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Abstract. The Antarctic Peninsula has seen rapid and widespread changes in the extent of its ice shelves in recent decades,

including the collapse of the Larsen A and B ice shelves in 1995 and 2002, respectively. In 2017 the Larsen C ice shelf
:::
Ice

::::
Shelf

:
(LCIS) lost around 10% of its area by calving one of the largest icebergs ever recorded (A68). This has raised questions

about the structural integrity of the shelf and the impact of any changes in its extent on the flow of its tributary glaciers. In this

work, we used an ice flow model to study the instantaneous impact of changes in the thickness and extent of the LCIS on ice5

dynamics, and in particular on changes in the grounding line flux (GLF). We initialised the model to a pre-A68 calving state,

and first replicated the calving of the A68 iceberg. We found that there was a limited
:::::::::::
instantaneous impact on upstream flow –

with speeds increasing by less than 10% across almost all of the shelf – and a 0.5
::::
0.28% increase in GLF. This result is supported

by observations of ice velocity made before and after the calving event. We then perturbed the ice-shelf geometry through
:
a

:::::
series

::
of

::::::::::::
instantaneous, idealised calving and thinning experiments of increasing magnitude. We found that significant changes10

to the geometry of the ice shelf, through both calving and thinning, resulted in limited
:::::::::::
instantaneous

:
changes in GLF. For

example, to produce a doubling of GLF from calving, the new calving front needed to be moved to 5 km from the grounding

line, removing almost the entire ice shelf. For thinning, over 200 m of the ice-shelf thickness had to be removed across the

whole shelf to produce a doubling of GLF. Calculating the
:::::::::::
instantaneous increase in GLF (607%) after removing the entire ice

shelf allowed us to quantify the total amount of buttressing provided by the LCIS. From this, we identified that the region of15

the ice shelf in the first 5 km downstream of the grounding line provided over 80% of the buttressing capacity of the shelf. This

is due to the large resistive stresses generated in the narrow, local embayments downstream of the largest tributary glaciers.

1 Introduction

Around 74% of the Antarctic coastline is fringed by floating ice shelves (Bindschadler et al., 2011). These ice shelves are fed

by tributary glaciers and ice streams, and lose mass predominantly through basal melting at the ice-ocean interface, and calving20

at the ice front (Depoorter et al., 2013). When formed in embayments, or where they locally run aground at ice rises or pinning

points, ice shelves can generate resistive stresses which are transferred through the ice shelf to the grounding line (GL), where

they provide a backstress to the grounded ice sheet (Thomas, 1979). This process, known as ice-shelf buttressing, means that
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ice shelves can exert a mechanical control on the grounding line flux (GLF), and therefore control the rate at which the ice

sheet contributes to changes in global sea level (e.g. Dupont and Alley, 2005; Gudmundsson, 2013).25

The Larsen C ice shelf
::
Ice

:::::
Shelf

:
(LCIS) is situated on the eastern side of the northern Antarctic Peninsula (AP), and is the

fourth largest ice shelf in Antarctica. Over the second half of the 20th century, increasing surface air temperatures – and a

subsequent increase in surface melt – have been implicated in the breakup of several ice shelves on the AP (e.g. Morris and

Vaughan, 2003; Vaughan et al., 2003; Khazendar et al., 2011; Banwell et al., 2013). In 1995 the Larsen A ice shelf (LAIS)

collapsed (Rott et al., 1996), and in 2002, the Larsen B ice shelf (LBIS) disintegrated in a matter of six weeks (Scambos et al.,30

2004). Domack et al. (2005) showed from a subsequent analysis of marine sediments that the LBIS had been present for at

least 12,000 years.

In 2017, the LCIS calved one of the largest icebergs ever recorded – named A68 – reducing its surface area by ∼ 10%. The

ice-shelf extent is now at its minimum since satellite observations began (Hogg and Gudmundsson, 2017). During the 2019/20

austral summer, the LCIS experienced near-record levels of surface melting (Bevan et al., 2020). All of these factors have35

raised questions about the future viability of the LCIS (e.g. Kulessa et al., 2014; Jansen et al., 2015; Holland et al., 2015), and

what the consequences of any changes to its thickness or extent might be for the ice dynamics of the AP.

Following the collapse of the LBIS in 2002, a significant change in the flow of its tributary glaciers was observed, with

some increasing in speed by close to 900% (Rignot et al., 2004). This increase in ice speeds – and consequently GLF – has

been sustained to the present day (Berthier et al., 2012; Rott et al., 2018). De Rydt et al. (2015) modelled the response to this40

rapid loss of ice-shelf buttressing through diagnostic (or time-independent) simulations with the ice flow model Úa, which is

also used in this study. They were able to reproduce the spatial variability of the response in ice velocity across the tributary

glaciers, but suggested that transient experiments would be required to simulate the observed, quantitative changes. A similar

approach – also using Úa – was taken to model the response to the collapse of the LAIS (Royston and Gudmundsson, 2016).

This study found that the initial increase in GLF could be reproduced with diagnostic experiments, but that modelling the45

transient redistribution of mass was required to reproduce changes further upstream in the tributary glaciers.

A number of studies have previously examined buttressing on the LCIS. Borstad et al. (2013) modelled the stress field in the

ice shelf, calculated a local buttressing number, and modelled the impact of removing basal contact at ice rises on the dynamics

of the shelf, but not the tributary glaciers. Fürst et al. (2016) mapped the ‘maximum buttressing’ number across the ice shelf,

and from this delineated regions of ‘passive ice’ which could be calved without significantly increasing the ice flux across new50

calving fronts in the shelf. Reese et al. (2018) computed the impact of small perturbations in ice-shelf thickness on the integrated

GLF, producing a map of the ‘buttressing flux response number’ across the shelf. This allowed them to determine the regions

in the ice shelf where a perturbation in ice thickness would produce the largest response in GLF, and they also demonstrated

that small changes in ice-shelf thickness could impact the GLF hundreds of kilometres away.
:::::::::::::::::::::::
Gudmundsson et al. (2019)

:::::::
modelled

::::
the

::::::
impact

::
of

::
an

::::::::::::
instantaneous

::::::::::
perturbation

::
to
:::::::::

Antarctic
:::::::
ice-shelf

::::::::::
thicknesses,

:::
the

::::::
spatial

::::::
pattern

::::
and

::::::::
amplitude

:::
of55

:::::
which

:::
was

:::::
taken

:::::
from

:::::::::::
observations.

::::
They

::::::::
highlight

:::
the

::::
fact

:::
that

:::::::
changes

::
in

:::::::
ice-shelf

::::::::::
buttressing

::::
have

::
an

::::::::::::
instantaneous

::::::
impact

::
on

:::
ice

::::::::
velocities,

:::::
after

:::::
which

:::::
there

:
is
::
a
:::::::
transient

:::::::::
adjustment

:::
to

::
the

::::
flow

::::
and

:
a
::::::::::::
redistribution

::
of

:::::
mass.

::
In

::::
their

:::::::::::
experiments,

::::
they

::::
were

::::
able

::
to

::::
map,

::
or
:::::::::::

‘fingerprint’,
:::
the

::::::::::::
instantaneous

:::
ice

::::::
velocity

::::::::
response

:::
due

::
to
:::
the

::::::::
observed

::::::::
ice-shelf

:::::::
thinning

::
of

:::
the

:::
last

:::
18

2



:::::
years,

:::
and

:::
the

:::::::::
subsequent

::::::::
reduction

::
in

::::::::::
buttressing. Finally, Zhang et al. (2020) explored the correlation between locally derived

buttressing numbers in the ice shelf, and changes in GLF due to small perturbations in ice-shelf thickness at the same locations.60

They found that for a real-world ice shelf (the LCIS) there was no relationship between these two measures, and that locally

derived buttressing numbers are not predictors for the impact of perturbations in ice-shelf geometry on GLF.

Here, we build on this existing literature on the ice dynamics of the LCIS through a series of diagnostic perturbation

experiments of increasing magnitude.
::::
This

::::::::
approach

::::::
allows

:::
us

::
to

::::::
explore

::::
the

:::::::::
buttressing

::::::::
capacity

::
of

:::
the

::::::
LCIS,

:::
due

:::
to

:::
the

:::::::::::
instantaneous

::::::
impact

::::
that

:::::::
changes

::
in

:::::::::
buttressing

:::::
have

::
on

:::
the

:::
ice

:::::
flow,

:::
but

:::
we

:::
do

:::
not

:::::::
examine

:::
the

::::::::
transient

:::::::::::
redistribution

:::
of65

::::
mass

::
in

::::::::
response

::
to

:::
the

::::::::::::
perturbations.

:
Our first objective was to model the response of the LCIS and its tributaries to the

calving of the A68 iceberg and validate these results with observations. We then studied the
:::::::::::
instantaneous

:
GLF response to a

series of idealised ice-shelf calving events. From quantifying the maximum GLF response, we determined the total amount of

buttressing provided by the ice shelf, and examined what proportion of this total is generated by different regions of the shelf.

We simulate the loss of contact of the ice shelf from the Bawden and Gipps ice rises
:::::::
(outlined

::::
alnd

:::::::
labelled

::
in

::::
Fig.

::
1), again70

examining the impact on GLF. And finally, we systematically perturb the thickness of the ice shelf by increasing amounts, again

aiming to understand how much the ice-shelf geometry needs to change before a significant response in GLF is produced.

2 Methods

2.1 Ice flow model

We used the Úa ice flow model (Gudmundsson et al., 2012), which solves the vertically integrated, shallow-shelf approximation75

(e.g. MacAyeal, 1989) using the finite element method on an unstructured mesh. Úa has been used in both idealised (e.g.

Gudmundsson et al., 2012; Gudmundsson, 2013) and realistic (e.g. De Rydt et al., 2015; Minchew et al., 2017; Hill et al.,

2018; Reese et al., 2018; Gudmundsson et al., 2019) settings to examine the response of grounded ice to perturbations in the

ice shelf. It has also been tested in recent model intercomparison projects (Pattyn et al., 2013; Cornford et al., 2020).

The equation solved in Úa for the vertically integrated balance of stresses is80

∇xy · (hR)− tbh = ρigh∇xys+
1

2
gh2∇xyρi, (1)

where

R=

2τxx + τyy τxy

τxy 2τyy + τxx

 (2)

is the resistive stress tensor, τij are the components of the deviatoric stress tensor, ∇xy = (∂x,∂y)
T , tbh is the horizontal

component of the basal traction, h is the ice thickness, s is the ice surface elevation, ρi is the vertically integrated ice density85

(which varies spatially) and g is the acceleration due to gravity.
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In this work, we solved the equations for stress balance in a diagnostic, or time-independent mode, together with Glen’s flow

law, the constitutive equation linking the stress field in the ice to deformation

ε̇ij =Aτ (n−1)τij (3)

where ε̇ij are the components of the strain rate tensor, τ is the second invariant of the deviatoric stress tensor, given by90

τ =
√
τijτij/2 (4)

and the rate factor, A – which depends on ice properties including temperature, crystal fabric and damage – was optimised

using inverse methods (see Sect. 2.3). We chose
::
set the creep exponent n= 3

::
as

::
is

:::::::
standard

::
in

:::::::
ice-flow

:::::::::
modelling.

A non-linear , Weertman type sliding law was used with the following form

tbh = C−1/m||ub||(1−m)/mub (5)95

where tbh is the horizontal component of the the bed-tangential basal traction and ub the horizontal component of the bed-

tangential ice velocity. The basal slipperiness parameter, C, is also inferred using inverse methods, and m= 3. The results of

diagnostic perturbation experiments using this ice flow model have previously been found to be largely unaffected by the value

chosen for m (e.g. Hill et al., 2018; Gudmundsson et al., 2019).
::::::::
However,

:::
we

::::::::
conducted

:::::::::
additional

::::::::
sensitivity

::::
tests

::
to
::::::::
examine

::
the

::::::
impact

:::
of

:::::
using

:::::::
different

:::::
stress

:::::::::
exponents

::
(m

:::::::
values)

::
in

:::
the

::::::
sliding

::::
law,

:::
and

:::::
found

::::
that

::::
they

:::
do

:::
not

:::::
affect

:::
the

::::::::::
conclusions100

::
of

:::
our

:::::
study.

::::
The

:::::
details

:::
of

::::
these

:::::::::
sensitivity

::::
tests

:::
are

::::::::
presented

::
in

::::::::
Appendix

:::
E.

2.2 Model domain and data

The model domain, shown in Fig. 1, includes all of the drainage basins identified by Cook and Vaughan (2010) that drain into

the LCIS. The calving front location represents a pre-July 2017 state, before the A68 iceberg calved from the shelf
:
,
:::
and

::::
was

::::::
defined

::
as

:::
the

:::::::::
maximum

::
ice

::::::
extent

::
in

:::
the

::::::::::
BedMachine

:::::::::
Antarctica

:::
v2

:::
data

:::
set

::::::::::::::::::::
(Morlighem et al., 2019). One artificial boundary105

was drawn to separate the region between the Larsen C and D ice shelves, and this was manually delineated by joining the ice

divide to the calving front.

The finite element mesh used in the computation was generated with the open source Gmsh software (Geuzaine and Remacle,

2009), and used linear elements. The target element size was set to 2 km across the floating ice shelf, with the resolution

increased around the grounding line, where elements 250 m in size were used. The mesh was refined to 1 km in all tributary110

glaciers, and 500 m in regions of high strain rates. This ultimately produced a mesh with∼ 154,000 elements with a maximum,

median, and minimum element size of 4,000 m, 640 m, and 160 m respectively. The dependence of the model results on element

size was tested in a convergence analysis , the results of which
:::
and

:::
the

:::::
effect

::::
was

:::::
found

::
to

::
be

:::::::::
negligible.

::::
The

::::::
results

::
of

:::::
these

::::::::::
convergence

::::
tests

:
are shown in Appendix C.

Along the ice divides at the boundary of the model domain, a zero velocity boundary condition was applied. At the calving115

front, a stress boundary condition, arising from ocean pressure, was prescribed.
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Figure 1. MODIS Mosaic of Antarctica (Scambos et al., 2007) image of the Larsen C ice shelf
:::
Ice

::::
Shelf and its tributary glaciers, with open

ocean shown in black. The boundary of the model domain is plotted in black, with the outline of the A68 iceberg which calved in July 2017

also shown. In red is the grounding line position as calculated in the model, which remains fixed throughout the experiments. The outlines

of the Bawden and Gipps ice rises at the calving front of the ice shelf are also plotted in red. Lines of latitude and longitude are shown in

the white, dotted lines. The coordinate system used here – and in all other maps – is the WGS84 Antarctic Polar Stereographic projection

(EPSG:3031).

The initial ice thickness, surface elevation and bedrock topography was taken from the Bedmachine
::::::::::
BedMachine Antarctica

v2 data set (Morlighem et al., 2019). The surface elevation was adjusted at a few points
::
(in

::::
areas

::
of
:::::::
exposed

::::::::
bedrock) to ensure

that at least 1 m of ice was present across the whole computational domain. The firn air content field provided in this data
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set is derived from a firn densification model (Ligtenberg et al., 2011), which was forced by RACMO2.3p2 at the surface120

(van Wessem et al., 2018). This field was used to calculate a spatially variable, depth-integrated ice density across the model

domain. Due to discrepancies between the ice thickness and firn air content fields, it was necessary to introduce a minimum

ice density of
::::
value

::
of

:
800 kgm−3 .

::
for

:::
the

::::::::::::::
depth-integrated

:::
ice

::::::
density.

::
A
:::::

map
::
of

:::
the

:::::::
resulting

::::::::::
ice-density

::::
field

::
is

::::::
shown

::
in

::::::
Fig.D1.

::::
The

::::::
impact

::
of

:::::
using

:
a
::::::::::
horizontally

:::::::
spatially

:::::::
variable

:::
ice

::::::
density

::
–

::
as

:::::::
opposed

::
to

:
a
:::::::
constant

:::
ice

::::::
density

::
of
::::
917 kgm−3

:
–

::
on

:::
our

::::::
results

::
is

:::::::
minimal.

::::
The

::::::
details

:::
and

::::::
results

::
of

:::
the

:::::::::
sensitivity

::::
tests

:::::::::
undertaken

::
to

:::::::::
determine

:::
this

:::
are

:::::::
outlined

::
in

:::::::::
Appendix125

::
D.

For the optimisation procedure used to initialise the model (see Sect. 2.3) we used the MEaSUREs InSAR-based Antarctic

Ice Velocity v2 data set
::::::::::::::::
(Rignot et al., 2017) (Rignot et al., 2011; Mouginot et al., 2012). For model validation (see Sect. 3.1) we

used ice velocity measurements generated from Sentinel-1 SAR data which were provided by ENVEO. This data set consisted

of monthly maps of tide-corrected ice velocities over the LCIS and its tributaries from October 2014 - September 2019.130

2.3 Model initialisation

To generate
:::
the initial conditions the rate factor, A

:
,
:
and basal slipperiness parameter, C, were optimised by minimising the

misfit between observed and modelled ice velocity through inverse methods widely used in glaciology (e.g. MacAyeal, 1993).

The cost function that is minimised in Úa during the optimisation is J = I +R, where

I =
1

2A

∫ (
u−uobs

uerr

)2

dA, (6)135

is the misfit term, and

R=
1

2A

∫ [
γ2sA

(
∇ log10

(
A

Â

))2

+ γ2sC

(
∇ log10

(
C

Ĉ

))2

+ γ2aA

(
log10

(
A

Â

))2

+ γ2aC

(
log10

(
C

Ĉ

))2 ]
dA, (7)

is the regularisation term. Here, A is the area of the model domain ,
:::
and

:
u is the

::::::::
represents

::::
the

:
x
::::

and
::
y
::::::::::
components

:::
of

::
the

:
modelled ice velocityand

:
. uobs and uerr are the measured surface velocity and its associated uncertainty

::::::::
represent

:::
the

::::::::::
components

::
of

:::
the

:::::::::
measured

::::::
surface

:::
ice

:::::::
velocity

::::
and

::::
their

:::::::::
associated

:::::::::::
uncertainties, both here taken from the MEaSUREs140

InSAR-based Antarctic Ice Velocity v2 data set. γs and γa :::
γsA,

::::
γsC ,

::::
γaA:::

and
::::
γaC:

are regularisation parameters that penalise

deviation in the fields being optimised – in this case log10(A) and log10(C) :
A

::::
and

::
C – from their prior estimates – log10(Â)

and log10(Ĉ)
::
Â

::::
and

::
Ĉ – in terms of gradient and amplitude respectively. We used γs = 1000 and γa = 1, both determined

from an
:::
The

:::::
priors

:::
(Â

:::
and

:::
Ĉ)

::::
were

:::::::
chosen

::
to

::
be

:::::::
spatially

::::::::
uniform.

:::
The

:::::
value

::::::
chosen

:::
for

:::::::::::::::
Â= 1.15× 10−8 a−1kPa−3,

::::::
which

::::::::::
corresponds

::
to

:::
ice

::
at

:
a
::::::::::
temperature

:::
of

::::
−10◦C

:
as
:::::

given
:::

by
:::
the

::::::::
equation

::
for

::::
the

:::
rate

:::::
factor

:::
in

::::::::::::::::::::::
Morland and Smith (1984).

::::
The145

::::
value

:::
for

:::::::
chosen

:::
for

:::::::::::::::
Ĉ = 1.95× 10−4 ma−1kPa−3,

::::::
which

::::
was

:::::::::
calculated

::::
from

:::
the

:::::::
sliding

:::
law

::::
(Eq.

:::
5)

::::::::
assuming

::
a
:::::
basal

::::
shear

:::::
stress

::
of

:::
80

:
kPa

::
and

:::
an

:::
ice

:::::::
velocity

::
of

::::
100 ma−1.

::::
We

::::
used

::::::::::::
γsA/C = 1000

:::
and

::::::::::
γaA/C = 1,

::::
with

:::
the

::::
four

::::::::::::
regularisation

:::::::::
parameters

:::::::::
determined

:::::
using

:
L-curve analysis

:::::::
analyses

:
(see Appendix A).

The resulting ice velocity field is shown in Fig. 2b. There was a good fit to the observed velocities across the domain, with

a spatially averaged RMS difference between the observed and modelled velocities of 11.2 ma−1, and a particularly good fit150

across the ice shelf and at the GL. One region in which the model struggled to replicate the ice velocities is just to the north of
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Figure 2. Observed ice speed (a) (from the MEaSUREs InSAR-based Antarctic ice velocity map) and modelled ice speed (b) following the

initialisation procedure. Panel (c) shows the difference between the observed and modelled ice speed (obs - mod) and (d) is a normalised,

bivariate histogram of the differences between the x and y components of the observed and modelled ice velocities at each node in the

computational mesh.

the Gipps ice rise
::
Ice

::::
Rise, where the nascent A68 iceberg was beginning to detach from the shelf. This gave rise to large strain

rates in the shelf, which weren’t captured in the model, presumably due to the regularisation applied to the rate factor, A. The

resulting maps ofA andC are shown in Fig. A2. Following the inversion, the modelled GLF across the main GL (i.e. excluding

fluxes across ice rises in the shelf) was 23.2 Gta−1, and this was the reference GLF to which GLF changes in perturbation155

experiments were compared.
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2.4 Calving experiments

From the initial conditions derived from the initialisation procedure, the geometry of the ice shelf was perturbed whilst holding

all other parameters constant, generating a new stress field. This yielded an instantaneous change in the modelled ice velocity,

which we compared to the initial velocity field and from which we calculated changes in GLF.160

The first experiment undertaken was to replicate the calving of the A68 iceberg, the extent of which was derived from

Landsat 8 images. To perform the experiment, the mesh elements within the region that calved were removed, thereby relocating

the model boundary to the new calving front. Through this procedure, the remaining elements of the mesh were left unchanged

and any interpolation errors avoided.

In addition to the A68 calving event, a series of idealised calving experiments were conducted. The calving front was moved165

progressively nearer to the GL by removing mesh elements using a ‘distance from the main grounding line’ metric (mapped in

Fig. 4c).

It is important to note that in these calving experiments (and indeed in all experiments in this study) no perturbation was

applied to the nodal values of any element which crossed the main GL. This meant that there was no change in driving stresses

across the GL, and that the GL location remained fixed in all experiments. This ensured that any change in GLF was due solely170

to changes in the buttressing provided by the ice shelf.

2.5 Ungrounding and thinning experiments

To simulate the ungrounding of the LCIS from the Bawden and Gipps ice rises, the bed topography was lowered so that the ice

shelf became afloat without changing the ice thickness. This experiment was carried out for the ungrounding from the two ice

rises individually, and then for a ‘combined’ ungrounding, in which both contacts were removed simultaneously.175

Finally, we explored the GLF response to perturbations in ice thickness. The ice thickness at nodes belonging to elements

that were fully afloat (again, to ensure no change in driving stress across the GL) was progressively reduced until the whole ice

shelf had a thickness of only 1 m. The 1 m thin layer of ice across the shelf was maintained for computational reasons, and the

results are insensitive to a further reduction in the minimum ice thickness. Locally this thinning was done both proportionally,

i.e. the ice thickness was reduced by a given fraction of the total thickness at each node, and uniformly where thickness was180

reduced across the whole ice shelf by the same fixed amount. The subsequent changes in ice velocity and GLF were calculated

for each step in the series of experiments.

3 Results

:::
We

:::
first

:::::::
present

:::
the

::::::
results

::
of

::::
the

::::
A68

::::::
iceberg

:::::::
calving

::::::::::
experiment,

::::::
before

:::::::
showing

:::
the

::::::::
changes

::
in

::::
GLF

:::
in

:::::::
response

:::
to

:::
the

:::::::
idealised

:::::::
calving

::::::::::
experiments.

:::
We

::::
then

::::::::
examine

:::
the

:::
ice

::::
flow

:::::::
response

::
to

:::
the

:::::::::::
ungrounding

::
of

:::
the

:::::::
Bawden

::::
and

:::::
Gipps

:::
ice

:::::
rises,185

:::::
before

:::::::::
presenting

:::
the

::::::
results

::
of

:::
the

::::::::
ice-shelf

:::::::
thinning

:::::::::::
perturbations

::
as
::::::::

outlined
::
in

:::
the

:::::::
previous

:::::::
section.

:::
As

:::::::::
previously

::::::
stated,
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::
all

::
of

:::
the

:::::::::
modelling

::::::::::
experiments

:::::::::
conducted

::
in

:::
this

:::::
study

:::
are

:::::::::
diagnostic

:::
(or

:::::::::::::::
time-independent)

:::
and

::::::::
therefore

:::
the

:::::::
changes

::
in

:::
ice

::::
flow

:::
and

::::
GLF

::::::::
presented

::::
here

:::
are

::::::::::::
instantaneous

:::::::
changes.

:

3.1 A68 calving

In response to the removal of the A68 iceberg from the model domain, there was an
:::::::::::
instantaneous

:
increase in ice velocity190

immediately upstream of the new calving front of up to ∼ 100 ma−1 (Fig. 3a). The spatial extent of this velocity response was

limited, and across almost all of the ice shelf the change in velocity was smaller than 10% – even becoming negative in the

region of the shelf to the north of the Gipps ice rise
:::
Ice

::::
Rise. The changes in velocity did not extend throughout the whole ice

shelf, and as such there was almost no modelled increase in GLF (0.5
:::
0.28%) due to this calving event.

We compared our model results to ice velocity observations produced and provided by ENVEO from analysis of Sentinel-1195

SAR data. From this monthly time series of ice velocity maps, we calculated the mean and standard deviation in ice velocity

at each point in the model domain for both the October 2014 - June 2017 (pre-A68) and August 2017 - September 2019

(post-A68) periods (Fig. 3).

By plotting the ‘signal’ (the modelled response to A68 calving) to ‘noise’ (2σ variation in observations) ratio in Fig. 3b, and

examining the data along two flowlines on the shelf (Fig. 3 c and d), we see that the modelled response largely falls within the200

internal variability of the ice velocity in the shelf. We also see that the mean ice velocity before and after the A68 calving event

are nearly identical, demonstrating that there was no observable , transient
::::::
during

:::
this

:::
five

::::
year

:::::::::::
measurement

:::::::
window

:::::
there

:::
has

::::
been

::
no

:::::::::
observable

:::::::
change

::
in

::
ice

::::::::
velocity,

:::
and

:::
no

:::::::
transient

::
or

::::::::
sustained

:
response to the calving of the A68

:::::
iceberg.

3.2 Idealised calving experiments

The impact of moving the calving front progressively closer to the GL on the GLF can be seen in Fig. 4a and b. It shows that a205

retreat of the calving front from its present day position back into the embayment produced a limited instantaneous impact on

the GLF. The calving front had to be retreated to 40 km from the GL to induce a 10% increase in GLF. For a doubling of GLF,

the calving front had to be positioned 5 km from the grounding line, removing almost all of the ice shelf in the process.

The maximum GLF increase (607%) – from the complete removal of the ice shelf – can be thought of as representing the

total buttressing provided by the LCIS
:
in
:::

its
::::::
current

:::::::::::
configuration

:
to its grounded tributary glaciers. By comparing the GLF210

increase
:::::::::::
instantaneous

:::::::
increase

::
in

::::
GLF for each idealised calving experiment to the maximum GLF increase from complete ice-

shelf removal, we are able to calculate the proportion of the total buttressing that remains after each perturbation experiment.

Therefore, Fig. 4a and b show what proportion of the total buttressing is provided by each section of the ice shelf removed in

the series of calving perturbations. From this, we see that over 95% of the total buttressing is provided by ice in the first 25 km

downstream of the GL, and that over 80% is generated in the first 5 km of ice immediately downstream of the GL.215
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Figure 3. The modelled change in ice speed due to the calving of the A68 iceberg (a) along with the paths of the two flowlines used. (b) is

the ratio of the ‘signal’ (model response in panel (a)) to the ‘noise’ (2σ variability in the monthly observations of ice velocity). Panels (c)

and (d) show the modelled ice speed before and after the calving event along two flowlines in the shelf. The mean, observed speed before

and after July 2017, together with shading representing the 2σ variability, is also plotted.

3.3 Ungrounding experiments

In the modelled response to the ungrounding of the LCIS from the Bawden ice rise there was a significant local
:::::::::::
instantaneous

increase in velocity upstream of the ice rise (Fig. 5a) of ∼ 200 ma−1 (and an even greater increase for the ice that was

previously grounded). This represents a ∼ 50% increase in ice velocity in this region. However, as with the A68 calving, this

instantaneous velocity response is spatially limited and there is a just a 1% increase in GLF from this perturbation.220

A similar, localised response in ice velocity is seen when the Gipps ice rise
::
Ice

::::
Rise

:
contact is removed (Fig. 5b), and a

similar
:::::::::::
instantaneous

:
increase in GLF (1.2%) is modelled. Fig. 5c shows the ice velocity response to the simultaneous loss of

contact from both ice rises, which produced an increase in velocity across the whole ice shelf. In Fig. 5d we show the difference

10
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Figure 4. Calving experiments: (a) is the percentage change in grounding line flux for the each idealised calving experiment, and (b) shows

the same data, but with a log scale on the y-axis. A map of the ‘distance to the main grounding line’ metric, used to define the calving

experiments, is shown in (c)
:
,
:::::
where

::
the

:::
red

:::
line

::
is

::
the

::::::::
grounding

:::
line

:::
and

:::
the

::::
black

::::
line

::
the

::::::::
boundary

:
of
:::

the
:::::
model

::::::
domain.

between the combined ungrounding event and the sum of the two individual events. It shows that the combined ungrounding

is approximately a linear superposition of the two individual events, and the corresponding change in GLF from the combined225

event is 2.2%.
:::::
These

::::::::::
experiments

:::::
show

::
us

::::
that

::
the

::::
two

:::
ice

::::
rises

:::::::
provide

:
a
::::
very

:::::
small

:::::::::
proportion

::
of

:::
the

::::
total

::::::::::
buttressing

::
of

:::
the

:::::
LCIS,

:::
but

::::::
cannot

:::
tell

::
us

:::::
about

:::
the

:::::::
transient

:::::
mass

:::::::::::
redistribution

::
in

::::::::
response

::
to

:::
the

:::
loss

::
of

:::::
basal

::::::
contact

::
at

:::::
these

::::::::
locations.

:

3.4 Thinning experiments

The changes in GLF due to perturbations in the ice-shelf thickness are shown in Fig. 6
:::
(the

::::
two

:::::::
different

:::::::::
approaches

::
to

::::::::
applying

:::::::
ice-shelf

:::::::
thinning

:::
are

:::
set

:::
out

::
in

::::::
Section

::::
2.5). When thinning the ice shelf in the ‘uniform’ sense (Fig. 6a) we find that ∼ 30 m230

of ice-shelf thinning is required to produce a 10% increase in GLF and that over 200 m of thinning is required to produce

a doubling of GLF.
:::
200

:
m

::
of

::::::::
‘uniform’

::::::::
ice-shelf

:::::::
thinning

:::::::
removes

:::::
9050

:
Gt

:
of

:::
ice

:::::
from

:::
the

:::::
LCIS.

::::
The

:::::::::
equivalent

::::::::
idealised

11



-2300 -2100

xps (km)

1100

1300

y
p
s
 (

k
m

)

(a)

0

50

100

150

200

250

ma-1

-2300 -2100

xps (km)

1100

1300

y
p
s
 (

k
m

)

(b)

0

50

100

150

200

250

ma-1

-2300 -2100

xps (km)

1100

1300

y
p
s
 (

k
m

)

(c)

0

50

100

150

200

250

ma-1

-2300 -2100

xps (km)

1100

1300

y
p
s
 (

k
m

)

(d)

-5

0

5

10

15

20

25
ma-1

Figure 5. Ungrounding experiments: The change in modelled ice speed after ungrounding at the Bawden ice rise (a), the Gipps ice rise

::
Ice

::::
Rise (b) and at both ice rises simultaneously (c). The difference between the combined ungrounding and the sum of the two individual

ungrounding experiments is shown in (d). Note the different scale on the colour bar in (d), compared to those for panels (a)-(c).

::::::
calving

:::::::::
experiment

::
–
::
in

:::::
terms

::
of

::::::::
ice-mass

:::::::
removed

::
–

:::::::
positions

:::
the

:::::::
calving

::::
front

:::
15 km

::::::::::
downstream

:::::
from

:::
the

:::
GL,

::::::
which

::::
only

::::::::
increased

::
the

:::::
GLF

::
by

::::::
around

::::
30%

:::::
(that

::::::
calving

::::::::::
experiment

:::::::
removed

::::
9350

:
Gt

:
of
:::
ice

:::::
from

:::
the

:::::
shelf).

:

The initial ice thickness across the model domain is shown in Fig. 6d. The maximum ice thickness
:
at

:
a
::::::::::::
computational

:::::
node235

in the shelf was 1,400
:::
489 m, so .

:::::::::
Therefore,

:::
by

:::::::
applying

:
a thinning perturbation larger than this had to be applied to reduce

::
(of

:::::
1,500

:
m)

:
the ice shelf

:::
was

:::::::
reduced

:
to the minimum thickness of 1 m everywhere

::::
after

::
an

::::::::
algorithm

::
in
:::
the

::::::
model

:::::::
ensured

:::
that

:::
the

::::::::
minimum

:::
ice

:::::::::
thickness

:::
was

:::::::
present

::::::::::
everywhere

::
in

:::
the

:::::
model

:::::::
domain. However, the median ice-shelf thickness was

290 m, 89% of the ice shelf had a thickness of less than 500 m and 99% less than 800 m. Therefore, the gradient of the curve

in Fig. 6a decreases after ∼ 500 m of applied thinning as areas of the shelf already at the minimum thickness are not affected240

by further increases in perturbation amplitude.
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Figure 6. (a) is the percentage change in grounding line flux during the ‘uniform’ thinning experiments, and (b) is the same but for the

‘proportional’ thinning experiments. (c) is the response in grounding line flux for the two sets of experiments, but with the perturbations

expressed in the amount of mass removed rather than the amount of thinning applied. (d) shows a map of ice thickness across the model

domain from Bedmachine
:::::::::
BedMachine

:
Antarctica v2 (Morlighem et al., 2019), with grounding lines plotted in red.

Fig. 6b shows the response in GLF to the ‘proportional’ thinning experiments. Here, 7% of the ice-shelf thickness needed to

be removed to produce a 10% increase in GLF, and 45% removed to produce a doubling of GLF.

By calculating the ice-shelf mass removed in each experiment we were able to compare the two approaches (Fig. 6c). We

see from the ‘uniform’ experiment curve, that there is a large response in GLF to a small change in mass removed towards the245

end of the series of perturbations, when the thickest ice is being significantly perturbed. The maximum GLF increase of 502%

is identical in both the ‘uniform’ 1,500 m thinning and the ‘proportional’ 100% thinning experiments, as expected. The initial

linear regimes in both sets of thinning perturbations are discussed in Appendix B.
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4 Discussion

4.1 Calving experiments and ice-shelf buttressing250

Our first objective was to model the
:::::::::::
instantaneous

:
response of the LCIS to the calving of the A68 iceberg and compare the

results to observations. The limited change in ice-shelf velocities, and lack of change in the GLF, suggests that this part of

the ice shelf provided almost no buttressing. This finding is in agreement with the work of Fürst et al. (2016), who classified

this region as ‘passive ice’, and with the map of ‘buttressing flux response number’ that Reese et al. (2018) produced. Borstad

et al. (2017) hypothesised four potential calving events based on the trajectory in which the rift that eventually formed the A68255

iceberg was growing, and modelled the response to these events. Their ‘Scenario 2’ is most similar to the calving event that

eventually occurred, and our modelled results are in close agreement with theirs in both spatial pattern and amplitude (see Fig.

2d in Borstad et al., 2017).

The model results shows a decrease in ice velocity following the calving event in the region of the shelf just to the north

of the Gipps ice rise
:::
Ice

::::
Rise. This is likely to be an artefact of the method used to perform the experiment. The rift that260

eventually formed the A68 iceberg had been present in the ice shelf for over a decade, and grew significantly during 2014 and

2016 (Jansen et al., 2015; Borstad et al., 2017). Therefore, the dynamic response to the detaching of the nascent A68 iceberg

will have already taken place in this region, and this response is included in the ice velocity data used to initialise our model.

Finally, in the model we essentially force the already detaching iceberg to have contact with ice upstream, inducing an artificial

‘pulling’ effect on this upstream ice, which is removed when the iceberg is calved from the domain.
:::::::
Evidence

::
of

::::
this

:::
can

:::
be265

::::
seen

::
in

:::
the

:::::
larger

:::::
misfit

:::::::
between

::::::::
observed

:::
and

::::::::
modelled

:::
ice

::::::::
velocities

::
in

:::
this

::::::
region

::
in

::::
Fig.

:::
2c.

When comparing our result with observations, we found that the modelled response was smaller than the internal variability

in the monthly ice velocity data available. Consequently, we were unable to validate the details in spatial pattern and amplitude

of our modelled response. However, the observations do show that the mean ice velocity across the shelf before and after the

calving event remained unchanged, or at least smaller than the measurement errors. This demonstrates that the calving of the270

A68 had little or no dynamic impact on the system, supporting ours and previous work that predicted such a response, or rather

lack thereof.

The second aim of this work was to understand the
:::::::::::
instantaneous response in GLF to the migration of the calving front back

towards the GL,
::::
and

::::
from

::::
that

::::
learn

:::::
about

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::
the

::::::::::
buttressing

:::::::
capacity

::
of

:::
the

:::
ice

:::::
shelf. Here we found

that as the calving front is moved from its pre-A68 location to 25 km from the GL, there is just a
::
an

::::::::::::
instantaneous

:::::::
increase275

::
of

:::
just

:
13% increase in GLF. It is only when regions of the shelf within 25 km of the GL are calved that ice in the narrow

embayments downstream of the main tributary glaciers is removed, and this is where the increasing response in GLF begins.

Calving perturbations up to this point remove more than 50% of the total ice-shelf mass, yet only induce an increase of 13% in

the GLF.

Fürst et al. (2016) measured the impact of calving on the ice flux across the new marine ice front, not the GL, and therefore280

arrived at a different picture of buttressing on the LCIS. In their supplementary material, the impact of the same experiments

on ice discharge across the GL was examined, and by that definition it was found that much more of the ice-shelf area was
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‘passive’. We argue that it is this second definition, the integrated impact of changes in ice-shelf geometry on stresses at the GL

and consequently on
:::::::::::
instantaneous

:::::::
changes

::
in GLF, that is the key measure of the buttressing capability

::::::
capacity

:
of ice shelves

::
in

::::
their

::::::
present

::::::::::::
configurations. This definition is in line with the original view of buttressing as the backstresses produced by285

an ice shelf that are felt at the grounding line (Thomas, 1979). This is the approach used in the work of Reese et al. (2018)
:
,

::::::::::::::::::::::
Gudmundsson et al. (2019) and Zhang et al. (2020), who focus on the GLF response to ice-shelf perturbations. We find that

the regions with the largest ‘buttressing flux response number’ (Reese et al., 2018) correspond to the regions providing the

majority of the buttressing in our calving experiments.
::::
How

:::
the

::::::
system

:::::::::::
redistributes

::::
mass

:::::::::
transiently

::
in
::::::::
response

::
to

::
a

::::::
change

::
in

:::::::
ice-shelf

::::::::::
buttressing

::
is

::
an

:::::::::
important

::::::::
question.

:::
But

::::
the

:::::::::
diagnostic

::::::::::::::::
(time-independent)

::::::::
approach

::::
used

::::
here

::
is
::::::::

sufficient
:::

to290

:::::
reveal

:::
the

:::::::::
buttressing

::::::::
capacity

::
of

:::
the

:::::
LCIS.

::::::::
Changes

::
in

::::::::::
buttressing

:::::::
produce

::
an

::::::::::::
instantaneous

:::::::
response

::
in
:::

ice
:::::::::

velocities,
::::
and

:::::::::::
consequently

::
in

:::
the

::::
GLF,

::
as

::::
they

:::
are

::::::::::
determined

::
by

:::
the

::::::
current

::::
state

:::
of

:::::
stress

::
in

:::
the

:::
ice.

This previous work has
:::
The

::::::::
previous

::::
work

:::
of

::::::::::::::::
Reese et al. (2018)

:::
and

::::::::::::::::
Zhang et al. (2020) measured the response in GLF to

small perturbations in ice-shelf geometry, but by removing the entire ice shelf and calculating the instantaneous response in

GLF we are able to quantify the total amount of buttressing that the LCIS provides. This allowed us to examine what proportion295

of the total buttressing capacity is provided by different regions in the ice shelf. We find that over 95% of the buttressing is

generated by the ice in the first 25 km downstream of the GL, and that over 80% comes from the first 5 km of ice directly

downstream of the GL. The
::::::
primary

:
reason for this is that the LCIS geometry is characterised by a number of small, narrow

embayments where the main tributary glaciers flow into the ice shelf. It is in these regions that the largest resistive stresses are

generated, which dominate the buttressing capability
::::::
capacity

:
of the shelf as a whole.300

4.2 Ice-shelf thinning and ungrounding

We also set out to examine the GLF response to ice-shelf thickness perturbations. Fig. 6a shows that the response in GLF to

thinning is approximately linear as a function of the amplitude of the thickness perturbation, as long as the amplitude is less

than about 100 m (this is further explored in Appendix B). For amplitudes larger than about 100 m, the response becomes

progressively more non-linear, something that is also very evident when the GLF response is plotted as a function of the ice-305

shelf mass removed (Fig. 6c). Our explanation for this pattern of GLF response is that the thickest ice in the shelf, which is

only reduced to the minimum ice thickness of 1 m towards the end of the series of ‘uniform’ experiments, is located directly

downstream of the grounding line, where the largest tributary glaciers feed into the shelf. From our calving experiments, we

saw that this is where the majority of the total buttressing capability
::::::
capacity

:
of the ice shelf is concentrated, and therefore the

largest changes in GLF are seen when these regions of the shelf are thinned significantly.310

The maximum increase in GLF due to the thinning experiments does not equal that of the calving experiments (502% vs

607%), as in the thinning experiments a 1 m thick layer of ice remains across the ice shelf. No thinning is applied to grounded

ice (i.e. at the Bawden and Gipps ice rises), and there remains a small, mechanical connection between these pinning points

and the GL, reducing the maximum GLF increase. When varying the
:::
The

:
minimum ice thickness , we

:
is

:::::::::
maintained

::::::
across

:::
the

:::::::::::
computational

:::::::
domain

:::
for

:::::::::
numerical

::::::
reasons

:::::
only,

:::
and

:::
we

:::::::::
performed

:::::::::
sensitivity

::::
tests

::
to

:::::::::
determine

:::
the

::::::::
influence

::
of

::::::::
different315

::::::::
minimum

:::
ice

::::::::
thickness

::::::
values.

::::
We find that increasing it

::
the

:::::::::
minimum

:::
ice

::::::::
thickness

:
to 10 m reduces the maximum GLF
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response from ice-shelf thinning to 475%, whilst reducing it further to 0.001 m, only increases the maximum GLF response to

505% from the 502% modelled with a 1 m minimum ice thickness.

To put the levels of ice-shelf thinning presented in Fig. 6 into context, the maximum basal melt rates observed under the LCIS

are on the order of 2 ma−1 (Adusumilli et al., 2018), but typical values across most of the shelf are lower than this. Assuming320

the maximum basal melt rate was applied across the whole ice shelf, and that the impact of the thinning is considered in an

instantaneous sense, our results suggest around 15 years of thinning is required to produce an increase in GLF of 10%, and

over 100 years of thinning to produce a doubling of GLF.

The dynamic
:::::::::::
instantaneous response to removing the basal contacts at the Bawden and Gipps ice rises has previously been

modelled with different methods to ours. Borstad et al. (2013) only modelled the floating ice shelf, and therefore simulated a325

loss of contact at the ice rises by manually adjusting their inferred ice-viscosity parameter (the equivalent of our rate factor,A).

Fürst et al. (2016) modelled the grounded ice as well as the shelf, and chose to set their basal friction coefficient to zero at the

ice rises – removing the basal traction – rather than adjusting the ice or bed geometry. Despite these differences in approach,

we found that our results are very similar in both spatial pattern and amplitude to these previous studies. In the experiment in

which both ice rises were removed the
:::::::::::
instantaneous change in GLF was 2.2%. This suggests that, whilst these two ice rises330

may exert a significant control on the flow of the shelf upstream of the pinning points, they do not exert a strong mechanical

control on the ice flux at the GL, and only contribute a small amount to the total buttressing capability
::::::
capacity

:
of the shelf

:
,

::::
given

::::
that

::::
their

:::::::
removal

::::
only

:::::::
affected

:::
the

:::::::
stresses

:
at
:::
the

::::
GL

::::::
enough

::
to

::::
raise

:::
the

::::
GLF

:::
by

:::::
2.2%

:::::::::::::
instantaneously.

The experiments conducted here are highly idealised in nature. We only considered ‘uniform’ or ‘proportional’ thinning

perturbations to the shelf, and calving front locations were determined by a ‘distance to the grounding line’ metric. This335

resulted in some unlikely calving front positions. More realistic calving experiments, using a physically based calving law or

metric, could be used to model the response to more plausible ice-shelf configurations.

This
::::::::
Secondly,

:::
this

:
work only considered the instantaneous response to perturbations in ice-shelf thickness and extent. As

changes to buttressing through changing stress fields
:
–
:::::::
through

::::::
changes

::
in
:::
the

:::::::
stresses

::
in

:::
the

::
ice

::
– is an inherently instantaneous

process, this was appropriate
::::::::
approach

:
is
::::::::::
appropriate

:::
and

::::::::
sufficient

:
to explore the buttressing capability

:::::::
capacity of the LCIS

::
in340

::
its

::::::
present

::::
state. However, the transient

::::
mass

:::::::::::
redistribution

::
in

:
response to these perturbations, in which the acceleration would

induce thinning and grounding line migration, requires further study
:::
and

:
a
::::::::
different

::::::::
modelling

::::::::
approach. Of particular interest

is whether the instantaneous GLF increases are the peak response to the perturbation, which then attenuates, or whether the

GLF response is increased further by the transient evolution of the ice geometry.

5 Conclusions345

In this study we have examined the instantaneous response of the LCIS and its tributaries to both observed and idealised

perturbations to the ice-shelf geometry. We found that the calving of the A68 iceberg in July 2017 produced a limited change

(mostly < 10%) in ice velocities in the shelf and had almost no
:::::::::::
instantaneous

:
impact (a 0.5

:::
0.28% increase) on the GLF.
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This finding is supported by observations which show no evidence of a change in velocity due to the calving event, and this

furthermore confirms earlier work that suggested that the region that calved was largely ‘passive ice’.350

Through further, idealised calving experiments we found that a significant retreat of the calving front to 25 km downstream

of the GL (removing over 50% of the ice-shelf mass) only produced a 13%
:::::::::::
instantaneous

:
increase in GLF. Further retreat of

the calving front to 5 km from the GL was needed to produce a doubling of GLF. By calculating the total buttressing provided

by the LCIS – through modelling the
:::::::::::
instantaneous increase in GLF due to a complete collapse (607%) – we deduced that over

95% of the buttressing capability
:::::::
capacity of the LCIS is provided by ice within 25 km of the GL, in the narrow embayments355

downstream of the main tributary glaciers. We further found that over 80% of the buttressing is generated in first 5 km of ice

downstream of the GL.

We also studied perturbations of increasing size to the thickness of the ice shelf. Here, again, we found that large changes

to the geometry of the ice shelf are required to produce significant changes in GLF, with 30 m of thinning across the shelf

inducing a 10% increase in GLF and over 200 m of thinning required to produce a doubling of GLF. Finally, we examined the360

response in ice velocities to the ungrounding of the ice shelf from the Bawden and Gipps ice rises, and found that whilst there

are significant local speedups of around 50%, there was a limited instantaneous increase in GLF of 2.2%. This suggests that

whilst these pinning points control the local ice-shelf dynamics, they only provide a small amount of the total buttressing of

the LCIS.
:::::
These

:::::::::
diagnostic

::::::::::
experiments

:::::
have

::::
given

:::
us

::::
new

::::::
insight

:::
into

:::
the

:::::
total

::::::
amount

::
of

::::::::::
buttressing

:::::::
provided

:::
by

:::
the

:::::
LCIS

:::
and

:::::
where

:::
in

:::
the

:::
ice

::::
shelf

::::
this

:::::::::
buttressing

::
is

:::::::::
generated.

:::
The

:::::
form

::
of

:::
the

::::::::
transient

:::::::
response

::
to
:::::

these
:::::::::::
perturbations

:::::::
remains

:::
an365

::::
open

:::::::
question

::
to

:::
be

:::::::
explored

::
in

::::::
further

:::::
work.

:

Appendix A: L-curve analysis
::::::::
analyses and A and C fields

As discussed in Sect. 2.3, an L-curve analysis was
:::::::
analyses

:::::
were used to determine the γa and γs ::::

γaA,
:::::
γaC ,

:::
γsA::::

and
::::
γsC

parameters in Eq. 7. The value of γs was varied over 9
:::::
values

::
of

::::::
γsA/C ::::

were
:::::::::
separately

:::::
varied

::::
over

::
6 orders of magnitude and

the optimisation procedure was carried out for each value of γs whilst γa was
::::
γsA :::

and
::::
γsC :::::

whilst
:::
the

:::::
other

::::
three

::::::::::
parameters370

::::
were held constant. This method was then repeatedvarying γa whilst γs was

:
,
::::::::
separately

:::::::
varying

::::
γaA :::

and
::::
γaC ::::

over
:::
five

::::::
orders

::
of

:::::::::
magnitude

:::::
whilst

:::
the

:::::
other

::::
three

::::::::::
parameters

::::
were

:
held constant. The model-observation misfit for

:::::
misfits

:::
for

:::
the

:
different

amounts of regularisation is
::::::
applied

:::
are shown in Fig. A1a and b. The chosen values were γa = 1 and γs = 1000

::::
after

:::
the

::::::
L-curve

::::::::
analyses

::::
were

::::
γaA:::

and
::::::::
γaC = 1

:::
and

::::
γsA :::

and
::::::::::
γsC = 1000. This amount of regularisation was then used to determine

the A and C fields used throughout the experiments detailed in the main text.375

The fields for the rate factor, A, and basal slipperiness parameter, C are shown in Fig. A2a and b respectively. Examining

the rate factor field, we can see that softer, more deformable ice is found in the shear margins of the ice shelf and between flow

units emanating from the tributary glaciers. Higher values are also seen in regions where rifts are located (e.g. upstream of the

Gipps ice rise
::
Ice

::::
Rise, and at the location of the rift that eventually formed the A68 iceberg).
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Figure A1. L-curves used to determine the amount of regularisation to apply in the optimisation of the A and C fields. (a) is the misfit term

(I in Eq. 6) plotted as a function of the regularisation applied (R (from Eq. 7) divided by γ2
s × γ2

a:::
γ2
sA), whilst varying γs :::

γsA (value indicated

by label) with γa = 1
:::::::::
γsC = 1000

:::
and

:::::::::::
γaA/C = 1000. (b) is the misfit term plotted as a function of R/(γ2

sγ
2
a) :::::
R/γ2

sC:
whilst varying γa

(value indicated by label)
::::
γsC , with γs = 1000

::::::
γsA = 1

:::
and

::::::::::::
γaA/C = 1000.

::
(c)

:
is
:::

the
:::::

misfit
::::
term

::::::
plotted

::
as

:
a
:::::::
function

::
of

::::::
R/γ2

aA :::::
whilst

:::::
varying

::::
γaA,

::::
with

:::::::
γaC = 1

:::
and

:::::::::::
γsA/C = 1000.

:::
(d)

:
is

::
the

:::::
misfit

::::
term

:::::
plotted

::
as

:
a
:::::::
function

::
of

::::::
R/γ2

aC :::::
whilst

:::::
varying

::::
γaC ,

::::
with

:::::::
γaA = 1

:::
and

:::::::::::
γsA/C = 1000.

Appendix B: Linearity of the GLF response to thinning380

Fig. B1 focuses on the GLF response to smaller ‘uniform’ ice-shelf thickness perturbations. Over the first ∼ 100 m of applied

thinning, the response in GLF is approximately linear, with a 0.36% increase in GLF for every 1 m of ice-shelf thickness

removed. For the ‘proportional’ perturbations (Fig. B2) there is also an initial linear regime which extends to a 10% thinning

of the shelf. In this regime there is a 1.4% increase in GLF for every 1% reduction in ice-shelf thickness.
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Figure A2. Maps of (a) the rate factor, A, in Glen’s flow law (Eq. 3) and (b) the basal slipperiness, C, in the Weertman sliding law (Eq. 5)

after optimisation as set out in Sect. 2.3. The colour bars have been saturated to allow the spatial detail in both parameters to be clearly seen.

For the ‘uniform’ perturbations, initially the deviation from an exact linear response is below the straight line plotted through385

the origin and the 0.1 m thinning point. This suggests that increasing thickness perturbations produce a relatively smaller

increase in GLF when uniform thinning is applied. However, Fig B2 shows that when the shelf is thinned in proportion to the

total ice-shelf thickness at each node, this behaviour is suppressed, and the relative response in GLF steadily increases as the

proportion of the ice-shelf thickness removed increases.

The way in which the GLF response to thinning deviates below the initial linear regime is an interesting phenomena that390

has yet to be explained, but has been observed in previous studies on other ice shelves (e.g. Fig. S2 in Reese at al., 2018). It

suggests that when a uniform perturbation to ice-shelf thickness is applied across a shelf, over a certain range of perturbation

size (here∼ 1−50 m), the relative increase in GLF is progressively reduced. From the lack of evidence of this behaviour in the

proportional thinning experiments, we can see that is related to the distribution of the thickness perturbation across the shelf,

and the cause of this is still unknown.395

Appendix C: Mesh resolution dependence

To test the dependence of our results on mesh resolution, we repeated all of the experiments outlined in Sect. 2 with four

additional computational meshes. In each case, the resolution around the GL was held constant at 250 m. This was to ensure

that the calving and thinning experiments conducted with each mesh had the same physical extent – as a coarser resolution at

the GL would mean that the calving experiments would not penetrate as close to the GL, and ice-shelf thinning would also not400

be applied as close to the GL.

The four additional meshes multiplied the original mesh resolution factors (as outlined in Sect. 2 based on ice velocities,

strain rates and whether or not the element was afloat) by 0.5, 2, 3 and 4 respectively. The results of 10 experiments (5 calving

19



0 500 1000 1500

Shelf thickness removed (m)

0

100

200

300

400

500

%
 c

h
a

n
g

e
 i
n

 G
L

F

(a)

0 20 40 60 80 100

Shelf thickness removed (m)

0

10

20

30

40

%
 c

h
a

n
g

e
 i
n

 G
L

F

(b)

0 1 2 3 4 5

Shelf thickness removed (m)

0

0.5

1

1.5

2

%
 c

h
a

n
g

e
 i
n

 G
L

F

(c)

Figure B1. The percentage change in grounding line flux is plotted as a function of the ‘uniform’ thickness perturbation applied (a). The

dashed line is the straight line that passes through the origin and the 0.1 m ‘uniform’ thinning point. (b) is the region shown in the red box in

panel (a), and (c) is the region in the red box in (b).

and 5 uniform thinning) with the 5 different meshes are shown in Fig. C1. From this we can see that the response in GLF is

consistent across the 5 different mesh resolutions for each experiment, and therefore any mesh dependence of our results is405

negligible.

Appendix D:
::::::::::
Comparing

:::::::
constant

::::
and

::::::::
variable

:::::::::
ice-density

::::::::::
approaches

::
In

:::
the

::::::
results

::::::::
presented

:::::
earlier

:::
in

:::
this

:::::
study,

::
a
::::::::::
horizontally

:::::::
spatially

:::::::
variable

:::
ice

:::::::
density

:::
was

:::::
used,

::::::
which

::
is

::::
show

::
in
::::

Fig.
::::
D1.

:::
But

:::::
many

:::::::
ice-flow

:::::::
models

::
do

::::
not

::::::
account

:::
for

::::::
spatial

::::::::
gradients

:::
in

:::
ice

::::::
density

::::
and

::::::
instead

:::
use

::
a
:::::::
constant

::::::
value,

:::::::
typically

:::
of

:::
917

:
kgm−3.

:::::
Here,

:::
we

::::
test

:::
the

:::::::::
sensitivity

::
of

::::
our

:::::::
findings

::
to

::::
this

:::::::
different

:::::::::
definition

::
of

:::
ice

:::::::
density

:::
by

:::::::::
performing

::::
the

::::
A68410
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Figure B2. The percentage change in grounding line flux is plotted as a function of the ‘proportional’ thickness perturbation applied (a). The

dashed line is the straight line that passes through the origin and the 1% ‘proportional’ thinning point. (b) is the region shown in the black

box in panel (a).
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Figure C1. Mesh convergence analysis: Here, the percentage change in grounding line flux for five of the uniform thinning experiments (a)

and five of the idealised calving experiments (b) are plotted for meshes in which the element sizes wer half, double, triple and quadruple the

size of the original mesh used for analysis in the main text.

::::::
iceberg

::::::
calving

::::
and

:::
the

:::::::
idealised

:::::::
calving

::::::::::
experiments

::::
with

::
a

:::::
model

:::::
setup

::::
that

::::
uses

:
a
::::::::
constant,

:::::::::::::
depth-integrated

:::
ice

:::::::
density

::
of

:::
917

:
kgm−3

:::::
across

:::
the

:::::
whole

::::::::::::
computational

:::::::
domain.

:

::
To

:::::
setup

:::
the

::::::
model

::
in

:::
this

:::::
way,

:::
we

:::::
again

::::
took

:::
the

:::
ice

::::::::
thickness

::::
from

:::
the

:::::::::::
BedMachine

::::
data

::::
set,

:::
but

::
no

::::::
longer

:::::::
applied

:::
the

::::::::
correction

::
to

:::
the

::::::
upper

:::
ice

::::::
surface

::
to

:::::::
account

:::
for

:::
the

::::
firn

:::
air

:::::::
content.

:::::::::
Therefore,

::
in

:::
the

:::::
setup

::::
with

::
a

:::::::
constant

:::
ice

::::::
density

:::
of

:::
917

:
kgm−3

:
,
:::
the

:::
ice

::::::
surface

::
is

:::::
lower

::::
than

::
in

:::
our

:::::::
variable

:::
ice

::::::
density

:::::::::::
experiments.

::::::::
However,

:::
the

::::
total

::::
mass

::
of

:::
ice

::
is

:::
the

:::::
same

::
in415

::::
each

::::
case.

:
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Figure D1.
:
A

::::
map

::
of

::
the

:::::::::::::
depth-integrated,

:::::::
spatially

::::::
variable

:::
ice

::::::
density

::::
(with

:
a
::::::::
minimum

::
ice

::::::
density

::
of

:::
800

:
kgm−3

:
)
::
as

::::
used

::
in

:::
the

::::
main

:::::::::
experiments

::
in

:::
this

::::
study.

::::
The

::
red

::::
line

::::
shows

:::
the

::::::::
grounding

:::
line

:::
and

:::
the

::::
black

:::
line

:::
the

:::::::
boundary

::
of

:::
the

:::::
model

::::::
domain.

:::
We

::::
then

::::::::
generated

:
a
::::
new

::::::::::::
computational

::::
mesh

::::
with

:::
the

:::::
same

:::::::::
definitions

::
of

:::::::
element

:::
size

::
as

:::::::
outlined

:::
for

:::
the

:::::
main

::::::::::
experiments

::
(in

:::::::
Section

::::
2.2).

:::
We

::::
then

::::::::
performed

::
a
:::
new

:::::::::::
optimisation

::::::::
procedure

::
to

:::::::
generate

::
A
::::
and

::
C

::::
fields

:::
for

::::
this

:::::::
constant

::
ice

:::::::
density

:::::
setup,

::::
again

:::::
using

:::
the

:::::
same

::::::::::::
regularisation

::::::::
parameter

:::::::
choices

::
as

:::
for

:::
the

:::::::
variable

:::
ice

::::::
density

:::::
setup

::::
(see

::::::::
Appendix

:::
A).

:::::
From

::::
this

::::
new

:::::
initial

::::::::
condition

::::
with

:
a
:::::::
constant

:::
ice

::::::
density,

:::
we

:::::::
repeated

:::
the

::::
A68

::::::
iceberg

:::::::
calving

:::
and

:::::::
idealised

:::::::
calving

::::
front

::::::
retreat

::::::::::
experiments420

::
as

::
set

:::
out

::
in
:::::::
Section

:::
2.4.

::::
The

::::::
results

::
of

::::
these

:::::::::::
experiments

:::
are

:::::
shown

::
in
::::
Fig.

:::
D2.

::::
We

:::
can

:::
see

:::
that

:::
the

::::::
impact

::
of

:::::
using

::
a

:::::::
constant

::
ice

:::::::
density

::::::::
compared

::::
with

:
a
::::::::
spatially

::::::
variable

:::
ice

:::::::
density

:
is
:::::::
minimal

:::
for

::::
both

:::::
small

:::
and

:::::
large

:::::::::::
perturbations

::
to

::::
they

::::::
system,

::::
and

:::
that

:::
our

::::::::::
conclusions

:::
are

:::
not

:::::::
changed

:::::::::
depending

:::
on

:::::
which

::::::::
approach

::
is

:::::
taken.

::::
The

::::::
largest

:::::::::
differences

::
in

:::
the

::::::::
modelled

::::::::
response

::
to

:::
the

::::
A68

::::::
calving

:::::::
between

:::
the

:::::::
constant

::::
and

:::::::
variable

:::
ice

::::::
density

:::::::::::
experiments,

::
as

::::::
shown

::
in

::::
Fig.

::::
D2b,

:::
are

::
in

:::
the

:::::::
regions

::
of

:::
the

::
ice

:::::
shelf

:::
that

:::::
have

:::
the

::::::
lowest

:::
ice

::::::
density

::
in

:::
the

:::::::
variable

:::::
setup

::::
(see

::::
Fig.

::::
D1),

:::
and

::::::::
therefore

:::::
have

:::
the

::::::
largest

::::::
contrast

:::::
with

:::
the425

::::::
density

::
of

:::
917

:
kgm−3

::::
used

::
in

:::
the

:::::::
constant

::::::
density

::::::
setup.

Appendix E:
:::::::::
Sensitivity

::
to

:::
the

::::::
sliding

::::
law

:::::
stress

::::::::
exponent

:::
The

::::::
impact

::
of
::::::::

different
:::::
stress

:::::::::
exponents

:::
(m

::::::
values)

::
in

:::
the

:::::::::
Weertman

::::::
sliding

::::
law

::::
(Eq.

::
5)

::
on

::::
the

:::::::
response

::
to
::::::::::::
perturbations

::
in

:::::::
ice-shelf

:::::::::
buttressing

::::
was

::::
also

:::::
tested.

::
In

:::::
these

:::::::::::
experiments,

:::
we

::::
used

:::
the

::::
same

::::::::::::
computational

:::::
mesh

::
as

::
in
:::
the

:::::
main

:::::::::::
experiments,

:::
but

::::::::
performed

::::
new

:::::::::::
optimisation

:::::::::
procedures

::
to

::::::::
generate

::
A

:::
and

::
C

:::::
fields

::::
that

::::
were

:::::::::
consistent

::::
with

:::
the

:::::::
different

:::::::
versions

:::
of

:::
the430

:::::
sliding

::::
law

:::::
being

:::::
used.

::::
The

:::::
range

::
of

:::
m

:::::
values

::::::
tested

:::
was

:::::
from

::::::
m= 1

::
(a

:::::
linear

:::::::
version

::
of

:::
the

:::::::::
Weertman

:::::
law)

::
to

::::::
m= 7,

::
a

::::
more

::::::
highly

::::::::
nonlinear

::::::
version

::
of
:::

the
::::::

sliding
::::

law
::::
than

:::
the

::::::
default

::
of

::::::
m= 3

::::
used

::
in

:::
our

:::::
main

:::::::::::
experiments.

:::::
From

::::
each

::
of

:::::
these

:::::
initial

:::::::::
conditions,

:::
we

:::::::::
performed

:::::
some

::
of

:::
the

::::::::
idealised

:::::::
calving

::::::::::
experiments

::::::::
(moving

:::
the

::::::
calving

:::::
front

::
to

::
1,

::
5,
:::
10

::::
and

:::::
20km
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Figure D2.
::
The

:::::
results

::
of
::::::
calving

:::::::::
experiments

:::::
using

:
a
::::::
constant

:::
ice

:::::
density

::
of
::::
917 kgm−3

:
.
::
(a)

::::
shows

:::
the

:::::::
modelled

:::::::
response

:
to
:::
the

::::::
calving

::
of

::
the

::::
A68

:::::
iceberg

:::::
using

:::
the

::::::
constant

::::::
density

::::
setup,

:::::
whilst

:::
(b)

:::::
shows

::
the

::::::::
difference

:::::::
between

::
the

:::::::
constant

::
ice

::::::
density

:::::::
response

:::
and

:::
the

::::::
variable

::
ice

::::::
density

::::::
response

::
to
:::
the

:::
A68

:::::::
calving.

::
(c)

:::
and

:::
(d)

::::
show

::
the

:::::::::::
instantaneous

:::::::
grounding

::::
line

:::
flux

:::::::
response

:
to
:::
the

:::::::
idealised

::::::
calving

:::::::::
experiments

::
for

:::
the

::::::
variable

::
ice

::::::
density

::::
setup

::::::
(black,

::
the

:::::
same

:::
data

::
as

::
in

:::
Fig.

::
4a

:::
and

::
b)

:::
and

:::
the

::::::
constant

:::
ice

::::::
density

::::
setup

::::
(red).

::::::::::
downstream

::
of

:::
the

::::
main

:::::::::
grounding

::::
line)

:::
and

:::::::::
calculated

:::
the

:::::::::::
instantaneous

::::::
change

::
in
:::::
GLF

::
for

:::::
each

::
of

:::
the

::::::
sliding

:::
law

:::::::::
variations.

:::
The

::::::
results

::
of

:::::
these

::::::::::
experiments

:::
are

:::::
shown

:::
in

:::
Fig.

:::
E1.

:
435

:::
The

::::::
pattern

:::
of

::::::::::::
instantaneous

::::
GLF

::::::::
increase

::
in

::::::::
response

::
to

::::::::::::
perturbations

:::::
across

::::
the

:::::
range

::
of

:::
m

::::::
values

:::::
tested

::
is
:::::::

similar

::
to

:::
that

::::::
shown

:::
in

:::
the

:::::::::::::
Supplementary

:::::::
material

::
of

:::::::::::::::::::::::
Gudmundsson et al. (2019)

::::
(Fig.

::::
S9),

:::::
with

::
an

:::::::::
increasing

:::::
GLF

:::::::
response

:::
to

:::::::::::
perturbations

::
as

::
m

::::::::
increases.

::::
The

:::
ice

::::
flow

::::::
model

:::
Úa,

::::
used

:::::
here,

:::
was

::::
also

::::
used

::
in
::::

that
:::::
study.

::::::
Whist

:::
the

:::::::
absolute

:::::
values

:::
of

:::
the

::::
GLF

:::::::
response

::
to

:::::::
calving

:::::::::::
perturbations

::
do

::::
vary

:::::::::
depending

::
on

:::
the

:::::
value

::::::
chosen

:::
for

:::
the

:::::
stress

::::::::
exponent

::::
(due

::
to

:::
the

:::
way

::
in
::::::
which

:::
this

::::::
affects

:::
the

::::
stress

:::::::
balance

::
at

:::
the

:::::::::
grounding

::::
line),

:::
the

::::::
finding

::::
that

:::
the

:::
vast

::::::::
majority

::
of

:::
the

:::::::::
buttressing

:::::::
capacity

::
of

:::
the

:::::
LCIS

::
is440

::::::::
generated

::
in

:::
the

:::
first

::::
few

:::::::::
kilometres

::
of

:::
ice

::::::::::
downstream

::
of

:::
the

:::
GL

:::::::
remains

:::::::::
consistent.

:
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Figure E1.
:::
The

::::::::::
instantaneous

:::::::
increase

::
in

::::::::
grounding

:::
line

::::
flux

::
for

::::
four

::
of

:::
the

:::::::
idealised

::::::
calving

::::::::::
experiments,

:::::
plotted

:::
as

:
a
:::::::
function

::
of

:::
the

::::::
different

:::::
stress

:::::::
exponents

:::
(m

:::::
values)

:::::
tested

::
in

:::
the

:::::::
Weertman

::::::
sliding

:::
law

:::
(Eq.

::
5.

:::
The

::::
four

:::::
calving

::::::::::
experiments

::
are

:::::
those

:
in
:::::

which
:::
the

::::::
calving

:::
front

::::
was

:::::
moved

::
to

::
1,

:
5,
:::

10
:::
and

::::
20km

::::::::::
downstream

:
of
:::

the
::::
main

::::::::
grounding

::::
line,

::
as

:::::::
described

::
in

::::
Sect.

:::
2.4.
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Code and data availability. The ice velocity dataset "ENVEO, Antarctic Ice Sheet monthly velocity maps from Copernicus Sentinel-1,

2014-2019, ESA Antarctic Ice Sheet CCI [v1.1]" is available on request from https://cryoportal.enveo.at. The source code for Úa is available

at https://doi.org/10.5281/zenodo.3706624 (Gudmundsson, 2020). The model configuration scripts, raw model output and analysis scripts

are available from the authors on request.445
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