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Abstract. Accurately estimating surface melt volume of the Antarctic Ice Sheet is challenging, and has hitherto relied on

climate modelling, or on observations from satellite remote sensing. Each of these methods has its limitations, especially in

regions with high surface melt. This study aims to demonstrate the potential of improving surface melt simulations with a

regional climate model by deploying a deep learning model. A deep-learning-based framework has been developed to cor-

rect surface melt from the regional atmospheric climate model version 2.3p2 (RACMO2), using meteorological observations5

from automatic weather stations (AWSs), and surface albedo from satellite imagery. The framework includes three steps: (1)

training a deep multilayer perceptron (MLP) model using AWS observations; (2) correcting moderate resolution imaging spec-

troradiometer (MODIS) albedo observations, and (3) using these two to correct the RACMO2 surface melt simulations. Using

observations from three AWSs at the Larsen B and C Ice Shelves, Antarctica, cross-validation shows a high accuracy (root

mean square error = 0.95 mm w.e.per day, mean absolute error = 0.42 mm w.e.per day, and coefficient of determination =10

0.95). Moreover, the deep MLP model outperforms conventional machine learning models and a shallow MLP model. When

applying the trained deep MLP model over the entire Larsen Ice Shelf, the resulting corrected RACMO2 surface melt shows a

better correlation with the AWS observations for two out of three AWSs. However, for one location (AWS 18) the deep MLP

model does not show improved agreement with AWS observations, likely because surface melt is driven to a large extent by

other factors (e.g., air temperature, topography, katabatic wind) than albedo alone within the corresponding coarse resolution15

model pixels. Our study demonstrates the opportunity to improve surface melt simulations using deep learning combined with

satellite albedo observations. On the other hand, more work is required to refine the method, especially for complicated and

heterogeneous terrains.

1 Introduction

The Antarctic ice sheet (AIS) is an important indicator for climate change. Current AIS mass loss is estimated at 155 ± 1920

Gt yr−1 (0.43 ± 0.05 mm yr−1 of eustatic sea level rise) between 2006 and 2015, and accelerating (Pörtner et al., 2019). At

present, mass loss is driven mainly by ice shelf weakening due to basal melt (The IMBIE team et al., 2018) or damage pro-

cesses (Lhermitte et al., 2020) or hydrofracturing due to surface melt (The IMBIE team et al., 2018; Gilbert and Kittel, 2021;
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Kuipers Munneke et al., 2014). In the coming centuries, surface melt is projected to increase strongly over Antarctica (Trusel

et al., 2015), increasing the incidence of surface melt-related instability of ice shelves. The intergovernmental panel on climate25

change (IPCC) estimated the contribution from AIS mass loss to global mean sea level rise until 2100 in its recent sixth assess-

ment report (IPCC AR6; Fox-Kemper et al., 2021). Under different shared socioeconomic pathways (SSPs), the contribution

will likely be 0.03–0.27 m (SSP 1–2.6), 0.03–0.29 m (SSP 2–4.5), and 0.03–0.34 m (SSP 5–8.5) (Fox-Kemper et al., 2021).

In this context, accurate information about surface melt can directly enhance our understanding of the AIS evolution and its

contribution to sea level rise.30

Despite the importance of melt volumes estimates, it is not straightforward to derive them accurately from satellite obser-

vations or (regional) climate models. Satellite estimates rely, for example, on proxies of melt presence from changes in albedo

(Steffen et al., 1993; Pirazzini, 2004), brightness temperature (Zheng et al., 2020, 2019) or backscatter (Trusel et al., 2013,

2012) to empirically estimate melt flux or melt volumes. However, these satellite methods face difficulties as they often require35

locally adapted thresholds (e.g. thresholds in Trusel et al., 2013), or potentially underestimate the melt fluxes over, for example,

blue ice areas (Arthur et al., 2020; Lenaerts et al., 2017) where the contrast between melt and no-melt is less clear.

(Regional) climate models, on the other hand, face difficulties in accurately estimating surface melt over areas with low surface

albedo. Often, features of strong surface melt (ponds, blue ice, lakes) are smaller than the model resolution, and processes40

that lead to their appearance and dynamics are usually not well represented (Lenaerts et al., 2017; Kingslake et al., 2017).

Optical remote sensing does provide high-quality albedo observations at different spatiotemporal resolutions. It is hence a

competent additional source of data to the albedo simulation from a physically-based climate model. Therefore, we propose a

deep learning method that uses the albedo observations from remote sensing to correct for the shortcomings of climate models.

Deep learning is a machine learning technique extracting multiple levels of abstraction/representation of data based on multiple45

processing layers, i.e., artificial neural networks (LeCun et al., 2015). To date, deep learning has been widely applied in Earth

system science to analyze and correct mismatches between model simulations and observations (Reichstein et al., 2019) as

they execute much faster than physically-based models.

Our study aims to develop a novel framework correcting the model-observation mismatch of surface melt in the AIS with50

a deep learning model, which utilizes inputs from the physically-based model, the regional atmospheric climate model version

2.3p2 (RACMO2), and remote sensing albedo observations from the moderate resolution imaging spectroradiometer (MODIS).

To achieve this, our study has two primary objectives: (1) develop a deep learning model to correct the simulations of surface

melt from RACMO2 based on automatic weather station (AWS) observations, as well as (2) apply and evaluate the performance

of the developed model in correcting the surface melt simulations from RACMO2. To prove the concept of this framework, we55

apply it to RACMO2 model simulations over the Larsen Ice Shelf between 2009 and 2016, using meteorological parameters

from RACMO2 and remote sensing observations of surface albedo. In section 2, we introduce the investigated area and specify
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all data sets. The architecture of the method and its details are described in section 3. Sections 4 and 5 present and discuss the

results, followed by a summary in section 6.

2 Study area and data60

2.1 Study area

We apply the deep learning framework to the Larsen Ice Shelf, situated to the east of the Antarctic Peninsula. According to

existing estimates, this area produces about 50 to 60 % of all surface meltwater in Antarctica (Kuipers Munneke et al., 2012a;

Trusel et al., 2013). On average, surface melt occurs on 25 days per year in the southern part of Larsen C Ice Shelf, to over

75 days per year in the western and northern part of the region (Luckman et al., 2014). The Larsen Ice shelf is an ideal test65

location for developing a framework to improve surface melt estimates, because (1) there is abundant melt; (2) high-quality

multi-year AWS data suitable for melt calculations (i.e. including the surface radiation budget) are available over the Larsen

Ice Shelf, Antarctica (Jakobs et al., 2020) and (3) a previous comparison between RACMO2 albedo and radar backscatter from

the quick scatterometer (QSCAT) revealed that both positive and negative values of the difference between RACMO2 and

observed surface melt exist in this area (Trusel et al., 2013). Thus, the versatility of the method is tested both for enhancing70

and reducing surface melt.

The Antarctic Peninsula (Fig. 1) is the mildest region of Antarctica, as it is protruding farther north than other regions, into

the Southern Ocean. In the western part of the Antarctic Peninsula the atmospheric circulation is northwest-southeast, leading

to mild conditions, few ice shelves and little sea ice. Conversely, in the eastern Antarctic Peninsula, the circulation is south-75

north, resulting in colder conditions, extensive ice shelves and year-round sea ice cover. Therefore, ice shelves on the Antarctic

Peninsula are mostly located on the eastern coast. Under specific conditions, westerly atmospheric flow leads to warm and dry

winds, known as föhn, descending from the eastern mountain flanks onto the ice shelves (Elvidge and Renfrew, 2016; Datta

et al., 2019). These föhn winds are known to generate strong surface melt in the inlets on the ice shelves just downslope from

the mountains. On average, the annual melt exceeds 400 mm w.e. (Trusel et al., 2013; Turton et al., 2020) in these inlets, dis-80

tributed over about 100 melt days (Luckman et al., 2014). But also further east on the Antarctic Peninsula ice shelves, surface

melt rates are high compared to most other ice shelves in Antarctica, at 200 to 300 mm w.e.per year (Trusel et al., 2013).

2.2 Data

2.2.1 Satellite observations

MODIS aboard the Terra (launched in 1999) and Aqua (launched in 2002) satellites provides continuous observation of85

the Earth’s surface. For various disciplines, there are different standard MODIS data products for global change studies.

Among these products, we deployed the bi-hemispherical reflectance (i.e. white-sky albedo) for shortwave broadband from

the MCD43A3 albedo product (Schaaf and Wang, 2015) archived in the Google Earth Engine (GEE, Gorelick et al., 2017)
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Figure 1. Overview of the study area, the Larsen Ice Shelf, and details about the geolocations and operation periods of the de-

ployed automatic weather station (AWS) observations. Surface elevation is derived from the ETOPO1 1 arc-minute global relief model

(doi:10.7289/V5C8276M), and the grounding line information are derived from Bindschadler et al. (2011). The basemaps are the moderate

resolution imaging spectroradiometer (MODIS) mosaic and the Antarctic ice-shelf buttressing (Fürst et al., 2016).

as the albedo input. Furthermore, to obtain observational information about cloud coverage at AWS locations, cloud classifi-

cations are taken from the MOD09GA daily surface reflectance product (i.e. ‘MODIS/Terra Surface Reflectance Daily L2G90

Global 1 km and 500 m SIN Grid’, Vermote and Wolfe, 2015), also archived in GEE. To confirm the spatiotemporal melt

pattern in the study area, we derived the backscattering coefficient drops as an indicator of surface melt following Luckman

et al. (2014) and Datta et al. (2019) from some representative Sentinel-1 imagery archived in GEE between January and March

in 2015.

2.2.2 Automatic weather station (AWS) observations95

AWS 14, AWS 17, and AWS 18 (Fig. 1) are automatic weather stations installed and operated by the institute for marine and

atmospheric research Utrecht (IMAU) and the British Antarctic survey (BAS). Incoming/reflected shortwave radiation (S↓ and

S↑) and surface albedo (αo) are observed using a Kipp and Zonen CNR1 radiation sensor at AWS 14 and AWS 17, and CNR4
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radiation sensor at AWS 18. The same sensor also measures down- and upwelling longwave radiation (Rl). Air temperature

(T2m), air pressure (p), and relative humidity (RH) measured at 1–4 m above the surface are corrected for heating of the100

shielded housing by solar radiation, especially in situations with low wind speed. More details on the experimental setup and

data corrections are found in Kuipers Munneke et al. (2018b), Smeets et al. (2018), and Jakobs et al. (2020).

2.2.3 The regional climate model RACMO2

RACMO2 is a regional climate model adapted for the simulation of the weather over snow and ice surfaces, for a more accurate

representation of surface mass and energy balance. The version used in this study is RACMO 2.3p2 forced by ERA-Interim105

(Van Wessem et al., 2018). The entire AIS is simulated at a horizontal resolution of approximately 27 x 27 km2, for the period

1979–2019. For this study, we select the model output between 2009 and 2016, overlapping with the availability of MODIS

and AWS observations on the Larsen Ice Shelf. RACMO2 has a scheme for calculating the evolution of snow albedo, a key

parameter for the surface energy balance in summer, and an important factor in determining surface melt. The albedo scheme

is based on the metamorphism of snow grains determining the amount of incoming radiation that is absorbed in the snowpack.110

The albedo scheme does not account for ponding meltwater, the appearance of blue ice, or other icy surfaces wind like glaze,

or refrozen supraglacial water. All of these surface types tend to have a lower albedo than a snow surface (Kuipers Munneke

et al., 2011).

3 Methods

Essentially, we develop a deep learning model that corrects RACMO2 surface melt, based on differences in modelled and115

observed surface albedo values. A comprehensive flowchart of the method is given in Fig. 2. Input to the deep learning model

consists of relevant, predictive meteorological input and the difference between observed and simulated albedo values (∆α).

The deep learning model needs to be trained (Fig. 2 Block II-2), which is performed on a reference data set derived from AWS

observations. To build this reference data set, the surface energy balance model is used to perturb the surface albedo from AWS

observations with an amount ∆α (Fig. 2 Block II-1). The model is then trained to predict the resulting change in surface melt.120

The trained model is subsequently applied to RACMO2, where ∆α is computed as the difference between MODIS-observed

albedo and RACMO2-simulated albedo (Fig. 2 Block II-4). The MODIS white-sky albedo is converted to blue-sky albedo by

correcting variations in solar zenith angle, and cloud cover (Fig. 2 Block II-3) to allow comparison with the RACMO2 blue-sky

albedo.

125

The remainder of this section describes the methodology in more detail. The perturbation of the AWS observations, as de-

scribed above, is referred to as ‘AWS data augmentation’, a frequently-used term in deep learning. More fundamentals and

terminology in deep learning can be found in LeCun et al. (2015). In order, we present details of (1) the formulation of the

concept of the deep learning model, (2) the surface energy balance model design, (3) the augmentation (perturbation) of AWS
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observations, (4) training and validation of the deep learning model, (5) preparation and correction of MODIS albedo, and (6)130

the final application of the deep learning model, and its evaluation (Fig. 2).

3.1 Concept formulation of this study

Previously, the additional absorbed solar energy that stems from the difference between a lower observed albedo and a higher

modelled albedo has been converted entirely to surface melt (Lenaerts et al., 2017). But this approach neglects the fact that all

the terms in the surface energy balance change when surface albedo is lowered. For example, it could lead to a higher surface135

temperature, and thus enhanced heat loss by longwave radiation to the atmosphere. Or a decreased air temperature gradient

in the atmospheric boundary layer could diminish the amount of sensible heat added to the surface by turbulence. Therefore,

our approach makes use of (1) original, imperfect model albedo, (2) MODIS albedo observations, and (3) a full surface energy

balance model to compute the effect of a change in surface albedo on all energy balance terms.

140

Central in our approach, we assume that an imperfect RACMO2 simulation of surface melt is caused by an imperfect sim-

ulation of surface albedo in the model. Absorbed solar radiation is by far the major source of energy for surface melt in the

summertime surface energy balance of the Antarctic surface (Lenaerts et al., 2017). Surface albedo strongly modulates this

amount of absorbed solar radiation. Therefore, we assume that an imperfect simulation of surface albedo is the most dominant

cause of mismatches between modelled and observed surface melt (Lenaerts et al., 2017).145

Figure 2. Overall flowchart illustrating the employed data sets, implemented methods, and corresponding intercomparisons and evaluations.
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3.2 Surface energy balance model

The surface energy balance is given as

M0 = S↓+S↑+L↓+L↑+H +L+G. (1)

Here, the radiative fluxes are represented by S↓ and S↑ (incoming and reflected solar radiation), and L↓ and L↑ (downwelling

and upwelling longwave radiation). H and L are the turbulent fluxes of sensible and latent heat, and G is the ground heat flux150

at the snow surface, computed from subsurface temperature. The sum of these fluxes is 0 if the surface temperature is below the

freezing point. At the freezing point, the sum of the fluxes equals the melt energy M0. All fluxes are defined positive towards

the surface, and expressed in W m−2. The model is identical to the one described in Kuipers Munneke et al. (2012b). The

model settings (mainly for turbulent exchange of energy) were calibrated by minimizing the difference between observed and

modelled surface temperature and subsurface temperatures.155

3.3 AWS perturbation

The deep learning model needs to be trained to predict by what amount the surface melt is changed (Ma) if albedo is changed

by an amount ∆α (Fig. 2, Box II-1). Therefore, we construct a reference data set by artificially raising or lowering the albedo,

using the surface energy balance model to quantify how the reduced/additional amount of absorbed solar radiation results in

reduced/additional melt and/or is redistributed over the other energy fluxes in the energy balance.160

One of the advantages of this approach is that the perturbation strongly increases the size of the training data set, while

conserving the internal consistency of the energy balance. As a positive side effect, the data augmentation increases the num-

ber of low-albedo values in the data set, as in the original AWS time-series, low-albedo values were scarce. In the flowchart in

Fig. 2, the data augmentation is in box II-1.165

The entire time-series of AWS 14, AWS 17, and AWS 18 are adjusted by a value of ∆α between -0.30 (lowering) and +0.09

(increasing) in steps of 0.03. Since positive values of ∆α can result in non-physically high albedo (i.e. albedo higher than 1.0),

adjusted albedos greater than 0.95 are discarded.

3.4 Deep learning model: the multilayer perceptron (MLP)170

To estimate the change in surface melt from RACMO2, a deep MLP model is developed where we estimate the additional

surface melt (Ma) by means of regression F :

Ma = F (αs,∆α,T2m,S↓,L↓,M0,Fm,∆Mt,D) (2)

where the input parameters are the simulated albedo (αs) itself, the albedo difference (∆α ≡ αo - αs) between the observed

(αo) and simulated albedo, air temperature at 2 m (T2m), incoming shortwave radiation (S↓), downwelling longwave radiation175
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(L↓), simulated surface melt (M0), boolean melt flag (Fm), surface melt difference to the previous day (∆Mt), and record date

as day-of-year (D). As such the deep MLP model builds on all important drivers for melt fluxes. Moreover, it includes surface

melt information from the previous day as memory effects can also play a role. To put emphasis on the days that the surface is

actually melting, we provide an additional, boolean melt flag as input to the model.

180

The model is programmed in Python using Keras, a high-level deep learning application programming interface of Tensor-

Flow 2.0, where the architecture is illustrated in Fig. 3. The deep MLP model consists of 15 hidden layers, each with 64

neurons. We use the adaptive moment estimation (Adam) optimizer (Kingma and Ba, 2014) with a learning rate of 0.0003.

The Xavier normal initializer (Glorot and Bengio, 2010) is used to set the initial random weights of the layers. The maximum

iteration is set to 5000, and an ‘early stopping’ is applied to avoid overfitting and monitor the variation of ‘loss’. Consequently,185

the training process is terminated early if the ‘loss’ stops improving after 20 epochs. It not only improves the training efficiency

but also adds regularization effects to the deep MLP model. To further avoid overfitting, for all hidden layers, L2 regularizations

(Ng, 2004) and dropouts (with a rate of 0.1) are applied in every third layer (Fig. 3). On the other hand, to address ‘gradient

vanishing’, three ‘shortcuts’ (He et al., 2016) are built to convey the residual information from previous layers. To accelerate

the training process, batch processing with a batch size of 4096 is deployed using the shuffled training data set.

Figure 3. Overview of the built deep multilayer perceptron (MLP) model architecture, in which the input parameters are the simulated

albedo (αs) itself, the albedo difference (∆α ≡ αo - αs) between the observed (αo) and simulated albedo, air temperature at 2 m (T2m),

incoming shortwave radiation (S↓), downwelling longwave radiation (L↓), simulated surface melt (M0), boolean melt flag (Fm), surface

melt difference to the previous day (∆Mt), and record date as day-of-year (D).
190

Additionally, for a comparison purpose, we have also built a multivariate linear regression model, a boosting model (XG-

Boost: a highly effective and widely-used tree boosting system; Chen and Guestrin, 2016), a bagging model (random forest,

Breiman, 2001), and a shallow MLP model (single hidden layer with 12 neurons). The bagging and boosting models are de-

veloped in Python using the open-source package Sci-kit learn and XGBoost, and the shallow MLP model is developed using195
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Keras. To tune the hyper-parameters in the random forest and XGBoost model, the GridSearchCV function built in Sci-kit

learn is used. Validation of the above-mentioned models is implemented by comparing the accuracy metrics based on training

and validation data set. To evaluate the deep MLP model and the other machine/deep learning models, we have separated the

augmented AWS observations (section 3.3) into a training data set containing AWS 14 and AWS 17, and a validation data set

consisting of AWS 18. Afterward, three metrics are calculated to evaluate the model performance, i.e. root mean square error200

(RMSE), mean absolute error (MAE), and coefficient of determination (R2).

3.5 MODIS albedo correction and interpolation

When the deep learning model is applied to RACMO2 output, corrections to surface melt are guided by MODIS observations

of surface albedo. Therefore, we use the MODIS albedo product (MCD43A3), which is a clear sky product based on observed

clear sky surface reflectances from the Level 2 Surface Reflectance Product (MOD09, MYD09). The MODIS white-sky albedo205

hence needs to be converted to blue-sky albedo by correcting for the influence of changing solar zenith angle and cloud cover,

both of which have a significant impact on surface albedo over snow (Kuipers Munneke et al., 2008). Therefore, we use MODIS

white sky albedo as diffuse albedo αs at 50◦ and applied the RACMO2 parametrisation for solar zenith correction (dαu) and

clouds (dατ ) as described in Kuipers Munneke et al. (2011) and developed in Gardner and Sharp (2010). It requires cloud

optical depth and solar zenith angle as input. The latter is computed as a function of date and geographical location. Cloud210

optical depth (τ ) is calculated from RACMO2 simulations of the ice water path (IWP) and liquid water path (LWP) using the

parameterization from Stephens (1978):

τi =
3

2
· IWP

ρiReff,i
(3)

τw =
3

2
· LWP

ρwReff,w
, (4)

where the subscripts i and w denote a separate treatment for ice and water. The total cloud optical depth is:215

τ = τi + τw, (5)

The effective particle radius used for ice (Reff,i) is 30 µm and for water (Reff,w) is 13 µm (Henderson et al., 2011). The

respective densities are ρi = 916.7 kg m−3 and ρw = 1000 kg m−3. IWP and LWP (kg m−2) are integrated cloud ice/water

content over cloud depth z, under the assumption that the cloud is vertically uniform with respect to the drop-size distribution,

i.e. well-mixed. Although this is a simplified assumption, it allows a first order correction for cloud effects on the satellite220

albedo. Once the daily total-sky MODIS albedo values were derived we implemented a linear interpolation over time (with a

frequency of 15.51% for AWS 14, 8.45% for AWS 17, and 1.32% for AWS 18) to fill in missing values due to potential missing

values due to persistent cloud cover.
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3.6 Application of the MLP model to RACMO2

Since our objective is to improve surface melt simulations from RACMO2 over all Larsen ice shelves, it is vital to assess the225

MLP model performance to both the reference data set, and to RACMO2 simulations directly. For the reference data set, we

use the AWS data and perturbed albedo changes as input data for Eq. (2) , whereas for the RACMO2 simulations we rely on

RACMO2 data and MODIS albedo observations as inputs to calculate the corrected surface melt (Mc):

Mc =max(M0 +Ma,0) (6)

where M0 represents uncorrected surface melt simulations for both reference and RACMO2 data sets, and Ma stands for the230

additional surface melt estimated by the deep MLP model. Additionally, to calibrate over-corrections, if the corrected surface

melt is negative, we have set it to zero using Eq. (6). Outside the austral summer when absorbed solar radiation is no longer

the major source of energy for surface melt, the deep MLP model is switched off, and the original RACMO2 simulations are

used to calculate the annual surface melt.

235

The correction can be performed consistent with the temporal extent of the MCD43A3 product (i.e. from 16 February, 2000

to present). However, to intercompare the original RACMO2 surface melt, the corrected one, and the AWS observations, the

application in this study is limited to 2009 to 2016, for which AWSs have been operated on the Larsen Ice Shelf (Fig. 1).

3.7 Evaluation of the MLP model performance

To evaluate the deep MLP model performance, we conduct two separate analyses. The first evaluation focuses on the robustness240

of the method that we developed. In section 4.1, we assess the deep MLP model performance using a cross-validation, i.e. we

evaluate if the deep MLP model is able to recreate the time-series of surface melt from the surface energy balance model. We

set aside the reference data set at AWS 18 as the validation data set, thereby preserving the complete inter- and intra-annual

melt variability. In the same way, we also benchmark the deep MLP model with other machine learning models: a multivariate

linear regression model, an XGBoost model (a leading boosting machine learning model), a random forest regression (a lead-245

ing bagging machine learning model), and a shallow MLP model containing only one hidden layer and few neurons (hereafter

referred to as a shallow MLP model).

The second analysis, presented in section 4.3, assesses the performance of the deep MLP model in the final application to

RACMO2 model simulations that are corrected using MODIS albedo observations. First, we thoroughly evaluate MODIS250

albedo in an intercomparison with AWS and RACMO2 albedo before we use it as an input to the deep MLP model. This can

reveal potential sources of error from the input albedo in the deep MLP model application, and demonstrates discrepancies

among the three data sets at different AWS locations. Second, we apply the deep MLP model to MODIS and RACMO2 data,

and present the corrected surface melt in section 4.3, along with the AWS observations, QSCAT-based estimations (Trusel

et al., 2013), and original RACMO2 simulations over the Larsen Ice Shelf (AWS 14, AWS 17, and AWS 18). Additionally,255
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to further investigate the potential influence from the imprecise meteorological input parameters to the deep MLP model, we

display the contemporary T2m, S↓, L↓, and α from AWS observations, RACMO2 simulations, and/or MODIS observations.

4 Results

4.1 MLP performance: Application of the MLP to AWS data

Here, we test the technical correctness of the deep MLP model, and its ability to learn the behaviour of the surface energy260

balance model. We first present the cross-validation results, indicating the performance of the deep MLP model when applied

to data from a different location. Subsequently, we compare the performance of the deep MLP to other machine learning

models. Finally, we present the capacity of the developed MLP model to reconstruct the time-series of surface melt from the

surface energy balance model.

4.1.1 Accuracy assessment based on cross-validation265

The cross-validation of the additional daily surface melt (Ma) predicted by the deep MLP model (Fig. 4a) shows a high

correlation (R2 = 0.95) between the deep MLP modelled Ma and that from the surface energy balance calculations based on

the perturbed observations at AWS 18. The overall RMSE and MAE are 0.95 mm w.e.per day and 0.42 mm w.e.per day,

respectively. However, no- and low-melt values are abundant, and they can greatly reduce the errors, especially outside of the

summer season. To eliminate such effect, we discriminate between melt and no-melt periods, and the results are summarized270

separately in Fig. 4b and Fig. 4c. During melt periods, errors are 1.05 (RMSE) and 0.70 mm w.e.per day (MAE). These values

are higher than for the no-melt periods, which have an RMSE and MAE of 0.91 and 0.34 mm w.e.per day, respectively. The

R2 is 0.24 lower in no-melt conditions than in melt conditions because of a number of notable outliers during no-melt periods

(Fig. 4c). These outliers indicate that the deep MLP model sometimes has issues simulating low values of additional melt

(Fig. 4a–c), leading to a ‘sword-like’ pattern in Fig. 4a. The points along/close to x- and y-axis originate mainly from no-melt275

periods (Fig. 4c). Such errors mostly occur when ∆α is smaller than -0.2 during no-melt periods (red circles in Fig. 4c), which

are rare in reality. In such cases, the deep MLP model is more likely to set the surface melt back to zero. The second type of

error is the horizontal line crossing the origin. It mainly occurs during melt periods in winter, between approximately May and

August. The deep MLP model does not know how to behave, because solar radiation is absent and albedo is undefined: ∆α is

no longer the dominant factor that influences the magnitude of the surface melt. This is confirmed by the winter melt anomalies280

in 2016 (see section 4.1.3). Assessment of the model performance throughout the year (Fig. 4d) illustrates a bowl-like pattern

for the overall accuracy and accuracy for no-melt periods, with RMSEs close to zero during the no-melt periods. During the

melt season, RMSEs are close to 1.0 mm w.e.per day. In Fig. 4e, the model accuracy for different ∆α shows a minimum for

∆α equals zero. The higher the absolute value of the ∆α is, the higher the RMSE and MAE are. Lastly, when daily values of

surface melt are aggregated to monthly surface melt, the accuracy of the deep MLP model increases strongly (R2 = 0.99). It285

suggests that it is more appropriate to utilize the monthly results.
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Figure 4. Performance of the deep multilayer perceptron (MLP) model regarding its (a) overall accuracy, (b) accuracy of melt periods,

(c) accuracy of no-melt periods, (d) accuracy in each month (because no melt event occurred in June during the automatic weather station

(AWS) operation period based on the AWS observations, the June value is absent), (e) accuracy under all albedo differences, and (f) monthly

accuracy, in terms of the additional melt. RMSE, MAE, R2, DOY, and ∆α stand for root mean square error, mean absolute error, coefficient

of determination, day-of-year and albedo difference, respectively.

4.1.2 Performance of machine learning and deep learning model

The deep MLP model, in general, outperforms other machine learning models (Table 1). The performance of the multivariate

linear regression model is weakest, i.e. the highest RMSE and MAE, and the lowest R2. The commonly-used random forest and

XGBoost models both outperform the multivariate linear regression model, and also the shallow MLP model. Also, they are290

less likely to overfit after the hyper-parameter tuning and regularization. In particular, random forest regression has achieved a

slightly better MAE and R2 than the deep MLP model in the validation data set. In comparison to the shallow MLP architecture,

the deep MLP with stricter regularization and shortcuts shows a noticeable improvement in accuracy. We thereby demonstrate

that a lot of improvement can be achieved by customizing and optimizing a deep learning model compared to taking an off-

the-shelf model. It confirms that the deep neural network can improve the surface melt simulations from RACMO2 over the295

Larsen Ice Shelf, when there are accurate meteorological input data available.
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Table 1. Performance of different models in estimating additional melt of the regional atmospheric climate model version 2.3p2 (RACMO2)

simulations. The training data set is the augmented automatic weather station (AWS) observations from AWS 14 and AWS 17, and the

validation data set is the augmented AWS observations from AWS 18.

Model
Training Data Set Validation Data Set

RMSE MAE R2 RMSE MAE R2

Multivariate Linear Regression 3.04 2.19 0.51 3.19 2.35 0.48

XGBoost 0.86 0.38 0.97 1.00 0.44 0.96

Random Forest Regression 0.95 0.37 0.95 0.98 0.40 0.95

Shallow Multilayer Perceptron 1.24 0.65 0.92 1.32 0.72 0.91

Deep Multilayer Perceptron 0.77 0.33 0.97 0.95 0.42 0.95

RMSE, MAE, and R2 stand for root mean square error, mean absolute error, and coefficient of determination

4.1.3 Time-series of MLP-predicted surface melt

The time-series of corrected surface melt for different ∆α show that lower values of ∆α lead to higher daily surface melt

(Fig. 5), except for melt events during the wintertime in 2016 (Fig. 5a). Figure 5b reveals that the disparity between the

deep-MLP-predicted surface melt and the augmented AWS observations increases with the drop of albedo, especially when300

∆α <−0.18. The time-series show that most surface melt occurs during the austral summer. The largest differences between

the deep-MLP-predicted surface melt and the augmented AWS observations are mainly found during peak episodes of melt. It

is also noteworthy that the daily surface melt difference among different ∆α values is larger than the difference between the

deep MLP results and (perturbed) AWS observations which indicates that the albedo is the main source of uncertainty, not the

uncertainties from the deep MLP model.305

As shown in Fig. 5a, there is a period of anomalously high surface melt during the winter of 2016, demonstrated previously in

AWS and satellite observations, and in RACMO2 simulations (Kuipers Munneke et al., 2018a). In the deep MLP results, the

winter melt episodes are almost identical under different ∆α. Given that winter melt events occurred during polar darkness,

the incoming shortwave radiation is almost zero. In such circumstances, the incoming shortwave radiation is no longer the key310

factor leading to a surface melt increment. Therefore, ∆α no longer influences such winter melt events. The actual trigger for

the winter melt events is föhn, adiabatically heated winds that descend from the Antarctic Peninsula mountains to the west of

the Larsen Ice Shelf (Marshall et al., 2006; Orr et al., 2008; Cape et al., 2015).

In Fig. 5b, we demonstrate that the deep MLP model is capable of not only enhancing existing melt, but also to simulate315

melt when in the original time-series there was no melt. When ∆α exceeds a certain value, the overall temporal melt pattern

differs from that under lower ∆α. It results in a longer-lasting and more intense melt event. Also, because of the dependence
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of melt on the occurrence of melt on the previous day, the duration of a certain melt event may be prolonged. It simulates a

melt-albedo feedback: an initial melt event may trigger a melt event the next day, as albedo is reduced.

Figure 5. Temporal changes in the corrected regional atmospheric climate model version 2.3p2 (RACMO2) surface melt using the deep

multilayer perceptron (MLP) model at automatic weather station (AWS) 18, (a) under all albedo differences (∆α) and (b) its subset between

November 2015 and April 2016 together with the augmented AWS observations for comparison.

4.2 Comparing albedos from MODIS, AWS, and RACMO2320

For clear-sky conditions indicated by MOD09GA (Fig. 6), AWS 14 and AWS 17 show higher correlations with MODIS (R2 =

0.28 and 0.20, respectively) than RACMO2 (R2 = 0.17 and 0.02, respectively), whereas for AWS 18 this is reversed with better

correlations between AWS and RACMO2 (R2 = 0.40). RMSE between AWS and MODIS is lower than the RMSE between

AWS and RACMO2 at AWS 14 (by <0.01) and AWS 17 (by 0.01), but 0.02 higher at AWS 18. Histograms of albedo values are

shown in panels d–f in Fig. 6. At AWS 14, both MODIS and RACMO2 show higher values of albedo than AWS observations.325

For lower albedo values, AWS observations agree better with RACMO2 simulations than with MODIS observations. Even

though the three data sets have a similar range of albedo values, the MODIS albedo observations are narrow and less skewed.

At AWS 17, AWS observations show a broad distribution and are mostly below 0.85. They agree better with the MODIS obser-
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vations than with RACMO2 simulations. At AWS 18, MODIS observations are lower than AWS observations and RACMO2

simulations, and RACMO2 simulations are more similar to AWS observations.

Figure 6. Scatter plots illustrating albedo difference under clear-sky conditions during austral summers between automatic weather station

(AWS) and moderate resolution imaging spectroradiometer (MODIS) observations, as well as albedo difference between AWS observations

and regional atmospheric climate model version 2.3p2 (RACMO2) simulations in (a) AWS 14, (b) AWS 17, and (c) AWS 18, together with

their corresponding distributions in (d) AWS 14, (e) AWS 17, and (f) AWS 18. RMSE and R2 stand for root mean square error and coefficient

of determination.
330

Typical time-series of albedo from RACMO2, AWS and MODIS show that the differences between the three albedo products

are relatively small during most of the austral summer season (Fig. 7). The RMSEs between AWS-observed and MODIS-

observed/RACMO2-simulated albedo in December and January are around 3.5% (AWS 14), 5.5% (AWS 17), and 4.5% (AWS

18), respectively. The RMSE between AWS-observed and RACMO2-simulated albedo increases up to 8.8% (at AWS 17 be-

tween RACMO2 simulations and AWS observations) in February. At a daily basis, in the first half of December, MODIS335

and RACMO2 observed/simulated comparably high albedo at AWS 17 (4.5% (RACMO2) and 8.5% (MODIS) higher than

AWS observations on 11 December 2013 in Fig. 7b) and AWS 18 (6.8% (RACMO2) and 3.5% (MODIS) higher than AWS

observations on 6 December 2014 in Fig. 7c). The contemporary optical depth is also relatively high (15.64 at AWS 17, and
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16.76 at AWS 18). Vice versa, at AWS 18 on 12 December 2014, both MODIS and RACMO2 observed/simulated comparably

low (11.4% (RACMO2) and 7.4% (MODIS) lower than AWS observations) albedo, and the optical depth is close to zero on a340

cloudy day. The difference remains low during the middle of the summer season but gradually increases (up to 19.18% between

RACMO2 and AWS observed at AWS 17 on 27 February 2014) towards the end of the summer season in February. RACMO2

simulations tend to produce the highest albedo at the three AWS on average. At AWS 14 and AWS 18, RACMO2 simulations

are more consistent with the AWS observations than with MODIS observations (Fig. 7a and 7c). MODIS observations are com-

parably lower than AWS observations and RACMO2 simulations at the end of February. On the contrary, AWS observations345

are much lower than RACMO2 simulations at AWS 17 (Fig. 7b). For albedo values higher than 0.80, AWS observations and

MODIS observations are similar, but for albedo below 0.80, AWS observations show a broader tail towards lower values (e.g.,

shown in Fig. 7a in the end of February 2014 at AWS 14). It is noteworthy that each AWS has different background geophysical

settings, and the three products have very different spatial resolutions: AWS observations are local in-situ observations, while

MODIS albedo observations and RACMO2 albedo simulations are of 27 km spatial resolution. Further analyses and discussion350

can be found in section 5.1.

To translate the white-sky MODIS albedo to the blue-sky albedo, we used optical depth simulated by RACMO2 at its hor-

izontal resolution of 27 km. The optical depth from RACMO2 and the cloudiness from the MOD09GA product are displayed

in Fig. 7 for AWS 14, AWS 17, and AWS 18. The optical depth from the RACMO2 simulations is often close to zero on clear-355

sky days, while there are more erroneously high values of optical depth observed at AWS 18 than at AWS 14 and AWS 17. It

is because that RACMO2 provides daily average IWP and LWP values, however, the RACMO2.3p2 version has a systematic

overestimation of both cloud ice and water, simulating clouds that are optically too thick. The general biases in these cloud

variables are especially large for the coastal bins (Fig. 6b in van Wessem et al. (2018)), and could thus explain the erroneously

high optical depth observed at AWS 14 and AWS 17 (Fig. 7), in which clouds considered ‘thin’ when τ ≤ 6 or ‘thick’ for360

τ ≥ 12. The interpretation of albedo differences in this section is also hampered because values from different sources are

representative of areas of very different sizes. An AWS observation has a spatial footprint of the order of 10 x 10 m2, whereas

the RACMO2 and MODIS values represent an area of hundreds of squared km. We demonstrate the possible consequences

for each AWS location by high-resolution maps of Sentinel-1 backscatter (Fig. 8), which is produced following Luckman et al.

(2014). The orange and red pixels represent the detected melt based on σ◦t −σ◦w .−3 dB, in which σ◦t is the backscatter value365

for a pixel observed at a certain date (t), and σ◦w is the mean backscatter between June and August (Luckman et al., 2014;

Trusel et al., 2012).
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Figure 7. Temporal changes in albedo from the regional atmospheric climate model version 2.3p2 (RACMO2) simulations, automatic

weather station (AWS) observations, and moderate resolution imaging spectroradiometer (MODIS) observations at AWS 14, AWS 17, and

AWS 18 during the austral summer 2015/2016. The grey bars indicate the binary cloudiness of a 500 × 500 MODIS pixel corresponding to

each AWS location.

4.3 MLP performance: Application of the MLP to RACMO2 and MODIS data370

At AWS 14, the discrepancies between the AWS observations and RACMO2 simulations in 2m air temperature and incoming

shortwave radiation are the smallest amongst the three AWSs (Fig. 9a). It potentially reduces the effects of these meteorolog-

ical parameters in the surface melt in addition to albedo. On a daily basis (Fig. 9b), the deep MLP model tries to make the

melt better in agreement with observations at AWS 14, although it is difficult for the deep MLP model to alter the RACMO2

melt signal significantly. Therefore both the RACMO2 and MODIS albedo data remain similar. It is noteworthy that a melt375

event at the beginning of February 2014 is erroneously corrected by the deep MLP model since both AWS and RACMO2 do

not observe or simulate such a melt event. It is plausibly due to the significantly higher temperature simulated by RACMO2

than the one observed by AWS (Fig. 9a). The contemporary albedo simulations/observations agree well among the three data

sets. However, RACMO2 does simulate higher 2m air temperature. Therefore, we assume that the developed deep MLP model
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Figure 8. Spatiotemporal patterns of surface melt, represented by the drop of backscattering coefficient in Sentinel-1 imagery, in automatic

weather station (AWS) 14, AWS 17, and AWS 18 between January and March in 2015, and their corresponding regional atmospheric climate

model version 2.3p2 (RACMO2) pixels.

and its “learned” melt mechanism are also sensitive to the other input meteorological parameters, such as 2m air temperature.380

Also, the discrepancy at the daily scale seems to originate from a different timing of melt in both RACMO2 and the observa-

tions. The deep MLP model is unable to completely repair the timing offset, which is different from the observations. When

considering longer-term averages, the deep MLP model delivers an improvement of the melt fluxes. Figure 9c shows a closer

agreement of the deep MLP model with AWS observations for monthly melt fluxes. Moreover, for annual fluxes, both the deep

MLP model and RACMO2 annual melt fluxes are higher than in the AWS observations, but both close to the QSCAT estimates.385

At AWS 17, RACMO2 shows a systematic overestimation of air temperature and incoming shortwave radiation compared

to AWS observations (Fig. 10a). Consequently, it leads to apparent overestimations of surface melt in RACMO2 simulations
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in December 2013 (Fig. 10b), when the discrepancy in albedo is small. During the middle of the austral summer 2013/2014,

replacing the MODIS-observed albedo by the AWS-observed albedo in the deep MLP model input results in a better agreement390

with the AWS surface melt observations. It reveals the potential of improving the deep MLP model accuracy by better estimat-

ing the surface albedo from MODIS. At AWS 17 during the end of February 2014, when AWS observed two extensive melt

events, RACMO2 simulates the incoming shortwave radiation well. However, even by replacing the MODIS albedo observa-

tions with AWS observations in the deep MLP model input, the mismatch is still significant. It seems the underestimations in

2m air temperature is the trigger. Therefore, attention should be paid to other influencing meteorological parameters in addition395

to albedo. Although the deep MLP model improves the estimate of monthly surface melt (Fig. 10c) and brings annual melt

more in line with QSCAT (Fig. 10d). But compared to the AWS observations, both the deep MLP model and RACMO2 annual

melt are much lower (Fig. 10d).

At AWS 18, the deep MLP model fails to improve surface melt compared to observations. Instead of reducing the overes-400

timations of original RACMO2 simulations in the daily surface melt, the deep MLP model tends to further increase the daily

surface melt (Fig. 11b). It is plausibly due to the overestimations in 2m air temperature by RACMO2 simulations (Fig. 11a).

Besides, using AWS-observed albedo instead of MODIS-observed albedo shows an improvement in agreement with AWS sur-

face melt. It is either because of imprecise MODIS albedo or great spatiotemporal variance between the surface melt at AWS

18 and its corresponding RACMO2 pixel. On the other hand, it indicates that the deep MLP model does not always reduce405

the surface melt simulations but can also increase surface melt simulations. In the end, both RMSE and MAE increase 11.32

mm w.e.per month and 7.87 mm w.e.per month after the correction using the deep MLP model applied to RAMCO2 and

MODIS data (Fig. 10c). The discrepancies are also shown in the comparison in the annual surface melt, in which the deep MLP

model produces the highest estimations throughout all the years. QSCAT estimates and AWS observations are the lowest (Fig.

10d). Moreover, this discrepancy indicates the importance of high spatial resolution corrections. At the 27 km resolution, the410

MODIS albedo is often lower than the RACMO2 albedo, resulting in increased melt. At the point scale of the AWS, the AWS

albedo is higher than the RACMO2 albedo, resulting in decreased melt. This indicates that the spatial scale of corrections (27

km versus local scale) matters.
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Figure 9. Application of the deep multilayer perceptron (MLP) model to RACMO2 and MODIS data at automatic weather station (AWS)

14, and the results of: (a) discrepancies of input meteorological parameters among the AWS observations, regional atmospheric climate

model version 2.3p2 (RACMO2) simulations, and moderate resolution imaging spectroradiometer (MODIS) observations; (b) daily surface

melt time-series from the original RACMO2 simulations, AWS observations, and MLP estimations using different input data set for albedo

(from either MODIS or AWS observations) and the other meteorological parameters from RACMO2 during the austral summer 2013/2014;

(c) a scatter plot of monthly surface melt from the deep MLP model estimations and the original RACMO2 simulations compared to AWS

observations; and (d) annual melt fluxes (July–June) at AWS 14 from observations, RACMO2, the deep MLP predictions, and QSCAT (quick

scatterometer) estimations (Trusel et al., 2013).
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Figure 10. As Figure 9, but for AWS 17.
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Figure 11. As Figure 9, but for AWS 17.
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5 Discussion

5.1 Impacts from different geophysical settings on MLP model performance415

The developed MLP model shows a good performance under the ideal scenario, i.e., when only the albedo observations from

an AWS are perturbed by an amount ∆α (see section 3.3). Its performance has been evaluated by a cross-validation based

on the reference data set at AWS 18, under different ∆α for both melt and no-melt periods. Performance of the deep MLP

model is good especially during the austral summer, when most of the melt events take place, caused mainly by solar radiation

modulated by surface albedo. When replacing the AWS observations by MODIS observations and RACMO2 simulations, the420

deep MLP performance is more difficult to establish (section 4.3) and varies for different AWS locations. The first complicat-

ing factor is our assumption that albedo is the main driver for surface melt differences. Although we assumed that ∆α is the

key factor in surface melt variation during the austral summer in Antarctica, in fact, surface melt is also determined by other

meteorological parameters (e.g., air temperature), which can be biased in RACMO2 (section 4.3). As a second complicating

factor, the performance of the deep MLP model is compromised because of systematic biases in MODIS albedo compared to425

AWS observations. It seems that the geophysical setting (geolocation, surface type, melt pattern, topographical characteristics)

play an important role in both of these factors. Therefore, we discuss the geophysical settings of AWS 14, AWS 17, and AWS

18 in order to explain the deep MLP results.

Scenario 1 (AWS 14): AWS 14 and its corresponding RACMO2 pixel are located central in the northern part of the Larsen430

C Ice Shelf, where the terrain is flat and homogeneous, and covered by snow and firn. At AWS 14, albedo is relatively well

simulated by RACMO2, and the discrepancies among the three albedo data set are low throughout the austral summer (Fig. 7).

No constant over-/underestimations in albedo has been found in MODIS observations and RACMO2 simulations, compared to

AWS observations. Owing to the homogeneous geophysical settings, its spatiotemporal melt pattern is homogeneous as well.

Therefore, when applying the deep MLP model to RACMO2 and MODIS, the result shows a better agreement to the AWS435

observations at AWS 14 than at AWS 17 and AWS 18.

Scenario 2 (AWS 17): AWS 17 is located in the middle of Scar Inlet, a remainder of the Larsen B Ice Shelf, where the

terrain is flat. However, its corresponding RACMO2 pixel also contains the grounded areas at the edge of the pixel, and par-

tially covers mountainous terrain. The albedo discrepancy is the largest amongst the three data set (i.e. AWS observations,440

MODIS observations, and RACMO2 simulations). At the point level, AWS 17 is located in the most extensive melt area, re-

sulting in AWS observations that are constantly lower than both MODIS observations and RACMO2 simulations for a 27 km

pixel. On the other hand, albedo from RACMO2 simulations and MODIS observations remains close, since the proportion of

the grounding line and mountains is low in the pixel. Therefore, the deep MLP model results are less in agreement than those

at AWS 14.445

Scenario 3 (AWS 18): AWS 18 is situated in an inlet near the grounding line of the the Larsen C Ice Shelf, the surrounding area
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consists of complex terrain, and also contains grounded areas. Its corresponding RACMO2 pixel is also the most mixed pixel

among the three AWS locations, and melt ponds can occur during melt events. The AWS at this location does record extensive

melt events, but it is not located in the area of strongest melt in the RACMO2 pixel. The discrepancies of albedo from the450

three data sets are small at the beginning and the middle of austral summer, but MODIS observes much lower albedo at the

end of austral summer. The spatiotemporal melt pattern is also the most heterogeneous among the three AWS locations. Apart

from the ∆α, the terrain itself also impacts the surface melt process. In the end, the challenges in accurately deriving albedo at

AWS 18 and the combination of multiple influencing factors result in poor performance of the deep MLP model. Furthermore,

attention must be paid to the representativeness of the AWS observations in such an area, which makes the verification difficult.455

Scenario 4 (additional site north of AWS 17): The last scenario is an additional location north of AWS 17 on Scar Inlet,

sitting on the grounding line of the Larsen B Ice Shelf (Fig. 12). Such a location presents an ideal scenario where the albedo

observed by MODIS is systematically lower than RACMO2 simulations (Fig. 12). This is a situation that the deep MLP model

is actually designed for. As a result, the daily surface melt corrected by the deep MLP model is also systematically higher than460

the original RACMO2 simulation. It is an ideal area to illustrate the expected performance of the deep MLP model where the

overestimation in surface albedo is the dominant factor causing surface melt underestimation in RACMO2. However, we do

lack AWS observations to evaluate MLP performance at this location.

Figure 12. Daily surface melt from regional atmospheric climate model version 2.3p2 (RACMO2) simulations and multilayer perceptron

(MLP) estimations, and albedo from RACMO2 and MODIS at the additional test site in the north of AWS 17 in the left panel, and its

geolocation (i.e. the red square in the right panel).

5.2 Lessons learned from this study over the Larsen Ice Shelf

Our study shows that the deep MLP model has the potential to improve surface melt estimates in Antarctica. On the other465

hand, the results at AWS 18 shed light on that complicated and heterogeneous terrains can result in poor performance of the

deep MLP model. AWS 18 is a typical area has high-melt features that we are interested in, but such high-melt features are

usually of small-scale. Although AWS observations suggest there is overestimation in albedo simulations from RACMO2, it is
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challenging for MODIS to correct it when implemented in a coarse resolution climate model. Therefore, we need to combine

the low-resolution RACMO2 with higher-resolution MODIS to resolve this issue. Apart from this, there is also a potential to470

further increase the resolving power of our method, including: (1) a further refinement of the deep-learning-based framework,

(2) improvement of the albedo derivation from satellite observations, both in magnitude and spatial resolution, and (3) exami-

nation of MLP model performance over (blue) ice surfaces.

Refinement of the deep-learning-based framework includes developing a module to switch the deep MLP correction, and475

testing the state-of-the-art deep learning architectures and models. Given that the concept of correcting surface melt in non-

albedo-driven areas may reduce the agreement between the AWS observations and RACMO2 simulations, it is necessary to

develop an application strategy switching the deep MLP correction in different areas. The strategy can take topographical

characteristics (e.g., elevation, aspect, slope), albedo difference, geolocation into consideration, since these factors can be in-

fluential (section 5.1). It is also worth mentioning that the deep learning model implemented in this study is fundamental in480

order to prove the concept. Exploring other state-of-the-art deep learning architectures and models, e.g., applying recurrent

neural network architectures such as long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) and transformer

(Vaswani et al., 2017) to help the deep learning model take in more temporal information, and/or using a convolutional neural

network to learn a better representation of MODIS albedo information within a RACMO2 grid.

485

Improvement of the albedo derivation from satellite observations can result in better corrected surface melt results using

the deep MLP model. Attention should be paid to the generation and correction of the MODIS albedo observations, as the

MCD43A3 is a 16-day synthetic product. For a certain day, a composite 500 m resolution daily product is generated based on

16-day records centered on the given day (Schaaf and Wang, 2015). Temporal interpolation over long periods can lead to high

disparity in the albedo during an ablation season, especially on high-melt days. Moreover, in heterogeneous terrain such as the490

location of AWS 18, albedo may be highly different in space. Therefore, implementing a spatial resampling may improve this

issue. Also, the MODIS albedo correction for cloud cover based on optical depth from RACMO2 needs additional care, since

in some locations RACMO2 overestimates optical depth.

On the Larsen Ice Shelf, reduction in albedo is mainly due to the aging of snow and firn. Yet, in icy areas (mainly on the495

ice shelves of eastern Antarctica and the Transantarctic Mountains), albedo reduction is much stronger than over firn and snow

surfaces. Moreover, the surface energy balance over ice surface can be fundamentally different from that over firn and snow

surfaces for which the deep MLP model is trained in this study. Therefore, the deep MLP model performance in blue ice areas

needs to be examined with extra care.

500

In addition to the improvement of the deep MLP model, we also need to look for novel and unconventional ways to validate

results over unsurveyed areas. Earth observation satellites, such as Landsat, MODIS, advanced very-high-resolution radiome-

ter (AVHRR), can provide temporal record of the land surface and its modification over the last decades at different spatial
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and temporal resolutions. Potentially, we can compare the surface melt outcomes to proxies from remotely sensed data, e.g.,

melting decibel days (Trusel et al., 2013), lake depth (Philpot, 1989) and volume (Moussavi et al., 2020).505

6 Conclusions

This paper demonstrates that surface melt simulations from the regional climate model RACMO2 can be improved by de-

ploying the deep learning model trained on the automatic weather station (AWS) observations. The deep learning model takes

meteorological parameters, day-of-year, and the original RACMO2 surface melt simulations as the inputs. The cross-validation

shows a good performance (RMSE = 0.95 mm w.e.per day, MAE = 0.42 mm w.e.per day, and R2 = 0.95) in the Larsen Ice510

Shelf based on the augmented AWS observations. Regarding accuracy, the deep learning model outperforms some leading

machine learning models (random forest regression and XGBoost) and a shallow deep learning model. To address the problem

regarding inaccurate albedo simulations from RACMO2 model, MODIS albedo observations after cloudiness and solar zenith

angle correction have been used. The corrected MODIS albedo observations show a better correlation with AWS observations

than the RACMO2 simulations at AWS 14 and AWS 17. At AWS 18, large disparities have been identified between corrected515

MODIS albedo observations and AWS observations. Possible explanations are the local geophysical settings (including cloudi-

ness, spatiotemporal melt pattern, and topographical characteristics) and imperfect albedo correction at AWS 18. Finally, to

correct the surface melt simulations from RACMO2 over the entire Larsen Ice Shelf, assessing model performance in areas

and periods without AWS observations is indispensable. For deep learning model application, meteorological parameters ex-

cept for albedo from AWS observations are replaced by the RACMO2 simulations. The corrected MODIS albedo observations520

replace albedo observations from AWS. The results indicate that the deep learning model performs well in the area with a

homogeneous spatiotemporal melt pattern (AWS 14) and in the area with a heterogeneous spatial melt pattern which is yet

homogeneous through time (AWS 17). The model performance is of high uncertainty in the areas with a heterogeneous spatial

melt pattern which varies through time (AWS 18) due to the inaccurate albedo input and the lack of ground truth data. In

summary, the concept of correcting surface melt simulations from the regional climate model RACMO2 using deep learning525

is feasible. Future studies are still required to refine the deep-learning-based framework, improve the albedo derivation from

satellite observations, examine the deep MLP model performance over the (blue) ice surface, and develop a novel validation

scheme.

Author contributions. ZH, PKM and SL designed the study. PKM implemented the AWS perturbation, ZH, SL, and MI corrected the MODIS

albedo, and ZH designed and trained the deep neural network architecture. ZH, PKM, SL, and MB carried out quantitative analyses. PKM,530

SL, and MB discussed the deep neural network results. ZH and PKM wrote the manuscript with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

26



Acknowledgements. The authors would like to thank Dr. Luke D. Trusel for providing monthly surface melt estimations derived from

QuikSCAT. This research was funded by the Netherlands Space Office (NSO) grant ALWGO.2018.039. PKM is funded by the Nether-

lands Earth System Science Center (NESSC). MI was supported by Dutch Research Council (NWO) / Netherlands Space Office Grant535

ALWGO.2018.043, whereas SL was funded by.

27



References

Arthur, J. F., Stokes, C., Jamieson, S. S., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite

remote sensing, Progress in Physical Geography: Earth and Environment, 44, 837–869, 2020.

Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., et al.: Getting540

around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the

International Polar Year, The Cryosphere, 5, 569–588, 2011.

Breiman, L.: Random forests, Machine learning, 45, 5–32, 2001.

Cape, M., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack, E.: Foehn winds link climate-driven warming to ice shelf

evolution in Antarctica, Journal of Geophysical Research: Atmospheres, 120, 11–037, 2015.545

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, pp. 785–794, 2016.

Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermitte, S., Lenaerts, J. T., and Wever, N.: The effect of Foehn-induced surface melt

on firn evolution over the northeast Antarctic peninsula, Geophysical Research Letters, 46, 3822–3831, 2019.

Elvidge, A. D. and Renfrew, I. A.: The causes of foehn warming in the lee of mountains, Bull. Am. Meteorol. Soc., 97, 455–466, 2016.550

Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix,

A., D. Notz, S. N., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change Supplementary

Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y.

Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and555

B. Zhou (eds.)]., Cambridge University Press. In Press. Available from https://www.ipcc.ch/, 2021.

Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,

Nature Climate Change, 6, 479–482, 2016.

Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the development of a new physically based broadband albedo

parameterization, J. Geophys. Res. (F), 115, F01 009, 2010.560

Gilbert, E. and Kittel, C.: Surface Melt and Runoff on Antarctic Ice Shelves at 1.5° C, 2° C, and 4° C of Future Warming, Geophysical

Research Letters, 48, e2020GL091 733, 2021.

Glorot, X. and Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the thirteenth

international conference on artificial intelligence and statistics, pp. 249–256, 2010.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis565

for everyone, Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2017.06.031, 2017.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 770–778, 2016.

Henderson, D., L’Ecuyer, T. S., Vane, D., Stephens, G. L., and Reinke, D.: Level 2B Fluxes and Heating Rates and 2B Fluxes and Heating

Rates w/ Lidar Process Description and Interface Control Document, 2011.570

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735–1780, 1997.

Jakobs, C. L., Reijmer, C. H., Smeets, C. J. P. P., Trusel, L. D., van de Berg, W. J., den Broeke, M. R. V., and van Wessem, J. M.: A benchmark

dataset of in situ Antarctic surface melt rates and energy balance, J. Glaciol., 66, 291, https://doi.org/10.1017/jog.2020.6, 2020.

28

https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1017/jog.2020.6


Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

Kingslake, J., Ely, J. C., Das, I., and Bell, R.: Widespread movement of meltwater onto and across Antarctic ice shelves, Nature, 544,575

349–352, https://doi.org/10.1038/nature22049, 2017.

Kuipers Munneke, P., Reijmer, C. H., van den Broeke, M. R., Stammes, P., König-Langlo, G., and Knap, W. H.: Analysis

of clear-sky Antarctic snow albedo using observations and radiative transfer modeling, J. Geophys. Res. (D), 113, D17 118,

https://doi.org/10.1029/2007JD009653, 2008.

Kuipers Munneke, P., van den Broeke, M. R., Lenaerts, J. T. M., Flanner, M. G., Gardner, A. S., and van de Berg, W. J.: A new albedo580

parameterization for use in climate models over the Antarctic ice sheet, J. Geophys. Res. (D), 116, https://doi.org/10.1029/2010JD015113,

2011.

Kuipers Munneke, P., Picard, G., van den Broeke, M. R., Lenaerts, J. T. M., and van Meijgaard, E.: Insignificant change in Antarctic snowmelt

volume since 1979, Geophys. Res. Lett., 39, https://doi.org/10.1029/2011GL050207, 2012a.

Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of585

Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012, 2012b.

Kuipers Munneke, P., Ligtenberg, S. R., Van Den Broeke, M. R., and Vaughan, D. G.: Firn air depletion as a precursor of Antarctic ice-shelf

collapse, Journal of Glaciology, 60, 205–214, 2014.

Kuipers Munneke, P., Luckman, A., Bevan, S., Smeets, C., Gilbert, E., Van den Broeke, M., Wang, W., Zender, C., Hubbard, B., Ashmore,

D., et al.: Intense winter surface melt on an Antarctic ice shelf, Geophysical Research Letters, 45, 7615–7623, 2018a.590

Kuipers Munneke, P., Smeets, C. J. P. P., Reijmer, C. H., Oerlemans, J., van de Wal, R. S. W., and van den Broeke, M. R.:

The K-transect on the western Greenland Ice Sheet: surface energy balance (2003-2016), Arct. Antarct. Alpine Res., 50,

https://doi.org/10.1080/15230430.2017.1420952, 2018b.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, 2015.

Lenaerts, J., Lhermitte, S., Drews, R., Ligtenberg, S., Berger, S., Helm, V., Smeets, C., Van Den Broeke, M., Van De Berg, W. J., Van Mei-595

jgaard, E., et al.: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf, Nature climate change, 7, 58–62,

2017.

Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability

and mass loss in Amundsen Sea Embayment, Proceedings of the National Academy of Sciences, 117, 24 735–24 741, 2020.

Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Kuipers Munneke, P., King, J., and Barrand, N. E.: Surface melt and ponding on Larsen600

C Ice Shelf and the impact of föhn winds, Antarctic Science, 26, 625–635, 2014.

Marshall, G. J., Orr, A., Van Lipzig, N. P., and King, J. C.: The impact of a changing Southern Hemisphere Annular Mode on Antarctic

Peninsula summer temperatures, Journal of Climate, 19, 5388–5404, 2006.

Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., and Abdalati, W.: Antarctic supraglacial lake detection using Landsat

8 and Sentinel-2 imagery: Towards continental generation of lake volumes, Remote Sensing, 12, 134, 2020.605

Ng, A. Y.: Feature selection, L 1 vs. L 2 regularization, and rotational invariance, in: Proceedings of the twenty-first international conference

on Machine learning, p. 78, 2004.

Orr, A., Marshall, G. J., Hunt, J. C., Sommeria, J., Wang, C.-G., Van Lipzig, N. P., Cresswell, D., and King, J. C.: Characteristics of summer

airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds, Journal of the Atmospheric

Sciences, 65, 1396–1413, 2008.610

Philpot, W. D.: Bathymetric mapping with passive multispectral imagery, Applied optics, 28, 1569–1578, 1989.

29

https://doi.org/10.1038/nature22049
https://doi.org/10.1029/2007JD009653
https://doi.org/10.1029/2010JD015113
https://doi.org/10.1029/2011GL050207
https://doi.org/10.5194/tc-6-353-2012
https://doi.org/10.1080/15230430.2017.1420952


Pirazzini, R.: Surface albedo measurements over Antarctic sites in summer, Journal of Geophysical Research: Atmospheres, 109, 2004.

Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold,

J., et al.: IPCC special report on the ocean and cryosphere in a changing climate, IPCC Intergovernmental Panel on Climate Change

(IPCC), Accessed on 2020-12-30, https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf, 2019.615

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.: Deep learning and process understanding for

data-driven Earth system science, Nature, 566, 195–204, 2019.

Schaaf, C. and Wang, Z.: MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global - 500m V006, distributed by NASA EOSDIS

Land Processes DAAC, Accessed on 2020-12-30, https://doi.org/10.5067/MODIS/MCD43A3.006, 2015.

Smeets, C. J. P. P., Kuipers Munneke, P., van den Broeke, M. R., Boot, W., Oerlemans, J., Snellen, H., Reijmer, C. H., and van de620

Wal, R. S. W.: The K-transect in west Greenland: Automatic weather station data (1993-2016), Arct. Antarct. Alpine Res., 50,

https://doi.org/10.1080/15230430.2017.1420954, 2018.

Steffen, K., Abdalati, W., and Stroeve, J.: Climate sensitivity studies of the Greenland ice sheet using satellite AVHRR, SMMR, SSM/I and

in situ data, Meteorology and Atmospheric Physics, 51, 239–258, 1993.

Stephens, G. L.: Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes, Journal of Atmospheric Sciences, 35,625

2123 – 2132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2, https://journals.ametsoc.org/view/journals/atsc/35/

11/1520-0469_1978_035_2123_rpiewc_2_0_co_2.xml, 1978.

The IMBIE team, Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I.,

Krinner, G., et al.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, 2018.

Trusel, L., Frey, K. E., and Das, S. B.: Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data, Journal of630

Geophysical Research: Earth Surface, 117, 2012.

Trusel, L. D., Frey, K. E., Das, S. B., Kuipers Munneke, P., and Van Den Broeke, M. R.: Satellite-based estimates of Antarctic surface

meltwater fluxes, Geophysical Research Letters, 40, 6148–6153, https://doi.org/10.1002/2013GL058138, 2013.

Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P., Van Meijgaard, E., and Van Den Broeke, M. R.: Divergent

trajectories of Antarctic surface melt under two twenty-first-century climate scenarios, Nature Geoscience, 8, 927–932, 2015.635

Turton, J. V., Kirchgaessner, A., Ross, A. N., King, J. C., and Kuipers Munneke, P.: The influence of föhn winds on annual and seasonal

surface melt on the Larsen C Ice Shelf, Antarctica, The Cryosphere, 14, 4165–4180, 2020.

van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J.

T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite,

J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica640

(1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://tc.copernicus.org/articles/12/1479/2018/,

2018.

Van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M.,

Lhermitte, S., Ligtenberg, S. R. M., Medley, B., nad K. van Tricht, C. H. R., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and

van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979-645

2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.: Attention is all you need, in:

Advances in neural information processing systems, pp. 5998–6008, 2017.

30

https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf
https://doi.org/10.5067/MODIS/MCD43A3.006
https://doi.org/10.1080/15230430.2017.1420954
https://doi.org/10.1175/1520-0469(1978)035%3C2123:RPIEWC%3E2.0.CO;2
https://journals.ametsoc.org/view/journals/atsc/35/11/1520-0469_1978_035_2123_rpiewc_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/35/11/1520-0469_1978_035_2123_rpiewc_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/35/11/1520-0469_1978_035_2123_rpiewc_2_0_co_2.xml
https://doi.org/10.1002/2013GL058138
https://doi.org/10.5194/tc-12-1479-2018
https://tc.copernicus.org/articles/12/1479/2018/
https://doi.org/10.5194/tc-12-1479-2018


Vermote, E. and Wolfe, R.: MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid V006, distributed by

NASA EOSDIS Land Processes DAAC, Accessed on 2020-12-30, https://doi.org/10.5067/MODIS/MOD09GA.006, 2015.650

Zheng, L., Zhou, C., and Liang, Q.: Variations in Antarctic Peninsula snow liquid water during 1999–2017 revealed by merging radiometer,

scatterometer and model estimations, Remote Sensing of Environment, 232, 111 219, 2019.

Zheng, L., Zhou, C., Zhang, T., Liang, Q., and Wang, K.: Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E

and AMSR2, The Cryosphere, 14, 3811–3827, 2020.

31

https://doi.org/10.5067/MODIS/MOD09GA.006

