed sensitivity experiments to climate–ocean
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Figure 1. Map of Filchner-Ronne region. Our model domain is outlined in red. Orange to red shows model-calculated ice speeds [m yr−1]

initialised to observations using a model inversion withm= 3 and n= 3, over the grounded portion of the catchment. Blue to yellow shading

shows sub-shelf melt rates across the Filchner and Ronne ice shelves, using the ocean box melt parameterisation with sample point estimates

for parameters from their probability distributions (see Appendix B). Light to dark blue shading shows sea floor depth from the IBCSO

dataset (Arndt et al., 2013). Inset map shows the full extent of our model domain (red) as well as the drainage basins (Jpp-K, J-Jpp) as

defined by Rignot et al. (2019) in white.
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forcing on the FR basin (Cornford et al., 2015; Wright et al., 2014), but we do not know of an uncertainty quantification

assessment of the FR region’s potential contribution to sea level rise. A comprehensive uncertainty analysis is needed to fully60

understand the future of this region of Antarctica should it undergo an increase in sub-shelf melting.

In this paper, we use an uncertainty quantification approach to assess the future of the FR basin to achieve three aims: 1)

estimate potential mass change from the FR basin through to the year 2300, 2) quantify the uncertainty associated with mass

change projections, and 3) identify parameters in our model or forcing functions that account for the majority of our projection

uncertainty and should be priority areas for further research to constrain the spread of future projections. To do this, we integrate65

an existing suite of uncertainty quantification tools (UQLAB: Marelli and Sudret, 2014) for use with the state-of-art ice flow

model Úa (Gudmundsson, 2020). See Figure 2 for a summary of the method used in this paper. The paper is structured as

follows: in the following section (2) we introduce the uncertainty methodology used in this paper. In Section 3 we explain

the model set-up and input parameters that are propagated through our forward-model. Section 4 presents our probabilistic

projections and the results of our sensitivity analysis, which are then discussed in Section 5.70

2 Uncertainty quantification

Uncertainty quantification can be broadly defined as the science of identifying sources of uncertainty, and determining their

propagation through a model or real world experiment with the ultimate goal of quantifying, in probabilistic terms, how likely

an outcome or quantity of interest may be.

Early estimates of uncertainties in projections of future sea level change from the Antarctic Ice Sheet were derived from75

sensitivity studies that evaluated a small sample of a parameter space directly in individual ice sheet models (e.g. DeConto and

Pollard, 2016; Winkelmann et al., 2012; Golledge et al., 2015; Ritz et al., 2015). Model intercomparison experiments have since

been used to quantify uncertainties associated with differences in the implementation of physical processes between models,

beginning with idealised set-ups (e.g. MISMIP and MISMIP+ Pattyn et al., 2012; Cornford et al., 2015), and more recently

on an ice-sheet scale as part of the ISMIP6 project (Seroussi et al., 2020). Recently, the use of uncertainty quantification80

techniques has become more common for estimating uncertainties in projections of, for example, sea level rise, based on the

current knowledge of uncertainties associated with model parameters or forcing functions (parametric uncertainty) (Edwards

et al., 2019; Schlegel et al., 2018; Bulthuis et al., 2019; Aschwanden et al., 2019; Nias et al., 2019; Schlegel et al., 2015;

Wernecke et al., 2020). This includes techniques that weight model parameters and outputs according to some performance

measures, to provide a probabilistic assessment of sea level change (Pollard et al., 2016; Ritz et al., 2015). Some of these85

studies have also drawn upon statistical surrogate modelling techniques such as Gaussian process emulators (Edwards et al.,

2019; Pollard et al., 2016; Wernecke et al., 2020) or polynomial chaos expansions (Bulthuis et al., 2019) to mimic the behaviour

of an ice-sheet model, and sample a much larger parameter space to make predictions of Antarctic contribution to sea level

rise.

In this study, we are using a probabilistic approach, in which we are primarily interested in quantifying uncertainties in90

the forward propagation of input uncertainties that relate to parameters in the model or in the functions used to force climate
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Figure 2. Workflow diagram summarising the uncertainty quantification approach used in this study. We first identify uncertain input pa-

rameters and represent them in probabilistic framework. A training sample of 500 points is taken from this input parameter space and used

as input to an ensemble of simulations in our ice flow model, which we hereafter refer to as our "training ensemble". Using this training

sample, and the surrogate modelling capabilities in UQLAB we create a polynomial chaos expansion (PCE) that mimics the behaviour of

our ice flow model. This allows us to evaluate a much larger sample from our parameter space and these surrogate models are used to derive

predictions and probability density functions for changes in global mean sea level (∆GMSL). Finally, we use sensitivity analysis to identify

the proportional contribution of each input parameter on projection uncertainty.

warming, on a quantity of interest. We make use of the MATLAB based toolbox, UQLab, and the uncertainty quantification

framework of Sudret (2007), on which the MATLAB based toolbox is based (Marelli and Sudret, 2014). UQLab includes an

extensive suite of tools encompassing all necessary aspects of uncertainty quantification. Here, we summarise the approach

and tools used in this study (Figure 2) and we refer the reader to the UQLAB documentation (uqlab.com Marelli and Sudret,95

2014) for further details.

We can think of a physical model (M) as a map from an input parameter space to an output quantity of interest, as

Y =M(X) (1)

where our uncertain input parameters are specified as a probabilistic input model (X) with a joint probability distribution

function X ∼ fX(x), and Y is a list of model responses. Using this approach we are able to propagate the uncertainties in the100

inputs X to the outputs Y . We can think of our ice-flow model in the same way, ∆GMSL = Úa(X), where ∆GMSL is our
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model response or quantity of interest. In the following sections we outline eight uncertain input parameters that are represented

in X . These relate to basal sliding and ice rheology (Section 3.2), surface accumulation (Section 3.3) and sub-shelf melting

(Section 3.4). Uncertainties in these input parameters are defined in a probabilistic way based on the available information

(Figure 3). For parameters used to force sub-shelf melt rates, we conducted a separate Bayesian analysis to determine their105

input parameter probability distributions (see Appendix B).

Quantifying the uncertainty in model outputs due to uncertainty in input parameters or forcings, may require a computation-

ally unfeasibly large number of model evaluations. However if, for example, the model response varies slowly as the values

of some input parameters are changed, the relationship between model inputs and model outputs may be approximated using

a much simpler and computationally faster surrogate model. The uncertainty estimation can then be done in a much more110

computationally efficient way using the surrogate model.

Polynomial chaos expansion (PCE) is a surrogate modelling technique that approximates the relationship between input

parameters and output response in an orthogonal polynomial basis. Aside from the work of Bulthuis et al. (2019), PCE surrogate

modelling has not yet been used extensively by the glaciological community as a computationally efficient substitute for ice

sheet models. The truncated PCE,MPC(X), used to approximate the behaviour of our ice sheet modelM(X) takes the form115

M(X)≈MPC(X) =
∑
α∈A

yαΨα(X) (2)

where Ψα(X) are multivariate polynomials that are orthonormal with respect to the join input probability density function

fX , A⊂ NM is a set of multi-indices of the multivariate polynomials Ψα, and yα are the coefficients. Here, our PCEs are

calculated using the least angle regression (LAR) algorithm in UQLab (Blatman and Sudret, 2011; Marelli and Sudret, 2019)

that solves a least-square minimisation problem. This algorithm iteratively moves regressors from a candidate set to an active120

set and at each iteration a leave-one-out cross-validation error is calculated. After all iterations are complete, the best sparse

candidate basis are those with the lowest leave-one-out error. This is designed to reduce the potential for over-fitting, and

reduced accuracy when making predictions outside of the training set. This sparse PCE calculation in UQLab also uses the

LOO error for: 1) adaptive calculation of the best polynomial degree based on the experimental design and 2) adaptive q-norm

setup for truncation scheme. For further details on the PCE algorithm see Marelli and Sudret (2019). We also outline details on125

how input uncertainties were propagated through our model to create our PCE in Section 3.5.

Once the surrogate model has been created, the moments of the PCE are encoded in its coefficients where the mean (µPC)

and variance (σPC)2 are as follows

µPC = E[MPC(X)] = y0 (3)

130

(σPC)2 = E[(MPC(X)−µPC)2] =
∑
α∈A
α6=0

y2α (4)

Our existing PCE surrogate models can additionally be used in a sensitivity analysis to quantify the proportional contribution of

parametric uncertainty on projections of ∆GMSL. This allows us to identify input parameters where improved understanding
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is needed to constrain future projections. Here, we are using Sobol indices which are a variance-based method where the model

can be expanded into summands of increasing dimension, and total variance in model output can be described as the sum of135

the variances of these summands.

First order indices (Si), often also referred to as "main-effects", are the individual effect of each input parameter (Xi) on the

variability in the model response (Y ), defined as:

Si =
Var[E(Y |Xi)]

Var(Y )
(5)

Total Sobol indices (STi ) are then the sum of all Sobol indices for each input parameter and encompass the effects of parameter140

interactions. Values for Sobol Indices are between 0 and 1, where large values of Si indicate parameters that strongly influence

the projections of global mean sea level. If Si ≈ STi then it can be assumed that the effect of parameter interactions is negligible.

These Sobol indices can be calculated analytically from our existing PCEs, by expanding portions of the polynomial that

depend on each input variable to directly calculate parameter variance using the PCE coefficients. Each of the summands of

the PCE can be expressed as145

fv(xv) =
∑
α∈Av

yαΨα(X) (6)

Due to the orthonoamlity of the basis, the variance of our truncated PCE reads as

Var[MPC(X)] =
∑
α∈A
α6=0

y2α (7)

Var[fv(xv)] =
∑
α∈Av
α6=0

y2α (8)

The first order Sobol indices in Equation 5 are then calculated as the ratio between the two above terms.150

3 Methods

3.1 Ice-flow model

Here we use the vertically integrated ice-flow model Úa (Gudmundsson, 2020) to solve the ice dynamics equations using the

shallow-ice stream approximation (SSTREAM), also commonly referred to as the shallow-shelf approximation (SSA) and the

’shelfy-stream’ approximation. (MacAyeal, 1989). Úa has been used in previous studies on grounding line migration and ice155

shelf buttressing and collapse (De Rydt et al., 2015; Reese et al., 2018b; Gudmundsson et al., 2012; Gudmundsson, 2013; Hill

et al., 2018) and model results have been submitted to a number of intercomparison experiments (Pattyn et al., 2008, 2012;

Levermann et al., 2020; Cornford et al., 2020).
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Our model domain extends across the two major drainage basins that feed into the FRIS (Figure 1). Within this domain, we

generated a finite-element mesh (Figure S1) with∼ 92,000 nodes and∼ 185,000 linear elements using the Mesh2D Delaunay-160

based unstructured mesh generator (Engwirda, 2015). Element sizes were refined based on effective strain rates and distance

of the grounding line and have a maximum size of 27 km, a median size of 2 km, and a minimum size of 660 m. Within a

10 km distance of the grounding line elements are 3 km, and refined further to 900 m within a distance of 1.5 km. Outside

of our uncertainty analysis, we tested the sensitivity of our results to mesh resolution by repeating our median and maximum

∆GMSL simulations under RCP 8.5 forcing, and dividing or multiplying the aforementioned element sizes by two. Our results165

are largely insensitive to the mesh resolution, with a percentage deviation in ∆GMSL of only 3% by 2300. Finally, we linearly

interpolated ice surface, thickness and bed topography from BedMachine Antarctica v1 (Morlighem et al., 2020) onto our

model mesh. We initialise our model to match observed velocities using an inverse approach (see Section 3.2 and Appendix

A).

During forward transient simulations, Úa allows for fully implicit time integration, and the non-linear system is solved using170

the Newton-Raphson method. Úa includes automated time-dependent mesh refinement, allowing for high mesh resolution

around the grounding line as it migrates inland. We also impose a minimum thickness constraint of 30 m using the active-

set method to ensure that ice thicknesses remain positive. Throughout all simulations our calving front remains fixed in its

originally prescribed position. At the end of each forward simulation we calculate the final change in global mean sea level

(∆GMSL) as the ice volume above flotation that will contribute to sea level change based on the area of the ocean (Goelzer175

et al., 2020).

3.2 Basal sliding and ice rheology

There are two components of surface glacier velocities; internal deformation and basal sliding. Úa uses inverse methods to

optimise these velocities components based on observations by estimating the ice rate factor (A) in Glen’s flow law and basal

slipperiness parameter (C) in the sliding law. This section introduces uncertainties related to the exponents of the flow law and180

basal sliding law, whereas details of the inverse methodology are included in Appendix A.

Glen’s flow law (Glen, 1955) is used to relate strain rates and stresses as a simple power relation

ε̇ij =Aτn−1e τij (9)

where ε̇ij are the elements of the strain rate tensor, τe is effective stress (second invariant of the deviatoric stress tensor), τij

are the elements of the deviatoric stress tensor, A is the temperature dependent rate factor, and n is the stress exponent.185

This stress exponent (n) controls the degree of non-linearity of the flow law and most ice flow modelling studies adopt

n= 3, as it is considered applicable to a number of regimes (See review in: Cuffey and Paterson, 2010). However, experiments

reaching high-stresses (Kirby et al., 1987; Goldsby and Kohlstedt, 2001; Treverrow et al., 2012), or analysing borehole meas-

ruements, and ice velocities (e.g. Gillet-Chaulet et al., 2011; Cuffey and Kavanaugh, 2011; Bons et al., 2018) have suggested

that n > 3. It is also possible that at low stresses, the creep regime may become more linear n < 3 (Jacka, 1984; Pettit and190

Waddington, 2003; Pettit et al., 2011), which is supported by ice shelf spreading rates n= 2− 3 (Jezek et al., 1985; Thomas,
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1973). While it can be considered that n= 3 is appropriate in most dynamical studies, the exact numerical value is not known

and it appears plausible that it can range between 2 and 4. To capture the uncertainty in the stress exponent we take n ∈ [2,4]

and sample continuously from a uniform distribution within this range (Figure 3).

Basal sliding is considered the dominant component of surface velocities in fast flowing ice streams. The Weertman sliding195

law is defined as

τb = C−1/m‖vb‖1/m−1vb (10)

where C is a basal slipperiness coefficient and vb the basal sliding velocity. The Weertman sliding law typically captures hard-

bed sliding, in which case m= n and is normally set equal to 3 (Cuffey and Paterson, 2010). However, using different values

for m alters the non-linearity of the sliding law, and can thus be used to capture different sliding processes, i.e. viscous flow200

for m= 1 and plastic deformation for m=∞. There are limited in situ observations of basal conditions, and the value of m

relies on numerical estimates of basal sliding based on model fitting to observations.

A number of studies have tested different values of m to fit observations of grounding line retreat or speedup at Pine

Island Glacier (Gillet-Chaulet et al., 2016; Joughin et al., 2010; De Rydt et al., 2021). These studies show that m= 3 can

underestimate observations, and more plastic like sliding (m> 3) is needed in at least some parts of the catchment to replicate205

observations (Joughin et al., 2010; De Rydt et al., 2021). This uncertainty in the value of m can ultimately affect projections

of sea level rise (Ritz et al., 2015; Bulthuis et al., 2019; Alevropoulos-Borrill et al., 2020) by altering the length and time taken

for perturbations (e.g. ice shelf thinning or grounding line retreat) to propagate inland.

While additional sliding laws have been proposed and are now implemented within a number of existing ice flow models,

in this study we use the Weertman sliding law, as it remains the most common. This narrows the parameter space, allowing210

us to fully integrate the influence of m on projections of future sea level rise into our uncertainty assessment (by performing

an inverse model run prior to each perturbed run, see Section 3.5). This is an advancement over previous Antarctic wide

studies, that given domain size have no choice but to invert the model for a handful of different m values prior to uncertainty

propagation (e.g. Bulthuis et al., 2019; Ritz et al., 2015). To capture uncertainty in m and to sample from a range of possible

methods of basal slip, we take m ∈ [2,9] and sample from a uniform distribution (Figure 3).215

3.3 Surface accumulation

To capture uncertainties in future climate forcing, we use projections from four Representative Concentration Pathways (RCPs)

presented in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). These pathways capture

plausible changes in anthropogenic greenhouse gas emissions for the 21st and 22nd centuries. RCP 2.6 is a strongly mitigated

scenario, and multi-model mean estimates from the IPCC report (IPCC, 2014) project a global temperature increase of less220

than 2◦C above pre-industrial levels by 2100, and is the goal of the 2016 Paris Agreement. Two intermediate scenarios (RCP

4.5 and RCP 6.0) represent global temperature increases of ∼ 2.5◦C and ∼ 3◦C with reductions in emissions after 2040 and
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Figure 3. Probability distributions for uncertain parameters included in our analysis, grouped by ice dynamics (blue rectangle), atmospheric

forcing (green rectangle), and ocean forcing (orange rectangle). For each parameter, x-axes show the parameter bounds, and red lines show

the probability distribution functions. Yellow circles show the sample point estimates for each of our parameters. The distributions of the

four ocean forcing parameters are outputs from our Bayesian analysis (Appendix B) in which we optimized the parameter distributions using

observations melt beneath the Filchner-Ronne ice shelf.

2080 respectively (IPCC, 2014). Finally, RCP 8.5 projects a global temperature increase of ∼ 4.5◦C by 2100 and is now often

referred to as an "extreme" or "worst-case" climate change scenario.

Global mean temperature changes (∆Tg) from 1900 to 2300 relative to pre-industrial (1860–99) were obtained from the225

atmosphere–ocean general circulation model emulator MAGICC6.0 (live.magicc.org: Meinshausen et al. (2011)). For each

RCP scenario we obtain 600 (historically-constrained) model simulations between 2000 and 2100 (see Meinshausen et al.

(2009) for details on the probabilistic set-up). We then use the ensemble median and uncertainty bounds within a "very likely"

range between the 25th and 75th percentiles. To extend the record to 2300, we use a single model realisation, using the default

climate parameter settings used to produce the RCP greenhouse gas concentrations for each RCP scenario (Meinshausen et al.,230

2009) , and keep the upper and lower bounds constant from 2100 to 2300 (Figure 4). Uncertainty in projections from 2100

to 2300 may well be larger, but we choose not to make an assumption on how errors will propagate up to 2300. Global tem-

peratures from MAGICC 6.0 were also used in the Antarctic linear response model inter-comparison (LARMIP-2) experiment

(Levermann et al., 2020) and are consistent with projections used in other Antarctic wide simulations (Bulthuis et al., 2019;

Golledge et al., 2015).235

Following the work of a number of previous studies (e.g. Pattyn, 2017; Bulthuis et al., 2019; DeConto and Pollard, 2016;

Garbe et al., 2020), global temperature changes (∆Tg) are used to force annual changes in surface mass balance through our

10
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Figure 4. Changes in global mean temperatures (∆Tg[◦C]) relative to pre-industrial levels (1860 to 1899) for four Representative Con-

centration Pathways (RCPs) 2.6 (blue), 4.5 (green), 6.0 (yellow), 8.5 (pink). Shading shows uncertainty regions between the 25th and 75th

percentiles.

forward-in-time simulations, by prescribing changes in surface temperature (Tair) and precipitation (P ) as follows:

Tair = T air
obs− γ(s− sobs) + ∆Tg (11)

240

P =Aobs× exp(p · (Tair−T air
obs)) (12)

where T air
obs and Aobs are surface temperatures and accumulation rates from RACMO2.3 respectively (Van Wessem et al.,

2014). Temperature changes through time are corrected for changes in surface elevation (s) from initial observations (sobs),

using a lapse rate of γ = 0.008◦C m−1 (Pattyn, 2017; DeConto and Pollard, 2016), and subsequently used to force changes

in precipitation using an expected percentage increase in precipitation (p) per degree of warming (Aschwanden et al., 2019).245

This captures the rise in snowfall expected with the increased moisture content of warmer air, suggested by climate models

(e.g. Palerme et al., 2017; Frieler et al., 2015). Here, we do not implement a positive degree day surface melt model. While it

is possible that RCP 8.5 forcing in particular, could cause enhanced surface melting in some regions of Antarctica, due to the

southern location of the Filchner-Ronne ice shelf, surface melt and runoff are unlikely to outweigh increases in snowfall in the

high warming scenario (Kittel et al., 2021).250
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To capture further uncertainties associated with atmospheric forcing, we introduce two uncertain parameters into our anal-

ysis, 1) a scaling factor to select a temperature realisation between the 25th and 75th percentiles of the ensemble median

temperature for each RCP scenario (Figure 4) and 2) uncertainty in the expected changes in precipitation across the Antarctic

ice sheet with increased air temperatures.

First, instead of only using the ensemble median change in temperature for each RCP scenario, we capture the spread255

within each forcing scenario by incorporating a temperature scaling parameter (T ) as follows: ∆Tg(n) = ∆Tmediang +T ·T errg ,

where for each RCP scenario ∆Tmediang is the median, ∆T errg is the distance either side of the median within the 25th and

75th percrentiles, and ∆Tg(n) is the resultant temperature realisation used to force both surface accumulation (P ) and ocean

temperature (see Section 3.4). We assume that there is decreasing likelihood of temperature profiles further away from the

median, and so prescribe a Gaussian distribution for T between −1 (25th percentile) and 1 (75th percentile) and centered260

around 0 (median: Figure 3).

Secondly, we capture uncertainty associated with precipitation by varying the amount by which precipitation increases per

degree of warming (p). While it is generally accepted that accumulation will increase with future warming, the value of p

remains uncertain. Snow accumulation could prevent runaway ice discharge from the Antarctic ice sheet, which means that

parameterisations of precipitation increase with warming have implications for accurate projections of mass change across265

the ice sheet. Previous studies using ice core records, historical global climate model (GCM) simulations, and future GCM

simulations as part of the CMIP5 ensemble, have estimated anywhere between 3.7–9% increase in Antarctic accumulation per

degree of warming (Krinner et al., 2007, 2014; Gregory and Huybrechts, 2006; Bengtsson et al., 2011; Ligtenberg et al., 2013;

Frieler et al., 2015; Palerme et al., 2017; Monaghan et al., 2008). To capture this range of possible values for (p) we sample

from p ∈ [4,8] and make no assumption of the distribution (likelihood) of the value of p within this range by sampling from a270

uniform distribution (Figure 3). While the lower bound of this range sits below what is expected from the Clausius-Clapeyron

relationship, it is able to capture low rates of surface mass balance that could occur with some (albeit limited) increases in

surface runoff and melt under RCP 8.5 forcing.

3.4 Sub-shelf melt

Ice shelf thinning due to ocean–induced melt can reduce buttressing forces on grounded ice and accelerate ice discharge.275

Such feedbacks may already be taking place in parts of West Antarctica. However, future changes in ocean conditions remain

uncertain, owing to poor understanding and the challenges of modelling interactions between global atmospheric warming

and ocean circulation/temperature changes (Nakayama et al., 2019; Thoma et al., 2008). In particular, the likelihood that the

Filchner-Ronne ice shelf cavity will be flushed with modified warm deep water in the future is unclear (Hellmer et al., 2012).

To parameterise basal melting beneath the ice shelf, we use an implementation of the PICO ocean box model (Reese et al.,280

2018a) for use in Úa, which we hereafter refer to as the ocean box model. This provides a computationally feasible alternative

to fully coupled ice-ocean simulations for large ensemble analysis, which is more physically based than simple depth dependent

parameterisations (e.g. Favier et al., 2014) and has been shown to provide similar results to coupled simulations under future

climate forcing scenarios (Favier et al., 2019). The basic overturning circulation in ice shelf cavities is captured using a series of
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ocean boxes, calculated based on their distance from the grounding line. The overturning flux q is then calculated as the density285

difference between the far-field (p0) and grounding line (p1) water masses using a constant overturning strength parameter (c).

The melt parameterisation also includes a turbulent heat exchange coefficient γ∗T that controls the strength of melt rates by

varying the heat flux across the ice–ocean boundary. For a detailed description of the physics of the PICO box model, see

Reese et al. (2018a). To calculate sub-shelf melt rates, the box model requires inputs of sea-floor temperature (Tocean) and

salinity (S) on the continental shelf to drive the ocean cavity circulation. We use S = 34.65 psu and the initial observed ocean290

temperature for the Weddell Sea T ocean
obs =−1.76◦C from Schmidtko et al. (2014) which was proposed for use in PICO (Reese

et al., 2018a). For the FR basin we use five ocean boxes, and only apply sub-shelf melting to nodes that are fully afloat (no

connecting grounded nodes) to avoid overestimating grounding line retreat (Seroussi and Morlighem, 2018).

To force changes in sub-shelf melt rates using RCP forcing, we update the far-field ocean temperature (Tocean) through time

with an ocean temperature anomaly:295

Tocean = T ocean
obs + ∆To (13)

It is often assumed that atmospheric temperature changes ∆Tg can be translated to ocean temperature changes ∆To using some

scaling factor (α) (Maris et al., 2014; Golledge et al., 2015; Levermann et al., 2014, 2020). Here, we use the linear scaling

proposed in Levermann et al. (2020) which additionally includes a time delay τ to capture the assumed time lag between

atmospheric and subsurface ocean warming.300

∆To = α ·∆Tg(t− τ) (14)

To obtain suitable values for α and τ , Levermann et al. (2020) used 600 atmospheric temperature realisations (also from MAG-

ICC6.0 simulations) and ocean temperatures from 19 CMIP5 models (Taylor et al., 2012) to derive the relation between global

surface temperatures and subsurface ocean warming by computing the correlation coefficient (α) and time delay between the

signals (τ ). The values proposed are consistent with α≈ 0.25 used in a number of other Antarctic wide simulations (Bulthuis305

et al., 2019; Golledge et al., 2015; Maris et al., 2014). However, given the spread of values depending on the choice of CMIP5

model, no single value for either α and τ can be chosen with confidence, and it is instead appropriate to sample from parameter

probability distributions.

We identify a further two uncertain parameters in the ocean box model that additionally control the strength of sub-shelf

melt. These are the turbulent heat exchange coefficient γ∗T and the strength of the overturning circulation c. Values for these310

parameters presented in Reese et al. (2018a) have been optimised to present day ocean temperatures and observations of

melt rates for a circum-Antarctic set-up. While upper and lower bounds for these parameters have also been proposed (Reese

et al., 2018a; Olbers and Hellmer, 2010), little information exists on the likelihood of parameter values within these ranges,

particularly for different regions of Antarctica, with varying ocean conditions.

For the four parameters that control the sub-shelf melt rates (α , τ ,γ∗T and c) we decided to constrain their uncertainty (prob-315

ability distributions) using a Bayesian approach. Using the a priori information on the distributions for α and τ (Levermann
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et al., 2020) and possible upper and lower bounds for γ∗T and c from Reese et al. (2018a); Olbers and Hellmer (2010), along-

side observed sub-shelf melt rates from Moholdt et al. (2014), we derive optimised posterior probability distributions for use as

input to our uncertainty propagation. The details of this are outlined in Appendix B, and the resultant probability distribution

functions for these parameters are shown in Figure 3.320

3.5 Propagating uncertainty

In this section we explain how uncertainties in the input parameters introduced in the previous sections are propagated through

our model to obtain projections of global mean sea level (Figure 2). We began by generating an experimental design (training

set) for the surrogate model. An input parameter sample of 500 points was extracted from the parameter space using Latin

hypercube sampling. This sample was determined to be sufficient in size such that the mean ∆GMSL had converged for each325

RCP surrogate model (see Figure S3). Using each training sample we then evaluate the ice flow model to generate model

responses. For each sample point we perform six model runs. First, we perform a model inversion following the procedure

outlined in Appendix A using the selected values for m and n. The resulting optimised fields of C and A are then input

into five forward-in-time simulations, four based on different RCP scenarios and one control run, all of which run from 2000

(nominal start year) to 2300.330

Experience has shown that our model (similar to others e.g. Bulthuis et al., 2019; Schlegel et al., 2018) undergoes a period of

model drift at the start of the simulation, characterised by a slowdown and thickening of many of the ice streams in our domain

amounting to between 80 and 100 mm of negative contribution to ∆GMSL. We found model drift to be similar between

parameter sets, but was affected by the basal boundary conditions from our inversion. Hence, rather than specify a single

baseline for the entire experimental design, we perform a control simulation for each set of basal boundary conditions. This335

control run uses selected values of m and n and inverted fields of C and A but holds all other input parameters fixed to their

sample point estimates, as well as using a constant temperature forcing. Each control run is followed by four forward runs,

one for each RCP forcing scenario, in which surface accumulation and sub-shelf melt rates are updated at annual intervals

based on global temperature changes (Figure 4). The final calculated change in global mean sea level for each RCP scenario

is with respect to the preceding control run (∆GMSLrcp−∆GMSLctrl). For our 500 member training ensemble we perform340

500 model inversions, and 2500 forward simulations.

Model responses (∆GMSL) and input parameter sampleX = xi, ...,xN are used to train four surrogate models (one for each

RCP scenario). This is done using the Polynomial Chaos module in UQLab (Marelli and Sudret, 2019) using the LAR algorithm

previously described in Section 2. We allow the LAR algorithm to choose a PCE with a degree anywhere between 3 and 15 and

q-norm between 0.1 and 1. Predictions (mean and variance) of ∆GMSL are then directly extracted from each surrogate model.345

To estimate the accuracy of our PCE predictions and calculate quantiles we use bootstrap replications. We use 1000 replications

(B) each with the same number of sample points as the original experimental design (500) to create an additional set ofB PCEs

and associated responses. Quantiles (5th and 95th) were extracted from the bootstrap evaluations (see Supplementary Figure

S2). To assess the performance of our surrogate model, we generated an additional and independent validation sample of 20

sample points in the parameter space, evaluated for each RCP scenario (total of 80 perturbed simulations). We then calculate350
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2100 2200 2300

RCP 2.6 −3.2(−6.4,0.113) −5.05(−13.2,3.86) −5.49(−19.1,9.57)

RCP 4.5 −4.99(−8.96,−0.975) −11(−22.7,1.87) −15.1(−36.1,9.7)

RCP 6.0 −5.41(−9.51,−1.3) −15.4(−29.7,0.204) −22.3(−49.6,11.1)

RCP 8.5 −8.39(−14.1,−2.99) −30.2(−55.2,−3.42) −48(−103,26)

Table 1. Contribution to global mean sea level [mm] at years 2100, 2200 and 2300. The first number is the median projection and values in

brackets are 5–95% confidence intervals

the root mean square error (RMSE) between validation responses Yval to those calculated by each surrogate model (YPCE)

using the same validation input parameter sample Xval. Predictions made by the surrogate models are close to the responses

by our ice-flow model and have a maximum RMSE error of 2.3 mm for our RCP 8.5 surrogate model (Supplementary Figure

S2).

4 Results355

4.1 Projections of sea level rise from FR basin

We begin by presenting probabilistic projections of global mean sea level change from the Filchner-Ronne basin for four RCP

scenarios. These projections were derived from surrogate models that were trained with our 500 member training ensemble of

forward-in-time ice flow model simulations. We then evaluated these surrogate models with a 1,000,000 point sample (gener-

ated using Latin hypercube sampling) from our input parameter space to derive model responses, and calculated probability360

distributions using kernel density (Figure 5).

Our projections indicate it is most likely that the FR basin will undergo limited change or contribute negatively to global

mean sea level by the year 2300. Under the lowest warming scenario (RCP 2.6: 0.77− 1.7◦C), ∆GMSL is limited, ranging

between −19.1 mm (5th) and 9.57 mm (95th percentiles: Table 1). The probability distribution (Figure 5) takes a near-to-

normal shape, with a median projection close to zero (−5.49 mm), but has a weak positive skew of 0.16 (calculated using the365

moment coefficient of skewness), with a tail extending towards a maximum sea level contribution of ∼ 50 mm. Projections

of ∆GMSL under the medium warming scenarios RCP 4.5 and 6.0 range from −36.1 to 9.7 mm and −49.6 to 11.1 mm

respectively (Table 1). These distributions are more positively skewed than RCP 2.6 (skewness coefficients of 0.29 and 0.39

respectively), with tails extending towards∼ 100 mm of global sea level rise (Figure 5). Extreme warming leads to the greatest

uncertainty in projections, which range from −103 to 26 mm under RCP 8.5 (Table 1). The median projection indicates370

a greater negative contribution to sea level rise under higher warming. However, the probability distribution is asymmetric,

with a long-tail (high positive skew = 0.77), that decreases exponentially away from the median and reaches a maximum

∆GMSL of 332 mm (Figure 5). This long-tail represents the potential for low-probability, but high magnitude contributions

to sea level rise.
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Figure 5. Probability density (top) and cumulative probability density (bottom) for projections of change in global mean sea level (∆GMSL)

in millimetres by the year 2300 under four RCP emissions scenarios. Dashed lines show the 5, 50 and 95th percentiles for the highest emission

scenario RCP 8.5
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Figure 6. Projections of changes in global mean sea level (∆GMSL) from 2000 and 2300 from our training ensemble of ice flow model

simulations. Dark shading is the interquartile range (IQR) defined between the 25th and 75th percentiles. Lighter shading shows 5th–95th

percentiles. Box plots show the projections from the surrogate models (∆GMSLPCE) for each RCP scenario at 2300. Extreme values are

located at 1.5 times the interquartile range away from the 25th and 75th percentiles. Values outside of these extreme bounds are considered

to be outliers.

As our surrogate modelling is based around a single quantity of interest (∆GMSL at the year 2300) it does not allow us to375

evaluate temporal changes in ice loss directly. Figure 6 instead presents projections through time from our 500 member training

ensemble alongside the final ∆GMSL from each surrogate model (PCE). We also generate two additional surrogate models for

each RCP scenario at years 2100 and 2200 (Table 1) to evaluate projections at these time intervals, and identify the temporal

importance of parameters on projection uncertainty (see Section 4.2 and Figure 7).

Both Table 1 and Figure 6 show that the contribution to ∆GMSL and associated uncertainties increase through time. Within380

the next 100 years (up to 2100) we project little change in ice mass from the FR basin. This constitutes a small negative

contribution to sea level rise of < 10 mm in all warming scenarios (Table 1), with a maximum range of −14.1 to 0.11 mm.

By 2200 the spread of ∆GMSL has diverged based on warming scenario, with little change under limited forcing (RCP

2.6 =−5.05), and a greater negative contribution under with higher warming (−30.2 in RCP 8.5). Between 2200 and 2300

uncertainties increase dramatically in all warming scenarios, particularly in RCP 8.5. Box plots on Figure 6 show the projections385

generated from our surrogate model in 2300 alongside our ice flow model training ensemble. This shows that the probability
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distributions in the most likely range between 5-95% generated from our surrogate models are largely similar to those found

from our training ensemble in 2300. However, we note that the tails of these distributions, in particular for RCP 8.5, extend

substantially beyond the maximum ∆GMSL shown from our training ensemble alone (150 mm). While, this is expected with

more extensive sampling of our parameter space, we test the feasibility of ∆GMSL = 332 mm, by taking the parameter values390

that led to this, and re-evaluating the "true" ice flow model. This gives a slightly lower value of ∆GMSL = 250 mm, but

one that is still considerably higher than in our original training ensemble despite its relatively large size (N = 500). This

demonstrates the benefits of our surrogate modelling approach, as it was able to capture the possibility of more extreme sea

level rise scenarios that were not exposed by the original sample. Recalculating the surrogate model for RCP 8.5 including this

"extreme" sample point, reduces the maximum contribution to sea level rise to 288 mm.395

4.2 Parametric Uncertainty

In this section we present the results of our sensitivity analysis, in which we determine how uncertainties in our input parameters

(parametric uncertainty) impact our projections of ∆GMSL. To do this, first order Sobol indices were decomposed from each

of our PCE models (four RCP forcing scenarios) and for three timesteps: 2100, 2200 and 2300, which are presented in Figure

7. We additionally assessed the individual parameter to projection relationship, by re-evaluating our surrogate model for each400

parameter, while all other parameters were held at their sample point estimates (see Supplementary Figure S4).

By 2300 (dark shaded bars in Figure 7) uncertainties in our four ocean forcing parameters collectively have the greatest

fractional contribution to the uncertainty in our projections of global mean sea level contribution. This ranges from 60% in

RCP 8.5 to 75% for RCP 2.6. Projection uncertainty in all RCP scenarios is primarily driven by ocean temperature forcing,

and the value of α used to scale atmospheric to ocean temperatures. Uncertainties attributed to α appear to increase both with405

warming scenario and through time. In all RCP scenarios, fractional uncertainty associated with α increases from 2100 to

2300 (light shaded bars in Figure 7), coincident with an increase in the spread of ∆GMSL contribution (Figure 6). In 2100, α

has a greater impact on projection uncertainty in the lower warming scenario. However, by 2300, the fractional uncertainty is

greatest in RCP 8.5, accounting for almost half of projection uncertainty (0.44) compared to 0.34 in RCP 2.6. Re-evaluating the

surrogate models varying only the value of α reveals a quadratic dependency of ∆GMSL on the value of the scaling coefficient410

(Supplementary Fig S4), which is consistent with the quadratic sensitivity of sub-shelf melt rates to ocean temperature forcing

observed for the FR ice shelf cavity by Reese et al. (2018a). Under extreme warming (RCP 8.5), this quadratic relation becomes

stronger, and variability in α alone can cause ∆GMSL to range between −86 and 73 mm by 2300. Under all RCP warming

scenarios the value of α contributes to a greater range of ∆GMSL than any other parameter (Supplementary Fig S4), and

encompasses almost all of the 5–95% spread of projections (Table 1).415

Of our two ocean box model parameters, overturning strength (c) accounts for more projection uncertainty than the turbulent

heat exchange coefficient (γ∗T ) in all warming scenarios. This is consistent with the theory that sub-shelf melting at large

and cold-cavity ice shelves is predominantly driven by overturning strength (Reese et al., 2018a). The fractional importance

of c has the greatest variability between forcing scenarios than any other parameter. Unlike α, uncertainty associated with c

decreases with warming, from 0.32 in RCP 2.6 to 0.1 for RCP 8.5 (Figure 7). The importance of the overturning strength, c,420
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Figure 7. First order Sobol indices, i.e. the fractional contribution of each input parameter on the uncertainty in our projections of ∆GMSL,

for each RCP forcing scenario. Dark shading shows the Sobol indices for ∆GMSL in 2300. Two lighter shading colours represent Sobol

indices at years 2100 and 2200, to show the variability in parameter importance through time.

also increases with time, which is most pronounced in lower warming scenarios, e.g. RCP 2.6 where α and c are similar by

2300. This suggests that with greater ocean warming (in RCP 8.5) and a transition to warm cavity conditions, uncertainties in

temperature (associated with the value of α) outweigh uncertainties in sub-shelf melt rates driven by the overturning strength

alone. Whereas in colder conditions (RCP 2.6) variability in c has a greater control on heat supply for sub-shelf melt. A

similar trend exists for uncertainties associated with γ∗T ; greater importance for lower warming scenarios and in all scenarios,425

increasing importance with time. However, in contrast to c, there is a greater relative increase in the Sobol index for the highest

warming scenario (RCP8.5) from 2100 to 2300; the importance of γ∗T doubled from 0.033 to 0.066 versus only a 54% increase

in RCP 2.6. This suggests that as the FR ice shelf transitions to warm cavity conditions (∼ 2◦C in RCP 8.5) the heat exchange

in the turbulent boundary layer may become a more important driver of sub-shelf melt than under colder conditions.

Atmospheric forcing parameters account for the second largest proportion of uncertainty in ∆GMSL by 2300. This is pri-430

marily driven by variability in the percentage increase in precipitation per degree of warming (p), and to a lesser extent the

temperature scaling parameter (T ). At all time intervals (2100, 2200, 2300), projection uncertainty attributed to p is largest

based on warming scenario. Unlike α, Sobol indices for p decrease through time, which is asynchronous to increased uncer-
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tainty in ∆GMSL contribution (Figure 6). In 2100, p accounts for over half of projection uncertainty in all scenarios (except

RCP 2.6) reaching a maximum of 0.62 in RCP 8.5. p remains the dominant parameter in 2200 for higher warming scenarios,435

but for RCP 2.6 the Sobol index for p decreases to 0.26, less than both α and c. By 2300, the fractional importance of p is

< 0.3 and lower than α for all four warming scenarios. Evaluating the surrogate model (at year 2300) for p only, reveals a

linear dependency on the value of p, where, as expected, increases in precipitation lead to a decrease in the contribution to

GMSL, or in this case a greater negative contribution to GMSL (Supplementary Figure S4). In RCP 8.5, p alone contributes to

between−8 and−80 mm of ∆GMSL (Supplementary Figure S4). This suggests that even with a limited (p= 4%) increase in440

precipitation, and fixed melt rates, the FR basin is unlikely to contribute positively to ∆GMSL. However, in RCP 2.6, increased

accumulation with p < 0.05 does not outweigh mass loss associated with sub-shelf melting and could lead to a small positive

contribution to sea level rise.

Finally, uncertainties in our ice dynamical parameters relating to the non-linearity in the sliding (m) and flow (n) laws used

in our model, have a limited contribution to uncertainties in our projections of ∆GMSL (Figure 7). The combined contribution445

of these parameters by 2300 under all warming scenarios (0.02 in RCP8.5) is an order of magnitude less than uncertainties

associated with atmospheric and oceanic forcing (see Supplementary Figure S5 for Sobol Indices for just m and n). Of the two

parameters, m accounts for the most uncertainty in ∆GMSL, which is unsurprising given that basal sliding is likely to be the

dominant component of surface velocities of the fast-flowing ice streams feeding the FR ice shelf. Despite low values of the

Sobol indices, we note that uncertainties in both m and n increase with time and the strength of the temperature perturbation450

(Supplementary Figure S5). Increasing the values of m and n in isolation, reduces the negative contribution to ∆GMSL, i.e.

less mass gain (Supplementary Fig S4). In both cases, a stronger non-linearity in the ice flow (n), or more plastic like flow (m),

allows for faster delivery of the ice to the grounding line in response to a perturbation.

4.3 Partitioned Mass Change

Our Sobol indices reveal that the percentage change in precipitation and ocean temperature scaling are the main drivers of455

uncertainty in changes in global mean sea level. To further examine the relative importance of precipitation and sub-shelf

melt parameters on mass change in the FR basin, we take our training ensemble and partition components of mass balance

(accumulation and discharge) using the input-output method. We calculated the integrated input accumulation (P ) across the

grounded area and the total integrated discharge (D) output across the grounding line with respect to our control runs. These

mass balance components, as well as total mass change (M = P −D), are shown for the low (RCP 2.6) and high (RCP 8.5)460

warming scenarios in Figure 8) and for intermediary scenarios in Supplementary Figure S6.

Mass change under the lowest warming scenario (RCP 2.6) closely follows the temperature anomaly trend and appears

primarily driven by increases (and subsequent decreases) in accumulation with warming. In the first 50 years, mass balance

increases to 12.6 (6.56− 18.6) Gt yr−1 (where values in brackets here and in the remainder of this section are 5–95%). This

is primarily due to an increase in accumulation at a rate of 15.2 Gt yr−1 in 2050, which is offset by a limited increase in465

discharge across the grounding line (2.5 Gt yr−1) during this period. Between 2050 and 2100 accumulation remains constant

and discharge increases, which consequently reduces the rate of total mass gain. Uncertainties associated with accumulation are
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greater than those for discharge during this period (Figure 8c), which is consistent with the high contribution of the percentage

increase in precipitation on projection uncertainty in 2100 (Figure 7). The rate of mass gain continues to decrease after 2100,

alongside a reduction in the temperature perturbation in RCP 2.6, and decelerating accumulation. During this period, discharge470

across the grounding line stabilises at a median of 10 Gt yr−1, but the uncertainty range increases dramatically to −8 to

26 Gt yr−1, which coincides with an increasing importance of parameters relating to sub-shelf melt from 2200 to 2300 (Figure

7). By 2300 this drives the mass balance towards zero, at which accumulation is approximately balanced by ice discharge.

Under RCP 8.5 forcing the spread of mass change in 2300 is driven by anomalies in ice discharge. During the first 150

years, surface accumulation steadily increases at an average rate of 50 Gt yr−1, which is consistent with increased temperature475

forcing of 6.4◦C. During this period, increases in discharge lag that of accumulation, averaging only 9.6 Gt yr−1, which can

partly be explained by the prescribed time delay between atmospheric and oceanic warming (τ : Equation 14). Hence, it appears

likely that total mass balance will remain positive up to 2150, as no parameter combinations (training ensemble members) are

able to sufficiently increase ice discharge above that of accumulation. Consistent with other forcing scenarios, uncertainties

in accumulation are also greater than those associated with discharge, which corresponds to greater projection uncertainty480

attributed to p up to 2200 (Figure 7).

After 2150, the rate of temperature increase is reduced, which leads to a reduction in surface accumulation, that plateaus

at ∼ 140 (86− 202) Gt yr−1 between 2200 and 2300. Despite a limited change in temperature (+1.6◦C) between 2150 and

2300 (relative to 2000 to 2150), discharge continues to increase linearly from 31 to 92 Gt yr−1. Simultaneously, uncertainties

in discharge increase substantially and span 0.05−0.76 mm yr−1 (5–95th percentiles) of sea level equivalent volume in 2300.485

This suggests that the atmospheric temperature anomaly itself becomes less important than the amount by which atmospheric

temperatures are scaled to ocean warming, i.e. the value of α, where variability in α alone accounts for most of the range of sea

level contribution (Figure 7 and Supplementary Figure S4). Indeed, the spread of total mass change (M ) closely follows the

uncertainties in ice discharge, where it is possible, albeit unlikely, that certain combinations of parameters (within the 5–95th

percentiles) allow for mass imbalance (P <D) and a positive contribution to sea level.490

Variability in ice discharge alone also reveals the spread of potential positive contribution to sea level rise that would have

occurred in our simulations if surface accumulation had remained unchanged. To explore this, we rerun our median simulation

under RCP 8.5 forcing using the same parameter values, but keep surface mass balance fixed at it’s initial value. This reveals

that increases in sub-shelf melt alone would contribute to 84 mm of global mean sea level rise (as opposed to −50 mm), and

highlights the important and compensating effect accumulation has on the sign of our sea level projections.495

4.4 Grounded Ice Loss

In this section we explore the changes in grounded area throughout our simulations to see how our projections of mass change

correspond to the retreat of the grounding line. Figure 9 presents changes in grounded area with respect to the control runs

(a) and grounding line positions from members of our training ensemble closest to our 5, 50 and 95% percentile projections

of ∆GMSL from our surrogate models (b) for RCP 8.5, while additional RCP scenarios are shown in Supplementary Figures500

S7–S9.
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Figure 8. Projected temperature changes and mass balance changes for RCP 2.6 (left panels, blue lines) and RCP 8.5 (right, red) between

2000 and 2300 from our training ensemble. Uncertainties are shown between 5 and 95% in light shading and between 33 and 66% in dark

shading a, e) Global temperature anomalies, b, f) Change in the rate of total mass change (M ) in Gt yr−1 calculated as P −D c, g) Change

in rate of accumulation integrated over the grounded area (P Gt yr−1) with respect to our control runs (Prcp −Pctrl). d, h) Change in the

rate of ice discharge integrated across the grounding line (D Gt yr−1) calculated with respect to our control runs (Drcp −Dctrl)

Despite the negative contribution to ∆GMSL likely under all warming scenarios (50th percentiles: Table 1), our results

show that these median projections correspond to simulations that all experience a reduction in grounded area by 2300 (Figure

9 and Supplementary Figures S7–S9). In all scenarios there is limited grounding line retreat in the next 100 years (up to 2100),

amounting to only −716 km2 (−4800 to 2050 km2 : 5− 95%) change in grounded area in RCP 8.5. After 2150, grounded505

area decreases more rapidly, and the spread of change in grounded area increases within each forcing scenario. This coincides

with the timing of a reduction in the rate of accumulation and increases in the rate of grounded ice discharge (Figure 8). This is

particularly the case in RCP 8.5 (Figure 9), where more substantial ungrounding coincides with a sharp increase in uncertainty

in ice discharge in 2200 and the increasing importance of sub-shelf parameters on projection uncertainty (Figure 7). This

indicates that parameters controlling melt rates are responsible for the spread of grounded ice loss via variations in sub-shelf510

melt applied close to the grounding line. Ultimately this drives the long positive tail of projections of sea level rise contribution

(∆GMSL: Figure 5).

While median projections for all RCP scenarios experience a loss of grounded area by 2300, in the lower warming scenarios

(RCP 2.6 and RCP 4.5) this is relatively limited (< 800 km2), with the exception of some retreat of the Möller and Institute Ice
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Figure 9. Changes in grounded area and grounding line position for RCP 8.5. Top panel shows change in grounded area (∆GA calculated

as GArcp −GActrl) in ×104km2. Coloured lines represent the 5th, 50th and 95th percentiles of the projections of ∆GMSL rather than

the percentiles of the change in grounded area itself. However, they are generally close to the grounded area results. Lower panel shows the

FR basin and bed elevation in metres above (green to brown) and below (light to dark blue) sea level. Coloured lines show grounding line

positions from our training ensemble that lie closest to our percentiles (5, 50 and 95%) from our surrogate model projections, with respect

to control runs (dashed grey lines). Two additional grounding line positions are shown; the maximum ∆GMSL from our training ensemble

(orange) and the maximum ∆GMSL from our surrogate model (magenta), which we evaluated separately to our initial training ensemble of

simulations.
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Streams (Supplementary Figures S7–S9). This suggests that these ice streams are prone to some ungrounding even with limited515

increases in sub-shelf melting. The likelihood of retreat and complete collapse of these ice streams increases dramatically with

warming (RCPs 6.0 and 8.5). In RCP 8.5 perturbations become large enough for possible (but less likely) retreat of additional

regions, in particular the Rutford and Evans Ice Streams draining into western part of the Ronne Ice Shelf and some retreat

of ice streams feeding the Filchner Ice Shelf (Figure 9). Our separate additional simulation that validated the upper end of

sea level projections from our surrogate model (∆GMSL = 250 mm) shows that there is potential within our parameter space520

(beyond our initial ensemble) for the grounding line to retreat much further inland (Figure 9). This is characterised by runaway

retreat of Möller and Institute ice streams, likely due to being topographically unconfined and rested upon a retrograde bed

below sea level (Figure 9). This suggests that increases in sub-shelf melt with climate warming, have the potential to reduce

ice shelf buttressing and force substantial grounded ice loss.

5 Discussion525

Here, we have used an uncertainty quantification approach to assess the spread of future changes in global mean sea level

(∆GMSL) contribution from the Filchner-Ronne region of Antarctica under different RCP emissions scenarios. We have taken

a large and extensive sample of parameter space using a novel surrogate modelling approach, and our results show it is highly

likely that, within the bounds of our input parameter space, ∆GMSL from the FR basin will be negative. Under RCP 2.6

forcing, during which atmospheric temperatures increase by 2◦C (Figure 4: in line with the targets of the Paris agreement),530

this region is likely to remain close to balance (accumulation ≈ discharge) and contribute to −19.1 to 9.57 mm (5–95%) of

sea level rise by 2300. Under higher warming scenarios, projections of sea level rise become increasingly negative, but the

uncertainties in these projections also increase dramatically. In the highest warming scenario (RCP 8.5), the FR basin could

contribute anywhere between −103 to 26 mm (5–95%) to global mean sea level. Our projections are predominantly negative

due the the mitigating effect of increased accumulation with warming on sub-shelf melt driven increases in ice discharge.535

Increases in precipitation across the Antarctic ice sheet, are known to have an important mitigating effect on the contribution

to global sea level rise (Medley and Thomas, 2019; Winkelmann et al., 2012). Unlike other parts of West Antarctica, the

Weddell Sea showed a strong accumulation trend during the 20th century (Medley and Thomas, 2019), and limited change

in dynamic ice discharge towards the end of the century (Rignot et al., 2019). Our simulations show that continued increases

in accumulation during the 21st century, driven by warming, can outweigh slow increases in ice discharge associated with540

sub-shelf melting (Figure 8). This may be enough to stabilise some of the major ice streams, in particular the Institute and

Möller (see 50% line in Figure 9). In most cases, mass gain continues through to 2300, despite increases in the rate of ice

discharge and slow-down in the accumulation trend, both of which are not enough to switch to mass loss/positive ∆GMSL

by 2300. We continued our median RCP 8.5 simulation for a further 200 years with forcing held at 2300, and found that total

mass balance (accumulation − discharge) remained positive (mass gain) by 2500. These findings are consistent with previous545

regional modelling studies which showed that when either applying both accumulation and sub-shelf melt anomalies through

time (Wright et al., 2014; Cornford et al., 2015), or a step function in accumulation alongside sub-shelf melting (Schlegel
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et al., 2018), it is possible for accumulation to suppress the effects of increased sub-shelf melt. This is in contrast to Antarctic

wide simulations that do not impose changes in surface accumulation through time (Ritz et al., 2015; Levermann et al., 2020)

and hence project greater ice loss and sea level rise contribution from this region. Overall, our results demonstrate that the550

FR basin is particularly sensitive to future accumulation changes, which are capable of stabilising this region in response to

climate-warming.

Despite the important role that precipitation plays in suppressing ice loss from the FR basin, our sensitivity analysis reveals

that the percentage increase in precipitation per degree of warming p, is the second largest contributor (approx 30% in RCP

8.5) to uncertainties in our projections. Hence, we can identify the representation of accumulation changes with warming in555

ice-sheet models as a target area for further research, in order to better constrain projections of sea level contribution. However,

modelling future precipitation trends is challenging and CMIP5 models themselves show large temporal and spatial variability

in projected precipitation trends with warming (Tang et al., 2018; Palerme et al., 2017; Rodehacke et al., 2020). Despite

this, it has been assumed that there is a general correlation between precipitation and temperature anomalies. As a result,

temperature scaling of precipitation (as used in this study) is a common approach in ice sheet modelling, most of which use560

a Clausius–Clapeyron relation, equivalent to a 5% spatially uniform increase in precipitation (Golledge et al., 2015; Gregory

and Huybrechts, 2006; Garbe et al., 2020; DeConto and Pollard, 2016). But, as we have shown here, small variations in p can

have a large effect on the spread of ∆GMSL projections, and better constraints on the value of p are needed.

Sampling from an uncertainty distribution for p has been valuable to capture the spread of future accumulation change

predicted in a warming climate, however, one caveat to this is the use of uniform priors. In the absence of additional constraints,565

we cannot make a more informed choice on the uncertainty distribution of p, but it is possible that this leads to a greater

spread, or skewed distribution of accumulation changes, with respect to those predicted by CMIP GCMs. Validating these

parameterisations to climate model predictions should be the focus of future work. Recent work by Rodehacke et al. (2020)

has made improvements towards Antarctic estimates for p, and found that the assumed correlation/or lack thereof between

temperature and precipitation anomalies, has strong regional differences, which may invalidate the use of a spatially invariant570

value for p. Instead they propose spatially variable values of p across the Antarctic Ice Sheet. Over the FRIS, they showed

p= 4− 6%, which is consistent with values used in this study, but may reach up to 10% in inland regions of the FR basin

(Rodehacke et al., 2020). Thus, using a spatially invariant value for p, may lead to under or over estimates of precipitation

across the catchment. This is even more important when conducting Antarctic wide simulations, and future studies should

move towards using a spatially variable value for p, or ultimately conduct coupled atmosphere–ocean–ice-sheet simulations.575

Our probabilistic projections have show that a negative ∆GMSL is most likely from the FR basin. Nonetheless, uncertainties

associated with our input parameters reveal that it is also possible within our parameter space for the FR basin to contribute

positively to sea level rise. This occurs predominantly under RCP 8.5 forcing, where the the long tail of the projections in

Figure 5 reflects these more "extreme" (maximum of 332 mm by 2300) yet unlikely contributions to ∆GMSL. Hence, it is

possible for sub-shelf melt to increase enough to outweigh 21st century accumulation, by forcing substantial increases in ice580

discharge (Figure 8), and un-grounding of the ice streams feeding the FRIS (Figure 9). These high-magnitude contributions

to sea level rise are characterised by the rapid retreat of the lightly-grounded Möller and Institute ice streams, which, once
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initiated, continues unabated across the Robin subglacial basin throughout our simulations (maximum GMSL simulation:

Figure 9). Additional retreat occurs predominantly in the ice streams feeding the Ronne ice shelf (Evans and Rutford Ice

streams and Carlson Inlet), suggesting that these regions are likely to be the dominant contributors to future sea level rise.585

There is also some potential for un-grounding in the ice streams feeding the Filchner ice shelf, but this is less than elsewhere

in the region (Figure 9). Retreat of the grounding line in our simulations is consistent with the magnitude and spatial pattern

of retreat simulated in other studies in response to increased ocean–driven melt rates, with comparable projections of sea level

rise contribution (approx 150–160 mm) to the high-end of our results (up to 300 mm) (Schlegel et al., 2018; Wright et al.,

2014; Cornford et al., 2015).590

Greater variability in ice discharge from the 22nd century onwards (Figure 8), coincides with an increase in the spread of

our projections, suggesting that sub-shelf melt could strongly influence the regions potential contribution to sea level rise.

Indeed, our sensitivity analysis clearly reveals that ocean forcing parameters are the dominant component of uncertainties in

our projections of sea level contribution from the FR basin (Figure 7). This sensitivity corroborates the well established theory

that ocean forcing and the impact on sub-shelf melt rates, is a dominant, yet uncertain, driver of Antarctic Ice Sheet mass595

loss (Seroussi et al., 2019, 2020; Cornford et al., 2015; Bulthuis et al., 2019). Of our ocean forcing parameters, the magnitude

by which global atmospheric temperature anomalies are scaled to ocean temperature changes α, appears highly uncertain,

amounting to 44% of projection uncertainty in RCP 8.5 (Figure 7). This is consistent with the high sensitivity to the value of α

across the entire Antarctic Ice Sheet (Bulthuis et al., 2019). Going forward, given the impact of a linear scaling and the value of

α on projection uncertainty, it may be more suitable to instead force ocean temperature changes with the results of CMIP ocean600

models directly (e.g. the approach used in ISMIP6 proposed by Jourdain et al., 2020). In addition to uncertainties in ocean

temperature forcing, it remains challenging to accurately represent ice shelf melt rates, and their sensitivity to temperature

changes, in ice-sheet models. While melt parameterisations such as the PICO box model (Reese et al., 2018a) are a substantial

advancement in our ability to efficiently apply sub-shelf melting in a physically plausible way, they remain a simplification

of observed melt rate patterns, and those simulated by ocean models. Hence, it is possible we do not capture the same spatial605

distribution or magnitude of melt in highly buttressed regions of the ice shelf as shown in observations, which could ultimately

impact the (in)stability of the grounding line.

Alongside the mitigating effect of accumulation, using a linear scaling of ocean temperatures, and a simple melt parame-

terisation, may both be responsible for our simulations not projecting a substantial increase in sub-shelf melt or contribution

to global mean sea level rise. Crucially, it appears that we are not capturing the regime shift from ’cold’ to ’warm’ cavity610

conditions as seen in ocean model results (Hellmer et al., 2012; Hazel and Stewart, 2020; Hellmer et al., 2017). Simulations

by Hellmer et al. (2012) showed relatively warm ocean waters could flush the ice shelf cavity, and increase the area-integrated

(fixed ice shelf extent) basal mass loss from 80 Gt yr−1 to 1600 Gt yr−1 by the year 2100. By comparison, basal mass loss

during our RCP 8.5 training ensemble of simulations (integrated over the initial ice shelf area), reached a maximum of only

1200 Gt yr−1 some 200 years later (2300). Beyond our training ensemble of 500 simulations, we may start to capture the615

same magnitude of basal mass loss, which is reflected in the long-tail of positive contribution to sea level rise in RCP 8.5

projections. However, the key difference is that melt rates increase at a slow and steady rate over the 150 year period, and do
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not impose a rapid switch from cold to warm conditions which may be possible with a sudden flushing of warm water into the

ice shelf cavity. Additionally, our Bayesian derived probability distributions for ocean forcing parameters, while potentially

generating more realistic melt rates, may have reduced the probability of sampling high melt rate distributions sufficient to620

impose a regime shift that may have occurred with wider sampling. To fully capture such a regime shift, and the effects this

would have on ice shelf thinning, loss of buttressing, and increases in ice sheet discharge, it is necessary to run fully coupled

ice–ocean model simulations. Recent work performing coupled simulations on the FR region (Naughten et al., 2021) found

that ice-shelf melt rates are unlikely to increase over the next century, and thus the region will have a limited contribution to

sea level rise until ocean temperatures increase substantially (+7◦C). While more coupled modelling studies emerge, they are625

currently only computationally feasible for regional configurations, and have yet to be accomplished on an ice sheet scale. In

the meantime, melt parameterisations will remain important for future ice-sheet simulations, and so work should still focus on

improving their ability to capture the physical behaviour of ocean models, as well as the choice of ocean temperature forcing

used to perturb those melt rates.

In contrast to atmospheric and oceanic forcing parameters, those related to ice flow dynamics in our model appear to play a630

less important role on uncertainties in projections of ∆GMSL. Consistent with other studies (Ritz et al., 2015; Bulthuis et al.,

2019; Gillet-Chaulet et al., 2011; Alevropoulos-Borrill et al., 2020) we have shown that stronger non-linearity in our basal

sliding and ice flow laws (increasing values of m and n) reduces the response time to a temperature perturbation, allowing

for faster delivery of ice to the grounding line, and a greater contribution to sea level rise. By varying the value of m in the

Weertman sliding law we have captured a large range of amounts of basal sliding, and this has been fully integrated into our635

uncertainty analysis. However, this may not have captured the full spread of basal sliding possible under different sliding laws

and/or spatially variable fields of m. Different sliding laws, (e.g. Budd sliding) may allow for even faster delivery of ice to

the grounding line and thus greater contributions to sea level rise (Schlegel et al., 2018; Brondex et al., 2019). We are also

not accounting for any transient variability in our basal slipperiness and ice rheology fields, which is not yet captured in most

ice flow models, but may additionally increase sea level rise. Progress is being made towards assessing the sensitivity of sea640

level projections to the choice of sliding law (Brondex et al., 2017, 2019; Cornford et al., 2020). Future work will benefit from

choosing the form of the sliding law (Ritz et al., 2015; Gillet-Chaulet et al., 2016), and/or determining spatially variable values

form (De Rydt et al., 2021; Joughin et al., 2010), that best replicate regional observations of ice loss. This will help to constrain

uncertainties associated with the prescription of basal sliding, but this remains an active area of research.

The surrogate modelling approach used in this study has been a powerful tool for exploring the future behaviour of the645

FR basin of Antarctica. We have shown that by extensively sampling the parameter space and efficiently propagating this

through our surrogate models, we get a greater spread of results, and thus insights into the future of the region, than we would

have from our, already large, ensemble. Overall, our results have shown that regional increases in accumulation assumed

with warming are likely to have an important stabilising effect on the ice loss from the FR basin under scenarios of future

climate change. There is still some potential for a positive contribution to global mean sea level rise under high sub-shelf melt650

scenarios. This means that the sign of ∆GMSL projections from the FR basin cannot be fully constrained. Parameters driving

both accumulation and sub-shelf melting are highly uncertain and we identify them as priority areas for research, where more

27



accurate parameterisations will help to constrain future projections, not only from the FR basin, but the entire Antarctic Ice

Sheet. Future coupled atmospheric–ocean–ice-sheet simulations will help to more accurately capture feedbacks between the

atmosphere and ocean on the evolution of the ice-sheet, but remain computationally challenging on a Pan-Antarctic scale. In655

addition to coupled simulations, it is important to consider a number of additional processes that have not been captured in

our ice flow model simulations. These include: iceberg calving and the retreat of the ice front, evolution of damage of the ice

shelf which is becoming of emerging interest in the ice sheet modelling community, and the potential for hydrofracture driven

ice shelf collapse under increased surface melt. All of these processes remain highly uncertain, largely due to the challenges

of implementation in ice sheet models, but equally have important implications for ice loss and the contribution to global660

sea level rise, and future work to incorporate these into similar studies is necessary. Future studies would also benefit from

calibrating ice sheet models with observations in order to reduce uncertainties and constrain future projections by narrowing

the parameter space for future simulations based on their fit to observations (Wernecke et al., 2020; Ritz et al., 2015; DeConto

and Pollard, 2016; Ritz et al., 2015; Reese et al., 2020). As the number and timespan of observations increases, we will be able

to better inistalise our ice sheet models to present-day conditions prior to future simulations. Overall, employing uncertainty665

quantification techniques in future studies will help to provide more robust estimates of potential sea level rise, and identify

priority areas for better constraining these projections.

6 Conclusions

This study set out to implement an uncertainty quantification framework (UQLAB) for use alongside the ice flow model Úa

and use this to quantify uncertainties in projections of mass loss from the Filchner-Ronne region of Antarctica. We used a670

novel surrogate modelling approach to extensively sample an input parameter space to determine the forward propagation of

uncertainties. Our probabilistic projections indicate that this region may not undergo dramatic ice loss under climate warming

scenarios, and instead have a negative contribution to global mean sea level rise. This is primarily due to the effects of increased

accumulation assumed with greater moisture content in a warmer climate, that is capable of suppressing mass loss attributed

to ocean–driven increases in sub-shelf melt rates. Despite this, we find that there is the potential, albeit highly unlikely, within675

the bounds of our input parameter space, for a substantial positive contribution to global mean sea level. In these high mass

loss scenarios, sub-shelf melting increases enough to outweigh accumulation and force major retreat of some of the ice streams

flowing into the FRIS. Uncertainties associated with parameters driving accumulation and sub-shelf melt account for most of

the spread of future changes in global mean sea level, and we highlight these as priority areas for constraining projections of

ice loss. Future work would benefit from employing uncertainty quantification techniques similar to those used in this study,680

to fully assess the spread of future projections of sea level rise, not only from the FR basin, but across the entire ice sheet.
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Appendix A: Model inversion for basal slipperiness C and ice rheology A parameters

To estimate the rate factor (A) and basal slipperiness coefficient (C) for each of our randomly sampled combination ofm and n

we use the inverse capabilities of Úa to minimise the misfit between observed (uobs) and modelled (umod) velocities. Observed

velocities are MEaSUREs InSAR-Based Antarctica ice velocities (Version 2) from 1996 to 2016 and with a spatial resolution685

of 450 m (Rignot et al., 2011; Mouginot et al., 2012). Ice velocities were linearly interpolated onto our model mesh. Úa uses

a standard inverse methodology in which a cost function J , which is the sum of a misfit (I) and regularisation (R) term, is

minimized. The gradients of J with respect to A and C are determined in a computationally efficient way using the adjoint

method and Tikhonov-type regularisation. The misfit (I) and regularisation (R) terms are defined as:

I =
1

2A

∫
(umod−uobs)2/ε2obsdA (A1)690

R=
1

2A

∫
(γ2s (∇log10(p/p̂))2 + γ2a(∇log10(p/p̂))2) dA (A2)

whereA=
∫
dA is the area of the model domain, εobs are measurement errors, and p̂ are the a prior values for model parameters

(Â and Ĉ). Tikhonov regularisation parameters γs and γa control the slope and amplitude of the gradients inA andC. Optimum

values were determined using L-curve analysis and are equal to γs = 10000 and γa = 1 for all results presented. The inversions

are ran for the number of iterations needed for cost function to converge. The number of iterations needed can vary depending695

on the values of m and n. Instead of using a fixed number of iterations, each inversion was terminated when the norm of the

function gradient |∇f(x)| becomes sufficiently small. We tested several values for |∇f(x)| and found 10−4 was sufficient,

and that values any smaller did not substantially improve the cost function, nor substantially affect the transient behaviour in a

forward-in-time model run.

Prior to our uncertainty quantification routine (see Section 3.5) we generated a 75 member ’library’ of inversions for every700

half integer between 2 and 9 for m and between 2 and 4 for n. For these 75 inversions we defined prior values as follows: Â=

ε/τn with ε= 10−4 yr−1 and τe = 80 kPa which for n= 3 gives Â≈ 2× 10−9 kPa−3 yr−1 equivalent to an ice temperature

of approx. −25◦C using an Arrhenius temperature relation (Cuffey and Paterson, 2010). Ĉ = ub/τ
m
b with ub = 10 m yr−1

and τb = 80 kPa. This library of inversions was designed to make it computationally feasible to incorporate a model inversion

before to every forward model run into our uncertainty analysis. For each of our randomly sampled values of m and n we705

select the closest inversion from our library as the a priori values for A and C. These priors provide a good initial estimate of

the spatial fields of A and C which means the subsequent inversions need far less iterations to converge. After each inversion

we advected C beneath the ice shelf to avoid a sharp gradient in C downstream of the grounding line in the case of glacier

advance. We note that the model calculated velocities for each model inversion will vary slightly based on the value of m and

n used and the resultant fields of A and C. However, we find all training ensemble members (N = 500) to provide an optimal710

fit to observations and that the misfit between observed and modelled velocities varies by only 1 m yr−1, which is small with

respect to measurement errors.
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Appendix B: Bayesian optimisation of ocean box model parameters

The majority of our parameters (Figure 3) are reasonably well constrained, i.e. there is good a priori information on their

probably distributions. However, some parameters used to force future simulations of sea level rise from Antarctica are less715

well known, which could lead to wide and potentially unrealistic estimates of future sea level rise. When prior information on

parameter values is poor, it is best to take a non-parametric approach, in which the probability distributions are constructed

based on observations. This can be done using Bayes theorem:

π(θ|Y ) = `(θ;Y )π(θ) (B1)

where the posterior probability distribution of θ (a hyperparameter) given Y observations is equal to the likelihood (`)720

of θ given Y multiplied by the prior probability distribution π(θ). We conduct this analysis on the four ’hyperparameters’

used in the box model. These are: the time delay (τ ) and scaling coefficient (α) used to force changes in ocean temperature

through time (Equation 14), and two physical parameters that additionally control sub-shelf melt: the turbulent heat exchange

coefficient γ∗T and the strength of the overturning circulation c (see Reese et al. (2018a); Olbers and Hellmer (2010)). While

some information exists on all these parameters, their bounds and distributions are not well known. The primary aim is not725

to find single point estimates for these parameters, but obtain an optimal range of parameter values that fit model predicted

melt rates to observations. These posterior distributions are then used as input to our uncertainty analysis (see Figure 3). We

conduct this Bayesian optimisation using the tools in UQLab, including specifying a prior input model, surrogate models, and

the Bayesian inversion itself (Marelli and Sudret, 2014).

B1 Priors730

Prior probability distributions of our four parameters take into account any available information on their values before our

Bayesian calculation. For the scaling coefficient (α) and time delay τ we used the values presented in Levermann et al. (2020)

(see outline in Section sec:oceanforcing) as the a priori information on the probability distributions of these parameters (Figure

B1). While some ranges for the heat exchange coefficient (γ∗T ) and overturning strength (c) , have been proposed (Reese

et al., 2018a; Olbers and Hellmer, 2010), their probability distributions are unknown. Therefore, we use non-informative735

priors, i.e. we do not prescribe any prior information about these parameters and use a uniform distribution within the bounds

c ∈ [0.1,9] Sv m3 kg−1 and γ∗T ∈ [5× 10−6,1× 10−4] m s−1 given by Reese et al. (2018a); Olbers and Hellmer (2010) (see

Figure B1). However, we do know that these parameters are related, and certain combinations mean that the physics in the

box model no longer hold Reese et al. (2018a). To specify the dependence between values of γ∗T and c and ensure that values

outside of these bounds are not sampled, we prescribe a Gaussian copula with a correlation of p= 0.9. To test the sensitivity740

of our posterior distributions to our specification of the priors we repeated the analysis for several prior distributions, with or

without copulas and found our results were largely insensitive to our priors (Figure B1).
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B2 Surrogate modelling

Rather than use a single area-integrated value of sub-shelf melt, and to preserve some of the spatial distribution of melt rates

across the shelf, we chose to tune our parameters to observations, using average melt rates within each melt box. As Bayesian745

analysis requires a large number of iterations to settle on a posterior distribution, we first construct five surrogate models to

emulate calculated melt rates in each ocean box. For this we use the same method as our surrogate modelling for changes in

global mean sea level (see Section 2). We sample 2000 points from our prior probability distributions using Latin hypercube

sampling and use these to directly evaluate sub-shelf melt rates in the box-model. Each simulation is run in a diagnostic mode

for our nominal start year of 2000, using observations of topography. We assessed the performance of our surrogate models by750

taking a separate validation sample from the parameter space, and found a good fit between true and surrogate modelled melt

rates (Supplementary Figure S10).

B3 Bayesian inversion

To derive posterior distributions for our hyperparameters in Equation B1 we require three things: 1) prior probability distribu-

tions, 2) observations of ice shelf melt rates, and 3) a likelihood function that specifies the likelihood of parameter probability755

distributions given observed and modelled melt rates and associated errors. Prior probability distributions have been outlined

above and are shown in Figure B1. Secondly, we take observations of sub-shelf melt rates from Moholdt et al. (2014) and av-

erage these within each of our five ocean boxes across the Filchner-Ronne ice shelf (Figure B2). We then assume that average

melt rates within each box are independent (uncorrelated) with one another and use a log likelihood function defined in the

common format as:760

`(θ,Y ) =−1

2
log |Σ| − 1

2

∑
i

(yi− f(xi))
2

ε2i
(B2)

where i is the box number, y are observed melt rates, f(x) are modelled melt rates from the surrogate models, and ε is discrep-

ancy term for the melt of each box. Errors associated with model physics are difficult to quantify, so we instead incorporate

errors from both measurements σ2
obs (Moholdt et al., 2014) and the surrogate models σ2

pce. We then weight this error term (w)

with the normalised box area with respect to the total ice shelf area.765

εi = wi

√
σ2
obs(i) +σ2

pce(i) (B3)

We performed a number of sensitivity experiments in which we varied the specification of the discrepancy term in the log

likelihood function and found that our posterior distributions are similar, regardless of the choice of discrepancy (see Figure

B1).

Observations for the ocean box closest to the calving front showed high average melt rates (0.5 m yr−1) which is not related770

to the overturning circulation in the cavity, but instead seasonal warm surface water intrusions, and will not be replicated by the

box model. We therefore choose to replace this with the box average melt from an initial run (using default parameters from
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Figure B1. Results from our Bayesian analysis. Solid pink line shows priors using uniform bounds for γ∗
T and c and prior knowledge from

the LARMIP-2 distributions for τ and α (pink bars). Solid blue lines show the resultant posterior distributions using the pink lined priors. We

performed a number of additional sensitivity experiments in which we varied either the prior distributions (dashed grey line) or the likelihood

function (solid grey line). The lines shown are the resultant posterior distributions. These show that our results are largely insensitive to our

choice of priors (except in the case of uniform priors for τ and α, which given the information we have are unsuitable) or the likelihood

function used. Pink circles show the values proposed for γ∗
T and c by Reese et al. (2018a) for circum-Antarctic simulations using the PICO

box model. Point estimates from our posterior probability distributions show our c value is close, while values of γ∗
T appear likely to be lower

than the value in PICO.
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Reese et al. (2018a) in Table B1) and reduce the weighting so that it is largely excluded from the analysis. As most ice shelf

melt takes place close to the grounding line, far-field melt rates are less important for the total mass balance of the shelf.

We specify our priors, likelihood function, and observed melt rates in the Bayesian Inference module in UQLab (Wagner775

et al., 2019). The posterior probability distributions (π(θ|Y )) for our hyperparameters (θ) are then estimated using Monte

Carlo Markov Chains (MCMC). We use 1000 independent parallel chains (or sometimes referred to as walkers that move

randomly around the parameter space), the starting points of which are randomly sampled initial estimates for θ from our prior

probability distributions (π(θ)). Then an initial step is made from the current position and the posterior probability distribution

at that point (which is the product of the likelihood and prior probability see Equation B1) is accepted or rejected using an780

adaptive metropolis Hastings algorithm (Haario et al., 2001). This is based on whether they are in the right direction from

the last sampled point, using an acceptance probability and then the posterior distribution is updated along the way using the

information accumulated so far. This process is repeated for 10000 steps for each Markov Chain, by which time the posterior

distributions have converged. For more details on MCMC and the adaptive metropolis Hasting algorithm see the UQLab

Bayesian Inference Manual (Wagner et al., 2019). We estimate whether the chains have converged on the same sample point785

using multivariate potential scale reduction factor (MPSRF: see Brooks and Gelman (1998) and Wagner et al. (2019)), which

should approach one if the chains have reached the target posterior distribution. Our final value for MPSRF is 1.01. Finally, it is

necessary to post-process the posterior distributions to remove the burn-in steps, which are the steps taken prior to converging

on the target posterior distribution. After 2000 steps the posterior distributions have converged (Supplementary Figure S11) so

we remove 40% of the posterior sample.790

B4 Posterior distributions

Our posterior probability distributions for all four parameters in the ocean box model are shown in Figure B1 and are input

to our uncertainty propagation (Figure 3). These show the distribution of possible values for these parameters that can lead

to melt rates closer to observations than non-informative priors. Posterior distributions for τ and α remain close to their

priors (Levermann et al., 2020). There is a decreasing likelihood of the delay between increases in atmospheric and ocean795

temperatures from τ ≈ 10 to 100. The scaling coefficient is centered around 0.24, which is consistent with the scaling factor

found to provide a good fit to CMIP5 model data (Taylor et al., 2012; Golledge et al., 2015). We note that the range for α is

similar to that proposed by Bulthuis et al. (2019) of 0.1 and 0.8, but in this case the posterior distributions are not uniform.

In contrast, distributions for γ∗T and c have shifted significantly from their prior distributions, and in both cases favour values

towards the lower end of prior ranges. Our parameter point estimate for c (1.2 Sv m3 kg−1) is close to the value proposed in800

Reese et al. (2018a), while γ∗T is lower, but the probability density function still extends to the value in Reese et al. (2018a)

(Figure B1).

To examine the performance of our Bayesian inversion, we compare the total area-integrated basal mass balance, i.e. mean

specific basal mass balance, (see Table B1) and spatially averaged melt rates within each box (Figure B2a), for both our prior

and posterior sample point estimates. Using a priori information (values from priors for τ and α and proposed values for γ∗T805

and c from Reese et al. (2018a)) yields an area-integrated basal mass balance (BMB) of −0.09 m yr−1. This remains less
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Figure B2. a) Observed and modelled mean melt rates (µmelt) for each box in box-model melt parameterisation. Observations and standard

deviations from Moholdt et al. (2014) are shown in green. Pink and blue lines use sample point estimates from Table B1 to compare prior

and posterior box melt rates. Prior melt rates (pink) use the same the parameters for γ∗
T and c from Reese et al. (2018a) and use mean sample

point estimates from our priors for τ and α. The posterior melt rates (blue) use sample point estimates from all parameters from our final

posterior distributions. b) shows the probability distributions of melt rates in Box 1 (closest to the grounding line) using the entire sample set

for both priors and posterior. Note the tight distribution around observations (green) for the posterior sample.
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Point estimates Prior Posterior

τ 12 11

α 0.23 0.24

γT ∗ 2× 10−5 0.62× 10−5

c 1× 106 1.2× 106

To(◦C) -1.66 -1.64

BMB (m yr−1) -0.087 -0.133
Table B1. Comparison between the forcing temperature and integrated basal mass balance across the total ice shelf for prior and posterior

parameter values. In the prior case we use the parameter values for γT ∗ and c proposed in Reese et al. 2018 and use mean point estimates

from our prior distributions for τ and α. Our posterior case uses point estimates for all parameters from our posterior distributions.

than half of the BMB from observations −0.26 m yr−1. Using the updated parameter point estimates has brought the BMB

closer to observations (−0.13 m yr−1), primarily by improving the mean melt rates in boxes 2 and 3 to within the error of

observations (Figure B2a). Additionally, we take our model optimised velocities (using an inversion withm= 3 and n= 3) and

calculate sub-shelf melt rates from ice flux divergence assuming steady-state conditions, i.e. negligible SMB and no surface810

thinning/thickening. In this case, BMB is −0.15 m yr−1, which suggests that our point parameter estimates are producing

near-steady-state melt rates (−0.13 m yr−1).

We re-evaluate the surrogate model for the entire prior and posterior sample sets to examine the distribution of melt rates

in each ocean box. Figure B2b shows the range of initial melt rates (at start year 2000) close to the grounding line (Box 1)

that would have occurred in our uncertainty propagation if we had chosen to use non-informative priors, particularly uniform815

distributions for γ∗T and c. Given the prior information we have on sub-shelf melt rates (Moholdt et al., 2014), this range of melt

rates suggests we would have been sampling unlikely regions of the parameter space. Our Bayesian analysis has successfully

tightened the posterior distribution of melt rates, where 5-95% fall within the standard deviation of observations. We can now

be confident that our initial melt rates under the ice shelf at the beginning of our forward simulations is reasonable with respect

to observations. We note that our approach estimates these distributions at a single snapshot in time and does not take into820

account variations in these parameters that may occur under future warming e.g. an increase in the strength of the overturning

circulation in ice shelf cavities with warmer ocean temperatures.

Code availability. The open-source ice flow model Úa is available at https://doi.org/10.5281/zenodo.3706623 (Gudmundsson, 2020) and the

ocean box-model for use with Úa is available at https://github.com/shrrosier/PICO_Ua. Raw model outputs are available from the authors

upon request.825
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