Response to comments from Reviewer 2

General comments:

In this article, authors develop a deep machine learning model with the aim of improving surface melt estimates from a regional climate model, RACMO2. The ML model is applied to three locations on the Larsen C (and remnants of Larsen B) ice shelf, which adds complexity to the scientific question of whether the ML model can improve surface melt estimates. The technique is novel, and likely to lead to further investigation of ML techniques for improving model simulations of various glaciological mechanisms. The study is well thought out and evaluated, and the results are presented clearly. Although I list numerous specific concerns below, they are quite minor, and I would be happy to see the publication of this manuscript once they are implemented.

We thank the reviewer for the acknowledgement of the value of our work, the valuable time and attention dedicated to the manuscript, and the constructive remarks that will help us to improve the manuscript. We modified the manuscript accordingly and put the reviewers’ suggestions into practice. For a better overview and clarity we numbered and colored the reviewer’s comments, as follows:

(0) The comments from the reviewer are colored in black.
Our answer to each comment is colored below in blue.
The proposed changes to the original manuscript are then highlighted in red.

We hope that the reviewer finds the suggestions taken into serious consideration and converted into elaborative changes in the manuscript.

Specific comments:

(1) Ln 22: I would include additional references for hydrofracture where they explain this process more thoroughly than the IMBIE paper. Perhaps Kuipers Munneke et al. 2014 (https://doi.org/10.3189/2014JoG13J183) or Gilbert and Kittel 2021 (https://doi.org/10.1029/2020GL091733).

Thanks for the supplementary references. We agree that these additional references would better support the statement in relation to hydrofracture, hence they have been added:

At present, mass loss is driven mainly by ice shelf weakening due to basal melt (The IMBIE team et al., 2018) or damage processes (Lhermitte et al., 2020) or hydrofracturing due to surface melt (Gilbert and Kittel 2021; Kuipers Munneke et al. 2014; The IMBIE team et al., 2018).

(2) Ln 26: here you talk about melt volume importance, but you haven’t mentioned melt volumes yet. You have only talked about melting in terms of mass loss and ice shelf stability. I would perhaps open this paragraph with an estimate of sea level rise associated with AIS melt volumes (either present estimates or future projections).

We have added the estimate of sea level rise associated with AIS melt volumes (future projections) from the IPCC AR6 report.
increasing the incidence of surface melt-related instability of ice shelves. In the coming centuries, surface melt is projected to increase strongly over Antarctica, increasing the incidence of surface melt-related instability of ice shelves. The Intergovernmental Panel on Climate Change (IPCC) estimated the contribution from Antarctic Ice Sheet loss mass to global mean sea level rise until 2100 in its recent sixth assessment report (IPCC AR6; Fox-Kemper et al., 2021). Under different shared socioeconomic pathways (SSPs), the contribution will likely be 0.03-0.27 m (SSP 1-2.6), 0.03-0.29 m (SSP 2-4.5), and 0.03-0.34 m (SSP 5-8.5) (Fox-Kemper et al., 2021). In this context, accurate information about surface melt can directly enhance our understanding of the AIS evolution and its contribution to sea level rise.

(3) Ln 34: change to ‘face difficulties in accurately estimating surface melt...’
Correction has been implemented, as suggested.

(Regional) climate models, on the other hand, face difficulties in accurately estimating surface melt over areas with low surface albedo.

(4) Ln 41+44: change to ‘physically-based models’
Correction has been implemented, as suggested.

To date, deep learning has been widely applied in Earth system science to analyze and correct mismatches between model simulations and observations (Reichstein et al., 2019) as they execute much faster than physically-based models.

Our study aims to develop a novel framework correcting the model-observation mismatch of surface melt in the AIS with a deep learning model, which utilizes inputs from the physically-based model, ...

(5) Ln 58: In number 2 you contradict why Larsen C is ideal. Rather than say that high-quality observations are scarce in Antarctica, instead say that high-quality observations are available in this region, which is rare for Antarctica.

We have rephrased the sentence as suggested.

location for developing a framework to improve surface melt estimates, because (1) there is abundant melt; (2) high-quality multi-year AWS data suitable for melt calculations (i.e. including the surface radiation budget) are available over the Larsen Ice Shelf, Antarctica (Jakobs et al., 2020) and ...
We apologize for this careless typo. The redundant ‘in’ has been removed.

... into the Southern Ocean. In the western part of the Antarctic Peninsula the atmospheric circulation is northwest-southeast, ...

We admit that these statements are ill-considered, we have changed it as recommended.

In the western part of the Antarctic Peninsula the atmospheric circulation is northwest-southeast, leading to mild conditions, few ice shelves and little sea ice. Conversely, in the eastern Antarctic Peninsula, the circulation is south-north, resulting in colder conditions, extensive ice shelves and year-round sea ice cover. Therefore, ice shelves extend from the Antarctic Peninsula almost only at its eastern coast. Ice shelves on the Antarctic Peninsula are mostly located on the eastern coast.

We have added the citations as required, and the references for the corresponding values are listed, as blow:

On average, the annual melt 70 exceeds 400 mm w.e. (Trusel et al., 2013; Turton et al., 2020) in these inlets, distributed over about 100 melt days (Luckman et al., 2014). But also further east on the Antarctic Peninsula ice shelves, surface melt rates are high compared to most other ice shelves in Antarctica, at 200 to 300 mm w.e. per year (Trusel et al., 2013).

To demonstrate the spatiotemporal melt pattern in the study area, we derived the backscattering coefficient drops as an indicator of surface melt ...
(10) Ln 94: wording needs consideration. How can a model be adapted for its impact on SMB and SEB? The model doesn’t have an impact on the SMB. Perhaps you mean adapted for more accurate representation of SMB?

The reviewer is correct. We have corrected the statement, as below:

RACMO2 is a regional climate model adapted for the simulation of the weather over snow and ice surfaces, and its impact on the for a more accurate representation of surface mass and energy balance.

(11) Ln 95: Was RACMO2 forced by ERA-Interim or ERA5? Do you have a figure of the domain that you used for Larsen C?

The applied RACMO2 is forced by ERA-Interim. We have added it in the text, to clarify it. The domain that was used for Larsen C are all the RACMO2 pixels covering the Larsen Ice Shelf. For a validation and intercomparison purpose, only the pixels corresponds to AWS 14 and AWS 18 are used. They are illustrated in the zoom-in in Fig. 1.

The version used in this study is RACMO 2.3p2 forced by ERA-Interim (Van Wessem et al., 2018).

(12) Ln 100-103: Any citation for the albedo scheme so that readers can investigate further?

The required reference has been added:

The albedo scheme does not account for ponding meltwater, the appearance of blue ice, or other icy surfaces wind like glaze, or refrozen supraglacial water. All of these surface types tend to have a lower albedo than a snow surface (Kuipers Munneke et al., 2011).

(13) Ln 106: change to ‘and the difference between observed and simulated albedo values (∆α)’

We have changed the order of the words as recommended to improve the readability.

Input to the deep learning model consists of relevant, predictive meteorological input and a ∆α that represents the difference between observed and simulated albedo values (∆α).

(14) Ln 209: How often has this interpolation had to occur due to persistent cloud cover? How many days of missing values are there? How frequent is the MODIS overpath at this location and at what approximate time of day? How does the correction to MODIS vary during the winter with a much lower solar zenith angle for a persistent time?

(14.1) How often has this interpolation had to occur due to persistent cloud cover? How many days of missing values are there?

The frequency of the interpolation applied to the prepossessed MCD43A3 data set between the austral summer 2000/01
and 2015/16 at the three AWSs are: 15.51% (AWS 14), 8.45% (AWS 17), and 1.32% (AWS 18), respectively. These are equivalent to 224 days (AWS 14), 122 days (AWS 17), and 19 days (AWS 18) of total days of missing values. These statistics have been added in the text.

(14.2) How frequent is the MODIS overpath at this location and at what approximate time of day?

The frequency of the MODIS overpath at a same location is twice a day: Terra crosses the equator from north to south at roughly 10:30 a.m. local time. Aqua crosses the equator from south to north at roughly 1:30 p.m. local time. (https://nsidc.org/data/modis/index.html, assessed on 12 October, 2021).

(14.3) How does the correction to MODIS vary during the winter with a much lower solar zenith angle for a persistent time?

During the winter, we did not implement the MLP-correction due to the absence of MODIS albedo data. To deal with the lower solar zenith angle period prior and posterior to the austral summer time, the MLP-correction is also not performed.

Once the daily total-sky MODIS albedo values were derived we implemented a linear interpolation over time (with a frequency of 15.51% for AWS 14, 8.45% for AWS 17, and 1.32% for AWS 18) to fill in missing values due to potential missing values due to persistent cloud cover.

(15) Ln 212: I would specify that you mean the MLP model here- as RACMO2 is also a model, so the current sentence ‘it is vital to assess the model performance’ could be misunderstood as referring to RACMO performance.

We have clarified this sentence as suggested.

Since our objective is to improve surface melt simulations from RACMO2 over all Larsen ice shelves, it is vital to assess the MLP model performance to both the reference data set, and to RACMO2 simulations directly.

(16) Ln 217: Can additional surface melt only be positive? As in your introduction you mentioned that it was also important to correct RACMO where it overestimates melt. Is this why you set negative corrected melt to 0, so that melt as a whole cannot be negative, or only the change in melt cannot be negative. Perhaps this needs rephrasing.

Additional surface melt can be negative (Fig. 4), but the (corrected) surface melt cannot be negative. According to Eq. 6, if the corrected surface melt (i.e., sum of M_0 and M_a) is negative, then the surface melt is set back to 0. We have rephrased it, to avoid misunderstanding.

Eq. 6: $M_c = \max(M_0 + M_a, 0)$

... Additionally, to calibrate over-corrections, if the corrected surface melt is negative, we have set the negative corrected surface melt it to zero using Eq. (6).

(17) Ln 218: Did you attempt to apply the model outside of the austral summer? Did you turn on the model specifically at December 1 and off again at February 28/29? What about in years where the melt season starts early or ends late, which can be the case (e.g 2010), especially in the presence of föhn winds; see King et al. 2017. (https://doi.org/10.1002/2017JD026809). What difference could the model have outside of the summer?
Unfortunately, we are not able to apply the model outside of the austral summer, because there is not observation of albedo during winter. Regarding the period in between (e.g., November and March), the albedo are observed under very low solar zenith angle by MODIS, which leads to in accurate albedo observations. Therefore, it also not ideal to apply the model. During these periods, the original RAMCO2 simulations will be used.

During training, we did train the MLP model to learn the surface melt process outside austral summer, since the albedo are manually tuned in the training data set. We have discovered that the model was able to learn the winter melt suggested by the reviewer. And we hope it can be considered (i.e., ‘transfer-learned’) by the model within the austral summer.

(18) Ln 264: Earlier you say that the MLP is not applied outside of austral summer, yet here you discuss May and August. So is the MLP applied year round? Or are the winter values from RACMO without being corrected?

It is because we have two parts of MLP model development, i.e., training/validation (Block II-2 in Fig. 2), and application (Block II-4 in Fig. 2). During the MLP training/validation, we want the MLP model to learn as much as the melt mechanism as possible, e.g., winter melt due to foehn and its relation to albedo (Fig.5). It can be implemented since the albedo is tuned manually during MLP training/validation. Hence we do have input observed albedo (α_0) outside the austral summer. While during the application, MODIS-observed albedo is required as the input. Therefore, it is impossible to apply the model outside the austral summer (in winter and the time when solar zenith angle is low). Line 264 belongs to validation, so MLP is applied.

(19) Ln 308: Include the R^2 for RACMO too, so that the reader than read that correlations are higher.

We have included the required R^2 in the text.

For clear-sky conditions (Figure 6 Fig. 6), AWS 14 and AWS 17 show higher correlations with MODIS ($R^2 = 0.28$ and 0.20, respectively) than RACMO2 ($R^2 = 0.17$ and 0.02, respectively), ...

(20) Ln 320-331: Point to some figures or tables here, or include some results of statistics to back up your analysis, as it is currently quite qualitative.

We agree that it would be better to present our result in a quantitative way there. Details regarding numbers and figures are now included in the Line 320-331, as below.

Typical time-series of albedo from RACMO2, AWS and MODIS show that the differences between the three albedo products are relatively small during most of the austral summer season (Figure 7 Fig. 7). The RMSEs between AWS-observed and MODIS-observed/RACMO2-simulated albedo in December and January are around 3.5% (AWS 14), 5.5% (AWS 17), and 4.5%, respectively. The RMSE between AWS-observed and RACMO2-simulated albedo increases up to 8.8% at AWS 17 between RACMO2 simulations and AWS observations in February. However, at a daily basis, in the first half of December, MODIS and RACMO2 observed/simulated comparably high albedo at AWS 17 (4.5% (RACMO2) and 8.5% (MODIS) higher than AWS observations around on 11 December 2013 (in Fig. 7b) and AWS 18 (6.8% (RACMO2) and 3.5% (MODIS) higher than AWS observations around on 6 December 2014 in Fig. 7c). The contemporary optical depth is also relatively high (15.64 at AWS 17, and 16.76 at AWS 18). Vice versa, at AWS 18 around on 12 December 4+ 2014, both MODIS and RACMO2 observed/simulated comparably low (11.4% (RACMO2) and 7.4% (MODIS) lower than AWS observations) albedo, and the optical
depth is close to zero on a cloudy day. The difference remains low during the middle of the summer season but gradually
increases (up to 19.18% between RACMO2 and AWS observed at AWS 17 on 27 February 2014) towards the end of the summer season in February. RACMO2 simulations tend to produce the highest albedo at the three AWS on average. At AWS 14 and AWS 18, RACMO2 simulations are more consistent with the AWS observations than with MODIS observations (Fig. 7a and 7c). MODIS observations are comparably lower than AWS observations and RACMO2 simulations at the end of February. On the contrary, AWS observations are much lower than RACMO2 simulations at AWS 17 (Fig. 7b). For albedo values higher than 0.80, AWS observations and MODIS observations are similar, but for albedo below 0.80, AWS observations show a broader tail towards lower values (e.g., shown in Fig. 7a in the end of February 2014 at AWS 14). It is noteworthy that each AWS has different background geophysical settings, and the three products have very different spatial resolutions: AWS observations are local in-situ observations, while MODIS albedo observations and RACMO2 albedo simulations are of 27 km spatial resolution. Further analyses and discussion can be found in section 5.1.

(21) Ln 357: Are you able to say why it was erroneously corrected?

It is plausibly due to the significant higher temperature simulated by RACMO2 than the one observed by AWS (Fig. 9a). We have added the explanation to the text.

It is noteworthy that a melt event at the beginning of February 2014 is erroneously corrected by the deep MLP model since both AWS and RACMO2 do not observe or simulate such a melt event. It is plausibly due to the significant higher temperature simulated by RACMO2 than the one observed by AWS (Fig. 9a).

(22) Ln 361: Have others also found timing offsets between RACMO and observations previously? A citation would strengthen this section. Perhaps this is covered more in the discussion though.

We are not aware of others discussing this issue specifically, but RACMO2 is forced at its lateral boundaries by ERA-Interim data, and its atmosphere is allowed to evolve freely. It can lead to timing differences of weather systems of up to 1-2 days.

(23) Ln 371: In which year?

It is in year 2014, we have added it in the text.

At AWS 17 during the end of February in 2014, when AWS observed two extensive melt events, RACMO2 simulates the incoming shortwave radiation well.

(24) Ln 380-390: AWS18 is located in a region with blue ice, where albedo is generally low and the valleys are relatively narrow. It could be that RACMO2 fails to capture the blue ice zone and could also have land use discrepancies with the topography poorly resolved in 27km resolution. It could be useful here to mention the blue ice zone and/or include some references to this, as it would be unlikely if RACMO2 was able to represent these surface conditions.

We have also considered potential influences from blue ice or low-albedo surface, therefore, we mentioned the necessity of examining MLP performance in blue ice areas in the future in Section 5.2. To our knowledge, there is no blue ice
at AWS 18, but only some melting ponds occurred occasionally nearby. We have double checked it in the Quantarctica (Matsuoka et al., 2021) blue ice product classified using the method proposed by Hui et al. (2014). The product also suggests no blue ice occurrence at AWS 18, or only a small portion of blue ice remote from AWS 18 as suggested by the reviewer.

Moreover, this discrepancy indicates the importance of high spatial resolution corrections. At the 27 km resolution, the MODIS albedo is often lower than the RACMO2 albedo resulting in increased melt. At the point scale of the AWS, the AWS albedo is higher than the RACMO2 albedo resulting in decreased melt. This indicates that the spatial scale of corrections (27 km versus local scale) matters.

The discrepancies are also shown in the comparison in the annual surface melt, in which the deep MLP model produces the highest estimations throughout all the years. QSCAT estimates and AWS observations are the lowest (Figure 10d). Moreover, this discrepancy indicates the importance of high spatial resolution corrections. At the 27 km resolution, the MODIS albedo is often lower than the RACMO2 albedo resulting in increased melt. At the point scale of the AWS, the AWS albedo is higher than the RACMO2 albedo resulting in decreased melt. This indicates that the spatial scale of corrections (27 km versus local scale) matters.

(25) Ln 435: ‘actual albedo’ is a little misleading as the reader is unsure whether this comes from AWS observations or MODIS. You have to read the Figure caption to understand. I would write (from MODIS) or something similar in the text.

We agree the term ‘actual albedo’ is not suitable, we have replaced it by ‘albedo observed by MODIS’ as suggested.

Such a location presents an ideal scenario where the actual albedo observed by MODIS is systematically lower than RACMO2 simulations (Figure 12) (Fig. 12).

(26) Figure 7: What are the white and grey bars in the background? Include this info in the caption

The grey bars indicates the binary cloudiness of a 500 x 500 MODIS pixels corresponding to each AWS location. This information has been added to the corresponding figure caption.

Figure 7. Albedo dynamics from the regional atmospheric climate model version 2.3p2 (RACMO2) simulations, automatic weather station (AWS) observations, and moderate resolution imaging spectroradiometer (MODIS) observations at AWS 14, AWS 17, and AWS 18 during the austral summer 2015/2016. The grey bars indicates the binary cloudiness of a 500 x 500 MODIS pixels corresponding to each AWS location.